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Elasto-capillary circumferential buckling of soft tubes under axial loading:
existence and competition with localised beading and periodic axial modes.
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Abstract We provide an extension to previous analysis of the localised beading instability of soft slender tubes
under surface tension and axial stretching. The primary questions pondered here are: under what loading conditions,
if any, can bifurcation into circumferential buckling modes occur, and do such solutions dominate localisation and
periodic axial modes? Three distinct boundary conditions are considered; in case 1 the tubes curved surfaces are
traction-free and under surface tension, whilst in cases 2 and 3 the inner and outer surfaces (respectively) are
fixed to prevent radial displacement and surface tension. A linear bifurcation analysis is conducted to determine
numerically the existence of circumferential mode solutions. In case 1 we focus on the tensile stress regime given
the preference of slender compressed tubes towards Euler buckling over axial wrinkling. We show that tubes under
several loading paths are highly sensitive to circumferential modes; in contrast, localised and periodic axial modes
are absent, suggesting that the circumferential buckling is dominant by default. In case 2, circumferential mode
solutions are associated with negative surface tension values and thus are physically implausible. Circumferential
buckling solutions are shown to exist in case 3 for tensile and compressive axial loads, and we demonstrate for
multiple loading scenarios their dominance over localisation and periodic axial modes within specific parameter
regimes.

Keywords Soft tube · Non-linear elasticity · Surface tension · Bifurcation · Circumferential buckling

1 Introduction

Surface tension plays a dominant role in the finite deformation of non-linearly elastic materials below the elasto-
capillary length scale `s = γ/µ, where γ is the surface tension and µ is the ground state shear modulus [3,20,25].
Indeed, in extremely soft materials such as biological tissue or gels, or in solids with a sufficiently high surface area
to volume ratio, this length can have an order of magnitude comparable to the microscale or even the milliscale.
In such circumstances, it becomes imperative that surface tension is incorporated into the classical continuum
framework. In recent years, elasto-capillary effects have been considered in many investigations of soft materials
at finite strains. For instance, there have been exhaustive studies into surface instabilities in soft layers under the
combined action of surface tension and uni-axial compression [5], equi-biaxial strain [7] and growth [1].

The beading instability of soft cylindrical tubes under axial loading and surface tension has received copious
attention given its implication in the axonal degeneration caused by cytoskeletal trauma [13,18] and neurodegen-
erative disorders such as Alzheimer’s and Parkinson’s disease [9]. Indeed, the theoretical nature of this bifurcation
phenomenon is now extensively understood. Beading of a solid cylinder has been unanimously regarded as an
infinite-wavelength instability through linear elasticity theory [2,4,22], non-linear elasticity theory [8,26,30] and
numerical approaches [16]. Explicitly, beading has been shown to be a phase separation phenomenon [12,31], and
in [11] it was demonstrated that, depending on the loading path that the cylinder is subjected to, several localised
solutions can exist such as necking and bulging.

For a hollow tube, Finite Element Method simulations for the cases where the inner or outer curved surfaces are
radially fixed were conducted in [16]. Where the outer radius tends to infinity, the special case of a cylindrical cavity
inside an infinite solid is recovered. It was shown analytically in [30] that a localised solution can exist for such a
case. Recently, localisation in hollow tubes under two distinct boundary conditions was investigated in [27] under
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the framework of finite elasticity. Surprisingly, an analytical solution to the incremental eigenvalue problem was
obtained in terms of modified Bessel functions. This was contrary to expectation given the investigations in [15],
where the governing equation for a tube under axial loading and internal pressure could only be solved numerically.
This discrepancy was swiftly resolved in [10], where we proved that the analysis in [27] is valid only where the
primary deformation of the tube is homogeneous. Such a deformation may only occur in a hollow tube under the
constraints of cases 2 and 3 with no axial stretching, a cylindrical cavity in an infinite solid or a solid cylinder, with
the latter two having been analysed in [30] and [11], respectively. In [10], it was shown that localisation cannot occur
in a tube where both curved surfaces are traction free and under surface tension. However, if one of the curved
surfaces is radially fixed and free of surface tension, localisation is possible and preferred by the tube when the axial
stress is tensile. Of course, this preference is strictly over bifurcation into periodic axial modes with non-zero wave
number. However, it may instead be the case that the tube develops finite circumferential buckling modes, and this
has recently been shown to occur in a solid disk encapsulated by a growing layer [24]. Here we provide a conclusive
to answer this question for all three cases alluded to in the abstract, whilst conducting an exhaustive analysis of
the competition between possible solutions in tandem.

The remainder of this paper is structured as follows. After formulating the problem in section 2, we derive in
section 3 the primary solution governing the axial loading of the tube under elasto-capillary effects, and recall the
analytical bifurcation conditions for localisation given in [10]. In section 4 we conduct a linear bifurcation analysis
from which we obtain a numerical bifurcation condition relating the load parameter (which we take to be the
nominal axial stress Szz and the surface tension γ separately) to the circumferential mode number m. From this
relationship we deduce under which parameter regimes circumferential mode solutions can exist, and then analyse
their competition with localisation and periodic axial modes where applicable. Concluding remarks are offered in
section 5.

2 Problem formulation

Consider a hyperelastic cylindrical tube whose reference and finitely deformed configurations are denoted by B0
and Be, respectively. A representative material particle in these configurations has the respective position vectors
X = X(R,Θ, z) and x = x(r, ϑ, z) such that

X = RER + Z EZ , x = r er + z ez, (1)

where (ER,EΘ,EZ) and (er, eϑ, ez) are the corresponding orthonormal bases. The tube has an inner and outer
radius situated referentially at R = A and R = B, and we denote by a and b the corresponding inner and outer
radii in Be. The tube is assumed to have axial half-lengths L and ` in B0 and Be, respectively.

We consider a general deformation of the tube which is characterised by the following variable transformations

r = r (R,Θ) , ϑ = ϑ (R,Θ) , z = λZ, (2)

where λ = `/L is the principal axial stretch. The deformation gradient F = ∂x/∂X then takes the following form

F =
∂r

∂R
er ⊗ER +

1

R

∂r

∂Θ
er ⊗EΘ +

r

R

∂ϑ

∂Θ
eϑ ⊗EΘ + r

∂ϑ

∂R
eϑ ⊗ER + λ ez ⊗EZ . (3)

The tube material is assumed to be incompressible, and so the following constraint of isochorism must be satisfied

det F = 1. (4)

The constitutive behaviour of the tube is described by a strain energy function W = W (IB), where IB = tr B
is the first principle invariant of the left Cauchy-Green strain tensor B = FF> and the superscript > denotes
transposition.

2.1 Stream function formulation

As was originally proposed in [6], the problem can be elegantly reformulated in terms of a single mixed-coordinate
stream function φ = φ (R,ϑ) which enforces the incompressibility constraint (4) exactly through the relations

r2 = 2φ,ϑ, Θ =
λ

R
φ,R, (5)
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where a comma denotes partial differentiation with respect to the implied coordinate. Thus, F as given by (3) can
be expressed in terms of φ and its partial derivatives as such

F =

[
φ,Rϑ +

φ,ϑϑ

φ,Rϑ

(
φ,R

R − φ,RR
)]

√
2φ,ϑ

er ⊗ER +
φ,ϑϑ

λ
√

2φ,ϑ φ,Rϑ
er ⊗EΘ +

√
2φ,ϑ

λφ,Rϑ
eϑ ⊗EΘ

+

√
2φ,ϑ

φ,Rϑ

[
φ,R
R
− φ,RR

]
ez ⊗ER + λ ez ⊗EZ . (6)

It then follows that IB takes the form

IB =

[
φ,Rϑ +

φ,ϑϑ

φ,Rϑ

(
φ,R

R − φ,RR
)]2

2φ,ϑ
+

1

2

φ2,ϑϑ
λ2 φ,ϑ φ2Rϑ

+
2φ,ϑ
λ2 φ2,Rϑ

+
2φ,ϑ
φ2,Rϑ

[
φ,R
R
− φ,RR

]2
+ λ2. (7)

A variational approach is considered in deriving the bulk elastic equilibrium equations and the associated bound-
ary conditions. The total potential energy E comprises of the bulk elastic energy Eb and the inner and outer surface
energies EAs and EBs such that

E = Eb + EAs + EBs , (8)

where Eb, EAs and EBs are given in terms of φ and its partial derivatives as follows

Eb = λ

∫ 2π

0

∫ B

A

φ,RϑW (IB) dRdϑ, EA,Bs = λ γ

∫ 2π

0

√
2φ,ϑ + φ2,ϑϑ

∣∣∣
R=A,B

dϑ. (9)

Note that in (9) IB is given by (7) and use has been made of the relation dΘ = ∂Θ
∂ϑ dϑ = λ

R φ,Rϑ dϑ. Equilibrium
requires the vanishing of the first variation of (9)1, i.e. δ Eb = 0, which is equivalent to solving the Euler-Lagrange
equations (

∂Lb
∂φ,iA

)
,iA

−
(
∂Lb
∂φ,j

)
,j

= 0. (10)

The standard summation convention is applied here, with j = R or ϑ and iA = RR, Rϑ or ϑϑ. The bulk Lagrangian
Lb is defined from (9)1 as such

Lb = λφ,RϑW (IB). (11)

Now, in case 1 both curved boundaries R = A and R = B are traction-free and under surface tension, and these
boundary conditions take the respective forms[

∂Lb
∂φ,R

−
(

∂Lb
∂φ,RR

)
,R

−
(
∂Lb
∂φ,Rϑ

)
,ϑ

]
R=A

−
(
∂LAs
∂φ,ϑϑ

)
,ϑϑ

+

(
∂LAs
∂φ,ϑ

)
,ϑ

= 0, (12)

[
∂Lb
∂φ,R

−
(

∂Lb
∂φ,RR

)
,R

−
(
∂Lb
∂φ,Rϑ

)
,ϑ

]
R=B

+

(
∂LBs
∂φ,ϑϑ

)
,ϑϑ

−
(
∂LBs
∂φ,ϑ

)
,ϑ

= 0, (13)

where the inner and outer surface Lagrangian’s LAs and LBs are given by

LA,Bs = λ γ
√

2φ,ϑ + φ2,ϑϑ

∣∣∣
R=A,B

. (14)

The opposite signs in the last two terms of (12) and (13) is due to the opposing curvatures of the inner and outer
surfaces. In case 2 (resp. case 3), the inner (resp. outer) surface is constrained to prevent radial displacement, with
the other curved boundary remaining traction free. Thus, we require that the incremental displacement in the r
direction, denoted δr, on this surface vanishes. For all three cases, zero shear on the inner and outer curved surfaces
may be invoked by a further two boundary conditions which are as follows

∂Lb
∂φ,RR

∣∣∣∣
R=A,B

= 0. (15)

We assume throughout this work that the tube material is neo-Hookean, for which the associated strain energy
function is

W (IB) =
1

2
µ (IB − 3) . (16)

For the remainder of this paper we scale all lengths by B, all stresses by µ and γ by µB. Thus, we may set without
loss of generality µ = 1 and B = 1.
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3 Primary deformation and conditions for localisation

We consider an axial loading of the tube, which is encapsulated by the following change of variables

r = r(R), ϑ = Θ, z = λZ. (17)

A sub-class of (2), the primary deformation (17) is theoretically possible for all values of γ and λ. The deformation
gradient enforcing (17) is

F =
∂r

∂R
er ⊗ER +

r

R
eϑ ⊗EΘ + λ ez ⊗EZ . (18)

Upon substitution of (18) into (4), incompressibility is found to be conditional on r taking the following form

r(R) =
√
λ−1(R2 −A2) + a2. (19)

It is then straightforward to deduce from (19) that the outer deformed radius b =
√
λ−1 (1−A2) + a2. Moreover,

again with use of (19), the following primary solution for φ, denoted φ0, which satisfies incompressibility exactly is
deduced through integration of (5)

φ0 =
R2 ϑ

2λ
+

1

2

(
a2 − A2

λ

)
ϑ. (20)

3.1 Traction-free curved boundaries under surface tension

In case 1, the inner radius a in the primarily deformed state is an unknown quantity. We assume that the tube is
under the combined action of surface tension and a nominal axial stress Szz, with the latter being defined as the
axial force per unit cross-sectional area in B0. Consequently, the total potential energy E as given in (8) − (9) is
modified as such

E = Eb + EAs + EBs − π λ (1−A)
2
Szz. (21)

For the primary deformation, E can be deduced by substituting (20) into (21). Equilibrium then requires that
∂E/∂a = 0 and ∂E/∂λ = 0. From the former, the following expression for γ = γ (λ, a) can be obtained

γ =

(
a2 λ−A2

)
(b− a)

2 a b λ2
+

a b

λ (a+ b)
log

(
Ab

a

)
. (22)

From the latter, we deduce an expression for Szz = Szz (λ, a) which is as follows

Szz =
1

2λ2 (1−A)
2

[
4 a γ +

a2

b2
(
A2 − 2

) (
λ3 − 1

)
+

2 γ λ

b

(
a2 + b2

)
+ 2A2 log

( a

A b

)]
. (23)

For a localised solution to exist, we would anticipate that bifurcation into a mode characterised by zero axial wave
number k transpires [17,19]. It was shown in [10] that such a bifurcation can necessarily occur when the Jacobian
J of the vector function (γ, Szz) vanishes. That is, the condition for localised bifurcation in case 1 is

J (γ, Szz) ≡
∂γ

∂a

∂Szz
∂λ
− ∂γ

∂λ

∂Szz
∂a

= 0. (24)

However, we then deduced that said condition is associated with negative surface tension values, which is physically
implausible. Thus, localisation was deemed unattainable in case 1, and we showed that bifurcation into a periodic
axial mode with non-zero wave number may necessarily take place instead where γ is the load parameter and Szz is
negative and of sufficient magnitude. The existence of circumferential mode solutions remains unresolved, however,
and their materialisation is highly anticipated in lieu of localisation.

Notwithstanding, it was shown in [14] that slender cylindrical shells under axial compression are of greater
susceptibility to the Euler buckling mode with axial wave number k = π/ (λL) than periodic axial wrinkling. As
such, for case 1 we focus in next section on the existence of and competition between periodic circumferential and
axial modes specifically when the axial load is tensile.
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3.2 Radially fixed inner boundary free of surface tension

In case 2, prevention of the radial displacement of the inner surface requires that a = A, and the absence of
surface tension on this boundary enforces EAs = 0. Thus, the primary deformation is determined absolutely here by
λ, and φ0 and b become

φ0 =
R2 ϑ

2λ
+
A2

2

(
1− 1

λ

)
ϑ, b =

√
λ−1 (1−A2) +A2. (25)

Hence, to ensure equilibrium we need only satisfy the single equation ∂E/∂λ = 0. From said equation we obtain the
following expression for Szz = Szz (λ)

Szz =
1

π2 (1−A)
2

[
(1− λ)

2λ2

(
A4

b2
+ (2λ+ 1)

(
A2 − λ

)
− λ− 2

)
+
γ

b

(
A2 + b2

)
− A2

λ2
log b

]
. (26)

The bifurcation condition for localisation was then shown in [10] to be ∂Szz/∂λ = 0, from which the following
expression for the critical surface tension can be obtained

γcr =
1

b λ2 (A2 − 1)

[
4
(
A3(λ− 1) +A

)2
log b

A2 − 1
−A4 ξ1(λ)−A2 ξ2(λ)− 2

(
λ3 + 2

)]
, (27)

where ξ1(λ) = 2λ5 − 4λ4 + 2λ3 + 2λ2 − 3λ+ 1 and ξ2(λ) = 4λ4 − 4λ3 + 7λ− 5.

3.3 Radially fixed outer boundary free of surface tension

In case 3, the radial fixing of the outer boundary requires that b = B. With use of (19), this invokes the following
expression for a

a =
√
λ−1 (A2 − 1) + 1. (28)

Moreover, the absence of surface tension on said boundary requires that EBs = 0. The primary solution φ0 therefore
reduces to the following

φ0 =
R2 ϑ

2λ
+

1

2

(
1− 1

λ

)
ϑ. (29)

Then, equilibrium again requires only that we set ∂E/∂λ = 0, and the following expression for Szz = Szz(λ) is
subsequently obtained

Szz =
1

2π λ2 (1−A)
2

[
2 γ λ2

a

(
1 + a2

)
+ (λ− 1)

(
1

a2
+ λ+ 1

)
− 2A2

(
λ3 − 1

)
+ 2 log

( a
A

)]
. (30)

Once more, the bifurcation condition for localisation is that ∂Szz/∂λ = 0, from which we obtained in [10] the
following expression for the critical surface tension γcr

γcr =
a

λ2 (A2 − 1)
2

[(
2− 2A2

)
λ4 + λ+ λ2 − 4A2 λ− λ log

(
a4

A4

)
+

2 + λ− λ2

a4

]
. (31)

With the outer surface fixed to prevent radial displacement, Euler buckling is circumvented in favour of conventional
periodic wrinkling modes. Indeed this statement is intuitive, and in [21] it was shown for the case of purely me-
chanical axial compression that axial or circumferential modes with wave number nπ/ (λL) (n 6= 1) will be favoured
by the tube in case 3. Thus, unlike in case 1, we may extend our linear bifurcation analysis in the next section
for case 3 to compressive axial loads; this will facilitate an exhaustive investigation into the competition between
localisation and periodic axial and circumferential modes when elasto-capillary effects are taken into consideration.

4 Linear bifurcation analysis

To begin, we look for a solution of the form

φ = φ0 + ε f(R) eimϑ, (32)
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where ε is a small parameter, f is a scalar function of R and m is the circumferential mode number. On substituting
(32) into (10), we obtain a fourth order ordinary differential equation (ODE) for f , which may be re-written as the
following system of first order linear ODEs;

df

dR
= A(R)f , A =


0 1 0 0
0 0 1 0
0 0 0 1
a41 a42 a43 a44

 , (33)

where f = [ f, f ′, f ′′, f ′′′ ]
>

and the variable components of A are given as follows

a41(R) =
m2

η3

(
2η2

R2
+ 2R2 − ηm2

)
, a42(R) =

m2R

η2
+

2
(
m2 − 2

)
ηR

− 2m2R3

η3
−

3
(
m2 − 1

)
R3

,

a43(R) =
4

η
+
m2R2

η2
− 3−m2

R2
, a44(R) =

2

R
− 4R

η
,

(34)

with η ≡ η(R) = R2 −A2 + a2 λ.
On substituting (32) into (12) − (14) and (15), we find that the boundary conditions on R = A and R = B in

case 1 may be expressed respectively as the following matrix equations

B1(A, ξ)f = 0,

B2(B, ξ)f = 0,
where


B1(R, ξ) =

[
b11 −1/R 1 0

b+21 b22 b23 1

]
,

B2(R, ξ) =

[
b11 −1/R 1 0

b−21 b22 b23 1

]
,

(35)

with

b11(R, ξ) =

(
mR

η

)2

, b22(R, ξ) =
1−m2

R2
− 2m2R2

η2
− 2

η
, b23(R, ξ) = −1

2
a44,

b±21(R, ξ) =
m2

η3R

((
η +R2

)2 ± γ (η λ)
1/2

R2
(
m2
(
a2λ+R2

)
−A2m2 − λ

))
.

(36)

Note that ξ is a dummy variable introduced for presentational purposes to represent the load parameter, for which
there can be several choices. For cases 2 and 3, on substituting (32) into (5)1, we deduce that satisfying δ r = 0 on
the surfaces R = A and B requires we enforce the corresponding constraints f(A) = 0 and f(B) = 0 in place of
traction-free conditions. Indeed, the matrices B1 and B2 can then be modified appropriately. Now, the linear system

B1(A, ξ)f = 0 can be shown to have two independent solutions, say f
(1)
0 and f

(2)
0 . For instance, in case 1 we have

f
(1)
0 =

[
1, 0, −b11, b23 b11 − b+21

]>
R=A

, f
(2)
0 =

[
0, 1, −1/A, b23/A− b22

]>
R=A

. (37)

We may then integrate forward (33) from R = A to R = B, using (37) or equivalent as initial data for f at R = A.
Two linearly independent solutions for f , say f1 and f2 are obtained, and thus a general solution for f takes the
form

f = c1 f1 + c2 f2 = M(R, ξ) c, (38)

where c = [ c1, c2 ]
>

is an arbitrary constant vector and M(R, ξ) = [f1, f2 ]. By its construction, (38) satisfies the
boundary conditions at R = A, and it thus remains only to satisfy the corresponding conditions on R = B. On
substituting (38) into B2(B, ξ)f = 0, we obtain B2 M (B, ξ) c = 0. Then, since c is arbitrary, the existence of a
non-trivial solution to the eigenvalue problem is conditional on satisfying

det
[
B2 M (B, ξ)

]
= 0. (39)

Indeed, (39) represents a numerical bifurcation condition which must be satisfied by λ, γ and m. The bifurcation
points are obtained by iterating on the load parameter until (39) is satisfied. We may take either Szz or γ as the load
parameter, and we indeed consider both of these cases in the following analysis. In the former, the tube is firstly
subjected to a fixed surface tension γ and zero axial load. Then, we vary the nominal axial stress Szz monotonically
from zero, with Szz < 0 corresponding to a compressive stress and Szz > 0 being a tensile stress. In the latter, we
first fix λ and then gradually increase γ from zero.
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The primary aim of this linear bifurcation analysis is to produce a relationship between the load parameter ξ and
the circumferential mode numberm. This enables us to deduce firstly whether bifurcation into a finite circumferential
mode is possible. Then, if it is, we can ascertain the critical load ξcr and circumferential mode number mcr. The
latter must be an integer greater than or equal to two in order to ensure the periodicity of the solution. By definition,
mcr characterises the circumferential buckling mode preferred by the tube. As we vary the load parameter from
zero, mcr is the first integer value of m encountered on the bifurcation curve in the (m, ξ) plane. Then, ξcr is the
value of ξ at this point and the critical load at which bifurcation into the preferred circumferential mode occurs.

We note briefly that all presented results were obtained through the previously outlined determinant method.
However, for verification purposes, we also performed an equivalent analysis using the compound matrix method
[23], and excellent agreement was observed between both approaches. The algebraic manipulations and numerical
solution procedures presented in this paper were implemented in Mathematica [29].

4.1 Traction-free curved boundaries under surface tension

We start by applying a fixed stretch λ ≥ 1 and take γ as the load parameter. In Figure 4 (a) of [10], it was
shown that neither localisation nor periodic axial mode solutions can exist under such a loading path. Thus, if
circumferential mode solutions do occur, we can conclude that they will be dominant by default.

In Figure 1 (a) we plot γ against m for various fixed λ ≥ 1 and A = 0.3. It is observed that circumferential
mode solutions are entirely possible, and the critical mode number mcr = 2 consistently. This corresponds to the
tubes cross section bifurcating into an elliptic shape. Axial stretching is shown to have a destabilising influence on
the tube in that γcr decreases with increasing λ. In Figure 1 (b) we analyse the bifurcation behaviour over various
tube thickness’s. The variation of γcr with respect to A is found to be non-monotonic, with each curve having a
maximum typically in the regime of moderate thickness. Thus, for a specific fixed λ, one can design a tube of such
a thickness in order to provide added resistance against circumferential buckling.

2 4 6 8 10 12 14
m

0.05

0.10

0.15

0.20

0.25

γ

λ

(a)

0.3 0.4 0.5 0.6 0.7 0.8
A

0.05

0.10

0.15

γcr

λ

(b)

Fig. 1: (a) The variation of γ with respect to m for A = 0.3. The axial stretch λ is increased from 1 to 1.6 in
increments of 0.1. (b) Conditions for bifurcation into the critical circumferential mode mcr = 2. Plotted is γcr
against A with λ increased from 1 to 1.5 in increments of 0.1. Arrows indicate the direction of parameter growth.

For completeness, we investigate whether circumferential mode solutions are also dominant for other tensile
loading paths. To this end, we instead subject the tube first to a fixed surface tension γ and zero axial force, and
then increase the nominal axial stress Szz = Szz(λ, a) as given by (23) from zero. In Figure 2 (a) we consider the
variation of Szz with respect to m for several fixed γ and A = 0.5. We observe that, for sufficiently small fixed γ,
bifurcation into a circumferential mode solution with mcr = 2 is triggered at some critical axial stress Scrzz > 0.
Indeed, Scrzz is seen to decrease as γ increases, thus surface tension has a destabilising effect on the tube in this
sense. At some fixed surface tension threshold, the tube becomes highly unstable and bifurcation into the elliptic
mode occurs at Scrzz = 0. This is shown by the lower-most dashed curve in (a) which corresponds to γ = 0.142375.
We then deduce that circumferential mode solutions are again dominant over axial modes by default in this loading
scenario. This conclusion is made from Figure 2 (b) where we plot Szz against the axial mode number k for several
fixed γ; we find that find that periodic axial modes may only be triggered in the compressive stress regime Szz < 0.
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2 4 6 8 10 12 14
m

2

4

6

8

10

12

14

Szz

γ

(a)

-9

-8

-7

-6

-5

2 3 4 5 6 7

γ

γ
=
0

Szz

k

(b)

Fig. 2: The variation of Szz with respect to (a) the circumferential mode number m and (b) the axial mode
number k for A = 0.5 and γ = 0.03, 0.035, 0.425, 0.05, 0.06, 0.07 and 0.08. In (a), the lowest-most dashed curve
corresponds to γ = 0.142375. At this point the tube becomes highly unstable with Scrzz = 0. In (b), the upper most
curve corresponds to γ = 0, which is the special case of a purely mechanical compression as was first studied in
[28]. The black dot marks the critical pair (kcr, S

cr
zz) = (3.605,−5.28656) for this case, which is in agreement with

the result given in [28]. Arrows give the direction of parameter growth.

4.2 Radially fixed inner boundary free of surface tension

The situation in case 2 is found to be far different to that displayed previously for case 1. To facilitate the analysis
here, we take γ as the load parameter, and in Figure 3 we plot γ against m for several tube thickness’s and fixed axial
stretches. We see that, across the wide range of parameter values considered, bifurcation into a circumferential mode
solution is associated with negative critical surface tension values, which is physically implausible. For completeness,
we include in Figure 3 (b) the special case of a solid cylinder corresponding to A = 0 (dashed curve). Thus, we
conclude that circumferential mode solutions are not possible in case 2, and that localisation in the tensile regime
is consequently preferred.
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Fig. 3: The variation of γ with respect to m. In (a) we set A = 0.6 and increase λ from 0.5 to 1.7 in increments
of 0.2. In (b) we set λ = 1.5 and increase A from 0.2 to 0.8 in increments of 0.1. The left most dashed curved
corresponds to A = 0, which is the special case of a solid cylinder. Arrows indicate the direction of parameter
growth.
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4.3 Radially fixed outer boundary free of surface tension

Taking Szz as the load parameter

We start by considering a representative case A = 0.8, and show in Figure 4 the variation of Szz with respect
to m for several fixed γ. We observe from Figure 4 (a) that, for considerably small fixed γ, bifurcation into a
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Fig. 4: The variation of Szz with respect to m for A = 0.8 and (a) γ = 0.02, 0.05, 0.1, 0.175, 0.3, 0.5, (b) γ =
3.5, 3.6, 3.7, 3.8, 3.9, 3.9844. In both plots, the arrow indicates the direction of parameter growth. In (a), the dot
marks the critical pair (mcr, S

cr
zz) = (13, −82.9374) for γ = 0.02. The dot in (b) shows that, at the fixed surface

tension threshold γ = 3.9844, bifurcation into a circumferential mode with mcr = 5 is triggered solely by surface
tension.

circumferential mode with finite wave number and Scrzz < 0 is theoretically possible. That is, bifurcation into a finite
circumferential mode can occur at some critical compressive axial stress. In Figure 4 (b) we see that, for sufficiently
large fixed surface tension, circumferential buckling can exist in the tensile regime. However, at the fixed surface
tension threshold γ = 3.9844 the tube becomes highly unstable and bifurcation into a finite circumferential mode
with mcr = 5 is triggered before an axial stress can be applied.

In Figure 5 we analyse the bifurcation behaviour across various tube thickness’s as well as the competition
between circumferential and axial modes for Szz ≤ 0. In Figure 5 (a) we plot Szz against m for several fixed A
and γ = 0.5. We observe that Scrzz is a decreasing function of A, and thus the axial compressive stress required
to trigger bifurcation into a finite circumferential mode is much smaller in thicker tubes. In Figures 5 (b), (c)
and (d) we compare the conditions for bifurcation into circumferential buckling modes (orange) and axial modes
with critical wave number kcr ≥ 0 (red) for three separate tube thickness’s. As was observed in Figure 4, for each
tube thickness considered there exists a fixed surface tension threshold at which the tube becomes highly unstable
towards circumferential buckling, with Scrzz = 0. Through inspection of (b) through to (d), this threshold is seen
to be a decreasing function of the tube thickness, echoing the findings in Figure 5 (a) that thicker tubes are more
susceptible to circumferential modes. We find also that, if the tube thickness is sufficiently small, the relationship
between Scrzz and γ for circumferential modes is non-monotonic. This can clearly be seen by comparing Figures 5
(b) and (c), say, where A = 0.6 and 0.7 respectively. In the former, the magnitude of Scrzz is a decreasing function of
γ, whereas in the latter we see from the inset that Scrzz has a minimum at (γ, Scrzz) = (0.143722, −33.95). Thus, for
γ < 0.143722 (resp. γ > 0.143722), larger fixed surface tension increases (resp. decreases) the axial load required for
bifurcation. We observe that, for a sufficiently thick tube, circumferential buckling is triggered at lower compressions
than localised beading or periodic axial modes for any fixed surface tension. However, for a sufficiently thin tube,
there exists an interval γ ∈ (0, γ1) wherein axial modes dominate circumferential buckling. This can be clearly seen
in Figure 5 (d) for A = 0.75, where the inset shows an intersection between the two curves at γ = γ1 = 0.061327.
For γ < γ1, the magnitude of Scrzz is evidently less for axial modes than circumferential buckling.

In the tensile regime, we comment that the fixed surface tension threshold at which circumferential modes are
triggered at Scrzz = 0 is typically less than the minimum γ required for localisation. For instance, for A = 0.7 it is
shown in [10] that localisation is globally absent for γ < 6.66298, but from Figure 5 (c) we see that circumferential
buckling is triggered purely by surface tension at γ ≈ 1.9. Thus, bifurcation into circumferential mode solutions will
have already occurred before the tensile stress required to trigger localisation can be applied, and so the former is
dominant in this sense.
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Fig. 5: (a) The variation of Szz with respect m for γ = 0.5. The inner referential radius takes the fixed values A =
0.45, 0.475, 0.5, 0.525, 0.55, 0.575, 0.6, 0.625, 0.65. The dot indicates the critical pair (mcr, S

cr
zz) = (5, −18.3092)

for A = 0.65 and the arrow indicates the direction of parameter growth. In the latter 3 plots we show conditions
for bifurcation into circumferential (orange) and axial (red) modes, with the latter having critical wave numbers
kcr ≥ 0. Specifically, we present the variation of Scrzz with respect to γ ≥ 0.02 for (b) A = 0.6, (c) A = 0.7 and
(d) A = 0.75. The inset in (c) shows that, below some critical tube thickness, this variation for circumferential
buckling solutions is non-monotonic. The curve has a minimum at (γ, Scrzz) = (0.143722, −33.95) as indicated by
the black dot. The inset in (d) shows that, for a sufficiently thin tube, there exists a fixed surface tension threshold
γ = γ1 below which axial modes dominate circumferential buckling. Said threshold is the intersection between the
two curves as indicated by the black dot, and corresponds to γ1 = 0.061327 in this case. The integers labelled along
each orange curve give the value of mcr at the corresponding critical load. The critical circumferential mode number
is seen to decrease as the fixed surface tension gets larger.

Taking γ as the load parameter

Alternatively, we may subject the tube to a fixed axial stretch λ and then gradually increase the surface tension
from zero. We consider first a representative case A = 0.4, and in Figure 6 (a) we plot γ against m for several
fixed λ < 1. We observe that, for a sufficiently small fixed compression, the critical circumferential mode number
mcr = 2. For larger compressive stresses, we may have mcr > 2, and this is demonstrated in Figure 6 (b) where we
show that mcr = 3 for λ = 0.891. If we compress even further, the tube enters a highly unstable regime whereby
γcr = 0. In Figure 6 (c) we analyse the bifurcation behaviour across various tube thickness’s. For the fixed stretch
λ = 0.95, we observe that mcr = 2 consistently below some critical tube thickness. Above this threshold, we may
have mcr > 2, and this is observed in Figure 6 (d) where we show that mcr = 3 for A = 0.2725. We also deduce that
thicker tubes are more sensitive towards circumferential mode solutions; for a sufficiently thick tube, circumferential
buckling is triggered at γcr = 0.

It thus remains to assess the competition between axial and circumferential mode solution to deduce absolutely
the preference of the tube in this loading scenario. In Figure 7 we plot the critical surface tension for bifurcation into
axial modes with kcr ≥ 0 (red) and circumferential modes (orange) against λ for several tube thickness’s. For each
fixed value of A considered, we find that there exists a fixed compression threshold beyond which circumferential
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Fig. 6: (a) The variation of γ with respect m for A = 0.4. The axial stretch λ takes the fixed values
λ = 0.891, 0.9, 0.905, 0.91, 0.92, 0.93, 0.94, 0.95 and 0.96. (b) A blow up of the curve in (a) corresponding to
λ = 0.891 about the critical pair (mcr, γcr) = (3, 0.330843). (c) The variation of γ with respect tom for λ = 0.95 and
A = 0.2725, 0.285, 0.3, 0.325, 0.35, 0.375 and 0.4. (d) A blow up of the curve in (c) corresponding to A = 0.2725
about the critical pair (mcr, γcr) = (3, 0.107227).

mode solutions are favoured over localisation or periodic axial modes. Prior to this point, localisation is preferred
over circumferential and periodic axial modes for all tube thickness’s.

5 Conclusions

The objective of this study was two-fold. Firstly, for the three distinct boundary conditions under consideration, we
endeavoured to determine whether bifurcation of soft slender tubes into finite circumferential buckling modes can
necessarily occur for multiple loading paths. Secondly, where circumferential mode solutions do exist, an analysis
of their competition with localisation and periodic axial modes was desired.

In case 1 we focussed on the regime of tensile axial loads given the preference of slender tubes towards Euler
buckling over periodic wrinkling when in compression. We determined that the tube was highly susceptible to
circumferential mode solutions when either the surface tension γ or the nominal axial stress Szz was taken as the
load parameter. Specifically, the elliptic mode mcr = 2 was found to be unanimously favoured. In either of these
loading scenarios, the fixed axial stretch λ and surface tension γ (respectively) were found to have a destabilising
effect on the tube. Where Szz is taken as the load parameter, we determined that the tube becomes highly unstable
to the elliptic mode at a fixed surface tension threshold, and bifurcation is triggered prior to the application of an
axial stress at this point. For the representative case A = 0.5, this threshold was determined to be γ = 0.142375.
With the aid of results given in [10], we determined absolutely that for both loading scenarios bifurcation into into
periodic axial modes may only occur when the axial nominal stress is compressive. Thus, in the tensile regime we
concluded that circumferential mode solutions are dominant by default.

In case 2 we took γ as the load parameter, and found over a wide range of tube thickness’s and fixed axial
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Fig. 7: Conditions for bifurcation into localised and periodic axial modes (red) and the elliptic circumferential
buckling mode (orange) in the (λ, γcr) plane for (a) A = 0.3, (b) A = 0.35, (c) A = 0.4 and (d) A = 0.5.

stretches that bifurcation into circumferential modes was associated with negative values of γcr. Given the physical
implausibility of negative surface tension, we deduced from this that such a bifurcation cannot necessarily take
place in case 2. This conclusion was also shown to be valid for the special case of a solid cylinder on taking the limit
A→ 0. Consequently, it follows that localisation is the preferred solution here when the tube is in tension.

In case 3 we extended our interests to the compressive stress regime given the known competition between
circumferential and axial wrinkling modes when the tube is purely under axial loading [21]. We chose first Szz as
the load parameter; it was shown that, for sufficiently small fixed γ, circumferential buckling modes may emerge
at some critical compressive axial stress Scrzz < 0. At some fixed surface tension threshold, the tube becomes highly
unstable with Scrzz = 0; this threshold was deduced to be γ = 0.39844 for the representative case A = 0.8, with
the preferred mode number being mcr = 5. Thicker tubes were also ascertained to be more sensitive towards such
solutions. In this loading scenario, circumferential mode solutions were found to be consistently dominant over
periodic axial modes and localisation in the compressive regime provided that the tube is thick enough. However,
for sufficiently thin tubes, there exists a fixed surface tension interval γ ∈ (0, γ1) wherein axial modes instead
dominate circumferential buckling. For instance, for A = 0.75 we determined that γ1 = 0.061327. Where γ is
instead taken as the load parameter, we determined that there exists a critical fixed axial compression below which
the critical buckling mode is mcr = 2. Unsurprisingly, bifurcation became more likely as said compression increased,
and for a small enough value of λ we deduced that γcr = 0. Similar behaviour was deduced across different tube
thickness’s. Indeed, mcr = 2 above some critical value of A, and thicker tubes were shown to be more susceptible to
circumferential modes. We finally showed that, for several tube thickness’s, there exists a critical fixed compression
beyond which circumferential modes are dominant over localisation and periodic axial modes.
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