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Elastic surface waves induced by internal sources 
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Abstract 

The paper is focused on surface wave field induced by an internal time-harmonic point 

source, embedded in an elastic half-space. Using the superposition principle, first the disturbances 

caused by embedded source in an unbounded half-space are analyzed. The problem is then 

reformulated in terms of the discrepant stresses on the surface of a homogeneous half-space. The 

consideration relies on the hyperbolic-elliptic asymptotic model for surface elastic waves, 

neglecting the contribution of the bulk waves. Explicit results for surface wave contribution are 

obtained, including the arising frequency-dependent factor. 
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1. Introduction 

Surface waves induced by internal sources possess several important applications, 

including seismic engineering [8], as well as structural vibrations caused by underground 

dynamics, see e.g. [5]. Among the contributions addressing the effect of embedded sources, we 

mention the reciprocity based approach [16-18], as well as related analytic treatments of scattering 

surface waves from defects, see e.g. [1,6, 15, 20], and also numerical analysis of cracks located in 

an elastic media [12, 13]. The conventional formulation of the problem involves consideration of 

both bulk and surface waves. However, in the near-surface vicinity only surface wave contribution 

can be of interest, motivating a special theory.  

Such a theory for Rayleigh and Rayleigh-type waves extracting the contribution of the 

studied wave to the overall dynamic response has been presented recently, see [9,10] and 

references therein. The main advantage of the proposed approach is reduction of the vector 

formulation in conventional elasticity to a scalar boundary value problem for the Laplace equation, 



with the boundary condition on the surface in the form of a hyperbolic equation containing 

prescribed loading in the right-hand side. The main range of applicability of the described 

approximate theory to dynamic problems of elasticity include the far-field zone, as well as the case 

of near-resonant excitation of surface waves, e.g. moving load problems, see e.g. [11]. 

The current paper aims at extension of the methodology in [10] to Rayleigh wave field 

induced by an embedded source. First, a brief description of the hyperbolic-elliptic model for the 

Rayleigh wave is presented. Then, radiation of longitudinal waves from the time-harmonic point 

internal source in an unbounded media is considered. Then, using the superposition principle, the 

problem is reformulated to that for a homogeneous half-space subject to appropriate boundary 

conditions on the surface. This allows direct implementation of the aforementioned asymptotic 

formulation for surface waves. The closed form solution in terms of elementary functions is 

obtained and illustrated numerically, showing the effect of depth of the source and frequency. 

2.  A specialized formulation for the Rayleigh wave field 

Here we describe the hyperbolic-elliptic model for the Rayleigh wave field induced by 

surface stresses on a linearly elastic, isotropic half-space 
20 x   within the framework of plane 

strain assumption for which the displacement 
3 0u  and both displacements 

1u  and 
2u  are 

independent of 
3x , for more detail see [10]. The original formulation of the boundary value 

problem involves the equations of motion  
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for the scalar Lamé elastic potentials   and  , subject to prescribed stresses on the surface 2 0x   

i.e. 
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In above   denotes a 2D Laplacian in Cartesian coordinates 
1x  and 

2x , 
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  are the longitudinal and transverse wave speeds, respectively, with  and  standing 

for the Lamé elastic parameters, and   being the volume mass density.  

 The asymptotic hyperbolic-elliptic formulation for the Rayleigh wave field contains 

pseudo-static elliptic equations for the potentials 
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where 
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with 
Rc  denoting the Rayleigh wave speed, being a unique solution of  
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The potentials are related  
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as shown by Chadwick in [3], and earlier by Sobolev [19], where the asterisk denotes a harmonic 

conjugate, and 
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The boundary condition on the surface is provided by a hyperbolic equation 
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where the asterisk in the right-hand side may be interpreted in a sense of the Hilbert transform, 

with 
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The displacement components are conventionally expressed as 
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which in view of (3) become 
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Thus, the solution may be expressed in terms of a single plane harmonic functions, say 

elastic potential  , being a solution of the elliptic equation 
1(3) , subject to a hyperbolic equation 

(5) on the boundary
2 0x  . The second potential is then given by (4), with the displacement field 

expressed as (7). 

3. Internal point source 

Let us now consider the Rayleigh wave field emerging due to action of an embedded time-

harmonic point source. Suppose that the source is located at the origin, at a given depth 𝑎 from the 

surface 
2x a  , see Fig.1.  

 

 

Figure 1. Schematic location of an internal source. 



Applying the superposition principle, first, consider a problem of radiation from a time-harmonic 

point source in a 2D unbounded medium. For the sake of definiteness, in this paper we focus on 

the longitudinal potential  . The solution is then given by the Green function 

(1)
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where is   frequency, 
1/k c  is wave number, 

2 2

1 2r x x  is polar radius, and (1)

0H  is the 

Hankel function of the first kind, see e.g. [2]. Note that in what follows the factor 
i te 

is omitted 

for the sake of brevity. Now, assuming 0  , the appropriate stress components can be obtained 

in the form  
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Hence, in view of superposition principle, we can now formulate a non-homogeneous 

problem for a homogeneous half-plane (without a source) as 
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Let us introduce the dimensionless scaling 
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Then, the loading terms in the right-hand side in conditions (2) take the form 

 (1) 21
1 2 1 12

1

1
2 1

i
P H k





 


,            (12) 

 
   

2
(1) 2 (1) 21

2 1 1 1 0 1 13/2 2
2

1 1
1

11 1
1 1

2 2 11

i
P H k H k

k

 
 

 

 
       

  
 

.                   (13) 



In view of the time-harmonic regime, the hyperbolic equation (5) transforms to 
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with *

1P  being the Hilbert transform of 
1P  given by (12), 

2P  defined by (13), and the wave 
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We apply a Fourier transform in 
1  to the 2D counterpart of the equation (14) and 
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over the interior, having 
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where F  denotes the transformed potential and 𝑘 is Fourier transform parameter. 

Then, solving the equation (16) subject to the boundary condition (15), we obtain a 

decaying solution in the form 
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The Rayleigh wave contribution can be extracted from the latter by taking residues at the 

poles 
Rk k  , which gives  
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where integrals 
1( )I   and 

2( )I   allow table evaluation, see e.g. [6], 
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and 
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Therefore, the potential (17) may now be rewritten with (18) and (19) as  

   1 2| |

1 2, , ( , ) R Rk i
t iA a e

  
   


 ,                                                        (20) 

where an amplitude is expressed as 
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It is worth noting that the function (20) is not smooth at 
1 0  , due to the presence of 

1| | . Moreover, this has been noticed previously for the Rayleigh pole contribution in the 

associated plane problem in elasticity, see [4]. 

On employing the relations 
2(3)  and (4),  the related transverse potential 𝜓 is obtained 

as 
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The expression (21) readily confirms the expectation that the amplitude decreases with 

increase in depth of the source. The dependence of the dimensionless expression 2( , ) /A a a  on 

the dimensionless wave number 
1k  is presented in Fig.2 for several values of the Poisson 

coefficient (ν=0.2, ν=0.3 and ν=0.4). It is clear from this illustration that the amplitude is a 

decaying function of the wavenumber.  



 

Figure 2 The dependence of the dimensionless amplitude on dimensionless wave number 

1k  at different values of the Poisson coefficient 𝜈. 

 

Concluding remarks 

In this paper, the effect of an embedded point time-harmonic source on propagation of 

surface waves in an elastic half-space has been studied. The superposition principle allowed 

reduction of the formulation of the problem to a simpler one for a homogeneous half-space, subject 

to discrepant surface stresses. This in turn enabled the application of the hyperbolic-elliptic 

formulation for the Rayleigh wave, providing elegant explicit expressions for the Lamé potentials 

(20), (22).  

The approach could be extended to interfacial waves, using the asymptotic theories 

exposed in [10]. The effects of anisotropy can also be incorporated, see e.g. [14]. Finally, similar 

ideas could be developed for transient and moving sources, as well as wave fields with non-

homogeneous initial conditions. 
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