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In 2019 we published a pair of articles in Statistics in Medicine that describe how
to calculate the minimum sample size for developing a multivariable prediction
model with a continuous outcome, or with a binary or time-to-event outcome.
As for any sample size calculation, the approach requires the user to specify
anticipated values for key parameters. In particular, for a prediction model with
a binary outcome, the outcome proportion and a conservative estimate for the
overall fit of the developed model as measured by the Cox-Snell R2 (proportion of
variance explained) must be specified. This proposal raises the question of how
to identify a plausible value for R2 in advance of model development. Our arti-
cles suggest researchers should identify R2 from closely related models already
published in their field. In this letter, we present details on how to derive R2

using the reported C statistic (AUROC) for such existing prediction models with
a binary outcome. The C statistic is commonly reported, and so our approach
allows researchers to obtain R2 for subsequent sample size calculations for new
models. Stata and R code is provided, and a small simulation study.
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1 INTRODUCTION
In 2019 we published a pair of articles in Statistics in Medicine that describe how to calculate the minimum sample size
for developing a multivariable prediction model with a continuous outcome,1 or with a binary or time-to-event outcome.2
These approaches have been implemented in the package pmsampsize produced for Stata and R by Ensor et al3 The
required sample size aims to minimize model overfitting and to ensure key parameters (such as the model intercept) are
estimated precisely. As for any sample size calculation, the approach requires the user to specify anticipated values for key
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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parameters. In particular, for a logistic regression-based prediction model, the outcome proportion, and a conservative
estimate for the overall fit of the developed model as measured by the Cox-Snell R2 (proportion of variance explained)
must be specified.4,5 For example, to minimize overfitting when developing a logistic regression-based prediction model
for a binary outcome, we showed that the sample size (number of participants, n) needed to achieve an expected uniform
shrinkage factor of S is,

n = P

(S − 1) ln
(

1 − R2
CS

S

) ,

where P is the total number of parameters corresponding to the predictors to be considered for inclusion in the model, S
is recommended to be ≥ 0.9 (such that predictor effects must be shrink by ≤10%), and R2

CS is a conservative guess at the
actual overall fit of the model after model development (ie, the adjusted Cox-Snell R2

CS).
This proposal raises the question of how to identify a plausible value for R2

CS in advance of model development. In
most clinical fields, previous prediction models already exist. Indeed, often a new prediction model is developed specif-
ically to update or improve (eg, by adding additional predictors) upon the performance of an existing model. Therefore,
our articles suggest researchers should identify R2

CS from closely related models already published in their field,1,2 and
use it to inform the value of R2

CS to use in the sample size calculation for the development of their new model. Extraction
of R2

CS is straightforward for prediction models with continuous outcomes, as R2
CS is nearly always reported. For binary

and time-to-event outcomes, it is rarely reported, but our article explains how to obtain it from other reported measures
including the likelihood ratio statistic along with Nagelkerke’s R2, McFadden’s R2, (for binary outcomes) and Royston’s D
statistic, O’Quigley’s R2, Royston’s R2, and Royston and Sauerbrei’s R2 (for survival outcomes). A widely reported perfor-
mance measure is the C statistic, which measures the discrimination performance of a model, and for a binary outcome
is equivalent to the area under the receiver operating characteristic curve (AUROC). For time-to-event outcomes, we also
discussed how to use the approach of Jinks et al to predict Royston’s D (and thus subsequently R2

CS) from a reported C
statistic from a survival model such as Cox regression.6 However, we did not present details on how to derive R2

CS when
only the C statistic is reported for a prediction model with a binary outcome—which is often the case. Hence, we now
address this to further help researchers to implement our sample size proposal.

2 OBTAINING R2
CS FROM A REPORTED C STATISTIC FOR A PREDICTION

MODEL WITH A BINARY OUTCOME

We consider the scenario where a new prediction model for a binary outcome is being developed for a particular target
population. Assume that an article exists that describes the performance of a closely related model (eg, similar outcome
and target population), which reports the model’s C statistic but not the model’s R2

CS. We want to use the reported C statistic
to estimate the unreported R2

CS, which is needed to base our sample size calculation on. To do this, we proceed as follows.
First, let p̂i denote the existing model’s predicted risk of the outcome event for an individual (i) conditional on their

values of predictors included in the model. We refer to logit(p̂i) = LPi as the linear predictor (LP) values of the existing
model. Second, assume LPi is normally distributed in those with the event and also those without the event, with different
means but a common variance. Under these (potentially strong) assumptions, the difference in means of these two normal
distributions is a function of the C statistic, as described by various authors elsewhere7-10; specifically, the difference
in means is

√
2 Φ−1(C), where C is the C statistic, and Φ−1(⋅) denotes the inverse of the standard normal distribution.

Third, we simulate a large dataset of LPi values based on these two normal distributions, whilst also ensuring the overall
outcome proportion matches that assumed for the target population. A logistic regression model can then be fitted to this
simulated data, and R2

CS obtained post estimation.
The steps can be outlined more formally as:

i. Simulate a large dataset (eg, one million participants)
ii. Assign an outcome of Yi = 0 (no event) or Yi = 1 (event) based on sampling from a Bernoulli (𝜙) distribution, where

𝜙 is the outcome proportion in the article reporting the existing prediction model
iii. Simulate LPi values for every participant assuming LPi ∼N(0, 1) in the non-events group and LPi ∼N(𝜇, 1) in the

events group, where 𝜇 =
√

2 Φ−1(C)
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iv. Fit a logistic regression to the simulated data; that is,

Yi ∼ Bernoulli(pi)

logit(pi) = 𝛼 + 𝛽LPi.

This fitted model will have the same C statistic as specified in step (iii). The estimated values of 𝛼 and 𝛽 ensure
a perfect calibration-in-the-large (= 0) and calibration slope (= 1), respectively, in new data from the same assumed
target population.

v. Obtain the R2
CS value for this fitted logistic regression model post estimation, for example, by using the fitstat com-

mand in Stata or the PseudoR2(model, which=“CoxSnell”) function in the DescTools package in R. Alternatively, it
can be calculated directly using

R2
CS = 1 − exp

(−LR
n

)

where n is the number of simulated participants (step i) and LR is the likelihood ratio statistic of the fitted logistic
regression model. The obtained R2

CS value can now be used in the sample size calculation for the new prediction
model.

Stata and R code are provided in the appendix to implement the approach, and we plan to embed within the pmsamp-
size package. Note that, as discussed in our articles,2,11 the value of R2

CS depends on the outcome proportion in the target
population. Therefore, if the outcome proportion is anticipated to be lower than that reported by the article of the existing
model (eg, perhaps because outcomes have since improved), then this could be used in step (ii) (and subsequent sample
size calculations) instead.

Where there are a few options for the choice of C statistic (eg, based on multiple validation studies of a previous model),
we recommend taking the lowest value, as this is conservative (ie, leads to larger required sample sizes for the new model
development study). When using the C statistic reported from a model development study, ideally the C statistic should
be adjusted for optimism due to any overfitting. For example, this could be the C statistic after a penalized regression
approach has been used; the C statistic after optimism-adjustment based on results from bootstrapping12; or based on the
C statistic estimated in any independent validation (test) datasets.

3 A SIMULATION STUDY TO INVESTIGATE THE FIVE-STEP PROCESS
WHEN THE ASSUMPTIONS ARE POTENTIALLY INCORRECT

Our five-step approach makes strong assumptions of normality of the existing model’s LP, with a common variance for
both events and non-events groups. These assumptions are a practical compromise, to help researchers elicit an approxi-
mate value for R2

CS in situations where only a reported C statistic, so that they can apply our sample size proposal. Further
research might investigate whether they are a good approximation in other situations where the assumptions are invalid.
For example, in Figure 1 we show the accuracy of the R2

CS estimate from our five-step process, compared with the actual
value (ie, that which would have been observed but is unreported), when the overall LPi distribution is assumed normal,
but the LPi distribution may not be normal with common variances in the events and non-events groups. We gener-
ated 100 different LPi distributions (ie, 100 different true prediction models) with LPi ∼N(𝜇, 𝜎2), 𝜇∼uniform(0, 5) and
𝜎 ∼uniform(0.5,3), to cover a range of true C statistic values from about 0.63 to 0.94, corresponding to true R2

CS values of
about 0.002 to 0.49. Reassuringly, there is still close agreement between the estimated and actual R2

CS in most scenarios
[Figure 1], even though the assumptions made in the five-step process are not necessarily correct.

4 APPLIED EXAMPLE

Thangaratinam et al13 developed a prediction model for calculating the risk of an adverse maternal outcome by discharge,
in women with early onset preeclampsia in the context of current care. Upon external validation in the target population,
the reported C statistic was 0.81. The R2

CS was not provided, and so we applied the five-step procedure described in the
previous section, assuming a C statistic of 0.81 and an outcome proportion of 0.77 as reported in the validation study. This
gave a R2

CS of 0.21.
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F I G U R E 1 Agreement between the estimated R2
CS value (estimated from the reported C statistic estimate using our five-step

procedure) and the actual R2
CS (ie, that which would have been observed but is unreported) in 100 prediction model scenarios corresponding

to LPi ∼N(𝜇, 𝜎2) and 𝜇∼uniform(0, 5) and 𝜎∼uniform(0.5,3) [Color figure can be viewed at wileyonlinelibrary.com]

Therefore, to update and extend the model developed by Thangaratinam et al in the same target population, a R2
CS

value of 0.21 can be used in the sample size calculations. For example, assuming the new model aimed to consider up to 30
predictor parameters, applying the sample size criteria of Riley et al (eg, in Stata type: pmsampsize, type(b) rsquared(0.21)
parameters(30) prevalence(0.77)) gives a minimum sample size required for model development of 1130 participants,
with 871 events, and thus an events per predictor parameter of 29.

5 CONCLUDING REMARK

We have shown how to derive an estimate of the Cox-Snell R2 from a reported C statistic of a prediction model for a
binary outcome. As C statistics (or equivalently AUROCs) are commonly reported for existing prediction models of binary
outcomes, our approach allows researchers to quickly obtain a Cox-Snell R2 to use within sample size calculations when
developing new prediction models in the same field.

http://wileyonlinelibrary.com
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APPENDIX A

A1. Stata code to calculate R2
CS from a reported C statistic

clear all
* define the existing model’s reported C statistic
local C = 0.81
* define outcome proportion
local prev = 0.77

* define LP distribution
* events: LP∼N(0, 1)
* non-events: LP∼N(mu, 1)
* define mu as a function of the C statistic
local mu = sqrt (2)*(invnorm(‘C’))

* now we generate large dataset
set obs 10000000
set seed 1234
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* randomly generate outcome proportion according to the outcome proportion
gen outcome = rbinomial(1,‘prev’)
* specify LP for events and non-events group
* non-events group
gen LP = rnormal(0, 1)
* events group
replace LP = rnormal(‘mu’, 1) if outcome == 1

* Fit a logistic regression with LP as covariate;
* this is essentially a calibration model, and the intercept and slope estimates
* will ensure the outcome proportion is accounted for, without changing C statistic
logistic outcome LP, coef
fitstat
* report Cox-Snell R-squared
disp r(r2_ml)
* gives R2 of 0.21 (correspond to an R2 Nagelkerke of 0.32)

A2. R code to calculate R2
CS from a reported C statistic

approximate_R2 <- function(auc, prev, n = 1000000){

# define mu as a function of the C statistic
mu <- sqrt(2) * qnorm(auc)

# simulate large sample linear prediction based on two normals
# for non-eventsN(0, 1), events and N(mu, 1)

LP <- c(rnorm(prev*n, mean=0, sd=1), rnorm((1-prev)*n, mean=mu, sd=1))
y <- c(rep(0, prev*n), rep(1, (1-prev)*n))

# Fit a logistic regression with LP as covariate;
# this is essentially a calibration model, and the intercept and
# slope estimate will ensure the outcome proportion is accounted
# for, without changing C statistic

fit <- lrm(y∼LP)

max_R2 <- function(prev){
1-(prev̂prev*(1-prev)̂(1-prev))̂2

}
return(list(R2.nagelkerke = as.numeric(fit$stats[’R2’]),

R2.coxsnell = as.numeric(fit$stats[’R2’]) * max_R2(prev)))
}

> set.seed(1234)
> approximate_R2(auc = 0.81, prev = 0.77, n=1000000)
$R2.nagelkerke
[1] 0.3183689

$R2.coxsnell
[1] 0.2100957


