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Abstract
Performance similarities on tasks requiring the processing of different domains of magnitude (e.g. time, numerosity, and 
length) have led to the suggestion that humans possess a common processing system for all domains of magnitude (Bueti 
and Walsh in Philos Trans R Soc B 364:1831–1840, 2009). In light of this, the current study examined whether Wearden’s 
(Timing Time Percept 3:223–245, 2015) model of the verbal estimation of duration could be applied to verbal estimates of 
numerosity and length. Students (n = 23) verbally estimated the duration, number, or physical length of items presented in 
visual displays. Analysis of the mean verbal estimates indicated the data were typical of that found in other studies. Analy-
sis of the frequency of individual verbal estimates produced suggested that the verbal responses were highly quantized for 
duration and length: that is, only a small number of estimates were used. Responses were also quantized for number but to a 
lesser degree. The data were modelled using Wearden’s (2015) account of verbal estimation performance, which simulates 
quantization effects, and good fits could be obtained providing that stimulus durations were scaled as proportions (0.75, 1.06, 
and 0.92 for duration, number, and length, respectively) of their real magnitudes. The results suggest that despite previous 
reports of similarities in the processing of magnitude, there appear to be differences in the way in which the underlying 
representations of the magnitudes are scaled and then transformed into verbal outputs.

Introduction

Successful interaction with the world requires accurate esti-
mation of quantity in the environment: how many, how big, 
and how long. The ability to estimate numerosity, physical 
extent, and duration is therefore critical to human and ani-
mal survival. Although estimation of quantity is ubiquitous 
during daily life, little is known about how verbal estimation 
of quantity is accomplished (see Wearden, 2015, for discus-
sion). This is in part because research has instead focused 
on how judgements of smaller and larger, shorter and longer, 
or less and more are performed. This paper therefore aims 
to further our understanding of how different domains of 
magnitude are estimated. In it we compare verbal estimates 
of numerosity, physical length, and duration and apply a 
recently developed model of verbal estimation of duration 
(Wearden, 2015) to the verbal estimation of numerosity and 

physical length. In doing so, we will establish whether there 
is support for a common processing system for magnitude 
estimation.

Magnitude processing

Evidence from multiple sources suggests that the processing 
of different magnitudes draws on common resources. From 
a young age children are able to judge different domains of 
magnitude comparably, perhaps indicating a shared develop-
mental trajectory (e.g. Droit-Volet, Clément, & Fayol, 2003; 
Droit-Volet, Tourret, & Wearden, 2004; Feigenson, 2007). 
In adults, interference studies consistently show that when 
simultaneously processing multiple magnitudes of different 
domains, performance is impaired in comparison with sin-
gle magnitude processing (e.g. Coull, Charras, Donadieu, 
Droit-Volet, & Vidal, 2015; Dormal, Seron, & Pesenti, 2006; 
Oliveri et al., 2008; Xuan, Zhang, He, & Chen, 2007). In 
addition, comparable to the spatial–numerical association 
of response codes (SNARC) evoked by numerical stimuli, 
spatial-quantity association of response codes (SQARC) 
has been observed for stimuli varying in physical extent 
and duration (e.g. Simmons, Gallagher-Mitchell & Ogden, 
2019). SNARC and SQARC effects are seen as evidence that 
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number and, more recently, quantities, in general, are repre-
sented on an internal directional spatial continuum in which 
“few” is represented on the left and “many” is represented 
on the right. The presence of such effects for quantities of 
multiple magnitude dimensions suggests common spatial 
mapping.

Neuroimaging studies also suggest common neural 
resources for the processing of different magnitudes. Pari-
etal activation is observed during the processing of number 
(Dehaene, Piazza, Pinel, & Cohen, 2003), duration (Pouthas 
et al., 2005), and space/length (Pinel, Piazza, Le Bihan, & 
Dehaene, 2004). There is also limited evidence that activa-
tion in the superior parietal lobule and the intraparietal sul-
cus is overlapping when processing numerosity and spatial 
extent (Kaufmann, et al., 2005). Furthermore, rTMS stud-
ies show that stimulation over the right intraparietal sulcus 
impairs the discrimination of numerosity and length (e.g. 
Dormal, Andres & Pesenti, 2012); however, this evidence 
is less clear for duration processing (e.g. Dormal, Andres & 
Pesenti, 2008).

Together, these behavioural and neural similarities have 
led to the suggestion that all magnitudes may share a com-
mon processing system. This idea was first suggested by 
Meck and Church (1983) after noting similarities between 
the responding of rats trained to discriminate number and 
duration. More recently, a theory of magnitude (ATOM) 
has been proposed (see Bueti & Walsh, 2009, and Walsh, 
2003, for discussion). ATOM combines behavioural, devel-
opmental, and neuroimaging evidence to suggest that there 
is a common neural processing system for magnitude judge-
ments located in the parietal cortex.

Although shared processing models are increasingly pop-
ular, there is also evidence of differences in performance 
when processing different types of magnitude. For exam-
ple, Wearden, Parry, and Stamp (2002) compared memory 
for the duration of a line-like stimulus with memory of its 
length. Even in a situation where the stimuli judged were on 
average physically identical, the duration memory showed 
subjective shortening (Wearden & Ferrara, 1993), the effect 
that remembered duration seems progressively shorter with 
increasing retention interval. This was not true of length, 
which showed “normal” forgetting, i.e. progressively worse 
performance with increasing retention interval. Furthermore, 
interference studies in children (e.g. Droit-Volet et al., 2003) 
and adults (e.g. Casasanto & Boroditsky, 2008) often show 
asymmetrical patterns of interference when simultaneously 
processing multiple magnitudes. That is, one domain of 
magnitude, typically duration processing, appears more vul-
nerable to interference than other domains of magnitude. 
The processing of time, number, and length also appears 
to differentially recruit working memory and executive 
resources with temporal perception being more demanding 
of these resources than number or length (Ogden, Samuels, 

Simmons, Wearden, & Montgomery, 2017). One suggestion 
is that these differences may reflect the sequential nature 
of duration in comparison with the typically non-sequential 
nature of number and length (Droit-Volet, 2010; Ogden 
et al., 2017). However, an alternative possibility is that they 
may reflect differences in the way in which verbal labels are 
applied to quantity in different magnitude domains.

Verbal estimation of magnitude

The verbal estimation of magnitude requires participants 
to assign verbal labels to stimulus properties such as size, 
physical length, duration, and numerosity. Verbal estimation 
is a commonly used task in the field of temporal perception, 
having been used to examine the perception of the duration 
of auditory (Wearden, Edwards, Fakhri, & Percival, 1998), 
visual (Wearden, Todd, & Jones, 2006), tactile (Jones & 
Ogden, 2016), and emotion-provoking stimuli (Gil & Droit-
Volet, 2012) to name just a few. However, studies of the ver-
bal estimation of other domains of magnitude (e.g. numeros-
ity and length) are rarer.

Crollen, Grade, Pesenti, and Dormal’s (2013) comparison 
of the verbal estimation of time, number, and length sug-
gests however that there may be fundamental differences in 
the way in which different domains of magnitude are esti-
mated. Crollen, Grade, Pesenti, and Dormal (2013) required 
participants to make judgements of number (21–98 white 
dots), length [21- to 98-mm white rectangles (the original 
article gives lengths in cm, but this exceeds the size of nor-
mal computer monitors at the higher values, so seems likely 
to be an error)], and time (210–980 ms presentations of a 
16-cm white dot). On average judgements underestimated 
real magnitude. The error rate, based on the percentage 
deviation from the target, with negative values represent-
ing underestimates and positive values overestimates was 
greatest for length (− 42.20), then for number (− 32.40), 
and smallest for time (−30.60). However, unlike most other 
studies of estimation, Crollen et al. (2013) used a potenti-
ometer to produce a displayed number rather than asking 
participants to respond verbally. This may affect the way in 
which participants applied labels to the stimuli, in particular, 
the process of quantization of responses.

Unlike other tasks commonly used when assessing mag-
nitude processing, verbal estimation is affected by a process 
called quantization of responses. Quantization is the ten-
dency to use some estimates much more frequently than oth-
ers (see Wearden, 2015 for discussion). For example, when 
estimating durations of less than 1 s, participants preferen-
tially report estimates of 100, 200, and 500 ms, rather than 
for example, 128 ms, 232 ms, or 564 ms. Thus, quantization 
reveals the way in which raw representations of duration 
are expressed as common units of measurement. Compar-
ing quantization effects across different magnitude domains 
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may therefore reveal differences in the way in which the raw 
representations of these durations are converted into and 
expressed as common measurement units.

Wearden (2015) developed a model of verbal estimation 
performance which simulates this quantization process. The 
details are given later, but, in essence, the model converts a 
“raw” representation of a stimulus duration, or other mag-
nitude which can vary continuously, into a small number 
of estimates which are output as behaviour, by virtue of a 
decision process. In the original 2015 article, all the results 
came from simulations, so the quantization model has not 
actually been fitted to experimental data from any study of 
duration estimates. This paper therefore aims not only to 
apply Wearden’s (2015) model to experimental data of dura-
tion estimates, but also to experimental data of numerosity 
and physical length estimates. In doing so, the paper will 
establish whether a common model can be used to explain 
the verbal estimation of quantity across different domains 
of magnitude.

The current study

The current study sought to establish whether domain-based 
differences exist in the process of quantity estimation. Spe-
cifically, the study aimed to test whether comparable verbal 
labels are applied during the estimation of different domains 
of magnitude (duration, numerosity, and physical length). 
Furthermore, this study examined whether Wearden’s (2015) 
model of verbal estimation for duration could also model 
verbal estimation of numerosity and physical length.

Participants completed three separate verbal estimation 
tasks, one requiring estimation of the number of dots pre-
sented on the screen, one requiring estimation of the length 
of a line presented on the screen, and one requiring estima-
tion of the duration of presentation of a square on the screen. 
Data from the three tasks were then compared in terms of 
mean estimates, estimate accuracy, and estimate variability. 
In addition, the pattern of quantization for each modality was 
explored. Finally, Wearden’s (2015) model was applied to 
each modality, and the model fit examined.

By comparing the patterns of quantization (number and 
frequency of verbal labels), and applying the model of verbal 
estimation, we will be able to establish whether the same 
underlying processes are involved in the verbal estimation 
of different quantities. If performance (comparable mean 
estimates, accuracy, and variability), quantization, and 
model fit are comparable across the duration, number, and 
length tasks, this would favour a shared resource account 
of magnitude processing (e.g. ATOM). However, if there 
are systematic differences in estimation performance and 
quantization, or if the model is unable to fit some domains or 
requires different parameters across the domains, this would 
suggest there may be underlying differences in way in which 

different magnitude domains are represented, processed, and 
labelled.

Method

Participants

Twenty-three Liverpool John Moores University students 
(mean age 18.91 years, SD 0.90, 4 males) participated in 
exchange for course credit. Credit was not contingent on 
performance. The study was approved by the Liverpool John 
Moores University Research Ethics Committee, and all par-
ticipants gave informed consent. Participant numbers were 
chosen on the basis of a review of comparable published 
studies (e.g. Gil & Droit-Volet, 2012; Kanai, Lloyd, Bueti 
& Walsh, 2011; Pouthas et al., 2005; Wearden, Edwards, 
Fakhri, & Percival, 1998).

Apparatus and materials

An IBM compatible computer running Microsoft Windows 
and a 17″ LCD monitor were used to present and record 
experimental events. Stimulus presentation and recording 
of keyboard responses were controlled via E-Prime version 
2.0 (Psychology Software Tools, Inc., Pittsburgh, PA). The 
stimuli were developed using Microsoft Powerpoint.

Experimental stimuli

Duration estimation

The to-be-timed stimulus was a black square 100  mm 
(11.42°) by 100 mm (11.42°) displayed in the centre of a 
white background. Eight different presentation durations 
were used: 150, 260, 350, 440, 560, 670, 760, and 850 ms.

Number estimation

The to-be-estimated stimuli were black circles 5 mm diame-
ter in size presented for 1500 ms on a white background. The 
circles were randomly positioned on a 20 cm (22.62°) by 
20 cm (22.62°) square grid of 100 possible locations around 
the centre of the computer screen. Eight different quantities 
of circles were presented: 15, 26, 35, 44, 56, 67, 76, and 85.

Line estimation

The stimulus was a black line presented for 1500 ms. The 
line was randomly positioned on a 20 cm by 20 cm square 
grid of 100 possible locations around the centre of the com-
puter screen. Eight different lengths of line were presented: 
15 (1.72°), 26 (2.98°), 35 (4.01°), 44 (5.04°), 56 (6.41°), 67 
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(7.76°), 76 (8.69°), and 85 (9.72°) mm, and all lines were 
1 mm (0.11°) thick.

Procedure

Participants were seated 50 cm from the computer screen. 
Participants then performed a duration estimation task, a 
number estimation task, and a length estimation task. Task 
order was randomised for each participant. Participants were 
not required to type the unit of measurement (e.g. ms or mm) 
with their estimate.

Duration estimation

Participants were informed that they would be presented 
with an image on the screen and that their task was to judge 
how long the image was presented for. Following stimu-
lus presentation, a delay, the duration of which was drawn 
from a uniform distribution ranging from 500 to 750 ms, 
was interposed. Participants were then instructed to type 
their estimate of the square’s presentation duration using 
the keyboard. They were reminded that the maximum pres-
entation duration was 1000 ms, no minimum presentation 
duration was provided, and estimates above 1000 ms were 
prevented by the experimental programme. Participants then 
pressed the spacebar to receive the next trial. Each of the 
eight presentation durations was used eight times during the 
experiment, giving a total of 64 trials. Trials were presented 
in a random order, and no performance feedback was given. 
The task took approximately 10 min to complete.

Number estimation

The procedure was identical to time estimation except for 
the following details. Participants were informed that they 
would be presented with images of dots and that their task 
was to estimate the number of dots presented. Participants 
were instructed that the maximum number of dots presented 
would be 100, no minimum quantity was provided, and 
estimates above 100 were prevented by the experimental 
programme.

Length estimation

All procedural details were the same as for time and number 
except for the following details. Participants were informed 
that they would be presented with an image of a horizontal 
line and that their task was to estimate the length of the line 
in millimetres. Participants were informed that the maxi-
mum possible line length was 100 mm, no minimum quan-
tity was provided, and estimates above 100 were prevented 
by the experimental programme.

Compliance with ethical standards

Ethical approval for this study was granted by Liverpool 
John Moores University Research Ethics Committee.

Data analysis strategy

To make estimates comparable across the three conditions, 
estimates from the duration condition were transformed 
by dividing them by 10 prior to analysis. Quantization of 
responses was examined by calculating the frequency with 
which different estimates were emitted by participants 
(Fig. 1). To confirm that the data collected in this experiment 
were typical of those observed in other published studies, 
the mean verbal estimates, estimate variability, and estimate 
accuracy were compared for the duration, numerosity, and 
length conditions. In addition, rank correlations were per-
formed to establish the relationship between performance 
across different magnitude domains. Finally, the model 
described in Wearden (2015) was applied to the data.

Results

Quantization of responses

Figure 1 shows the frequency of responses produced for time 
(upper panel), number (centre panel), and length (lowest 
panel), plotted against stimulus magnitude. It is immedi-
ately obvious that responses were highly “quantized”, that 
is, some estimates were used much more frequently than 
others. This quantization effect was particularly marked for 
time and length, but was also present for number. For time 
and length, around 10 values accounted for the vast major-
ity of the estimates produced; in fact, the most frequent 10 
estimates accounted for 83% and 78%, respectively, of all 
estimates for duration and length, but only 59% for number.

Stimulus magnitude mean estimation

The upper panel of Fig. 2 shows average magnitude esti-
mates plotted against the stimulus magnitude for the three 
conditions (time, number, and length). Again, raw duration 
estimates were divided by 10. Examination of Fig. 2 sug-
gests that, in all conditions, estimates increased approxi-
mately linearly with the magnitude of the stimulus. Esti-
mates appeared longer in the number condition than the time 
and length conditions.

A repeated-measure ANOVA with within-subject factors 
of condition (time, number, length) and stimulus magnitude 
(15, 26, 35, 44, 56, 67, 76, 85) was conducted on the mean 
magnitude estimates. There was a significant main effect of 
condition F(2, 44) = 8.04, p = 0.001, �2

p
 = 0.27. Bonferroni 
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post hoc tests confirmed significantly longer magnitude esti-
mates in the number condition than the time condition 
(p < 0.001) but no significant differences between time and 
length (p = 0.24) and number and length (p = 0.23). There 
was significant effect of stimulus magnitude F(7, 
154) = 187.67, p < 0.001, �2

p
 = 0.90. Inspection of the within-

subjects contrasts showed that there was a significant linear 
effect F(1, 22) = 347.71, p < 0.001, �2

p
 = 0.94 and a significant 

quadratic trend F(1, 22) = 17.30, p < 0.001, �2
p
 = 0.44 for 

stimulus magnitude. There was also a significant interaction 
between stimulus magnitude and condition F(14, 
308) = 4.68, p < 0.001, �2

p
 = 0.18. Within-subject contrasts 

again revealed a significant linear interaction F(1, 22) = 5.70, 
p = 0.03, �2

p
 = 0.21 and a significant quadratic trend F(1, 

22) = 14.20, p < 0.001, �2
p
 = 0.39.

Linear regression of the average estimates for each stimu-
lus duration for time, number, and length produced slopes 
of 0.58, 0.93, and 0.81, respectively, and intercepts of 8.60, 
2.81, and 2.04. All slopes were significant (p < 0.001), but 
only the time intercept was (p < 0.05). r2 values were 0.95, 
0.98, and 0.99, respectively. To further explore the interac-
tion between condition and stimulus magnitude, individual 
linear regressions were conducted on each participant’s 
responses to provide slope and intercept values for each con-
dition. A repeated-measure ANOVA conducted on the inter-
cept values showed no significant difference in intercepts for 
the time (M 3.59, SD 7.43), number (M 2.00, SD 9.69), and 
length (M 3.22, SD 5.97) conditions F(2, 44) = 0.29, 
p = 0.75, �2

p
 = 0.01. The same analysis conducted on the slope 

values showed a significant effect of condition F(2, 
44) = 9.20, p < 0.001, �2

p
 = 0.30. Slopes were significantly 

flatter in the time condition (M 0.65, SD 0.26) than the num-
ber condition (M 0.92, SD 0.22) (p < 0.001). There was no 
significant difference in the slopes of the time and length 
conditions (M 0.81, SD 0.33) (p = 0.08) or the length and 
number conditions (p = 0.39).

The centre panel of Fig. 2 shows the average standard 
deviations plotted against stimulus magnitude for each con-
dition. Inspection of the figure suggests that standard devia-
tions increased with stimulus magnitude, although it was 
less clear whether the different conditions produced different 
standard deviations. These suggestions were confirmed by 
statistical analysis. A repeated-measure ANOVA with 
within-subjects factors of condition and stimulus magnitude 
found a significant effect of stimulus magnitude F(7, 
154) = 5.34, p < 0.001, �2

p
 = 0.20. Inspection of the within-

subjects contrasts showed that there was also a significant 
linear effect F(1, 22) = 12.90, p = 0.002, �2

p
 = 0.37 and a sig-

nificant quadratic trend F(1, 22) = 4.63, p = 0.04, �2
p
 = 0.17 

for stimulus magnitude. However, there was no significant 
effect of condition F(2, 44) = 1.04, p = 0.36, �2

p
 = 0.05 nor 

any significant interaction between stimulus magnitude and 
condition F(14, 308) = 0.64, p = 0.83, �2

p
 = 0.03.

The lowest panel of Fig. 2 shows the mean coefficient 
of variation (CV: standard deviation/mean) plotted against 
stimulus magnitude for each condition. Inspection of the data 
suggests that coefficients of variation slightly declined with 
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Fig. 1  Absolute frequencies of estimate values used. Upper panel: 
time/10; centre panel: number; lowest panel: length
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increasing stimulus magnitude, with values from number 
judgements being clearly lower than for duration or length.

A repeated-measure ANOVA with within-subjects factors 
of condition and stimulus magnitude found a significant effect 
of condition F(2, 44) = 14.83, p < 0.001, �2

p
 = 0.40. Bonferroni 

post hoc tests confirmed significantly larger CVs in the time 
condition (M 0.40, SD 0.24) than the number condition (M 
0.20, SD 0.18) (p = 0.04) and length condition (M 0.27, SD 
0.29) (p < 0.05) but no significant difference between number 
and length (p = 0.06). There was also a just significant effect 
of stimulus magnitude F(7, 154) = 2.08, p = 0.049, �2

p
 = 0.09. 

Inspection of the within-subjects contrasts showed that there 
was also a significant linear effect F(1, 22) = 5.71, p = 0.03, 
�
2
p
 = 0.21. There was no significant interaction between stimu-

lus magnitude and condition F(14, 308) = 0.64, p = 0.83, 
�
2
p
 = 0.003.

Estimate accuracy

Figure 3 shows the mean absolute deviation between the esti-
mate and the target. This was calculated by taking the absolute 
value of the deviation of the estimate from the target magni-
tude, and dividing by the target magnitude, for each partici-
pant and each stimulus value, and then averaging the resulting 
values. Inspection of the results suggests that accuracy was 
significantly better in the number condition than the time or 
the length conditions.

A repeated-measure ANOVA with within-subjects factors 
of condition and stimulus magnitude was conducted on the 
mean absolute deviation scores. There was a significant effect 
of condition F(2, 44) = 5.75, p = 0.006, �2

p
 = 0.21. Bonferroni 

post hoc tests confirmed significantly greater accuracy in the 
number condition than the time (p = 0.005) and length condi-
tions (p = 0.02). Accuracy did not differ between the time and 
length conditions (p = 1.00). There was no significant effect of 
stimulus magnitude F(7, 154) = 0.75, p = 0.63, �2

p
 = 0.03 and 

no significant interaction between stimulus magnitude and 
condition F(14, 308) = 61, p = 0.85, �2

p
 = 0.03.

The relationship between performance measures 
across magnitude domains

Spearman’s rank correlations were conducted to establish 
whether measures of estimation in one domain were related 
to the same measure of estimation in another domain. For 

Fig. 2  Upper panel: mean verbal estimates for time, number, and 
length as a function of magnitude. The dotted line shows accurate 
estimation. Centre panel: standard deviations of estimates for time, 
number, and length. Lowest panel: coefficient of variation (standard 
deviation/mean) of estimates of time, number, and length. Vertical 
lines show standard error of the mean. Magnitude values for time are 
all 1/10th of the real value in ms

▸
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example is number estimate accuracy related to time esti-
mate accuracy. This analysis is shown in Table 1.

Discussion and data modelling

This paper aimed to establish whether Wearden’s (2015) 
model of the verbal estimation of duration could be applied 
to other magnitude domains, in this instance estimates of 
numerosity and physical length. Examination of the quan-
tization of responses suggests that there were notable dif-
ferences in the way in which the raw representations of 
data were quantized for the three magnitudes. For time and 
length, the histograms showed that a relatively small number 
of values were frequent. For number however, flatter histo-
grams indicated that a greater number of response values 
were produced by participants, and as a result, each was 
used less frequently. There therefore appear to be notable 
domain-based differences in the way in which raw repre-
sentations of magnitude are expressed using conventional 
units of measurement.

The analysis of the mean verbal estimates, estimate vari-
ability, and estimate accuracy suggests that mean estimates 
all increased approximately linearly with real magnitude, but 
slopes differed, with slope from number and length being 
significantly higher than for duration. Coefficients of varia-
tion differed across magnitude domains, with number show-
ing the smallest values. In terms of accuracy, number judge-
ments clearly corresponded more closely to real magnitudes 
than did duration or length.

These findings contrast with those of Crollen et al. (2013) 
who found that accuracy in terms of deviation from the real 
magnitude was in a different order from ours. If our data 
are treated in the same way as theirs, the “error rates” for 
the three modalities were number, − 5.2, length, − 10.2, 
time, − 20.7, so all modalities involved underestimation, as 
in Crollen et al. (2013), although this was very slight in the 
case of number in our study. It is unclear why Crollen et al.’s 
study and our own produced such different results. There are 
a number of procedural differences between the studies: we 
used lines for length judgements rather than rectangles, a 
black square on a white background for duration, as opposed 
to a white circle on a black background for theirs. In addi-
tion, the method used for estimation was different in their 
study and involved people turning a potentiometer to pro-
duce a displayed number rather than giving the response ver-
bally as in our experiment. However, given that the ranges 
of values for the different magnitudes were similar in the 
two studies, the difference between them remains somewhat 
mysterious. Indeed, their results for numerosity in particular 
are different not only from our results, but also that of others 
reviewed in the following paragraphs, which have gener-
ally found reasonably accurate judgements of numerosity, 
whereas Crollen et al. found numerosity judgements to be 
the least accurate.

Our data on number judgements are however generally 
consistent with those obtained previously, although results 
were found by very different methods. Numerical judge-
ments without explicit counting are said to be based on an 
“approximate number system” (ANS), which humans may 
share with animals (Feigenson, Dehane & Spelke, 2004). 
Many studies of the ANS have focussed on acuity, that is, 
the smallest difference or ratio in two numerical quantities 
that can be discriminated, often within a developmental 
context. A common technique involves presenting par-
ticipants with two side-by-side displays of items and ask-
ing which side had the larger number (see Mussolin, Nys, 
Leybaert & Content, 2016 for a review). Performance in 
studies examining non-verbal numerosity discrimination 
has consistently indicated that accuracy is ratio dependent 
with less accurate responses when the ratio is lower; there 
is also a developmental increase in acuity with age (Mus-
solin et al., 2016). The ratio-dependent nature of non-ver-
bal quantity judgements is often interpreted as a reflection 
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Table 1  Correlation coefficients for the relationships between meas-
ures of accuracy, CV, and number of verbal estimate values across the 
three domains of magnitude

Time × number Time × length Number × length

Accuracy 0.13 0.26 − 0.09
Variability (CV) 0.36 0.23 0.44
Number of 

verbal estimate 
values

0.48 0.37 0.47
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of increasingly noisy or fuzzy representations of larger 
numbers and quantities (Feigenson et al., 2004, however 
see Halberda & Odic 2015, for an alternative explanation 
in terms of the confidence of individual judgements). Both 
ratio dependency and developmental increases in acuity 
are mirrored in judgement tasks involving other magnitude 
domains including duration and spatial extent (Cantlon 
et al., 2009; Odic, Libertus, Feigenson, & Halberda, 2013). 
In the present study, performance on all three of the mag-
nitude judgements (number, length, and duration) reflects 
scalar variability (i.e. increasing variability with increas-
ing quantity) that is seen as a key signature of the ANS 
(Mussolin et al., 2016).

Although most studies investigating the ANS have uti-
lised non-verbal quantity comparison, some earlier ones 
looked at something closer to scaling or judgements as a 
function of number. Whalen, Gallistel, and Gelman (1999) 
and Cordes, Gelman, and Gallistel (2001) used a method 
involving key pressing. An arabic numeral was shown (e.g. 
“7” or “25”, the smallest and largest values used), and the 
participant was required to press a key as fast as possible 
for the number of times indicated in the display. In Whalen 
et al.’s key press study the mean and standard deviation of 
the number of presses grew linearly with the number require-
ment, and the mean tracked the number requirement close 
to accurately, although inspection of the data (their Fig. 3, 
p. 133) suggests that the number of key presses overshot the 
number requirement for some participants. The coefficient 
of variation (standard deviation/mean) was nearly constant 
as the number requirement varied from 7 to 25, indicating 
conformity to the scalar property of variability often found 
in duration judgements (e.g. Wearden & Lejeune, 2008).

Cordes et al. (2001) performed a similar study, with more 
controls for explicit counting, but their condition most simi-
lar to that in Whalen et al. (1999) produced very similar 
results to the earlier study. As well as a key-press experi-
ment, Whalen et al. also used a “flash-count” method, where 
between 7 and 25 irregularly spaced flashes were presented, 
and the participant was required to estimate the number 
verbally. Both the mean and standard deviation increased 
approximately linearly with the number requirement, 
although it seemed as if the estimates were more likely to 
underestimate the number rather than overestimate it, judg-
ing from their Fig. 4 (p. 135). The coefficient of variation 
was approximately constant, although for some participants 
appeared slightly lower and the longer number values. Both 
the key-press and flash-count methods have the potential 
problem that the time taken to make the response (key-
press method) or the time taken for the display (flash count 
method) might be used to generate the response, but Whalen 
et al. (1999) argue convincingly that participants were prob-
ably not using time. This issue does not arise with our verbal 
estimation method, of course.

Overall, results from Whalen et al. (1999) and Cordes 
et al. (2001) are similar to those reported in the present arti-
cle. Average number estimates tracked the number require-
ment closely (upper panel of our Fig. 2), standard devia-
tions increased with the number requirement (centre panel 
of Fig. 2), and the coefficient of variation did not change sys-
tematically with range of numbers presented (lowest panel of 
Fig. 2), even though the largest numbers we used were larger 
than any in Whalen et al. (1999) or Cordes et al. (2001). 
Considering the differences in methods between their studies 
and ours, the general consistency of results is noteworthy.

Results from our duration estimates were also similar to 
those found in previous studies, in showing a kind of “linear 
underestimation” of real duration by average estimates. The 
average slope value relating our mean estimates to real dura-
tion was 0.65, as mentioned earlier. To provide comparisons, 
we took data from several studies where verbal estimation of 
the duration of visual stimuli (usually squares of colour on a 
computer screen) had been used. The data came from Pen-
ton-Voak, Edwards, Percival, and Wearden, (1996), Fig. 3 
(p. 315), range 123–863 ms, Wearden et al. (1998) Fig. 2 
(p. 106), range 77–1183 ms, Wearden et al. (1998) Fig. 3 (p. 
110), range 77–1183 ms, and Wearden et al. (2006) Fig. 3 
(p. 1717), upper and lower panels, range 77–1183 ms. Slope 
values from regression of mean estimates against stimulus 
duration were, respectively, 0.76, 0.78, 0.66, 0.76, and 0.76. 
The implications of this consistent linear underestimation of 
duration will be discussed further below.

Modelling the verbal estimation of magnitude

The principal problem for modelling verbal estimation is 
quantization of responses, which was present in our data 
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very strongly for duration and length, but also present, albeit 
less strongly, for number. Such quantization means that alge-
braic models may struggle to capture important aspects of 
the data, but Wearden’s (2015) model was intended to simu-
late the quantization effect, so can be applied here. Although 
the model involves a considerable amount of calculation, in 
its initial form it is very simple in principle. When a stimulus 
of magnitude s is presented, this is transformed into a value 
s* which is randomly selected from a Gaussian distribution 
with a mean s, and some coefficient of variation, c. This 
internal representation is not, however, directly translated 
into estimates. Rather, a quantization process occurs. Sup-
pose, as is the case in the simulation to be presented below, 
that only 10 outputs are allowed. Each of these outputs has 
a value (e.g. “100”, “50”), and also a weight, which deter-
mines how “attractive” this output value is. The attraction 
between any s* and any particular output value is determined 
by “distance” (absolute deviation) and also by the weight, 
and the “attractive power” of any particular output value 
is determined by the weight divided by the distance. The 
attractive power of all 10 output values is calculated for each 
s*, and the two strongest compete probabilistically. That is, 
they compete in terms of their weight/distance measure. For 
example, if this measure is twice as great for one output 
value than for the other, then it is twice as likely that the 
stronger one will be chosen as the estimate. A fuller account 
of the model and exploration of its properties are given in 
Wearden (2015).

The model might be best considered to reverse engineer 
the data it treats, as the output values and weights are derived 
from data. In the present case, the 10 most frequent output 
values were used for each condition, and the weights were 
determined by the relative frequency of each output. In the 
original operation of the model, the only fitting parameter 
was c, the coefficient of variation of the stimulus representa-
tions, as weights are calculated from the data, and the dis-
tance depends on the value of s*. Figure 4 shows the results 
when the coefficient of variation was 0.4 (as this value was 
close to values found in the best-fitting models to be dis-
cussed below). The first important result is that the original 
form of the model could not fit data from the different condi-
tions: in particular, the marked difference between means for 
number and duration could not be accurately simulated. This 
failure of the model, when the scaling of all stimuli is kept 
constant (that is, all were represented by their physical val-
ues, on average), shows that the quantization, by itself, can-
not produce the difference between duration, number, and 
length which we observed in our experiment. Something else 
is apparently needed. Given the “linear underestimation” of 
duration discussed earlier the simplest solution seemed to be 
to take this into account by rescaling.

To do this, a scaling constant was used, that is, the real 
magnitudes were multiplied by a factor k, then the model 

operated as normal. We explored various k and c values with 
the model, and it became clear that a c value of approxi-
mately 0.4 was needed, and that the k value was modality-
dependent. We used the approximate k and c parameters for 
each modality and then varied them in 0.01 steps to find the 
smallest absolute deviation between the mean estimates in 
data and the means resulting from the model. Figure 5 shows 
the results. The best-fitting k and c values were: duration, 
0.75 and 0.4, number, 1.06 and 0.33, and length, 0.92 and 
0.45. Figure 5 shows the resulting fits of the model.

Inspection of the results in Fig. 5 shows that the model fit-
ted data well, with the mean estimates for duration, number, 
and length being closely modelled and appropriately spaced 
apart. The mean absolute deviations (sum of the absolute 
deviations between the model’s fit and data divided by the 
number of data points, 8) were duration, 0.8, number, 1.70, 
and length, 1.76. Given that the average magnitude value 
was 50.5, this implies an average deviation between 1.6 
and 3.5%. As discussed in Wearden (2015) the quantization 
model can only fit approximately at best, as it does not take 
account of all the output values used (in the present case it 
only uses 59% of them for the number simulation) and in 
addition may have other deficiencies, such as too simple a 
decision rule. Nevertheless, it is clear that with the scaling 
parameter in use, the model can fit the mean data produced 
very well. If an intercept had been added as well as the scal-
ing constant, the fit would most likely have been even better.

The scaling constants needed varied systematically with 
the stimulus type modelled. For number, the scaling pro-
duced average overestimation of the physical magnitude, 
whereas for duration and length a scaling that produced 
underestimation was needed, particularly for duration. We 
leave aside for a moment the question of where different 
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output values come from and look instead at one of the con-
sequences of scaling. Figure 1 shows the empirical quanti-
zation of data, with a small number of output values domi-
nating, particularly for duration and length. We used the 
model to explore the effect of different sorts of scaling on 
quantization.

To do this, we supposed that the only output values per-
mitted were 10, 20, … 100, when the stimulus magnitudes 
were the same as in our experiment, and all values had the 
same weight, a relative frequency of 0.1. Next, we varied 
the scaling parameter over values from 1.0 (veridical repre-
sentation) to 0.6. Results are shown in Fig. 6. As the scaling 
parameter declines in value, a number of the smallest output 
values come to dominate output. So, it seems possible that 
the different quantization weights found in data (Fig. 1) are 
a consequence of the different scaling needed to fit the esti-
mates for the different experimental conditions. To put it 
another way, although quantization, by itself, cannot produce 
the difference in means between the conditions (as Fig. 4 
shows), the very scaling needed to produce this difference 
in means will almost certainly influence the output value 
weights, changing them from the flattish profile shown by 
number (which has the scale value closest to one) to the 
highly skewed profile shown by duration (which needed to 
smallest scale value to fit data, as in Fig. 5). Note, in addi-
tion, that even with veridical representations of the stimulus 
magnitudes (scale = 1.0) and evenly spaced output values 
with equal weights, the resulting simulated behaviour does 
not have equally likely output values: the scalar representa-
tions of duration, which results in larger standard deviations 
at larger magnitudes, distort the underlying veridical repre-
sentation in output, interacting with the actual magnitudes 
used, and results in some output values having around twice 
the relative frequency of others.

Although scaling can alter the obtained relative frequency 
of output values used, as Fig. 6 shows, it cannot be responsi-
ble for what the output values actually are. When estimating 
duration, for example, why do people tend to use “round” 
values such as 100 and 500 and hardly ever 650, let alone 
479? We cannot provide a simple answer to this, but only 
some suggestions. One is that people have some impres-
sion of their ability to discriminate durations which is too 
pessimistic. For example, they may imagine that they can 
distinguish one second from half a second, but not 600 ms 
from 500 ms, whereas in certain procedures their ability to 
do this is much better than they believe (e.g. using a bisec-
tion or temporal generalization technique 500 and 600 ms 
can reliably result in different numbers of responses, see 
Wearden, 1991, 1992). If, as has been previously suggested, 
quantities are represented spatially on a mental “number” 
lines (e.g. Dehaene, 1992), it is possible that the quantiza-
tion effects observed in this paper reflect differences in the 
way in which these lines are populated. The use of a small 
number of round values during duration estimation may sug-
gest that the “duration line” is populated by a small number 
of sparsely spaced values. For number, in contrast, people 
know that the integer number line is completely filled, not 
least because of ages and dates. Anyone over 30 must once 
have been 19 or 27, although they will be less familiar with, 
for example, 19 or 27 cm, or 190 or 270 ms. People also have 
greater experience of providing precise numerical estimates 
for quantities than they do of providing precise estimates of 
length and duration. This experience, coupled with greater 
opportunities for feedback on the accuracy of their estimates, 
may have enabled people to use a wider range of output 
values for number judgements than for duration or length.

Another possibility is that quantization differences are 
influenced by the need to translate a continuous stimulus into 
a discontinuous output. Duration, for example, is a continu-
ous dimension; however, the process of verbal estimation 
requires this continuous representation to be translated into 
a discontinuous verbal output. This translation process may 
affect the estimates produced, the estimate accuracy and the 
estimate variability, possibility by creating a greater reli-
ance on fewer verbal values. In contrast, numerosity is a 
discontinuous dimension and therefore verbal estimation of 
this magnitude does not require translation. This may facili-
tate the use of a wider range of verbal outputs, resulting in 
less variability and increased estimate accuracy. Relatedly, 
numerosity is the only domain that does not require conver-
sion into a conventional unit of measurement. It is therefore 
possible that the requirement to convert a raw representa-
tion of length into millimetres and duration in milliseconds 
contributed to the quantization effects observed. It is also 
possible, however, that the use of a larger stimulus range for 
duration estimates (0–1000 ms) encouraged a greater level of 
quantization than for number and length in which the range 
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was smaller (0–100). Future research should therefore exam-
ine how duration ranges influence the quantization process.

Finally, we should discuss the issue of “linear underesti-
mation” for duration, which seems at first sight to contradict 
the principle of scalar timing theory that duration represen-
tations are on average accurate (Wearden & Lejeune, 2008). 
Most commonly used timing tasks, such as bisection and 
temporal generalization (see Wearden, 2016, for discussion), 
involve relative rather than absolute timing. Here, stimuli to 
be judged are compared with previously presented standards, 
so if all are linearly underestimated (that is, they would be 
judged as x% of their real time value in a verbal estimation 
task), performance would be unaffected because of the scale 
invariance required by scalar timing theory. The same even 
applies to the more complex fractionation task employed 
by Wearden and Jones (2007), where people are asked 
what fraction one duration is of another one. Performance 
on these relative timing tasks would be the same whether 
or not the durations involved in them would be estimated 
accurately in terms of real clock-measured duration, as long 
as they were linearly scaled. One task that does seem to 
contradict the idea of linear underestimation of time is inter-
val production with feedback, as in Wearden and McShane 
(1988). Here, people are given a target time and repeatedly 
produce it with feedback after each production. The average 
time produced tracks real time almost perfectly, suggesting 
accurate underlying timing. However, as Wearden and Jones 
(2007) point out, interval production with feedback tells us 
nothing about the timescale underlying performance. So, 
linear underestimation is not incompatible with performance 
on the timing tasks actually studied, although the question 
of why it arises obviously remains an open one.

The overall relation between estimate accuracy and vari-
ability found when comparing judgements of number with 
those of the other domains is in accord with work by Nash 
(2017), although this takes a very different approach from 
the one used in the present article. However, if we examine 
the present data, we see that judgements of number deviate 
on average less from accuracy than do judgements of time 
and length (upper panel of Fig. 2) and in addition are less 
variable both absolutely (centre panel of Fig. 2) and in terms 
of variation around their mean (lower panel of Fig. 2) in 
accord with Nash’s ideas.

One obvious remaining question is whether the domain-
based differences in scaling and underestimation, observed 
in the current study, would persist if the stimuli were pre-
sented sequentially. Droit-Volet (2010) observed that the 
similarity between performance on time, number, and 
length bisection increased when the stimuli were pre-
sented sequentially rather than non-sequentially. Whilst 
this may suggest that sequential presentation may have 
resulted in the scales, and thus the responses, being more 
similar across the three domains, this conclusion may 

be premature. Droit-Volet’s (2010) results are based on 
bisection performance, in which perceived magnitudes 
are only categorised as short/long or few/many. This is 
unlike in the verbal estimation method used in this study 
in which numerical values are used to quantify the stimu-
lus magnitude. It is presently unclear how sequential ver-
bal estimation of time or indeed any other magnitude is 
accomplished. One possibility is that verbal labels would 
be applied to each “piece” of the sequential presentation 
and then these would be “added up” to form a magni-
tude estimate. If this were the case, we speculate that the 
scaling differences observed in the current study would 
persist as we have no reason to believe that smaller units 
of magnitude would be scaled differently to larger ones 
used in non-sequential presentation. However, we also 
acknowledge that is possible that the additional cognitive 
load associated with applying a verbal label to a sequen-
tially presented stimuli may introduce additional variances 
which may be unique to one magnitude or general across 
all magnitudes. Further research should therefore establish 
how sequentially influences the coding of raw magnitude 
representations into verbal labels.

In conclusion, this study shows that despite growing evi-
dence of behavioural and neural similarities in the way in 
which different domains of magnitude are processed, there 
are systematic differences in the way in which the underlying 
representations of the magnitudes are scaled and then trans-
formed into verbal outputs. This is evidenced by a number of 
factors, Firstly, by the differing use of verbal outputs for the 
different domains of magnitude, as seen in Fig. 1. Secondly, 
domain-based differences in the accuracy and variability of 
estimates. Thirdly, domain-based differences in the scaling 
constant required to fit Wearden’s (2015) verbal estimation 
model to the data. Although it is presently unclear as to why 
different domains of magnitudes are scaled and quantized 
differently, it seems that mean measures of behaviour can 
be accurately simulated only if these differences are taken 
into account.
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