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Abstract

In this paper we consider formal asymptotic algorithms for a class
of meso-scale approximations for problems of vibration of elastic mem-
branes, which contain clusters of small inertial inclusions distributed
along contours of pre-defined smooth shapes. Effective transmission
conditions have been identified for inertial structured interfaces, and
approximations to solutions of eigenvalue problems have been derived
for domains containing lower-dimensional clusters of inclusions.

In honour of Professor N.N. Uraltseva

1 Introduction

We address a class of asymptotic approximations for models of vibrations of
two-dimensional elastic membranes, containing clusters of small inclusions.
These clusters are assumed to be distributed along one-dimensional sets.
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The approach is based on the method of meso-scale asymptotic approxima-
tions [1–4], and the inertia of inclusions has been taken into account. The
method of meso-scale asymptotic approximations was first introduced in [1]
for asymptotic problems in domains with large clusters of small inclusions,
and it provides an efficient alternative to homogenisation approximations
(see, for example, [5]), especially for the cases where clusters are inhomo-
geneous, non-periodic, and where the size of inclusions is in the meso-scale
range compared to the distance between the inclusions. The asymptotic
approximations obtained in [1] involve a linear combination of solutions to
certain model problems whose coefficients satisfy a linear algebraic system.
The solvability of this system was proved under weak geometrical assump-
tions, and both uniform and energy estimates for the remainder term were
derived.

Meso-scale approximations for eigenvalue problems in domains with clus-
ters of many inclusions were analysed in [6]. Fundamental ideas of the
method of compound asymptotic expansions [7] in domains with singularly
perturbed boundaries were used.

Although problems of wave scattering in the low frequency regime in
solids with many inclusions can be addressed by the method of homogeni-
sation, important features linked to the wave scattering from individual
inclusions may require the use of the dynamic Green’s functions. In partic-
ular, Green’s function for the Helmholtz equation in a periodic domain was
analysed in [8, 9]. A formal procedure was introduced in [10] for isotropic
scattering by randomly distributed scatterers separated by a finite distance.
Analysis of waves in a plane with semi-infinite arrays of isotropic scatter-
ers is discussed in [11]. Waves governed by the Helmholtz equation in a
doubly periodic array with an elementary cell containing several scatterers
were analysed in [12], based on the approach of [10], [11] and asymptotics
representing singular perturbation leading-order approximations, similar to
simplified cases of [2], [6] and [7]. Dispersion of waves analysed in [12] shows
dynamic anisotropy linked to the scatterers within the elementary cell.

For example, when a cluster of N small circular inclusions of radius ε is
assumed to be placed along a simple smooth closed curve in the plane we
can use the method of meso-scale asymptotic approximations for solutions
of scattering problems. When an incident wave of a radian frequency ω is
generated by a remote time-harmonic point source placed at y ∈ R2 the
approximation of the total field is constructed in the form

G(x,y, ω) ∼ G(|x− y|, ω) +

N∑
j=1

βj(y)U (j)(x) ,

where G(|x − y|, ω) is Green’s function for the Helmholtz equation, U (j)

are special model fields associated with individual small inertial inclusions
placed at O(j), and βj are the coefficients, found by solving an algebraic
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Figure 1: Cluster of small inclusions placed along a contour. The figure
shows the eigenfunction corresponding to the first eigenvalue of the Dirichlet
problem for the Laplacian, the eigenvalue is 0.30816. The main region is the
disk of radius R = 7 with the centre at the origin. Small circular rigid
inclusions of radii r = 0.1 have their centres along the circle of radius 2 with
the centre at (1, 0). The computation is produced in COMSOL.

system of equations. The proof of the solvability of this algebraic system is
similar to [1]. Compared to meso-scale two-dimensional clusters, this is a
lower–dimensional case where inclusions are distributed along a contour. In
addition to the above point-wise asymptotic approximation, the approach
discussed here, can also be used to derive an effective transmission problem
for the domain containing an inertial structured interface, and its solution
provides a homogenisation approximation, which takes into account inertia
of small inclusions. In particular, when small inclusions of mass m form a
periodic cluster of the overall mass M distributed over a circle Γ of unit
radius, the coefficients βj can be approximated by

βj(y) = G(O(j),y) , 1 ≤ j ≤ N ,

with the function G(O(j),y) being the solution of the transmission problem
for the following equation

µ∆xG(x,y) + ρω2G(x,y) + R(m,M,ω)δ(x− y) = 0,

where µ is the stiffness coefficient, ρ is the mass density, and R(m,M,ω) is
the coefficient, that depends on the inertial properties of the cluster. While
G(O(j),y) satisfies the radiation condition at infinity, the transmission con-
ditions across Γ have the form[

G(x,y)
]

= 0 ,
[∂G
∂r

(x,y)
]

= − M

2πm
αεR(m,M,ω)G(x,y) .
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Here αε = −4iµ/H
(1)
0 (
√
ρ/µωε), and H

(1)
0 is the Hankel function of the first

kind.
For non-resonance forced problems, we also discuss solutions which can

be interpreted as fields associated with the time-harmonic scattering from
a lower-dimensional cluster of small inertial inclusions. The incident field
is produced by a localised source, associated with a forced motion of one
of rigid inclusions within the array, and formally the algorithm requires an
asymptotic approximation of the harmonic capacitary potential in the low
frequency regime. The approximation corresponds to a non-resonance case.

An example of a cluster of inclusions placed along a curve in a two-
dimensional elastic membrane is shown in Fig. 1. Time-harmonic vibrations
are considered here, and the inertia of small inclusions, as well as their size,
separation and the size of the cluster represent parameters of the multi-scale
asymptotic approximation.

We also analyse asymptotic solutions of an eigenvalue problem for a
domain containing a lower-dimensional cluster of small inertial inclusions.
Computations, discussed in the text, give a comparison between an ana-
lytical asymptotic procedure and a FEM simulation produced in COMSOL
Multi-Physics shown in Fig. 1, with the analytical logarithmic asymptotic
approximation shown in Fig. 2 and produce a remarkably good result.

The structure of the paper is as follows. In Section 2 we introduce the
asymptotic model of a one-dimensional cluster of many inertial inclusions
placed along a closed simple contour, which forms an inertial structured
interface. Section 3 includes analysis of a low-frequency scattering in a finite
elastic membrane with a sparse cluster of small movable rigid inclusions. The
approximation of the first eigenvalue and the corresponding eigenfunction
for a sparse or one-dimensional cluster of inertial inclusions in a finite elastic
membrane is discussed in Section 4.

2 Elastic membrane with a one-dimensional clus-
ter of inclusions

The problem considered concerns the scattering phenomena due to a cluster

of N inertial inclusions, F
(j)
ε with masses mj and centres O(j), 1 ≤ j ≤ N ,

in a membrane that has density ρ and shear modulus µ. Here ε is a small

positive parameter, characterising the relative diameter of F
(j)
ε , similar to

[2]. The overall mass of the cluster M =
∑N

j=1mj , is finite. Here we seek
the asymptotic approximation of the solution of the scattering problem for
a wave initiated by a point source positioned outside the cluster

µ∆G(x,y, ω) + ρω2G(x,y, ω) + δ(x− y) = 0 , x ∈ R2\ ∪Nj=1 F
(j)
ε , (1)

G(x,y, ω) = Cj , x ∈ ∂F (j)
ε , (2)
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∂G
∂rx

(x,y, ω)− ik0G(x,y, ω) = O
( 1

r
3/2
x

)
, as rx →∞ , (3)

where the position of the point force is given by y ∈ R2\∪Nj=1F
(j)
ε , with y be-

ing separated by a finite distance from the cluster itself, rx = |x| and Cj are
constants that are determined in what follows. Here, ω and k0 =

√
ρω2/µ

denote the radian frequency and wavenumber, respectively, of waves in the
medium. In addition, as each mass vibrates in the membrane, the linear mo-
mentum balance for the mass is taken into account, imposing an additional
condition in the form

−mjω
2Cj = µ

∫
∂F

(j)
ε

∂G
∂n

(x,y, ω)dsx , (4)

for 1 ≤ j ≤ N , and n being the unit outward normal with respect to F
(j)
ε .

This problem can be interpreted as that of the time-harmonic scattering of a
wave produced by a point source in the presence of a cluster of small inertial
inclusions positioned along a a simple smooth curve in a plane.

2.1 Model problems

We use the algorithm of the method of meso-scale asymptotic approxima-
tions [2] to formally construct an asymptotic approximation of the field
G(x,y, ω). The procedure requires several model problems.

2.1.1 Dynamic Green’s function

By G we denote the dynamic Green’s function for the infinite membrane,
that satisfies the equation

µ∆G(|x− y|, ω) + ρω2G(|x− y|, ω) + δ(x− y) = 0 , x,y ∈ R2 , (5)

and the outgoing wave solution has the representation

G(|x− y|, ω) =
i

4µ
H

(1)
0

(
k0|x− y|

)
, (6)

where k0 =
√
ρω2/µ, and H

(1)
0 is the Hankel function of the first kind. In

particular,

G(|x− y|, ω) ∼ − 1

2πµ
log(k0|x− y|),

as k0|x− y| → 0.
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2.1.2 Dirichlet problem for the Helmholtz equation in the exte-
rior of a finite inclusion

To allow for the correction of discrepancies on interior boundaries we intro-
duce the problem

µ∆U (j)(x) + ρω2U (j)(x) = 0 , x ∈ R2\F (j)
ε , (7)

U (j)(x) = 1 , x ∈ ∂F (j)
ε , (8)

where the U (j) also satisfies the radiation condition at infinity:

∂U (j)

∂r
(x)− ik0U

(j)(x) = O(
1

r3/2
) , as r →∞ . (9)

2.2 Meso-scale approximation - formal asymptotics

The leading order approximation for the solution of (1)–(4) is sought in the
form

G(x,y, ω) ∼ G(|x− y|, ω) +

N∑
j=1

βj(y)U (j)(x) , (10)

where the coefficients βj are to be determined.

2.2.1 The algebraic system

It follows from the boundary conditions (2) that to leading order we have

Ck = G(|O(k)−y|, ω) +βk(y) +
∑
j 6=k

1≤j≤N

βj(y)U (j)(O(k)) , x ∈ ∂F (k)
ε , (11)

with 1 ≤ k ≤ N . Using the “equations of motions” (4) for individual
inclusions together with (10), we deduce that the constants Ck, 1 ≤ k ≤ N ,
also satisfy the relations

− mkω
2

µ
Ck =

∫
∂F

(k)
ε

∂G(x,y, ω)

∂n
dsx

=

∫
∂F

(k)
ε

∂G(|x− y|, ω)

∂n
dsx + βk(y)

∫
∂F

(k)
ε

∂U (k)(x)

∂n
dsx

+
∑
j 6=k

1≤j≤N

βj(y)

∫
∂F

(k)
ε

∂U (j)(x)

∂n
dsx, (12)

where n stands for the unit outward normal on ∂F
(j)
ε . Taking into account

(5), (7), (8), and when j 6= k, using the integration by parts one can represent
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the boundary integrals in (12) via the integrals over F
(j)
ε , and hence the

representation (12) takes the form

mkω
2Ck = −µβk(y)

∫
∂F

(k)
ε

∂U (k)(x)

∂n
dsx (13)

+ ρω2

∫
F

(k)
ε

{
G(|x− y|, ω) +

∑
j 6=k

1≤j≤N

βj(y)U (j)(x)
}
dx.

Combining (11) and (13), we derive the algebraic system of equations for
the coefficients βj , 1 ≤ j ≤ N, in the asymptotic approximation (10)

mkω
2G(|O(k) − y|, ω)− ρω2

∫
F

(k)
ε

G(|x− y|, ω)dx

+ βk(y)
{
mkω

2 + µ

∫
∂F

(k)
ε

∂U (k)(x)

∂n
dsx

}
(14)

+mkω
2
∑
j 6=k

1≤j≤N

βj(y){U (j)(O(k))− ρ

mk

∫
F

(k)
ε

U (j)(x)dx} = 0.

The justification of solvability of the above algebraic system for the co-
efficients βj is similar to [1], and we do not discuss it here.

In particular, when inclusions F
(j)
ε are circular with radii εr(j) and cen-

tres O(j), where ε is a small non-dimensional parameter, we have

U (j)(x) = α(j)
ε G(|x−O(j)|, ω) , (15)

where

α(j)
ε = − 4iµ

H
(1)
0

(
k0εr(j)

) .
In this case, the algebraic system (14) for the coefficients βj , 1 ≤ j ≤ N

becomes

mkG(|O(k) − y|, ω)− ρ
∫
F

(k)
ε

G(|x− y|, ω)dx

+βk

(
mk +

2πµεr(k)α
(k)
ε

ω2

∂G(r, ω)

∂r

∣∣∣
r=εr(k)

)
+
∑
j 6=k

1≤j≤N

βjα
(j)
ε

{
mkG(|O(k) −O(j)|, ω)

−ρ
∫
F

(k)
ε

G(|x−O(j)|, ω)dx
}

= 0 .

(16)
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2.3 Scattering by a cluster of identical inclusions placed along
a circular contour

Here, we assume that the circular inclusions F
(j)
ε have the same radii ε

and mass m and that their centres are uniformly distributed along the unit
circular contour Γ1 = {x : |x| = 1}. Also, let d = 2π/N , and assume that
ε < Const d3/2. We analyse the case when N →∞, while M = mN is fixed,
and obtain a problem concerning a membrane with an inertial ring.

When the inclusions F
(k)
ε , 1 ≤ k ≤ N , are all circular, some of the

integrals appearing in (16) can be evaluated explicitly. In particular, when
y is separated by a finite distance from the cluster of the inclusions, using
the Graf’s addition theorem and expanding the Hankel function in a series
we have:

H
(1)
0 (k0|x− y|) =

∞∑
ν=−∞

H(1)
ν (k0|y−O(k)|)Jν(k0|x−O(k)|)eiν(π−θk+θk,y) .

where θk is the polar angle of x measured with respect to O(k) and θk,y is

the polar angle of O(k) measured with respect to y. Hence, as ε→ 0,∫
F

(k)
ε

G(|x− y|, ω)dsx = πε2G(|O(k) − y|, ω) +O(ε3) = O(ε2),

and for j 6= k, it is derived that∫
F

(k)
ε

G(|x−O(j)|, ω)dsx = πε2G(|O(k) −O(j)|, ω)

+O(ε3/d) = O(ε2| log d|).
We also note that

2πεµr(k)∂G

∂r
(r, ω)

∣∣∣
r=εr(k)

= −1 +O(ε2| log ε|).

For the cluster of identical inclusions, the system (16), to leading order,
becomes

mG(|O(k) − y|, ω) + βk(y)
(
m− αε

ω2

)
+mαε

∑
j 6=k

1≤j≤N

βj(y)G(|O(k) −O(j)|) = 0 ,

(17)

where 1 ≤ k ≤ N, and

αε = − 4iµ

H
(1)
0

(
k0ε
) .
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2.4 Derivation of the transmission conditions for G in the
auxiliary problem

Assume that positions of the centres of inclusions F
(j)
ε are

O(j) = (cos(2π(j − 1)/N), sin(2π(j − 1)/N))T , 1 ≤ j ≤ N ,

and let G(x,y) be a function such that

βj(y) = G(O(j),y) , 1 ≤ j ≤ N . (18)

Equations (17) can be re-written in the form

mG(|O(k) − y|, ω) + βk(y)
(
m− αε

ω2

)
+
Mαε
2π

∑
j 6=k

1≤j≤N

βj(y)G(|O(k) −O(j)|)2π

N
= 0 . (19)

By considering the sum in (19) as the Riemann sum and taking the limit as
N →∞, we arrive at

mω2G(|x− y|, ω) + G(x,y)(mω2 − αε)

+
Mω2αε

2π

∫ 2π

0
G(|x− η|, ω)G(η,y)dθη = 0 . (20)

When this equation is extended to x outside Γ1, one can apply the Laplacian
in x, use (5) and derive

0 = −mω2(
ρω2

µ
G(|x− y|, ω) +

1

µ
δ(x− y)) + (mω2 − αε)∆xG(x,y)

− Mω4αερ

2πµ

∫
Γ1

G(|x− η|, ω)G(η,y)dθη. (21)

Furthermore, using (20) and (21) we obtain the equation for G(x,y) in the
form

µ∆xG(x,y) + ρω2G(x,y) +
mω2

αε −mω2
δ(x− y) = 0. (22)

We note that |αε| = O(| log ε|−1), with m being of order O(d), and the
radian frequency ω2 serving as an additional control parameter.

In addition, we take the normal derivative in (20) and use the following
relations when x ∈ Γ1

lim
ξ→Γ±

1

∫
Γ1

∂G

∂r
(|ξ −η|, ω)G(η,y)dsη = ∓

1

2
G(x,y) +

∫
Γ1

∂G

∂r
(|x−η|, ω)G(η,y)dsη ,

9



(see [13]), and obtain the transmission condition across Γ1[
G(x,y)

]
= 0 ,

[∂G
∂r

(x,y)
]

=
Mω2αε

2π(mω2 − αε)
G(x,y) , (23)

with
[
G(x,y)

]
denoting the jump of G(x,y) across Γ1, while the point y is

separated by a finite distance from Γ1:[
G(x,y)

]
= G(x,y)

∣∣∣
x∈Γ+

1

−G(x,y)
∣∣∣
x∈Γ−1

.

Thus, the function G(x,y) can be defined as a solution of (22), (23), subject
to the radiation condition at infinity. This provides an alternative homogeni-
sation approximation (18) for the coefficients βj in (10), which takes into
account the inertial transmission conditions across the structured interface
formed by a cluster of small inclusions.

3 Low-frequency scattering in a finite elastic mem-
brane with a sparse cluster of small movable
rigid inclusions

Consider a finite elastic membrane Ω ⊂ R2, together with a finite sparse

cluster of small rigid inclusions F
(j)
ε ⊂ Ω, j = 1, . . . , N, of zero mass den-

sity, containing interior points O(j). It is assumed that the small inclusions

F
(j)
ε , j = 1, . . . , N, are separated by the finite distance from the exterior

boundary ∂Ω. We use the notation

ΩN = Ω \ ∪Nj=1F
(j)
ε .

Given the mass density ρ and a time-harmonic vibration of small radian

frequency ω, applied to the inclusion F
(1)
ε , the amplitude of the out-of-plane

displacement satisfies the problem:

µ∆u(x) + ρω2u(x) = 0, x ∈ ΩN (24)

u(x) = 1, x ∈ ∂F (1)
ε (25)

u(x) = Aj , x ∈ ∂F (j)
ε 1 < j ≤ N, (26)

u(x) = 0, x ∈ ∂Ω (27)

where ∫
∂F

(j)
ε

∂u

∂n
ds = 0, 1 < j ≤ N. (28)

The constants Aj are to be determined, and it is assumed that small in-

clusions F
(j)
ε are separated by a finite distance. We introduce a small non-

dimensional parameter f , with ε < f , in such a way that ρω2 = fλ. Here,
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we use the normalisation µ = 1, and hence the equation (24) takes the form

∆u(x) + fλu(x) = 0, x ∈ ΩN . (29)

Also, the notation F (j) is used for scaled inclusions, such that F (j) = {x :

εx + O(j) ∈ F (j)
ε }.

3.1 Green’s function and the relative capacitary potential

We use the result of [2] and employ the relative capacitary potential P
(1)
ε (x),

which satisfies the boundary value problem in Ω \ F (1)
ε

∆P (1)
ε (x) = 0, x ∈ Ω \ F (1)

ε , (30)

P (1)
ε (x) = 1, x ∈ ∂F (1)

ε , (31)

P (1)
ε (x) = 0, x ∈ ∂Ω. (32)

The notations G(x,y) and g(x,y) are used for Green’s functions in Ω

and R2 \ F (1)
, respectively. Thus,

∆G(x,y) + δ(x− y) = 0, x,y ∈ Ω, (33)

G(x,y) = 0, x ∈ ∂Ω, y ∈ Ω, (34)

and

∆g(ξ,η) + δ(ξ − η) = 0, ξ,η ∈ R2 \ F (1)
, (35)

g(ξ,η) = 0, ξ ∈ ∂F (1),η ∈ R2 \ F (1)
, (36)

g(ξ,η) is bounded as |ξ| → ∞ and η ∈ R2 \ F (1)
. (37)

According to Lemma 1.4 in [2], the relative capacitary potential P
(1)
ε has

the asymptotic representation

P (1)
ε (x) =

−G(x,O(1)) + ζ(x−O
(1)

ε )− 1
2π log |x−O

(1)|
εrF

1
2π log εrF

RΩ

+ pε(x), (38)

where pε(x) = O(ε| log ε|−1) uniformly with respect to x ∈ Ω \ F (1)
ε . In the

above formula (38), the notations rF and RΩ stand for the inner conformal
radius of F (1) with respect to O(1), and the outer conformal radius of Ω rel-
ative to O(1), respectively, as discussed in Section 1.2.1 of [2]. The function
ζ is defined by

ζ(η) = lim
|ξ|→∞

g(ξ,η). (39)

In particular, for the case when the inclusion F
(1)
ε is circular of radius εrF ,

the formula (38) simplifies as

P (1)
ε (x) = B1G(x,O(1)) +O(ε), B1 = −(

1

2π
log εrF +H(O(1),O(1)))−1,

(40)
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where the regular part H(x,y) of Green’s function G is a harmonic function
defined by

H(x,y) =
1

2π
log |x− y|−1 −G(x,y). (41)

3.2 Formal asymptotic approximation

The asymptotic approximation is sought in the form

u(x) ∼ P (1)
ε (x) + fu(2)(x), (42)

and, owing to (26), the constants Aj , j = 2, . . . , N, representing the rigid
motion displacements of massless inclusions, are

Aj ∼ P (1)
ε (O(j)) + fA

(2)
j , (43)

whereas u(2) satisfies the boundary value problem

∆u(2)(x) + λP (1)
ε (x) = 0 in ΩN , (44)

u(2)(x) = 0, x ∈ ∂F (1)
ε , (45)

u(2)(x) = A
(2)
j , x ∈ ∂F (j)

ε , j = 2, . . . , N, (46)

u(2)(x) = 0, x ∈ ∂Ω. (47)

By assuming a circular shape of the inclusion F
(1)
ε , using formula (40), and

introducing an auxiliary problem

∆V (x) + λB1G(x,O(1)) = 0 in Ω, (48)

V (x) = 0, x ∈ ∂Ω, (49)

we deduce

V (x) = λB1

∫
Ω
G(z,x)G(z,O(1))dz, (50)

and
A

(2)
j = V (O(j))− V (O(1))P (1)

ε (O(j)). (51)

In this case, the approximation (42) can be rewritten in the form

u(x) = P (1)
ε (x) + f(V (x)− V (O(1))P (1)

ε (x)) + r(x), (52)

where the remainder term satisfies the problem

∆r(x) + fλr(x) = −fλ(P (1)
ε (x)−B1G(x,O(1))) (53)

− f2λ(V (x)− V (O(1))P (1)
ε (x)),

r(x) = 0 on ∂Ω, (54)

r(x) = −f(V (x)− V (O(1))) on ∂F (1)
ε , (55)

r(x) = Aj − P (1)
ε (x)− f(V (x)− V (O(1))P (1)

ε (x))

on ∂F (j)
ε , j = 2, . . . , N. (56)
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For the case when the inclusion F
(1)
ε is circular, taking into account that the

small quantity fλ is separated from the spectrum, and using the formulae
(43), (51) and (52) we deduce that

r(x) = O(fε) (57)

when x is outside a neighbourhood of the cluster of small inclusions, and

r(x) = O(max{fε| log ε|, ε}) (58)

when x is in the vicinity of the cluster of small inclusions.
The idea of the proof for the case of a sparse cluster of small circular

inclusions is based on the representation of the solution r of (53)–(56) as a

sum of integrals over ΩN and the boundaries of F
(j)
ε :

r(x) = −
∫

ΩN

F(y)gΩ(x,y)dy

+

N∑
j=1

∫
∂F

(j)
ε

{
gΩ(x,y)

∂r

∂ny
(y)− Φj(y)

∂gΩ

∂ny
(x,y)

}
dsy

where F is the right-hand side in (53), n is the unit outward normal with
respect to ΩN , and the functions Φj are the right-hand sides in (55) for
j = 1, and in (56) for 2 ≤ j ≤ N. Here gΩ(x,y) is Green’s function for the
Helmholtz equation in the unperturbed domain Ω:

∆xgΩ(x,y) + k2gΩ(x,y) + δ(x− y) = 0, x,y ∈ Ω,

gΩ(x,y) = 0, when x ∈ ∂Ω, y ∈ Ω,

where k =
√
fλ. We also note that the flux of r over the boundaries of small

inclusions is not zero, i.e.∫
F

(1)
ε

∂r

∂n
dx = O(f),

∫
F

(j)
ε

∂r

∂n
dx = O(fε2), j = 2, . . . , N.

By considering three cases for r(x), (a) x is outside the neighbourhood of

the sparse cluster of small circular inclusions, (b) x is in the vicinity of F
(1)
ε ,

and (c) x is in the vicinity of F
(j)
ε , j = 2, . . . , N , we deduce (57) and (58).

4 The first positive eigenvalue for a lower– dimen-
sional cluster of inertial inclusions in a finite
elastic membrane

Section 3 has addressed low frequency non-resonance vibrations for a sparse
cluster of massless inclusions (each individual inclusion has zero inertia).
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In this case, Green’s function for the Laplacian is used as one of the model
solutions. If the small inclusions have a non-zero inertia the problem requires
Green’s function for the Helmholtz operator, which takes into account time-
harmonic vibrations of the multi-scale system. In this section, we consider
the eigenvalue problem for a finite membrane Ω ⊂ R2, and contained in this
membrane is a sparse or lower-dimensional cluster of small inertial inclusions

F
(j)
ε of the mass mj , 1 ≤ j ≤ N . In this case, if d is the minimum distance

between two neighbouring inclusions within the cluster, we assume that

dN = O(1). As before, we use the notation ΩN := Ω\ ∪Nj=1 F
(j)
ε . The

eigenfunction uN and the corresponding eigenvalue λN are defined as the
solution of the problem

∆uN (x) + λNuN (x) = 0 , x ∈ ΩN , (59)

uN (x) = 0 , x ∈ ∂Ω, (60)

uN (x) = Aj , x ∈ ∂F (j)
ε , (61)

with

− γjλNAj =

∫
∂F

(j)
ε

∂uN (x)

∂n
ds , x ∈ ∂F (j)

ε . (62)

where λN = ρω2/µ and γj =
mj

ρ , 1 ≤ j ≤ N , and n is the unit outward

normal with respect to F
(j)
ε . The quantities γj represent the equivalent

inertial area, which would be required for the inclusion of mass density ρ
to have the mass mj . For convenience, we also introduce the normalisation
µ = 1 and the notation λ = ρω2, where ω is the radian frequency of the
time-harmonic vibrations and ρ is the mass density of the membrane. It is
also assumed that

∑N
j=1mj = M = O(1), and thus γj = O(M/(Nρ)).

Here, we are interested in evaluating the first positive eigenvalue, which

takes into account the inertia of the small inclusions F
(j)
ε .

4.1 Model problem: Green’s function for a finite membrane

Assuming a non-resonance regime for λ, we shall use Green’s functionGΩ(x,y, λ)
in Ω, i.e. the solution of the following problem

∆GΩ(x,y, λ) + λGΩ(x,y, λ) + δ(x− y) = 0 , x ∈ Ω , (63)

GΩ(x,y, λ) = 0 , x ∈ ∂Ω , (64)

and the regular part RΩ of G is defined as

RΩ(x,y, λ) = −1

4
Y0(
√
λ|x− y|)−GΩ(x,y, λ) , (65)

where Y0(
√
λr) is the Bessel function of the second kind, and

Y0(
√
λr) ∼ 2

π
log(
√
λr), as

√
λr → 0.
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Here, we also use the auxiliary functions V (j) (compare with (7),(8)) defined
by

∆V (j)(x, λ) + λV (j)(x, λ) = 0 , x ∈ Ω\F (j)
ε , (66)

V (j)(x, λ) = 1 , x ∈ ∂F (j)
ε , (67)

V (j)(x, λ) = 0 , x ∈ ∂Ω . (68)

When F
(j)
ε are small circular inclusions of radii εrj , V

(j) are approximated
in the form

V (j)(x, λ) = β(j)
ε GΩ(x,O(j), λ) +O(ε| log ε|−1), (69)

where

β(j)
ε = −

(1

4
Y0(
√
λεrj) +RΩ(O(j),O(j), λ)

)−1
. (70)

4.2 Formal approximation of the first eigenvalue and corre-
sponding eigenfunction

We look for an approximation λ
(0)
N of the first eigenvalue of (59)–(62) and

an approximation σN (x, λ
(0)
N ) of the corresponding eigenfunction. We use

the representation

σN (x, λ
(0)
N ) =

N∑
j=1

CjV
(j)(x, λ

(0)
N ), (71)

with the coefficients Cj being unknown intensities of inertia forces exerted
by the inclusions on the membrane. The approximation (71) satisfies (59),

with λ being replaced by λ
(0)
N , and the boundary condition (60) on ∂Ω.

The boundary conditions (61), (62) yield the system of algebraic equa-
tions for the coefficients Cj .

4.2.1 The algebraic system

When x ∈ ∂F
(k)
ε , we use (71), together with (61), (62), to deduce the

following relations

− 1

γkλ
(0)
N

T (k)[σN ] = Ck +
∑
j 6=k

1≤j≤N

CjV
(j)(x, λ

(0)
N ), x ∈ ∂F (k)

ε , k = 1, . . . , N,

(72)
where

T (k)[σN ] =

∫
∂Fε

∂σN
∂n

ds. (73)

Taking into account that

T (k)[σN ] = −β(k)
ε Ck +O(ε| log ε|), (74)
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and expanding V (j)(x, λ
(0)
N ) in the series form near x = O(k), k 6= j, we

arrive at the algebraic system equations for the coefficients Ck

Ck(1−
β

(k)
ε

γkλ
(0)
N

) +
∑
j 6=k

1≤j≤N

CjV
(j)(O(k), λ

(0)
N ) = 0, k = 1, . . . , N, (75)

and furthermore, taking into account (69) we approximate the coefficients
Cj as non-trivial solutions of the following homogeneous system{

I−Dε(λ
(0)
N ) + Sε(λ

(0)
N )
}
C = 0, (76)

where C = (C1, ..., CN )T , I is the identity matrix, and Dε(λ
(0)
N ),Sε(λ

(0)
N ) are

N ×N matrices defined as

Dε(λ
(0)
N ) =

1

λ
(0)
N

diag
{β(1)

ε

γ1
, ...,

β
(N)
ε

γN

}
,

(Sε(λ
(0)
N ))kj = β(j)

ε GΩ(O(k),O(j), λ
(0)
N )(1− δjk). (77)

The approximation λ
(0)
N of the first eigenvalue is defined from the equation

det
{
I−Dε(λ

(0)
N ) + Sε(λ

(0)
N )
}

= 0. (78)

Given λ
(0)
N , the approximation σN of the eigenfunction is defined by (71),

with the coefficients Cj obtained from (76).
We also note that the above algorithm equally applies to the Dirichlet

problem (59)–(61), with Aj being zero in the right-hand side of (61). In this
case, the matrix term Dε in (76) is replaced by zero matrix.

4.3 An example

The above scheme is applicable to sparse clusters or dense one-dimensional
clusters of inertial inclusions. When the masses mj , j = 1, . . . , N, of small
inclusions increase, with the membrane mass density ρ remaining constant,
coefficients γj in (62) also increase and the first eigenvalue of (59)–(62)
decreases accordingly.

However, we obtain a different problem in the limit when the masses
mj tend to infinity, with ρ being finite. The corresponding formulation
will be the Dirichlet eigenvalue problem (59)–(61), with the homogeneous
boundary conditions (61). The equation (76), with Dε being zero, defines
the approximation for the first eigenfrequency.

Here, we discuss an example, where the results of the asymptotic approx-
imation are compared to an independent numerical simulation in COMSOL
Multi-Physics.
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x

y

Figure 2: Asymptotic approximation of the eigenfunction corresponding to
the first eigenvalue of the Dirichlet problem in the domain with the cluster
of small inclusions placed along a contour. The approximation of the first

eigenvalue is λ
(0)
N = 0.30678. The main region is a disk of radius R = 7.

Small circular rigid inclusions of radii r = 0.1 have their centres along the
circle of radius 2, the same as in Fig. 1.

When the domain Ω is the disk {x : |x| < R} of radius R with the centre
at the origin, and y 6= 0, the regular part of Green’s function in (65) and
(70) is evaluated with the use of Graf’s addition formula, as follows

RΩ(x,y, λ) = Re
{ ∞∑
n=−∞

αnJn(
√
λ|x|)einθx,0

}
, (79)

where the coefficients αn are given in the form

αn =
iH

(1)
n (
√
λR)Jn(

√
λ|y|)

4Jn(
√
λR)

e−in(θ0,y+π), (80)

where θx,0 is the polar angle of x with respect to the centre 0 of the disk,
and θ0,y is the polar angle of 0 with respect to y.

When y = 0, we have

RΩ(x,0, λ) = − Y0(
√
λR)

4J0(
√
λR)

J0(
√
λ|x|). (81)

Figure 2 shows the asymptotic approximation of the eigenfunction cor-
responding to the first eigenvalue of the Dirichlet problem in the domain
ΩN with the cluster of small inclusions placed along a contour. The ap-
proximation of the first eigenvalue is 0.30678. An independent numerical
simulation produced in COMSOL Multi-Physics gives the first eigenvalue of
λN = 0.30816, with an excellent agreement observed in Fig. 1 and Fig. 2.
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5 Concluding remarks

We have given an outline of problems, where meso-scale asymptotic approx-
imations provide an analytical insight to analysis of time-harmonic wave
problems in two-dimensional domains with small inclusions arranged in a
sparse cluster or a one-dimensional cluster placed along a curve.

We note that logarithmic asymptotics, required for analysis of Dirichlet
eigenvalue problems in domains with small inclusions often lead to a con-
straint of exponentially small size of the inclusions. On the other hand, if the
rigid small inclusions are considered as “movable”, the inertia of the inclu-
sion is used as an additional control parameter in the meso-scale asymptotic
approximation.

Three classes of formulations discussed here show several directions where
asymptotics of time-harmonic waves prove to be useful. In particular, in Sec-
tion 2, for a finite mass cluster of small inertial inclusions we have derived
a transmission condition across an inertial structured interface. While in
Section 3, the quasi-static Green’s function has been successfully employed,
together with the relative capacitary potential, it is essential to take into ac-
count wave scattering and reflection and to engage Green’s function for the
Helmholtz operator in the analysis of the eigenvalue problem for a domain
with a lower-dimensional cluster of small inclusions in Section 4. As illus-
trated, the derived asymptotic formulae provide a constructive analytical
tool and are straightforward to use in practical examples and computations.
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