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Abstract. Lung cancer is one of the most common deadly malignant tumours, with the most 

rapid morbidity and death worldwide. Cancer risk prediction is a challenging and complex task 

in the field of healthcare. Many studies have been carried out by researchers to analyse and 

establish lung cancer symptoms and factors. However, further improvements are vital and 

required to be conducted in order to overcome the persistent challenges. In this study, a multi-

criteria decision support system for lung cancer risk prediction based on a web-based survey data 

has been presented and realised. The proposed framework aims to incorporate the powerful of 

analytical hierarchy process (AHP) with artificial neural network for constituting lung cancer 

prediction model. The multiple criteria decision-making strategy (AHP) assigns a weight to each 

individual cancer symptom feature from survey data. The weighted features are then used to train 

multi-layer perceptron artificial neural network (ANN) to build a disease prediction model. 

Experimental analysis and evaluation performed on 276 subjects revealed promising prediction 

performance of developed lung cancer prediction framework in terms of various classification 

metrics.  

1.  Introduction 

Globally, lung cancer is the most common cause of cancer death accounting for 19% of all cancer deaths; 

and following the breast cancer, the most spread form of cancer. In 2012, GLOBOCAN estimated that 

1, 242, 000 new diagnosed lung cancer cases among men, which is almost 17% of all cancer types 

(excluding skin cancer) and 583 000 (9%) of new cancer cases among women. Lung cancer also 

accounts for 19% of all cancer deaths [1, 2]. In people aged less than 40 year, the incidence rate of lung 

cancer is low among both genders, but it starts rising up in age between 75-80 years [3]. Several risk 

factors have been found to increase the chance of lung cancer incidence and make the subject more 

likely to developing the cancer.  In several conducted studies, a high positive family history of lung 

cancer has been found to be a risk factor for developing lung cancer [4]. One another major risk factor 

is tobacco smoking which can cause all other major histological categories of lung cancer. The duration 

of smoking and second-hand exposure effects of tobacco have been demonstrated and recognised as the 

strongest determinant of cancer by public health authorities [5, 6]. Number of studies suggested many 

other risk factors such as dietary supplements [7], alcohol consumption [8], chronic obstructive 

pulmonary disease [9], occupational exposures (examples; asbestos, radon and silica) [10, 11], and 

indoor air pollution (example; coal burning) [12] and explained their key and significant roles in 

developing lang cancer.   
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High risk individuals are screened to avoid deaths from lung cancer, as early detection increases 

the survival rate of patients with lung cancer. The physicians utilise different tests, including Computed 

Tomography (CT) scans, blood tests, X-rays, Positron Emission Tomography (PET) scan, and bone scan 

for reliably diagnosing the severity of lung cancer [13]. Many lung cancer prediction systems using an 

electronic health record data including subjects’ health conditions, medical history of patients, socio-

demographic factors, genetical and biological criteria, and behavioural and lifestyle conditions have 

been presented and reported in the literature. Authors in [14, 15] proposed logistic regression-based 

methods for early lung cancer detection using set of risk factors. Moreover, Markaki et a. [16] presented 

multivariable analysis of 36 risk predictors, utilising feature selection with Cox regression for prediction 

lung cancer in smoker of all ages.  

Machine and deep learning algorithms are widely used for automatically lung cancer detection, 

screening, and diagnosis aiming to save physicians’ time and efforts. Luna et al. [17] used an effective 

machine learning tool, random forest to recognize known and new predictors of symptomatic radiation 

pneumonitis, which is introduced as a radiotherapy dose limiting toxicity for advanced NSCLC. The 

authors in [18] proposed Internet of Things (IoT) approach combined with a fuzzy clustering technique 

to predict lung cancer through monitoring by providing commands aiming towards improving 

healthcare. Using 400 samples from cancer and non-cancerous data, Ahmed et al. [19] developed a lung 

cancer prediction model using k-means clustering algorithm and decision tree.  Lynch Chip and 

colleagues [20] used multiple machine learning techniques including decision tree, linear regression, 

SVM, gradient boosting machines to identify patient’s survival. Cha et al. performed and evaluated a 

trained deep convolutional neural network model to identify operable cancer with chest radiographs 

(CXRs) [21]. In [22], the authors provided an evidence that deep convolutional neural networks can be 

used for death-rate risk prediction using computed tomography (CT) form Non-small-cell lung cancer 

(NSCLC) patients. Recently, Ahmad and Mayya [23] designed a lung cancer prediction tool based on 

risk factors using random forest classifier. In the most recent research paper [24], lung cancer was 

identified in the elderly people using risk factors and deep neural networks.  

        In addition to risk factors, symptoms of lung cancer have been considered for lung cancer prediction 

[25] including anxiety, yellow fingers, fatigue, wheezing, coughing, shortness of breath, swallowing 

difficulty, chest pain, loss of weight, and loss of appetite [26, 27]. The symptoms of lung cancer are not 

specific and difficult to be recognized and diagnosed.  If the symptoms have not been early detected and 

recognized, this would lead to degradation in the patient’s health and subsequently difficulty of 

treatment [28]. This concludes that very few studies were conducted to explore the symptoms for lung 

cancer prediction.  In this paper, we propose a multi-criteria decision aid system to predict lung cancer 

from web survey-based data which includes description of lung cancer symptoms collected from 276 

patient subjects and control. The presented framework proposes the analytical hierarchy process (AHP) 

methodology for lung cancer feature weighting and selection and multi-layer perceptron (MLP) for 

symptoms classification and disease prediction. This incorporation of purely statistical-based method 

with machine learning method allows to leverage disease feature selection to help with the learning of 

the neural network, alleviating the effect of low significant features in the disease prediction. The rest 

of this paper is presented and structured as follows. In section 2, the data and proposed methodology are 

presented and described. Results of the proposed framework are presented and discussed in Section 3. 

Finally, the research work is concluded in Section 4.  

2.  Materials and Method 

2.1.  Materials 

The data was collected from a website survey using a feedback received from the participant [29]. The 

number of subjects participated in the survey was 276 with eight attributes representing the risk factors, 

two attributes representing socio-demographic (age and gender), and six attributes representing risk 

factors. In this study, we focus on symptoms of cancer for lung cancer prediction including anxiety, 

yellow fingers, fatigue, wheezing, coughing, shortness of breath, swallowing difficulty, and chest pain. 



2nd International Scientific Conference of Engineering Sciences (ISCES 2020)
IOP Conf. Series: Materials Science and Engineering 1076  (2021) 012036

IOP Publishing
doi:10.1088/1757-899X/1076/1/012036

3

 

 

 

 

 

 

There are 134 female and 142 male subjects their age between (21-87),  including 38 control cases and 

the rest with lung cancer. The distribution of symptoms among subjects is explained in Figure 1.  

 

 
Figure 1. The distribution of symptoms among 276 subjects. Yes: refers to the presence of 

symptom, No: refers to the absence of symptom.   

2.2.   Method 

The block diagram of our proposed framework is depicted in Figure 2. The components of proposed 

methodology are explained as follows: 

 

 
 

Figure 2. The block diagram of developed lung cancer prediction system. 
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2.2.1.  Feature Weighting by AHP 

The analytic hierarchy process (AHP) method is a multi-criteria decision making/aid (MCDA) technique 

developed by Saaty [30] attempting to determine the importance of each attribute/variable on a pair basis 

using matrix called decision matrix. The AHP method comprises three main stages which are: 

construction of hierarchy (decomposition), analysis of data by determining the priority/preference, and 

validation of consistency. Saaty [30] suggests defining and splitting up the problem and deciding the 

goal as the first step of the AHP analysis which is in our study lung cancer diagnosis/prediction. In the 

constructed hierarchical structure, where the goal of problem pinned at the top, criteria (symptoms in 

our study) are placed at the intermediate level and, finally alternatives at the base (presence or absence 

of lung cancer), as shown in Figure 3. 

For preference/priority analysis, a pairwise comparison matrix (PWC), shown in Figure 4, is 

created using priority scale proposed by Saaty [30] as described in Table 1. The relative ratio scale of 

measurement derived from paired comparisons of the symptoms is used to help the expert/physician in 

establishing and judging preferences of criteria over others. The scale for pairwise comparisons ranges 

from 1 to 9. A verbal statement related to each scale is used to define the importance of individual 

criteria (symptom) over other. The symbolic expression of scales along with the numeric representation 

can be defined as equal (1), moderate (3), strong (5), very strong (7), and extreme (9). While 2, 4, 6, and 

8 are utilised between the aforementioned symbolic expression judgment. To represent the inverse 

comparison, the reciprocals are used, for instance, if X is very strongly more important than Y, then X 

is 7 times as important as Y, while Y is 1/7 as important as X. 

 

 
Figure 3. Hierarchy structure of decision support system based on disease’s symptoms. 
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Figure 4. Pairwise comparison matrix (PWC). Value of (a) refers to the scale value established by 

expert. 
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Table 1. Verbal description of scale values for AHP preferences  

Scale Degree of Preference 

1 Equal preferred  

3 Moderate preferred of one symptom over another  

5 Strong preferred 

7 Very strong preferred 

9 Extreme preferred 

2, 4, 6, 8 Intermediate values between two scales 

1/3 Moderately less preferred  

1/5 Strongly less preferred 

1/7 Very strongly less preferred 

1/9 Extremely less preferred 

1/2, 1/4, 

1/6,    1/8 

Intermediate values between two scales 

To verify the consistency of the preference rating conducting by the expert in the constructed 

PWC, consistency ratio (CR) should be determined. Saaty [30] defines that the acceptable threshold 

value of CR is less than 0.1; otherwise, the rating conducted by expert should be considered inconsistent 

as follows: 

 

𝐶𝑅 = {
< 0.1        𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒
≥ 0.1    𝑈𝑛𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒

                                                (1) 

In case the comparison matrix is inconsistence, the judgments by expert should be reviewed and revised 

until obtaining a consistent matrix. The formula of consistency ratio can be defined as: 

𝐶𝑅 = 
𝐶𝐼

𝑅𝐼
                                                                         (2) 

Where: (RI) is the random consistency index suggested by [30] and can be obtained from table 2.  

 
Table 2. Random consistency index (RI) associated with pairwise comparison  

matrix size (number of criteria n) 

n 1 2 3 4 5 6 7 8 9 

RI 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 

 
The consistency index (CI) is determined using the maximum eigenvalue (λmax) computed from 

pairwise comparison matrix as follows: 

 

𝐶𝐼 =  
(𝜆𝑚𝑎𝑥 −  𝑛)

𝑛 − 1
                                                        (3) 

 

Where n represents the number of criteria (symptoms). 

 

Eigenvector and  𝜆𝑚𝑎𝑥 are calculated using the following procedure: 

 

1. Step 1:  Determine the column sum of PWC matrix 

2. Step 2: Divide the elements of each individual column of PWC matrix by its corresponding 

column sum to produce a normalized PWC matrix. 

3. Step 3: To find the normalized eigenvector (which is also called weight vector or priority 

vector), the average of normalized row elements in PWC matrix is determined. 

4. Step 4: Maximum eigenvalue (𝜆𝑚𝑎𝑥) is obtained by summation of the products between the 

elements of the sum of columns (Step1) and each element of normalized eigenvector (Step3). 
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 Finally, the obtained eigenvector is represented a weight vector and each individual value in eigenvector 

represent the weight of each corresponding criteria (symptom feature).   

2.2.2.  MLP for Lung Cancer Prediction  

Multi-layer perceptron (MLP) [31] is a feedforward artificial neural network (ANN) that can be trained 

to classify the input patterns to desired output.  For our ANN model, we designed three layers network 

with 8 neurons in the input layer, 10 neurons in the hidden layer and 2 neurons in the output layer. Our 

ANN has been trained on the lung cancer data using a backpropagation algorithm to adjust the weights 

of the network with gradient descent as an optimization method. The cross-entropy loss function is used 

to tune the weights by reducing the error in each epoch aiming to improve the performance of ANN 

model. The gradient value is computed and updated in an incremental model (updated after each input) 

and the soft-max activation function is used in the output layer. Input symptoms data to the network has 

been weighted using the weights generated in the eigenvectors of AHP and then passed into the network. 

The output layer represents the lung cancer presence (1) or absence (0). 

3.  Experimental Results and Discussion 

To conduct the experiments, the pairwise comparison (PWC) matrix of the AHP, shown in Table 3, are 

obtained with the help of doctor judgment where symptoms are abbreviated as  CP: chest pain, SD: 

swallowing difficulty, WZ: wheezing,  YF: yellow fingers, AN: anxiety, FG: fatigue, CO: coughing, 

SOB: shortness of breath. This pairwise comparison matrix has been considered after many revisions to 

achieve the consistency condition. The achieved consistency ratio of comparison matrix is 0.09 (< 0.1, 

consistent) which is computed as follows: 

 

Table 3. Pairwise comparison matrix (PWC). 
 CP SD WZ YF AN FG CO SOB 

CP 1 3 1 5 4 5 1/3 1/4 

SD 1/3 1 1/3 2 3 3 1/5 1/9 

WZ 1 3 1 6 7 8 1 1 

YF 1/5 1/2 1/6 1 1/3 1/4 1/7 1/8 

AN 1/4 1/3 1/7 3 1 1/2 1/5 1/6 

FG 1/5 1/3 1/8 4 2 1 1/8 1/6 

CO 3 5 1 7 5 8 1 1/2 

SOB 4 9 1 8 6 6 2 1 

Sum 09.98 22.17 4.77 36.00 28.33 31.75 05.00 03.32 

 

Table 4. Normalized pairwise comparison matrix (NPWC). 
 CP SD WZ YF AN FG CO SOB Sum Avg. 

(Eigenvector) 

CP 0.10 0.14 0.21 0.14 0.14 0.16 0.07 0.08 1.02 0.13 

SD 0.03 0.05 0.07 0.06 0.11 0.09 0.04 0.03 0.48 0.06 

WZ 0.10 0.14 0.21 0.17 0.25 0.25 0.20 0.30 1.61 0.20 

YF 0.02 0.02 0.03 0.03 0.01 0.01 0.03 0.04 0.19 0.02 

AN 0.03 0.02 0.03 0.08 0.04 0.02 0.04 0.05 0.29 0.04 

FG 0.02 0.02 0.03 0.11 0.07 0.03 0.02 0.05 0.35 0.04 

CO 0.30 0.23 0.21 0.19 0.18 0.25 0.20 0.15 1.71 0.21 

SOB 0.40 0.41 0.21 0.22 0.21 0.19 0.40 0.30 2.34 0.29 
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The value of 𝜆𝑚𝑎𝑥 is found by the sum of product between the eigenvector and sum of  each 

individual column in comparison matrix giving value of 8.895. Given n =8 symptoms, CI = (8.895-

8)/(8-1) = 0.1279 and RI = 1.41 (from Table 2), then CR = 0.1279/1.41 = 0.09. The values of eigenvector 

represent the weight of each lung cancer symptom as follows (symptom, weight): (CP, 0.13), (SD, 0.06), 

(WZ, 0.20), (YF, 0.02), (AN, 0.04), (FG, 0.04), (CO, 0.21), (SOB, 0.29). The highest weight is assigned 

to shortness of breath symptom, followed by coughing symptom. The lowest weight is allocated to 

yellow finger, followed by anxiety and fatigue. To determine the importance and contribution of each 

symptom over others in predicting the lung cancer, the provided lung cancer data is multiplied by its 

allocated weight value before feeding them into the neural network for training. The most important 

attribute (symptom criterion) has the highest weight value and vice versa. It is worth mentioning that 

the minority class in the dataset (negative classes here) has been oversampled during the training to 

handle the problem of label unbalancing. The data is divided into 60% training, 15% validation, and 

25% testing. The performance of proposed framework for lung cancer prediction has been evaluated by 

comparing the predicted lung cancer label with the ground truth provided in the dataset using many 

evaluation metrics. The evaluation metrics include accuracy, sensitivity, specificity, and F1-score, 

which are defined as follows: 
   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶) =  
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
                                      (4) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑒𝑛) =  
𝑡𝑝

𝑡𝑝+𝑓𝑛
                                             (5) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝) =  
𝑡𝑛

𝑡𝑛+𝑓𝑝
                                             (6) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2𝑡𝑝

2𝑡𝑝+𝑓𝑝+𝑓𝑛
                                           (7) 

 

Where tp, fp, tn and fn represent true positive, false positive, true negative, and false negative, 

respectively. The trained neural network has achieved 77.7%, 71.2%, 87.5%, 82.8% in terms of 

accuracy, specificity, sensitivity, and F1 score, respectively on the test data without weighting;  whereas 

achieved 80.7%, 75.3%, 89.9%, 86.4% using the same metrics on the test data weighted by AHP 

weights. The obtained results indicate that the weighting method represented by AHP is an effective 

strategy in the medical cases which are controlled by various criteria but the priority (importance) of the 

individual criterion over others is not well defined. It can be noticed that the specificity in both models 

is slightly lower than other reported evaluation metrics which due to the limited number of negative 

examples (control subjects) in the dataset. However, this would not degrade the performance of the 

prediction model which focuses on improving the predicting of positive cases than the negative cases. 

The performance of lung cancer prediction system can be further improved by training the neural 

network on a larger dataset.  

In terms of comparing our study performance with the state-ot-the-art methods, our developed 

method reveals a competitive and promising performance. For example, the model proposed by Petousis 

et al. [32] achieved accuracy of 65% using dynamic Bayesian model on population of 25,486 subject. 

Likewise, Wang et al. [33] reported lung cancer prediction accuracy of 67% using conditional Gaussian 

Bayesian network on population of 961 subject. Recently, Kaviarasi [34] presented system based on 

Gaussian classifier for lung cancer prediction from risk factors but the author did not report the 

performance of the accuracy metric. They claim that their propose method gives area under the ROC 

curve of 88.1% on population of 321 subject. 
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4.  Conclusion 

In this paper, an automated method to predict the lung cancer from web-based survey data has been 

presented. The benefits of weighting and selectin features from symptoms lung cancer have been 

designed, realized and evaluated. The developed system, which is merging AHP with MLP, has proved 

to be efficient in feature weighting, learning and identification of lung cancer in a group of subjects. 

Furthermore, the obtained results revealed that the proposed methodology is promising in predicting 

lung cancer efficiently and accurately in terms of accuracy, sensitivity, specificity, and F1-score. The 

proposed lung cancer prediction framework is generic and can be easily developed to other diseases’ 

prediction models.  
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