
 

Journal Pre-proof

External validation of clinical prediction models: simulation-based
sample size calculations were more reliable than rules-of-thumb

Kym IE Snell , Lucinda Archer , Joie Ensor , Laura J Bonnett ,
Thomas PA Debray , Bob Phillips , Gary S Collins ,
Richard D Riley

PII: S0895-4356(21)00048-2
DOI: https://doi.org/10.1016/j.jclinepi.2021.02.011
Reference: JCE 10425

To appear in: Journal of Clinical Epidemiology

Accepted date: 9 February 2021

Please cite this article as: Kym IE Snell , Lucinda Archer , Joie Ensor , Laura J Bonnett ,
Thomas PA Debray , Bob Phillips , Gary S Collins , Richard D Riley , External validation of clinical
prediction models: simulation-based sample size calculations were more reliable than rules-of-thumb,
Journal of Clinical Epidemiology (2021), doi: https://doi.org/10.1016/j.jclinepi.2021.02.011

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Inc.

https://doi.org/10.1016/j.jclinepi.2021.02.011
https://doi.org/10.1016/j.jclinepi.2021.02.011


1 
 

Highlights: 

 After a clinical prediction model is developed, it is usually necessary to undertake an 

external validation study that examines the model’s performance in new data from 

the same or different population.  

 External validation studies should have an appropriate sample size, in order to 

estimate model performance measures precisely for calibration, discrimination and 

clinical utility.  

 Rules-of-thumb suggest at least 100 events and 100 non-events. Such blanket 

guidance is imprecise, and not specific to the model or validation setting. 

 Our works shows that precision of performance estimates is affected by the model’s 

linear predictor (LP) distribution, in addition to number of events and total sample 

size.  

 Furthermore, sample sizes of 100 (or even 200) events and non-events can give 

imprecise estimates, especially for calibration. 

 Our new proposal uses a simulation-based sample size calculation, which accounts 

for the LP distribution and (mis)calibration in the validation sample, and calculates 

the sample size (and events) required conditional on these factors.  

 The approach requires the researcher to specify the desired precision for each 

performance measure of interest (calibration, discrimination, net benefit, etc), the 

model’s anticipated LP distribution in the validation population, and whether or not 

the model is well calibrated. Guidance for how to specify these values is given, and R 

and Stata code is provided. 
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Abstract 

Introduction: Sample size ‘rules-of-thumb’ for external validation of clinical prediction 

models suggest at least 100 events and 100 non-events. Such blanket guidance is 

imprecise, and not specific to the model or validation setting. We investigate factors affecting 

precision of model performance estimates upon external validation, and propose a more 

tailored sample size approach. 

Methods: Simulation of logistic regression prediction models to investigate factors 

associated with precision of performance estimates. Then, explanation and illustration of a 
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simulation-based approach to calculate the minimum sample size required to precisely 

estimate a model’s calibration, discrimination and clinical utility. 

Results: Precision is affected by the model’s linear predictor (LP) distribution, in addition to 

number of events and total sample size. Sample sizes of 100 (or even 200) events and non-

events can give imprecise estimates, especially for calibration. The simulation-based 

calculation accounts for the LP distribution and (mis)calibration in the validation sample. 

Application identifies 2430 required participants (531 events) for external validation of a deep 

vein thrombosis diagnostic model. 

Conclusion: Where researchers can anticipate the distribution of the model’s LP (e.g. 

based on development sample, or a pilot study), a simulation-based approach for calculating 

sample size for external validation offers more flexibility and reliability than rules-of-thumb. 

 

Keywords 

Sample size, external validation, clinical prediction model, calibration and discrimination, net 

benefit, simulation 
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What is new? 

Key findings: 

 Existing rules-of-thumb, such as having 100 events and 100 non-events, for the sample size 

required for external validation studies for prediction models of binary outcomes may not 

ensure precise performance estimates, particularly for calibration measures. 

 Precision of performance estimates is affected by the model’s linear predictor distribution, in 

addition to the number of events and total sample size. 

 

What this adds to what is known 

 Our simulation study shows that more than 200 events and non-events are often needed to 

achieve precise estimates of calibration, and the actual sample size calculation should be 

tailored to the setting and model of interest. 

 Our new proposal uses a simulation-based sample size calculation, which accounts for the 

linear predictor distribution and (mis)calibration in the validation sample, and calculates the 

sample size (and events) required conditional on these factors.  

 

What is the implication, what should change now 

 Precise performance estimates should be targeted when externally validating prediction models 

for binary outcomes and this can be done through simulation. The approach requires the 

researcher to specify the desired precision for each performance measure of interest 

(calibration, discrimination, net benefit, etc), the model’s anticipated linear predictor distribution 

in the validation population, and whether or not the model is expected to be well calibrated.  
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 Introduction 1

Clinical prediction models utilise multiple variables (predictors) in combination to predict an 

individual patient’s risk of a clinical outcome [1-3]. An important part of prediction model 

research is assessing the predictive performance of a model, in terms of whether the 

model’s predicted risks: (i) discriminate between individuals that have the outcome and 

those that do not, and (ii) calibrate closely with observed risks (i.e. predicted risks are 

accurate). This can be done by internal validation (such as bootstrapping) using the 

development data, and by external validation using independent data (i.e. data different to 

that used for model development). Examining clinical utility (e.g. a model’s net benefit) is 

also important if the model is to be used to change (e.g. treatment) strategies in clinical 

practice when predicted risks are above a particular threshold [4-6]. 

In contrast to model development studies [7-10], relatively little research has been published 

on the sample size needed to externally validate a prediction model. For a binary outcome, 

often the number of events is used as the effective sample size [2], and therefore larger 

sample sizes are needed in settings where the outcome is rare. Steyerberg suggests having 

at least 100 events and 100 non-events for statistical tests to have ‘reasonable power’ in an 

external sample, but preferably >250 events and >250 non-events to have power to detect 

small but still important invalidity.[11] Other simulation and resampling studies conducted by 

Vergouwe et al. [12], Collins et al. [13], and van Calster et al [14], also suggest having at 

least 100 events and 100 non-events to ensure accurate and precise estimates of 

performance measures, and even larger sample sizes (a minimum of 200 events and 200 

non-events) to derive flexible calibration curves [13, 14].   

In this article, we evaluate whether the rule-of-thumb of having at least 100 (or 200) events 

and non-events is adequate for external validation of a prediction model with a binary 

outcome. A simulation study is used to investigate the relationship between various factors 

and precision of performance measures. Based on this, we suggest that sample size needs 
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to be tailored to the setting of interest and propose a more flexible simulation-based 

approach to do this. Section 2 introduces predictive performance measures and describes 

the methods used for the simulation study and our simulation-based sample size calculation. 

Section 3 gives the results and the sample size approach is illustrated for validation of a 

prediction model for deep vein thrombosis (DVT). Finally, Section 4 provides some 

discussion. 

 Methods 2

2.1 Predictive performance measures and a motivating example 

Consider a prediction model, developed using logistic regression for a binary outcome, that 

is to be externally validated. It will take the form, 

    (
  

    
)                                 

Equation 1 

 

where    is the predicted probability of the outcome for individual i, α is the intercept, and the 

X and β terms represent the observed predictor values and predictor effects (log odds ratios) 

respectively. The right-hand side of the equation is often referred to as the linear predictor 

(LP). The predictive performance of a model is usually evaluated by estimating measures of 

calibration, discrimination and clinical utility, as defined in Box 1. 
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Box 1: Summary of typical performance measures to be estimated in an external 
validation of a logistic regression prediction model 

Calibration 

 To estimate calibration performance of a prediction model, a calibration model can be fitted using 

the validation dataset. For a binary outcome, the typical calibration model is 

      (  )     (   ) Equation 2 

where     is the linear predictor value for participant   in the validation study as calculated from the 

existing prediction model (e.g. the right-hand-side of Equation 1). 

 The calibration model can be used to obtain the calibration slope and the calibration-in-the-large: 

o The S coefficient is the estimate of the calibration slope and ideally should be 1. Values <1 

indicate predictions are too extreme, for example low predicted probabilities are too low and 

high predicted probabilities are too high. Conversely, values >1 indicate that predictions are 

too narrow, for example low predictions are not low enough and high predictions are not 

high enough. S is typically below 1 for prediction models that are overfitted to the 

development data. 

o The calibration-in-the-large is estimated as γ when S = 1 (obtained by fitting Equation 2 with 

LP included as an offset). This is closely related to the ratio of observed and expected 

outcomes (O/E), which is the average of the observed outcomes divided by the average 

predicted probability across all individuals. Estimates for γ should be equal to 0 if the model 

yields predictions are perfectly calibrated at the population level. 

 A calibration plot is also essential to visually demonstrate the range of predicted risks, and their 

calibration with observed risks, ideally using a flexible (e.g. loess smoothed) calibration curve.[14, 

15] The integrated calibration index (ICI) can be calculated to quantify the difference between the 

smoothed calibration curve and the ideal 45 degree line.[16] A similar measure is the estimated 

calibration index (ECI) [14].  

Discrimination 

 Discrimination is assessed through the C-statistic, which for a binary outcome is equivalent to the 

area under the receiver operating characteristic curve. Values typically range from 0.5 for a model 

that discriminates no better than chance alone, through to 1 which would represent perfect 

discrimination. 

Net benefit 

 The overall consequences of using a prediction for clinical decisions can be measured using the 

net benefit,[4, 6] which expresses the relative value of benefits and harms associated with using 

the model to determine clinical decisions. Net benefit (    ) is 

     (                      )  ((             )  (            )  
  

    
)  

where sensitivity and specificity of the model predictions depend on the chosen risk threshold 

value    for which clinical decisions are deemed necessary 
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2.2 Simulation study to investigate factors that influence the precision of 

performance estimates 

We hypothesised that four factors relating to the external validation sample could affect the 

precision of performance estimates: (i) the outcome proportion, (ii) the total sample size, (iii) 

the standard deviation of the LP values, and (iv) the true (mis)calibration of the model. We 

conducted a simulation study to investigate this, as now described. 

 

2.2.1 Scenarios for the simulation study 

We assumed the prediction model (which is to be external validated) has a LP that is 

normally distributed; LPi ~ Normal(μ, σ2). Scenarios for the simulations were defined using 

different values of σ (standard deviation of LP) and μ (mean of LP), as given in Table 1. The 

value of μ was selected to correspond to a particular ‘base probability’ (p = inverse logit(μ) = 

1/(1+exp(-μ)). This is the outcome event probability for an individual who has the mean LP 

value; alternatively, it can be considered the expected probability of an event in a population 

where σ = 0 and so LP is μ for all participants. When σ = 0, the base probability would be 

equal to the incidence (for prognostic studies) or prevalence (for diagnostic studies). 

We selected base probabilities to cover a wide range, from rare outcomes (~0.05) to 

common outcomes (0.5). Values for σ were chosen to provide a narrow through to a wide 

range of predicted probabilities from the model (depending on the outcome event 

proportion), as shown in Figure 1. This also reflects low through to high values of the C-

statistic, as the C-statistic will increase with wider distributions of LP. C-statistic values 

covered by the scenarios ranged from 0.55 when σ=0.2 to 0.75 when σ=1.0 and base 

probability=0.05. 
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Table 1: Factors varied in the simulation study to define scenarios 

Factor Values 

Standard deviation of the LPi (σ) 0.2, 0.4, 0.6, 0.8, 1.0 

Base probability (inverse logit(μ)) 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 

Expected number of events (E) 50, 100, 150, 200, …, 800 

 

 

 

 

Figure 1 Distribution of the predicted probabilities for each of the different simulation 
scenarios based on the combination of base probability and σ values shown in Table 1 
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2.2.2 Main simulation process 

The steps for the main simulation were as follows: 

1) Define the simulation scenario by specifying σ and μ, with the latter corresponding to 

the ‘base probability’ of the outcome (p = 1/(1+exp(-μ)). Also specify the desired 

expected number of events (E) in a population where all individuals have the base 

probability. 

2) Set the validation dataset’s sample size (N) using E divided by the base probability 

3) Generate LP values for each patient in the dataset using LPi ~ Normal(μ, σ2). 

4) Generate binary outcomes (Yi = 0 or 1) for patient’s by Yi  ~ Bernoulli( 1/(1+exp(-

LPi))) 

5) Estimate with 95% confidence intervals (CIs) the model’s calibration and 

discrimination performance using the external validation dataset. 

6) Repeat steps 2 - 4 a total of 500 times for each simulation scenario. 500 repetitions 

was used to ensure a small Monte Carlo error whilst ensuring computation time was 

acceptable. 

7) For each performance measure, calculate the average estimate and the average 

precision (based on the average 95% CI width) the 500 results. 

 

 

For step 5, we estimated the calibration slope, calibration-in-the-large, the C-statistic and 

E/O statistic. Standard 95% CIs were calculated on the original scale (i.e. estimate ± 1.96 x 

standard error) for all measures except the E/O statistic, which was derived on the log scale 

and then back transformed [17]. Using the simulation results for the various scenarios, we 

examined what factors were associated with increased precision of performance estimates. 

We also examined whether the precision was adequate when the sample size met the rule-

of-thumb of 100 (or 200) events.  
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2.2.3 Extensions to miscalibration 

Step 4 assumes that the prediction model’s LP is correct, such that the true calibration 

model is perfect (i.e. intercept and slope are 0 and 1, respectively, in Equation 2). Therefore, 

the scenarios were also extended to assess the effect of miscalibration. To do so, steps 1-3 

remained the same but then we also created, LPmiscal in which the original LP was multiplied 

by a ‘miscalibration factor’ (values of 0.80, 0.85, 0.90, 0.95, 1.05, 1.10, 1.15, and 1.20 were 

considered). The true outcomes values in step 4 were then based on LPmiscal rather than the 

original LP. Hence, in step 5 model performance estimates and their prediction reflected a 

miscalibrated model; in particular, true calibration slopes were not 1. 

 

2.3 Proposal for simulation-based sample size calculations 

Rather than using a rule-of-thumb, we propose a simulation-based approach to identify the 

sample size required to achieve precise performance estimates. The proposal follows similar 

steps to that described previously for our simulation study, except now the process is 

iterative and converges when the minimum sample size is achieved. It is summarised in Box 

2, and requires the researcher to specify the desired precision for each performance 

measure of interest (calibration, discrimination, net benefit, etc), the model’s anticipated LP 

distribution in the validation population, and whether or not the model is well calibrated (i.e. 

the values of parameters γ and S of the calibration model in Equation 2). 

A sensible starting point is to assume the model is well calibrated (i.e. γ = 0 and S = 1) and 

that the LP distribution is the same as that for the development study, especially if the 

validation population is similar to development population. The LP distribution may be 

obtained directly from the development study’s publication or authors; if unavailable, it can, 

be calculated indirectly using other information, such as the reported C-statistic or the 

distribution for each outcome group (e.g. displayed at the bottom of a calibration plot).[17-19] 
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If the validation population is considered different from the development population (e.g. due 

to change in expected outcome proportion and/or case-mix), a pilot study may be necessary 

to gauge the distribution better. Further advice is given in the Supplementary Material. 

The required precision is subjective and may be different for each measure. It helps to 

consider what width of a 95% CI is desirable for making strong inferences, and this may be 

context specific, especially for measures such as O/E and calibration-in-the-large 

(Supplementary Material). Our examples make some suggestions. 

 

2.3.1 Applied example: Diagnostic model for deep vein thrombosis 

Debray et al. developed a diagnostic model for deep vein thrombosis (DVT) using data from 

1295 individuals with about 22% truly having the outcome [20]. The model contained eight 

predictors, and overfitting was not a major concern given a large number of events per 

predictor. The model’s linear prediction distribution was reported for their development 

cohort and also other settings, and we use this to illustrate our simulation-based approach 

for calculating the sample size for an external validation study of the DVT model. Example 

code is given in the supplementary material for Stata and is available on github for R 

(https://github.com/gscollins1973/External-validation-sample-size). 
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Box 2: Steps of a simulation-based approach to calculate the sample size required for 
external validation of a particular prediction model for a binary outcome 

1) Specify the anticipated distribution of the prediction model’s linear predictor (LP) in the 

validation study (e.g. LPi ~ Normal(μ, σ
2
)) 

This might be based on the distribution reported for the development sample if the validation 

population is similar, or based on a pilot study if differences in case-mix are expected between 

the development and validation settings.  

2) Specify values for the parameters γ and S of the calibration model (Equation 2).* 

If development and validation populations are similar, a sensible starting point is to assume the 

model is well calibrated on average, i.e. γ = 0 and S = 1.  

3) Specify the target precision for each performance measure. 

For example, a 95% confidence interval (CI) width for the C-statistic < 0.1, 95% CI width for the 

calibration slope < 0.2, etc. 

4) Specify a starting sample size of the validation study 

For example, starting with N=100. 

5) Generate LP and true outcomes values for each participant. 

Randomly generate the LP value for each participant using the distribution in step 1. Then, 

calculate the logit(pi) value for each participant using the calibration model specified in step 2. 

Then, randomly generate the true binary outcome Yi  ~ Bernoulli(1/(1+exp(-pi))) 

6) Calculate performance measures of interest for the prediction model in the external 

validation dataset: store estimates and 95% CIs. 

For example, by comparing the model’s predicted LP value and the true outcome value for all 

participants in the dataset, estimate the C-statistic, calibration slope, calibration-in-the-large, 

E/O statistic, net benefit (at particular risk thresholds). 

7) Repeat steps 5 and 6 for a specified number of repetitions.  

For example, 500 repetitions. 

8) Using the stored estimates to calculate estimates of precision for each performance 

measure. 

For example, the mean 95% CI width across the repetitions can be stored as the estimate of 

precision. 

9) Adjust the sample size and repeat steps 5-8 until the minimum sample size is identified 

that achieves the target precision for all performance measures. 

 

* The process can also be repeated assuming different levels of miscalibration by altering the 

values of γ and S in Step 2, to see how this would affect sample size and the precision of 

estimates. For example, if the outcome event proportion is expected to be different in the 

validation sample than the development dataset, it is possible to adjust γ to achieve this new 

event proportion. Also, S < 1 might be assumed if the original model was overfitted and not 

corrected for optimism. See examples in 3.2. 
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 Results 3

3.1 Factors associated with the precision of model performance estimates: 

results from simulation study 

3.1.1 Precision of the estimated C-statistic 

The simulation scenarios (Table 1, Figure 1) represented models with C-statistics from 0.56 

(when σ=0.2) through to 0.75 (when σ=1.0). Figure 2 (Panels A & B) show that estimates of 

the C-statistic were more precise (based on the average 95% CI width) when the outcome 

was rare compared to a more common outcome, for a particular average number of events. 

This is likely because the total sample size needs to be much larger for a rare outcome to 

achieve the same number of expected events compared to a more common outcome. The 

standard deviation (σ) of the LP also affected the precision of the C-statistic (Figure 2, 

Panels C & D). The estimates were more precise when σ was larger, although the difference 

in the width of the 95% CI for the C-statistic when σ=1 compared to when σ=0.2 was only 

between 0.02 and 0.06 (depending on base probability) even for studies with 50 expected 

events. As precision increased with increasing SD(LP) for the scenarios considered, we 

would therefore expect even larger C-statistics (e.g. >0.8) than considered here to be even 

more precise. 

If an outcome was common (base probability=0.5) and σ=1.0, the average 95% CI widths 

were 0.14 and 0.09 with 100 and 200 expected outcome events and non-events, 

respectively (N=200 and N=400, respectively), (as seen in Figure 2, Panel B or D). 

Therefore, with 200 events, a typical 95% CI would range from about 0.69 to 0.78. If we 

wanted a more precise estimate, say with a 95% CI width of 0.05, we would need at least 

700 events (N=1400). 
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Figure 2: Average 95% confidence interval width for the C-statistic at different effective 
sample sizes (based on average number of events in the simulation scenario) comparing by 
base probabilities at fixed SD(LP) (panels A and B), or comparing by SD(LP) at fixed base 
probabilities (panels C and D). 

 

3.1.2 Precision of the estimated calibration slope 

Estimates of the calibration slope can be very imprecise when the number of events is low. 

For example in Figure 3, across all scenarios the average 95% CI width is greater than 0.5 

when there are around 50 outcome events, but can still be wide for studies with 100 or even 

200 events when the outcome event proportion is high or σ is small. As seen in Figure 3 

(panels C & D) when σ=0.2, the average width of the 95% CI for the calibration slope is > 1 

even for large studies with approximately 500 events on average. Although not as dramatic, 

estimates also become less precise as the base probability (and therefore the outcome 

event proportion) moves towards 0.5 (Figure 3, panels A & B). Again, this is likely to be 

A 

C 

B 

D 
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related to the difference in total sample size required to achieve the same number of events 

when the base probability differs. 

If we wanted the average 95% CI width to be very precise, say a width of 0.2, we would 

need at least 400 outcome events if the outcome was rare (base probability=0.05) and the 

spread of the LP was large (σ=1.0). If we aimed for a 95% CI width of 0.4 (e.g. 95% CI: 0.8 

to 1.2), this would be achievable with 100 outcome events when the outcome was rare (base 

probability=0.05) and σ=1.0, but would require more than 300 outcome events if the 

outcome was more common (base probability>0.4 | σ=1.0) or if the distribution of LP was 

narrower (σ<1.0 | base probability=0.05). 

 

 

Figure 3: Average 95% confidence interval width for the calibration slope at different 
effective sample sizes (based on number of events) comparing by base probabilities at fixed 
SD(LP) (panels A and B), or comparing by SD(LP) at fixed base probabilities (panels C and 
D). 

A 

D C 
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3.1.3 Precision of the estimated calibration-in-the-large and O/E statistic 

The 95% CIs for calibration-in-the-large were wide for low numbers of events, which 

indicates that in many circumstances 100 events is unlikely to be enough to obtain precise 

estimates (e.g. a 95% CI width > 0.4). The standard deviation of the LP did not affect the 

precision much (Figure 4, panels C & D). However, differences were seen for different base 

probabilities (Figure 4, panels A & B). Findings for the ratio between observed and expected 

outcomes (O/E) were similar to those observed for calibration-in-the-large (Supplementary 

Figure S1). 

 

 

Figure 4: Average 95% confidence interval width for the calibration-in-the-large at different 
effective sample sizes (based on number of events) comparing by base probabilities at fixed 
SD(LP) (panels A and B), or comparing by SD(LP) at fixed base probabilities (panels C and 
D). 

 

A 

D C 
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3.1.4 Extensions to scenarios with miscalibration  

For the scenarios with miscalibration, each model was evaluated in different datasets (in 

which the model would be miscalibrated by varying degrees, as specified in Section 2.2.3). 

The precision in performance estimates was not greatly affected by miscalibration when the 

average number of observed events was still similar to that expected upon validation. 

However, performance estimates were less precise when miscalibration resulted in fewer 

events observed than expected. Supplementary Table S2 gives an example. 

 

3.2 Application of simulation-based sample size calculation to go beyond 

current rules-of-thumb 

The simulation study confirms that the precision in estimates of a model’s predictive 

performance are affected by the standard deviation of the LP (σ), the outcome proportion 

(overall outcome risk), the number of events, and the total sample size. In contrast, adhering 

to blanket rules-of-thumb (e.g. using 100 events) ignores these intricacies and fails to give 

precise performance estimates in some settings. 

In contrast, our simulation-based approach to sample size calculation can be tailored to the 

model and population at hand (Section 2.3). That is, if researchers can specify the likely 

distribution of the model’s LP and the outcome proportion in the target population, they can 

then use the simulation-based approach to identify a suitable sample size to ensure 

predictive performance estimates are precise. 

To illustrate this, consider external validation of Debray’s diagnostic prediction model for 

DVT (introduced in Section 2.3.1) [20], and the required sample size if: 

a.  the model is validated in the same population as the development cohort, and the 

model is expected to be well calibrated (γ = 0 and S = 1 in Equation 2).  
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b. the model is validated in same population as the development cohort, but the model 

is expected to be miscalibrated (e.g. due to overfitting) (γ = 0 and S = 0.9 in Equation 

2). 

c. The outcome event proportion differs from the development data, either due to 

different case-mix or miscalibration of the model. 

We consider these in turn, and compare to the rule-of-thumb of 100 or 200 events. 

3.2.1 Validation in the same population with good calibration 

Debray et al. reported that in the development cohort the model’s LP followed an 

approximate Normal(-1.75, 1.472) distribution [20]. Assuming the external validation study 

has the same distribution, and that the model is well calibrated (γ = 0 and S = 1 in Equation 

2), we conducted simulations of external validation studies that have an average of 100 or 

200 events. Table 2 shows the mean of the 95% CI widths for a range of calibration, 

discrimination and clinical utility measures. The 95% CI is fairly narrow for the C-statistic 

even when there are 100 events (mean width 0.09); it is also narrow for the integrated 

calibration index and net benefit (at an arbitrary clinical risk threshold of 0.1 for illustration). 

However, calibration-in-the-large and calibration slope estimates are imprecise with 100 

events (e.g. mean CI width 0.46 for slope, and even with 200 events (e.g. mean CI width 

0.33 for slope). 

Using the simulation-based process described in Box 2, we calculated the minimum sample 

sizes need to obtain average 95% CI widths of 0.1, 0.2, and 0.2 for the C-statistic, calibration 

slope, and ln(O/E), respectively (Table 3). This corresponds to an expected 95% CI of about 

0.77 to 0.87 for the C-statistic, 0.9 to 1.1 for the calibration slope, and 0.9 to 1.1 for O/E, 

which we deemed precise for making strong inferences. We focus on the precision of O/E 

rather than calibration-in-the-large as it is easier to interpret. The results suggest that a 

sample size of 2430 participants (531 outcome events) is required, which is driven by the 

sample size required to estimate calibration slope precisely. Clearly, if calibration is 
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considered less relevant to, say, net benefit then a lower number may be sufficient for this 

particular model, given the narrow 95% CI width for net benefit even with 100 events (Table 

2). However, calibration is an under-appreciated measure, and indeed linked to net-benefit 

[5], so we recommend it is nearly always important to assess. 
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Table 2: Mean estimates and average 95% CI widths of performance estimates from 
1000 external validation studies with an average of 100 or 200 events, for validating 
the performance of a diagnostic model for DVT with an assumed linear predictor that 
follows a Normal(-1.75, 1.472) distribution that is well-calibrated (γ = 0 and S = 1 in 
Equation 2). 

Performance Measure 

N = 461 (~100 events on 

average in each validation 

dataset) 

N = 922 (~ 200 events on 

average in each validation 

dataset) 

Mean of the 1000 

estimates  

Average 

width of 

1000  

95% CIs 

Mean of the 1000 

estimates 

Average 

width of 

the 1000 

95% CIs 

C-statistic 0.817  0.09 0.816 0.06 

Calibration slope 1.016  0.46 1.008  0.33 

Observed/expected 1.000 0.35 1.002 0.25 

Integrated calibration index 0.020 0.04 0.014 0.03 

Net benefit at a risk 

threshold of 0.1 

0.153 0.08 0.154 0.06 

 

Table 3: Sample size and number of events required to target precise performance 
measures in an external validation study of a DVT prediction model, with an assumed 
linear predictor that follows a Normal(-1.75, 1.472) distribution and assuming model is 
well calibrated (γ = 0 and S = 1 in Equation 2). 

Performance Measure 
Targeted 95%  

CI width 

Sample size (events) required 

to achieve CI width 

C-statistic 0.1 385 (85) 

Calibration slope 0.2 2430 (531) 

Ln(observed/expected) 0.2 1379 (302) 
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3.2.2 Validation in the same population but assuming miscalibration 

Now we assume that in the validation population the model has the same LP distribution as 

in the development sample (Normal(-1.75, 1.472)), but that the true calibration slope (S in 

Equation 2) is 0.9 (e.g. due to slight overfitting that was unaccounted for during model 

development) and γ is a non-zero value that ensures the outcome proportion is still 0.22 in 

the population. Aiming for the same CI widths as in the previous example, our simulation-

based calculation now identifies the sample size required is 2141 participants (471 outcome 

events), again driven by the calibration slope. When the true calibration slope is assumed 

0.8, the required sample size is lower still (1900 participants, 416 outcome events). Hence, 

the required sample size is lower the larger the miscalibration assumed. 

3.2.3 Validation in a different population with a different case-mix or event 

proportion 

Lastly, consider a very different population from the development dataset, as shown by 

Debray et al.[20], where the outcome proportion is lower at 0.13 and the prediction model’s 

LP distribution has changed (Normal(-2.67, 1.562)), due to a different case-mix. Assuming 

the model is well calibrated in terms of the slope (S = 1 in Equation 2), but setting the γ 

parameter value to a non-zero value so that the outcome event proportion of 0.13 is 

achieved in the population, our simulation-based approach identifies that 3156 participants 

(and 400 outcome events) are required, again driven by ensuring precise estimation of the 

calibration slope. This is substantially more than the 100 or 200 outcome events rule-of-

thumb. 
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 Discussion 4

Sample size for external validation studies should ensure precise estimates of performance 

estimate of performance measures of interest (e.g. calibration, discrimination, clinical utility). 

Our simulation study shows that rules-of-thumb such as requiring a minimum of 100 events 

and 100 non-events (or even 200) do not give precise estimates in all scenarios, especially 

where calibration is of interest. Further, the precision of the C-statistic, calibration slope and 

calibration-in-the-large depends not only on the number of expected events, but also on the 

event proportion and therefore the overall sample size, as well as the distribution of the LP. 

Our proposed simulation-based approach accounts for these aspects, and is thus more 

flexible and reliable. Our examples illustrate how it calculates the required sample size for 

the particular model and validation setting of interest, and allows situations assuming 

calibration or miscalibration to be examined.  

The sample sizes based on precision of performance statistics generally result in larger 

sample sizes than the rules-of-thumb, especially where calibration is of interest, in particular 

to estimate calibration slope precisely as demonstrated in our applied example (where 531 

outcome events were deemed necessary) and the simulation study (e.g. see Figure 3 and 

Section 3.2.2). This contrasts work by others which showed that fewer than 100 events were 

required in some cases for validation of scoring systems based on logistic regression [21]. 

However, their calculations were based on achieving smooth calibration plots rather than 

ensuring precise estimates of numerically quantifying calibration. Applied examples also 

show imprecise estimates even when there are more than 100 events. For example, external 

validation of a prediction model for adverse outcomes in pre-eclampsia used a dataset with 

185 events, and yet the 95% CIs for the C-statistic (0.64 to 0.86) and the calibration slope 

were wide (0.48 to 1.32) [22]. 

Our proposal to base sample size on precision of performance estimates is in line with Jinks 

et al., who suggest precisely estimating Royston’s D statistic for survival prediction 
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models.[23] Our simulation approach is more generalizable, as it can assess multiple 

performance measures simultaneously, and can be adapted for any outcome data type (e.g. 

continuous, binary or survival). For survival data, simulations would also need to specify the 

censoring mechanism and key time-points of interest. 

We focused on precise estimates of calibration, discrimination and clinical utility. Although 

the researcher should define the measures of key interest, generally we recommend that all 

are important to consider. Calibration and clinical utility, in particular, are often under-

appreciated [24-26]. By ensuring precise estimates of calibration in terms of O/E (or the 

calibration-in-the-large) and calibration slope, this will help construct a reliable calibration 

plot. However, precise estimates across the entire range of predictions (e.g within each tenth 

of predicted risk from 0 to 1), would likely require even larger sample sizes. The simulation-

based approach could also be extended to determine the sample size required to directly 

compare models, but again larger sample sizes are likely. If an external dataset is already 

available (i.e. sample size is fixed), the approach can be used to ascertain the expected 

precision for that particular sample size and observed linear predictor distribution (to help 

justify its suitability). 

We assumed that the linear predictor is normally distributed, which is supported by empirical 

evidence in some areas [27, 28]. However, the simulation-based sample size approach (Box 

2) can easily be adapted to use other distributions for the LP, as appropriate. If the prediction 

model contains only binary or categorical predictors, a discrete distribution may be more 

appropriate, whereas for skewed or more flexible shapes, a beta or gamma distribution may 

be preferable. Advice for obtaining the LP distribution is given in Section 2.3 and the 

supplementary material. 

We recognise that what is ‘precise’ is subjective. Our examples in Section 3.2 gave 

suggestions for the O/E, calibration slope and C-statistic based on particular 95% CI widths. 

The simulation-based calculation identifies the sample size that is expected to give (i.e. on 
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average) CIs of the desired width. An alternative is to identify the sample size that gives CIs 

that are no wider than the desired width on, say, 95% of simulations. This would be even 

more reassuring but requires even larger sample sizes.  

In summary, we propose that precise performance estimates should be targeted when 

planning external validation studies, and a tailored sample size can be determined through 

simulation by specifying the likely distribution of the LP, the outcome event proportion and 

target precision for each performance measure. The sample size that, on average, gives the 

target precision for all performance measures should be selected for the external validation 

data. 
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