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Abstract

Background: External validation of prognostic models is necessary to assess the accu-

racy and generalizability of the model to new patients. If models are validated in a setting

in which competing events occur, these competing risks should be accounted for when

comparing predicted risks to observed outcomes.

Methods: We discuss existing measures of calibration and discrimination that incorpo-

rate competing events for time-to-event models. These methods are illustrated using a

clinical-data example concerning the prediction of kidney failure in a population with ad-

vanced chronic kidney disease (CKD), using the guideline-recommended Kidney Failure

Risk Equation (KFRE). The KFRE was developed using Cox regression in a diverse popu-

lation of CKD patients and has been proposed for use in patients with advanced CKD in

whom death is a frequent competing event.

Results: When validating the 5-year KFRE with methods that account for competing

events, it becomes apparent that the 5-year KFRE considerably overestimates the real-

world risk of kidney failure. The absolute overestimation was 10%age points on average

and 29%age points in older high-risk patients.

Conclusions: It is crucial that competing events are accounted for during external valida-

tion to provide a more reliable assessment the performance of a model in clinical set-

tings in which competing risks occur.

Key words: Prediction, prognostic model, external validation, competing risks, calibration, discrimination

VC The Author(s) 2021. Published by Oxford University Press on behalf of the International Epidemiological Association. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

IEA
International Epidemiological Association

International Journal of Epidemiology, 2021, 1–11

https://doi.org/10.1093/ije/dyab256

Original article

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/advance-article/doi/10.1093/ije/dyab256/6468864 by guest on 31 January 2022

https://orcid.org/0000-0002-7883-5927
https://orcid.org/0000-0001-8650-5795
https://orcid.org/0000-0002-5529-1541
https://academic.oup.com/


Introduction

Prognostic models have rapidly become an integral part of

medical practice. As clinical care moves towards individu-

alized monitoring, decision-making and treatment, it is im-

perative to collect information on an individual’s risk

profile and many prognostic models have been devel-

oped.1–3 External validation of prognostic models is a cru-

cial step to assess the accuracy and generalizability of the

model but may present various methodological challenges

including the occurrence of competing events.4

Competing events prohibit patients from experiencing the

prognostic outcome of interest and often occur when studying

high-risk interventions, long prediction horizons or cause-

specific mortality. For instance, the prediction of kidney fail-

ure in patients with advanced chronic kidney disease (CKD) is

complicated due to patients dying from other causes before

they can develop kidney failure. A conventional time-to-event

regression model (such as a standard Cox model) that predicts

an individual’s risk of kidney failure would censor all patients

with incomplete follow-up in the same manner, including

patients with competing events (death). Such a model would

therefore overestimate the absolute risk of kidney failure.5–7

The overestimation of risks due to unaccounted-for compet-

ing events can result in counterintuitive and misleading

prognostication. For instance, in a population with kidney

failure, the 5-year risk of cardiovascular death and the 5-

year risk of non-cardiovascular death sum to 107% when

calculated separately without correctly accounting for com-

peting events.8 The calculated probabilities are hypothetical

risks assuming that no patient dies from the other cause.

Though there are exceptions, ‘the risk assuming no occur-

rence of death’ ordinarily has little clinical relevance. In this

study, we thus assume that researchers aim to estimate the

absolute risk of prognostic outcomes in a real-world setting

in which competing events occur. The definitions of termi-

nology used in the current paper can be found in Box 1.

The importance of using appropriate competing-risk

modelling techniques (such as Fine & Gray subdistribution

regression models or combined cause-specific Cox models)

for prognostic model development is increasingly recog-

nized.6,9–16 Nevertheless, most clinical time-to-event prog-

nostic tools are developed using conventional regression

models.9,17,18 Therefore, it is important to recognize that

the influence of competing events can also be evaluated dur-

ing external validation, as will be illustrated in this article.

By doing so, existing time-to-event models can be validated

in settings in which competing events may be more or less

frequent than in the development setting. This paper was

inspired by a recent publication from our research group in

which existing kidney-failure models were validated while

accounting for the competing risk of death.19 In this pro-

cess, many lessons on involved statistics and the interpreta-

tion of results were learnt, which we hope to share.

The aim of this paper is to draw attention to the impor-

tance of externally validating time-to-event prognostic

models in a manner that appropriately accounts for com-

peting events. First, we concisely discuss the technicalities

of assessing performance measures in a competing-risk set-

ting. Second, we provide a real-data example in which we

externally validate an existing prognostic model of kidney

failure in patients with advanced CKD. This example illus-

trates the effects of competing events on measures of prog-

nostic performance and details how such analyses can shift

clinical conclusions considerably.

Predictive performance at external validation

In this paper, we assume that the time-to-event model of

interest has already been developed and may or may not

have accounted for competing risks. Second, we assume

that the aim is to validate this model in a setting in which

competing events occur, and that clinicians and patients

Key Messages

• Competing events often occur when predicting time-to-event outcomes (apart from all-cause mortality).

• In model development, using methods with inappropriate assumptions on competing events will lead to predicted

risks that are too high. This bias will not be detected in external validation studies if the validation does not explicitly

account for competing risks in the statistical methods.

• Statistical methods to adapt discrimination and calibration performance measures for externally validating prognostic

models in settings with competing events are available.

• The 5-year Kidney Failure Risk Equation is not suitable for risk prediction in patients with advanced kidney disease

due to the overestimation of kidney failure. This overestimation can be explained completely by the competing risk of

death.

• Accounting for competing risks in the statistical methods of external validation studies will provide a more reliable

assessment of the performance of the model in clinical settings in which competing risks occur.
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want individualized absolute risk predictions that reflect

this. Finally, we assume a specified prediction horizon for

which validation is of interest.

External validation of a prognostic model assesses the

accuracy of predictions made by the model in individuals

who were not used to develop the model.20 Important ele-

ments of prognostic model performance are assessed by

comparing how well the predicted risks agree with the ob-

served outcomes (calibration) and how well predictions

separate patients who will and will not experience the out-

come of interest (discrimination). We now discuss existing

measures of calibration and discrimination that incorpo-

rate competing events for time-to-event models. The

Supplementary Material (available as Supplementary data

at IJE online) includes a more in-depth explanation on

these various methods and we have provided a GitHub re-

pository (in collaboration with authors from a STRATOS

initiative guidance paper) with available R-code on how to

validate a competing-risk model.

Calibration

The calibration of predicted and observed outcomes can be

assessed through calibration-in-the-large (overall calibra-

tion) and visualized using calibration plots.21 When deal-

ing with competing events, it is key that the observed

probability is calculated in a way that accurately accounts

for the competing events and thereby represents the abso-

lute risk of the event of interest.

Calibration-in-the-large can be assessed by comparing

the average predicted risk for the outcome to the observed

probability at the prediction horizon. Dividing the ob-

served probability by the average predicted probability

gives the O/E ratio. The average predicted risk is known,

since we assume that all individual predicted risks accord-

ing to the existing prediction model are given. In the case

of censoring, the non-parametric Kaplan–Meier (KM) esti-

mator is often used to calculate the observed probability.

However, in the presence of competing events, the KM es-

timate will overestimate the absolute risk of the event of in-

terest.8,22 A more appropriate method to calculate the

observed outcome probability in the presence of competing

events is the non-parametric cumulative incidence function

(CIF).23 Calculating the CIF is similar to using the KM

method, but quantifies the risk for the event of interest and

competing events—all of which increase over time. Using

the CIF, patients who experience a competing event are no

longer at risk of experiencing the outcome of interest and

the probability of the outcome of interest is scaled by the

cumulative probability of experiencing any event. No

assumptions are needed on the independence of competing

events and the outcome.6,8

In calibration plots, the predicted and observed out-

come probabilities are plotted against each other to visual-

ize their agreement. Often the cohort is divided into

subgroups based on quantiles of predicted risks. The aver-

age predicted and observed outcome probabilities for each

subgroup can be computed (accounting for competing

events as described above) and plotted. This approach has

been criticized as the categorization is arbitrary and can

lead to loss of precision and misleading results.24 It is

therefore recommended to include a smoothed curve in the

Box 1 Glossary

Prediction horizon The specified time period over which predictions are made; in our clinical validation, this is 2 and 5 years

Event of interest The primary event that is being predicted; in our clinical validation study, this is kidney failure

Competing event Any events that may preclude the primary event from happening, in this case death without kidney failure

Absolute risk The cumulative risk of the event of interest within the prediction horizon, given that patients may be cen-

sored and patients with a competing event will not experience the event of interest. This risk is also re-

ferred to as real-world risk, actual risk, crude risk or cumulative incidence. It can be calculated through

a non-parametric cumulative incidence function, which is also termed an Aalen-Johansen estimator

Predicted risk The risk predictions (output) from a prediction model over the specified prediction horizon. In this study,

we assume that the predicted risks are available, calculated from an existing model. The accuracy and

precision of these predicted risks are evaluated in external validation

Observed probability The observed rate of the event of interest in the validation cohort, which is compared with the predicted

risk. If there is no censoring and no competing events, this is the proportion of patients who experience

the primary event. If competing risks and censoring are present and the researcher wants to account for

this, the observed probability for a group is the same as the absolute risk (detailed above)

‘Accounting for

competing events’

The use of methods that allow patients to fail from competing events. These patients are retained in the

data set but dealt with using assumptions in a way that precludes them from experiencing the event of in-

terest after the competing event, thereby differing from the assumptions for patients censored due to loss

to follow-up or other reasons

‘Ignoring competing events’ Using statistical methods with inappropriate assumptions concerning competing events, most often by as-

suming no competing risks or that competing risks could be eliminated
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calibration plot. In the presence of censoring, this

smoothed curve is often based on pseudo-values. In the

presence of competing events, this smoothed curve can be

obtained using pseudo-values, as described by Gerds et

al.25 By using these pseudo-values that are based on cumu-

lative incidence estimates, the model calibration is esti-

mated over the full range of predicted probabilities.

Discrimination

Discrimination examines the ability of the model to distin-

guish between those who will experience the outcome of

interest from those who will not and is based on the ranked

order of predicted risks.26 For survival data, Harrell’s C-in-

dex is the most frequently reported measure of discrimina-

tion, which is the proportion of all examinable pairs in

which the individual with the highest predicted risk is ob-

served to experience the outcome sooner than the other in-

dividual.24 A C-index of 1 is perfect discrimination and 0.5

is equivalent to chance. Censored patients are treated as if

they might still experience the outcome in the future,

which is an incorrect assumption in the case of censoring

due to a competing event.27

In the presence of competing events, various methods to

calculate a C-index are available, some of which are refer-

enced.11,13,28 In the case of complete outcome data (no or

very few patients are lost to follow-up), a simple adapta-

tion of Harrell’s C-index as proposed by Wolbers et al.

can be employed.11 Instead of censoring patients who ex-

perience a competing event, these patients are retained in

the risk set whilst setting their follow-up time to infinity

(or the prediction horizon), thus indicating that they will

never experience the event of interest. In the case of only

administrative censoring, also termed ‘censoring complete’,

an adaptation of the Wolbers’ approach can be used in

which patients with the competing event are censored at

the administrative censoring date (instead of infinity).29,30

In the case of informative censoring, more suitable meth-

ods are available, some of which have been adapted for

competing-risks settings, using inverse probability of cen-

soring weighting (IPCW).13,28,31,32 In IPCW, a pseudo-

population that would have been observed if no censoring

occurred is created. This pseudo-population contains only

patients who are followed until they experience either the

event of interest, a competing event or the end of follow-

up. This is done by upweighting patients who are similar

to censored patients but remain in the study (under the

assumptions of exchangeability, consistency and positiv-

ity). Royston and Sauerbrei’s D statistic is a measure of

prognostic separation.33 It can be interpreted as the coeffi-

cient (log hazard ratio) for comparing two equally sized

prognostic groups, created by dichotomizing the linear

predictor estimates of the model in the cohort at the me-

dian value.34 Higher values of the D statistic represent

greater separation between the survival curves for these

prognostic groups. To calculate the D statistic in an exter-

nal validation study, the linear predictors (for each individ-

ual) from the prognostic model are ranked and scaled. The

scaled ordering of the linear predictors is then entered into

a new regression model with the event of interest as the

outcome; the resulting regression coefficient is the D statis-

tic. In an external validation of a time-to-event model, the

scaled linear predictor values are generally entered into a

new Cox model. To adapt this measure to a setting with

competing events in an external validation, the Cox model

can be replaced by a Fine & Gray regression model.35 The

D statistic can be transformed to the proportion of

explained variation: R2
D.36 This measure indicates how

much of the observed variation in the outcome is explained

by the prognostic model.

Real-data illustration: predicting kidney
failure in advanced CKD patients from the
Swedish Renal Registry

Rationale

Predicting kidney failure in advanced CKD patients is of

interest for timely preparation of dialysis and transplanta-

tion, adequate monitoring of patients, possible referral

back to primary care and informing patients of their likely

prognosis. As the rate of progression to kidney failure

highly varies between individuals, prognostic models have

been proposed for use in clinical practice. The Kidney

Failure Risk Equation (KFRE) is a prognostic model that

was developed to predict kidney failure in patients with

CKD stage 3–5 who were referred to a nephrologist.32 It

was later externally validated and updated in a large meta-

analysis and is recommended for use in international medi-

cal guidelines.37–39

Cox proportional-hazards models were used in the

KFRE model development and external validation studies,

meaning that patients who died before experiencing kidney

failure were censored.32,39–43 This means that the predicted

outcome is the risk of kidney failure in a setting in which

patients are prevented from dying at least until kidney fail-

ure occurs. This risk is, however, not defined as such in the

study. Instead, the predicted risk is presented as the abso-

lute risk of kidney failure, which is more clinically relevant

and conducive towards medical decision-making. In the

KFRE development study, the use of a competing-risk

model was explored as a sensitivity analysis but not pub-

lished, as the predicted risks were deemed to be similar to

those from the Cox model.
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In this clinical illustration, the aim is to externally vali-

date the KFRE in two ways, first using methods that are

fitting for a Cox prediction model and treat patients with a

competing event in the same way as any other censored pa-

tient (similar to the development study) and, second, using

methods described previously to account for competing

events in order to validate how well the KFRE predicts the

real-world risk of kidney failure.

Methods

The KFRE includes the four following predictors: age, sex,

estimated glomerular filtration rate (eGFR) and urine

albumin-to-creatinine ratio. The outcome of kidney failure

is defined by the initiation of dialysis or kidney transplan-

tation within 2 or 5 years. The full prediction formulae are

provided in the development studies and are also shown in

the Supplementary Material (available as Supplementary

data at IJE online).

Patients were included from the Swedish Renal Registry

(SRR)—an ongoing registry of CKD patients capturing

98% of the nephrology clinics in Sweden.44,45 Patients

who entered the registry between 1 January 2012 and

30 June 2018 were included. The analysis was restricted to

patients aged �18 years with an eGFR of between 8 and

30 ml/min/1.73 m2. The eGFR is a measure of kidney func-

tion; <30 indicates advanced CKD. Time zero (moment of

prediction) was inclusion in the SRR, which is generally

the first referral to a nephrologist.

Results

In total, 13 489 patients were included in our analysis, of

whom 1818 (13%) developed kidney failure (the outcome

of interest) within 2 years and 2764 (20%) within 5 years.

Slightly more patients died without experiencing kidney

failure: 2158 (16%) within 2 years and 3357 (25%) within

5 years. No patients were lost to follow-up. All patients

were administratively censored on 30 June 2018. The me-

dian follow-up was 1.7 years and the maximum was

6.7 years. In total, 3548 patients (26%) were administra-

tively censored within 2 years and 6410 patients (48%)

within 5 years. For each individual, the predicted 2- and 5-

year risks were calculated using the KFRE formulae.

Missing predictors were imputed using the R-package

mice.46 For the illustrative purposes of this article, we used

a single imputed data set for all analyses; more information

on the imputation and baseline data is shown in the

Supplementary Material (available as Supplementary data

at IJE online).

The differences between the observed outcome proba-

bilities of kidney failure, death and event-free survival,

calculated using the KM and CIF methods, are shown in a

stacked histogram (Figure 1) and in cumulative incidence

curves (Figure 2). At 2 years, the KM risk for death and

kidney failure are both 2%age points higher than when cal-

culated with the CIF, resulting in a total risk of 104%. At

5 years, the sum of the risks using KM increases to 120%.

Risks based on the CIF method always sum to 100%.

18% 16%
41% 31%

21% 19%

48%
38%

65% 65%

31%

31%

0%

20%

40%

60%

80%

100%

120%

140%

KM - 2 years CIF - 2 years KM - 5 years CIF - 5 years

Observed probabili�es of events in the SRR

kidney failure Death (without kidney failure) event free survival

Figure 1 Differences between Kaplan–Meier (KM) and cumulative inci-

dence function (CIF) estimates of the observed outcome probabilities in

the presence of competing events, in the Swedish Renal Registry (SRR)

Figure 2 One minus Kaplan–Meier curves and cumulative incidence

curves of the observed outcome probabilities in the Swedish Renal

Registry for kidney failure and death. For illustrative purposes, patients

who experienced kidney failure were censored or regarded as a com-

peting event in the lower plot.

International Journal of Epidemiology, 2021, Vol. 00, No. 00 5

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/advance-article/doi/10.1093/ije/dyab256/6468864 by guest on 31 January 2022

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab256#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab256#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyab256#supplementary-data


To assess the calibration-in-the-large, the observed kid-

ney-failure outcome probabilities based on KM and CIF

were compared with the average predicted risk of kidney fail-

ure of the model (Table 1). The 2-year KM and 5-year KM

outcome probabilities are both similar to the average pre-

dicted probability. When we consider the competing risk of

death using the CIF, the observed 2-year probability of kid-

ney failure is slightly lower but still similar to the average

predicted risk of the model, with an O/E of 0.94 [95% confi-

dence interval (CI): 0.91–0.98]. The 5-year observed proba-

bility however is almost 10%age points lower than the

predicted risk, with a corresponding O/E of 0.76 (95% CI:

0.74–0.78). Similar results are seen in the calibration plot us-

ing KM and CIF. In Figure 3A, the 2-year calibration curves

for both methods are quite similar. In Figure 3B, the calibra-

tion plot for the 5-year KFRE is shown. When calculating

the observed probability using the standard KM method, cal-

ibration appears to be excellent. However, when we take the

competing risk of death into account, the KFRE appears to

considerably over-predict the actual proportion of patients

with kidney failure, particularly in high-risk patients. Out of

the tenth of patients with an average predicted 5-year kid-

ney-failure risk of 81%, only 58% (95% CI: 56%–61%) ex-

perienced kidney failure.

For model discrimination, the differences are less pro-

nounced between accounting for competing risks or not

(Table 1). When patients who die are censored, the stan-

dard Harrell’s C-index is 0.829 for the 5-year KFRE.

When these patients are no longer censored but set to the

follow-up time that they would have had if administra-

tively censored (to indicate that patients who die will not

experience kidney failure), the C-index is slightly lower:

0.814. The D statistic and explained variance also reflect

that when competing risks are accounted for, the 5-year

discrimination is slightly lower (Table 1).

As death without kidney failure is more frequent in

older CKD patients, we also validated the KFRE in a sub-

group of patients who were �70 years old (n¼ 8654).

These patients had a higher risk of death; 1064 patients

(12%) experienced kidney failure within 5 years, whereas

2847 patients (33%) died without kidney failure. The me-

dian follow-up time was 1.7 years and the maximum

follow-up time was 6.5 years. All analyses were repeated in

this subgroup and these results are shown in Table 2 and

Figure 4. Overall, the differences between ignoring com-

peting events and accounting for them are even more pro-

nounced in this high-risk subgroup. These differences are

larger for the 5-year model and more apparent in measures

of calibration than discrimination. For the 5-year model,

the O/E is 0.84 (95% CI: 0.81–0.87) when ignoring com-

peting events and 0.57 (95% CI: 0.54–0.59) when ac-

counting for them. The 10% of patients with the highest

predicted 5-year risk (right-most data point in Figure 4B)

have an average predicted risk of 89%. Without consider-

ing the competing risk of death, 81% (95% CI: 78%–

83%) of them are expected to experience kidney failure.

However, when accounting for competing events, we ob-

serve that only 52% (95% CI: 48%–55%) of these patients

actually experience kidney failure.

Conclusions

From the external validation of the KFRE in which we

have taken the competing risk of death into account, we

conclude that the 2-year KFRE adequately predicts the ab-

solute risk of kidney failure in patients with advanced

CKD. However, if we wish to interpret the kidney-failure

risk as kidney failure in a real-world setting with compet-

ing events, the 5-year KFRE is poorly calibrated and con-

siderably overestimates the absolute risk of kidney failure.

Table 1 Calibration and discrimination results for external validation of the 2- and 5-year KFRE, in the entire validation cohort

(n¼13 489). The external validation was performed in two manners, first by ignoring the competing risk of death by censoring

these patients and using Kaplan–Meier estimates and second by validating the models whilst taking account of competing risks

in all performance measures.

KFRE 2-year model KFRE 5-year model

Ignoring competing

events by censoring

Taking competing

events into account

Ignoring competing

events by censoring

Taking competing

events into account

Average predicted risk 17% 17% 41% 41%

Average observed probability (95% CI) 18% (17%–19%) 16% (15%–17%) 41% (40%–42%) 31% (30%–32%)

O/E ratio (95% CI) 1.06 (1.02–1.10) 0.94 (0.91–0.98) 1.00 (0.98–1.02) 0.76 (0.74–0.78)

C-index (95% CI) 0.840 (0.831–0.849) 0.834 (0.825–0.843) 0.829 (0.821–0.837) 0.814 (0.806–0.822)

D statistic (95% CI) 2.34 (2.25–2.42) 2.32 (2.20–2.43) 2.13 (2.06–2.19) 2.04 (1.95–2.14)

R2
D 57% 56% 52% 50%

KFRE, Kidney Failure Risk Equation; O/E, observed/expected; CI, confidence interval.
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This over-prediction is more pronounced in older patients.

The difference between performance of the 2- and 5-year

models can be attributed to a lower number of patients dying

without kidney failure within 2 years. If clinicians interpret

the 5-year KFRE estimate as the absolute kidney-failure risk

(instead of the hypothetical risk given that no patient can die

before kidney failure), the overestimation could lead to

patients being unnecessarily prepared for dialysis (which

includes vascular-access surgery and frequent hospital visits).

As the four-variable 5-year KFRE substantially over-pre-

dicted kidney-failure risk when considering the competing

risk of death, this model is not recommended for use in

patients with advanced CKD. An alternative model that

accounts for competing events, such as the 4-year Grams

model, is recommended instead.47 This model has recently

been compared head-to-head with the KFRE in an external

validation study and demonstrated superior performance

when accounting for the competing risk of death.19

Discussion

In this paper, we highlighted the importance and implica-

tions of appropriately managing competing events during

Figure 3 Calibration plots for external validation of the 2- and 5-year Kidney Failure Risk Equation (KFRE). The external validation was performed by

using Kaplan–Meier estimates (ignoring competing risks) and by using a competing-risks approach. The competing-risks approach (green points and

line) represents the model performance for the absolute kidney-failure risk in a setting in which patients may die.

Table 2 Calibration and discrimination results for external validation of the 2- and 5-year KFRE, in a subset of patients aged

�70 years (n¼ 8654). The external validation was performed in two manners, first by ignoring the competing risk of death by

censoring these patients and using Kaplan–Meier estimates and second by validating the models whilst taking account of com-

peting risks in all performance measures.

KFRE 2-year model KFRE 5-year model

Ignoring competing

events by censoring

Taking competing

events into account

Ignoring competing

events by censoring

Taking competing

events into account

Average predicted risk 13% 13% 34% 34%

Average observed probability (95% CI) 11% (11%–12%) 10% (9%–10%) 28% (27%–29%) 19% (18%–20%)

O/E ratio (95% CI) 0.91 (0.86–0.96) 0.78 (0.73–0.83) 0.84 (0.81–0.87) 0.57 (0.54–0.59)

C-index (95% CI) 0.826 (0.810–0.841) 0.813 (0.797–0.828) 0.817 (0.803–0.830) 0.791 (0.778–0.805)

D statistic (95% CI) 2.23 (2.10–2.36) 2.04(1.90–2.17) 2.09 (1.98–2.20) 1.75 (1.63–1.86)

R2
D 54.3% 49.8% 51.1% 42.1%

KFRE, Kidney Failure Risk Equation; O/E, observed/expected; CI, confidence interval.

International Journal of Epidemiology, 2021, Vol. 00, No. 00 7

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/advance-article/doi/10.1093/ije/dyab256/6468864 by guest on 31 January 2022



external validation. We provided explanation and tools on

existing measures of calibration (O/E ratio and calibration

plots) and discrimination (C-index, D statistic and R2
D)

that have been adapted to a competing-risk setting.

The importance of competing-event analyses has re-

ceived increased attention in prognostic research.6,9–11,17,18

However, existing studies have mainly focused on the im-

portance of using competing-risks methods in the develop-

ment of prognostic models. It may well be that a

prognostic model is developed in a setting with no or very

few competing events and therefore a valid representation

of the absolute risk for that population. However, if that

model is then validated in a different population in which

competing events are more frequent, it is crucial that these

competing events are appropriately managed in the exter-

nal validation process.

The presence of competing events may influence all

model-performance measures, though in general the effect

on absolute measures (calibration) is larger than on relative

measures (discrimination). Researchers should carefully

consider and select the risk that they wish to predict; if a

model censors patients who experience a competing event,

the predicted risk is the hypothetical risk in a setting in

which the competing event does not exist.48 If death is the

competing event, approaches that assume no competing

risks will give a more extreme overestimation of the abso-

lute risk in older populations and for longer prediction

horizons, as shown in our data example. This overestima-

tion will be overlooked if conventional validation methods

are used.

The predicted risk of prognostic models is crucial in re-

gard to medical decision-making. For instance, the KFRE

is proposed for use in timely preparation for dialysis and

kidney transplantation. Predicted risks that are too high

may negatively influence clinical treatment decisions.

External validation without accounting for competing risks

may lead to the implementation of prognostic models that

surreptitiously over-predict real-world outcomes and con-

sequently result in overtreatment of patients.

The current study has a number of limitations. We have

not developed any novel statistical approaches and do not

provide information on how to adapt all available perfor-

mance measures to a competing-risk setting. Particularly

measures of net benefit and decision-curve analysis were

outside the scope of the current paper. Additionally, fur-

ther research may focus on adapted measures of the cali-

bration slope and integrated calibration index to a setting

with competing events.49 Furthermore, our data example

is based on a single data set and some of the observed

results may be attributable to sampling variability. In the

future, a data-simulation study in which the outcome,

competing event and censoring prevalence are varied may

provide more insight into how model performance is af-

fected in different competing-risks scenarios. Although the

data example focused on the validation of the KFRE,

which was developed using a Cox prognostic model, a

strength of the current paper is that the discussed methods

are applicable to other time-to-event models such as (flexi-

ble) parametric models, competing-risks models or ma-

chine-learning models such as random survival forests.

Figure 4 Calibration plots for external validation of the 2- and 5-year Kidney Failure Risk Equation (KFRE) in a subset of older patients. The external

validation was performed by using Kaplan–Meier estimates (ignoring competing risks) and by using a competing-risks approach. The competing-

risks approach (green points and line) represents the model performance for the absolute kidney-failure risk in a setting in which patients may die.
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In conclusion, depending on the underlying clinical

question, competing events may be crucial to consider

when externally validating time-to-event prognostic mod-

els. If an existing prediction model has targeted the incor-

rect estimand, we can expect a poorer performance when

validating this model while accounting for competing

events (and thereby adjusting the estimand). Such external

validation studies can help to determine whether such

models are transportable to a real-life setting in which

competing events occur.
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