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ABSTRACT

We investigate whether spatial-kinematic substructure in young star-forming regions can be quantified using Moran’s [ statistic.
Its presence in young star clusters would provide an indication that the system formed from initially substructured conditions, as
expected by the hierarchical model of star cluster formation, even if the cluster were spatially smooth and centrally concentrated.
Its absence, on the other hand, would be evidence that star clusters form monolithically. The Moran’s [ statistic is applied to
N-body simulations of star clusters with different primordial spatial-velocity structures, and its evolution over time is studied.
It is found that this statistic can be used to reliably quantify spatial-kinematic substructure, and can be used to provide evidence
as to whether the spatial-kinematic structure of regions with ages < 6 Myr is best reproduced by the hierarchical or monolithic
models of star formation. Moran’s [ statistic is also able to conclusively say whether the data are not consistent with initial
conditions that lack kinematic substructure, such as the monolithic model, in regions with ages up to, and potentially beyond,
10 Myrs. This can therefore provide a kinematic signature of the star cluster formation process that is observable for many Myr
after any initial spatial structure has been erased.
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1 INTRODUCTION

Young star-forming regions are immensely important for the study
of a wide range of astrophysical phenomena. They are where the ma-
jority of stars form (Elmegreen 2000; Lada & Lada 2003; Krumbholz,
McKee & Bland-Hawthorn 2019), and by extension where the bulk
of planets are born, and where many supernovae occur. Many of the
fundamental processes that occur in these regions are not fully un-
derstood, and perhaps the most significant of these are the processes
by which star clusters form.

It is debated whether star clusters form from mergers between
smaller substructures according to the hierarchical model of star
formation (Efremov 1995; Bonnell, Bate & Vine 2003; Gutermuth
et al. 2008; Henshaw et al. 2014; Véazquez-Semadeni, Gonzalez-
Samaniego & Colin 2017; Gouliermis 2018; Beattie et al. 2019;
Mondal et al. 2021), or whether they form monolithically (Kroupa,
Aarseth & Hurley 2001; Krumholz & Tan 2007; Banerjee & Kroupa
2014; Da Rio, Tan & Jaehnig 2014). These two models offer very
different views of the cluster formation process. They make differ-
ent predictions about the local environment around young stars and
planets, and the origins of unbound stellar systems such as OB asso-
ciations (Wright 2020).

Critically, these two models make very different predictions about
the initial spatial and kinematic structure of star-forming regions.
Stars form from turbulent gas in giant molecular clouds, where
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the velocity dispersion scales with their size (Larson 1981; Heyer
& Brunt 2004; Hennebelle & Falgarone 2012). In the hierarchical
model of star formation, stars form over a wide area and inherit the
spatial and kinematic substructure from the gas they formed from
(Efremov & Elmegreen 1998) before hierarchically collapsing un-
der gravity to form a compact cluster. In the monolithic model of
star cluster formation the gas collapses under gravity to form a sin-
gle dense clump, in which star formation occurs. As a result, in the
monolithic model initial spatial and kinematic structure is not ex-
pected.

The key difference between these models of star cluster forma-
tion is therefore whether star formation takes place before or after
material is concentrated into the configuration of a dense cluster. In
reality, star formation may be a combination or dilution of these hy-
pothetical scenarios, but they represent useful models to explore and
compare to observations.

Distinguishing between these models of star cluster formation
has been difficult as forming star clusters are often obscured within
molecular clouds. In the disc of the Milky Way, for example,
searches for the progenitors of young massive clusters have so far
failed to find giant molecular clouds with the necessary mass and
density to form such systems monolithically (e.g., Bressert et al.
2012; Longmore et al. 2014). Furthermore, the availability of kine-
matic data (radial velocities and proper motions) to study the dynam-
ics of recently formed clusters has, until very recently, been scarce.

Happily, the quantity and quality of kinematic data for stars in
young star-forming regions and clusters has rapidly increased in re-
cent years thanks to astrometric data from Gaia (Gaia Collaboration
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et al. 2021) and DANCe (Bouy et al. 2013), and radial velocities
from surveys such as APOGEE (Majewski et al. 2017) and the Gaia-
ESO Survey (Gilmore et al. 2012). Further, the availability of kine-
matic data is only likely to increase in the future thanks to upcoming
surveys such as WEAVE (Dalton et al. 2014, 2020) and 4MOST (de
Jong et al. 2019).

Kinematic data offers the prospect for identifying kinematic sig-
natures of the star cluster formation process. For example, Wright
& Parker (2019) recently discovered a trend of increasing velocity
dispersion with stellar mass in the young cluster NGC 6530. They
argued this could only occur if the cluster had formed hierarchically
following the subvirial collapse of a substructured and extended dis-
tribution of stars (see also Parker & Wright 2016), and might also in-
dicate that the stars formed in a turbulence-dominated environment
(Bonilla-Barroso et al. 2022). This indirect kinematic signature of-
fers the tantalizing prospect for directly testing models of star cluster
formation using kinematics.

A possible avenue to pursue is to identify residual kinematic sig-
natures left over from the formation of the star cluster. While spatial
substructure is expected to be rapidly erased during mergers (Binney
& Tremaine 2008; Parker et al. 2014), any primordial kinematic sub-
structure (as expected from the hierarchical model of cluster forma-
tion) is predicted to survive for longer (e.g., Goodwin & Whitworth
2004).

Searching for residual kinematic substructure is a challenging task
due to the high-dimensional and often messy nature of kinematic
datasets, the short time period over which it might be observable,
and the additional scatter in kinematic data introduced by binary and
multiple stellar systems (Gieles et al. 2010; Cottaar et al. 2012). The
problem is further complicated by human biases which can lead us
to see what we expect to see (Nickerson 1998; Pannucci & Wilkins
2010; Rollwage et al. 2020), leading to potentially spurious identifi-
cation or non-identification of structure.

To reliably identify residual kinematic substructure we need to
utilize tried and tested statistical tools capable of quantifying the
spatial autocorrelation of stellar kinematics. For this we turn to the
field of spatial statistics, which have been utilized for many decades
in the fields of climatology, environmental health, geochemistry, and
ecology (e.g., Mladenoff et al. 1993; Law et al. 2009; Wang et al.
2010). Such statistics are suitable for analysing data that are multi-
variate and spatially referenced, both attributes that are well-suited
to the new generation of astrophysical data sets.

In this paper we explore one of the most commonly used spatial
autocorrelation tests, Moran’s I statistic! (Moran 1950), which is
primarily used in geosciences and ecology in order to study the spa-
tial distribution of different phenomena, (e.g. Anselin 1995; Fu et al.
2014; Liu, Tong & Liu 2015; Wagner & Dray 2015; Fortin, Dale &
Ver Hoef 2016). It has also been used in astrophysics before to con-
firm the presence of structure in star forming regions (Wright et al.
2016). Here we apply it to simulated star-forming regions that are
generated to mimic the kinematics expected for different star-cluster
formation scenarios. We demonstrate that this statistic can be used
to differentiate between them, and that it can be used to detect these
kinematic differences even after the simulated regions have evolved
beyond the point that the initial spatial substructure has been erased.

! The application of Geary’s C statistic (Geary 1954) to this problem was
also assessed and it was found to be ineffective. This is because Geary’s C
statistic is better suited to identifying ‘hot spots’ in spatial autocorrelation
(Ord & Getis 1995) rather than assessing a system as a whole.
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We also show that this method is robust against realistic observa-
tional biases.

2 METHODS

In this section, we describe the N-body simulations used to simu-
late different cluster formation scenarios, as well as how Moran’s
statistic is calculated.

2.1 N-body simulations

To study the formation of star clusters, N-body simulations are used
to evolve simulated star-forming regions forward in time from a va-
riety of different initial conditions. The KIRA integrator in the STAR-
LAB code (Portegies Zwart et al. 1999, 2001) is used to evolve the
simulated regions to an age of 10 Myr. The level of kinematic sub-
structure is measured every 0.1 Myr using Moran’s [ statistic.

Six different sets of initial conditions are used in this work, com-
posed of all combinations of two different sets of structural ini-
tial conditions and three different virial states. For each type of
initial condition, 20 different realizations are generated and simu-
lated so that stochastic variations in initial position and kinemat-
ics, and their resulting dynamics, can be explored. All the simu-
lated regions are generated using a characteristic radius of 2 pc?.
The simulated star-forming regions in this paper all contain 1500
stars with masses drawn from a Maschberger initial mass function
(Maschberger 2013) with a = 2.3, B = 1.4, and u = 0.2. A lower
mass limit of 0.1 M and an upper mass limit of 50 M, are imposed.

Two different types of structural initial conditions are generated.
The first type are Plummer spheres (Plummer 1911), effectively
smooth and spherical clusters without spatial or kinematic substruc-
ture that reflect the initial conditions expected by the monolithic
model of star formation. They are generated by the method presented
in Aarseth, Henon & Wielen (1974). This class of initial conditions
is referred to as the unsubstructured class.

The other class of regions are generated such that they have kine-
matic structure, i.e. stars that are near each other have similar ve-
locities, and a high degree of spatial substructure (reflecting the hi-
erarchical model of star formation, Elmegreen & Falgarone 1996;
Elmegreen & Scalo 2004; Kruijssen et al. 2012). It is referred to
as the substructured class, and the algorithm used to generate these
regions is described in appendix A3.

Three different virial states are considered for the initial condi-
tions, using the virial ratio ow;;. The virial ratio is the ratio of kinetic
to potential energy in the system. A system with a virial ratio < 0.5
will collapse on average (subvirial initial conditions), and one with a
virial ratio > 0.5 will tend to expand (supervirial initial conditions).
A self-gravitating system in virial equilibrium has @ = 0.5. In this
paper Qi values of 0.3, 0.5 and 1.5 are used.

Combining the structural initial conditions with the virial initial
conditions gives a total of six different sets of initial conditions. Ex-
amples of initial conditions of each of the two structural classes are
shown in the top row of Fig. 1. Fig. 1a contains an example of the

2 For the fractal algorithm the characteristic radius is the radius of the spher-
ical boundary imposed after the desired number of stars has been overpro-
duced, see appendix A for details. For Plummer spheres the characteristic
radius is twice the half-mass radius.

3 The code for this algorithm can be found at https://github.com/
r-j-arnold/gen_fractal_star_clusters.
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unsubstructured class, and Fig. 1b shows an example of the substruc-
tured class.

A key difficulty when studying structure in star forming regions
is that obvious visual signatures of spatial substructure are erased
within a few crossing times. To illustrate this the bottom row of Fig.
1 shows the two different sets of structural initial conditions evolved
forward to an age of 3 Myr. It is readily apparent that after 3 Myr
the initial spatial substructure (if there was any) has been erased, and
it is very difficult to differentiate these evolved clusters visually as
they are both centrally concentrated spheroids.

2.2 Quantifying kinematic substructure

Moran’s [ statistic for a given parameter U is calculated as follows:
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where w;; is the weight given to a pair of data points, i and j, in the
calculation of Moran’s / statistic, and is calculated as
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where d;; is the distance between points i and j.
The expected value of Moran’s [ statistic for data without any
spatial autocorrelation is
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so in data without spatial autocorrelation (and where N is large)
Moran’s [ statistic tends to zero.

If the calculated value of Moran’s [ statistic for a data set is
smaller than E(I) this indicates spatial anticorrelation (i.e. similar
values of u tend to be far from each other). A Moran’s / value larger
than E(/) indicates spatial autocorrelation, i.e. that similar values of
u tend to be found close to one another. In the cases presented in this
paper, N is large enough that E(I) ~ 0 is a reasonable approximation
in nearly all cases, so in general a positive Moran’s / value is taken
to indicate spatial autocorrelation, and a negative Moran’s / value is
taken to indicate spatial anticorrelation.

In this work, Moran’s 7 statistic is used to investigate the evolution
of spatial autocorrelation of kinematic properties in star-forming re-
gions. In calculating Moran’s [ statistic according to equation 1 N is
the number of stars in the data set, and d;; is the distance between
stars i and j. Three kinematic quantities are examined (i.e. used as
u); velocity in the x direction, vy, velocity in the y direction, vy, and
stellar speed, s. The velocities are considered analogues to proper
motions in RA and Dec, which are widely available thanks to Gaia.
To reflect this, stellar speed is calculated in two dimensions, i.e. it
represents the plane of sky speed, so

s:,/v%Jrv%. )

We use scalar quantities rather than vectors because Moran’s
statistic requires complex modification and more manual interpre-
tation in order to be applied to vector data (e.g., Liu et al. 2015).
The choice of axis is arbitrary, so to mitigate its influence Moran’s
I statistic for v, and vy are calculated separately and then the mean
of the two is taken. This mean is referred to as Moran’s [ statistic of
Vvap, i.e. I(vap). This quantity is less noisy than either I(v,) or I(vy)
taken separately. Moran’s [ statistic for s is referred to as I(s).
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When calculating Moran’s / all stars at distances greater than two
half-mass radii from the centre of mass of the cluster are excluded.
This is because in reality not all original members of a star forming
region are likely to be observed; stars that have been ejected from a
region and have traveled a large distance away are significantly less
likely to be positively identified as members by observers (Schoettler
et al. 2020, 2022). Given the low likelihood that such outliers would
be identified as members in observational data sets their exclusion
from the calculation of Moran’s [ statistic is justified.

It is important to understand that both global and local coher-
ence in the parameter being studied can contribute to the calculated
Moran’s [ statistic. For example, radial expansion of a star cluster, by
definition, represents a global spatial autocorrelation in velocity di-
rection (and so vop). This is because, in such a case each star’s veloc-
ity vector is directly correlated with the star’s position. This global
velocity coherence contributes to increase the calculated I(vp). In a
similar vein, local velocity coherence, e.g. local groups of stars with
similar velocities can increase /(vyp) even if the wider region the
groups exist in is kinematically incoherent.

3 RESULTS

The mean and standard deviation of /(vop) and I(s) at each time-step
for each of the six sets of simulations is calculated, and the results are
presented in Fig. 2. The results for simulations with an initial virial
ratio of 0.3 are shown in the top row of the figure, the results for
simulations initially in virial equilibrium (o, = 0.5) are shown in
the middle row, and those which are initially supervirial (0 = 1.5)
are shown in the bottom row.

The figures in the left-hand column show I(v,p) against time and
the right-hand column shows I(s) against time, where time is mea-
sured in Myr. For context the 10 Myr time-span of the simulations
translates to between 2 and 4.25 crossing times for different initial
virial ratios. This variation is due to the fact comparable regions with
higher virial ratios have a higher velocity dispersion, and so shorter
crossing times. Note that these are global crossing times, but in sub-
structured regions the crossing time on the scale of individual stellar
clumps, which itself will vary depending of the size and velocity
dispersion of the clumps in question, is the more relevant metric in
some contexts (Allison et al. 2009). As a guide, 10 Myr translates to
25 - 50 crossing times on the scale of the smallest clumps in these
simulations.

In all subfigures the results for the substructured regions are
shown in blue, and the results for the unsubstructured regions (i.e.
Plummer spheres) are shown in orange. The standard deviation of
the results for each simulation set is shown by the shaded areas of
the corresponding colour. We emphasize that this standard deviation
is not an uncertainty on Moran’s / statistic, which is calculated ex-
actly from the simulated data according to equation 1. Instead it is
the 10 scatter in the results for regions that formed with the corre-
sponding initial condition type.

3.1 The evolution of /(v,p) with time

The evolution of /(v,p) against time is depicted by the panels in the
left-hand column of Fig. 2.

On average Moran’s [ statistic is highest for the substructured re-
gions, and it is lowest for the unsubstructured regions. This makes
intuitive physical sense; the higher the degree of initial spatial-
kinematic autocorrelation, the higher Moran’s [ statistic is.

MNRAS 000, 1-14 (2022)
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t =0 Myr
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Figure 1. Simulated star-forming regions. The top row shows, from left to right, an unsubstructured region, and a substructured region. Both examples shown
here are subvirial (04 = 0.3). These are shown at # = 0 in the top row and in the same order after they have been evolved to 3 Myr on the bottom row.

The evolution of I(vop) over time is mainly determined by two
physical processes:

e The erasure of initial spatial-kinematic substructure (if gener-
ated with such) on both global and local scales as the regions be-
come mixed and as stars undergo close gravitational interactions that
randomize their velocities. This process has the impact of reducing
I(v2p).

e Fluctuations in the half-mass radii of the regions. As described
in Section 2.2, global radial expansion causes /(vop) to increase.
Likewise global radial contraction represents a spatial-kinematic au-
tocorrelation, and so also acts to increase I(vop).

The evolution of I(v,p) over time under different initial conditions
will now be discussed in detail.

3.1.1 Detailed discussion of the evolution of subvirial regions

To aid this discussion the mean half-mass radii as a function of time

for regions with subvirial initial conditions are presented in Fig. 3.
The unsubstructured subvirial regions start off without any spatial

autocorrelation of their velocities, so at 0 Myr Moran’s [ statistic is

MNRAS 000, 1-14 (2022)

approximately O (see Fig. 2a). Because these regions are subvirial
(i.e. collapsing), the half-mass radius of the regions rapidly shrinks
(see the orange line in Fig. 3). As previously discussed, this results
in an increase in /(vop), which peaks at ~1.5 Myr i.e. when these
regions are shrinking most rapidly (see Fig. 3).

Between 1.5 and 3.5 Myr the collapse of these regions slows down
and stops (note the minimum in the half-mass radii of the unsub-
structured regions in Fig. 3), so I(vyp) returns to ~ zero. The half-
mass radii of these regions do steadily increase after this point due
to the slow process of the many-body system dissolving over time,
but this does not exhibit any spatially correlated kinematic signature
and so doesn’t cause I(vop) to increase.

The substructured regions (blue lines in Fig. 2a and Fig. 3) start
with I(vop) > 0 att = 0 Myr because they are generated with veloc-
ity substructure. Like the previously discussed case of unsubstruc-
tured subvirial regions, these regions undergo rapid contraction (see
Fig. 3) which acts to increase I(vop). However, this is overwhelmed
by the reduction in /(v;p) induced by the destruction of the initial
spatial-kinematic substructure by the dynamical evolution of the re-
gion (discussed in Section 3.1).

The ultimate impact of these two competing processes is I(vop)
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Figure 2. Moran’s [ statistic versus time. The results for simulations with virial ratios of 0.3, 0.5, and 1.5 are shown in the top, middle and bottom rows,
respectively. The y-axis of figures in the left-hand column is /(vzp), and in the right-hand column it is /(s). In all subfigures the x-axis is time and the mean
results for different simulation sets are shown in different colours, with their standard deviations depicted by the shaded areas. The results for substructured
regions are shown in blue, and the results for the unsubstructured regions are shown in orange.
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Figure 3. Half-mass radius plotted against time for simulations that are ini-
tially subvirial and with different types of initial substructure (see Fig. 2a).
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Figure 4. Half-mass radius plotted against time for simulations that are ini-
tially in virial equilibrium and with different types of initial substructure (see
Fig. 2b).

drops steeply for the substructured regions, and then more slowly at
later times (> 5 Myr) once most of the dynamical evolution in the
regions has occurred, and dynamical interactions remove any lin-
gering kinematic substructure. The mean measured /(v,p) remains
significantly above zero at times up to (and likely beyond 10 Myr).

3.1.2 Detailed discussion of the evolution of initially virialized
regions

To aid this discussion the mean half-mass radii as a function of time
for initially virialized regions are presented in Fig. 4.

Fig. 2b shows I(v;p) as a function of time for regions initially
in virial equilibrium. Substructured, virialized regions follow the
same basic trends as their subvirial counterparts (see Section 3.1.1);
Moran’s [ statistic begins significantly above zero, and decreases
over time as dynamical interactions erase the region’s kinematic sub-
structure.

MNRAS 000, 1-14 (2022)
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Figure 5. Plot of the mean fraction of stars moving away from the centre
of mass in their star forming regions as a function of time for regions with
supervirial initial conditions. The results for substructured regions are shown
in blue, and the results for unsubstructured regions are shown in orange.

Despite being initialized in virial equilibrium the substructured
regions do undergo collapse (see Fig. 4), though to a much lesser de-
gree than in the subvirial case. This can be seen by comparing their
evolution in half-mass radii in Fig. 3 and Fig. 4. These ‘collapses’
are brief and the regions swiftly return to approximately their orig-
inal half-mass radius, after which their half-mass radii continue to
increase as the regions dissolve; it is more accurate to think of these
‘collapses’ as kinetic and potential energy (which is already in virial
equilibrium) being redistributed around the regions into a more sta-
ble arrangement rather than a collapse. Regardless, the impact of
these pseudo collapses is small, and they are overpowered by the
decline in /(v;p) induced by the dynamical evolution of the regions.
As in the subvirial case, the mean /(v,p) remains significantly above
zero up to and likely beyond 10 Myr.

Unsubstructured regions, on the other hand, in contrast to their
subvirial counterparts remain at /(vop) = 0. This is because they are
already in equilibrium, and so do not undergo collapse (note their
constant half-mass radius in Fig. 4), and have no initial kinematic
substructure for dynamical interactions to erase.

3.1.3 Detailed discussion of the evolution of supervirial regions

The overall trend of decreasing Moran’s I with time in Fig. 2a and
Fig. 2b is reversed in the supervirial case, which is shown in Fig.
2c¢. Here, I(vop) increases in both cases, with the rate of increase
reducing over time and plateauing. This is because the regions are
supervirial and unbound so the regions expand, causing /(v;p) to
increase.

Fig. 5 depicts the mean fraction of stars moving away from their
region’s centre of mass as a function of time for the initially super-
virial regions. Like /(vop) in Fig. 2c¢ the fraction of stars moving
outwards undergoes a rapid increase from ¢ =0 to r ~ 2.5 Myr, then
plateaus. This further cements the explanation that radial motion due
to expansion is the cause of the increase and plateau of I(v,p) ob-
served in supervirial cases.



3.2 The evolution of /(s) with time

Moran’s [ statistic is applied to the speed, s, of the stars (right-hand
panels of Fig. 2). The results for /(s) follow many of the same trends
as the I(vpp) case:

e Moran’s [ statistic successfully identifies that there is initial
kinematic substructure in s for the substructured regions (I(s) > 0
at t = 0 Myr for all blue lines). It likewise identifies the absence
of initial kinematic substructure in the unsubstructured regions (/(s)
~ 0 at t = 0 Myr for all orange lines).

e In the substructured subvirial and virialised cases I(s) drops
sharply at # < 5 Myr as the dynamical evolution of the regions erases
substructure.

e The unsubstuctured, subvirial regions develop kinematic sub-
structure as they undergo collapse, resulting in a peak in I(s) at 1.5
Myr when the collapse is at its fastest.

e Both substructured and unsubstructured regions show a sharp
increase in /(s) followed by a plateau in the supervirial case as the
regions expand.

Some differences are apparent in the evolution of I(s) and /(v,p).
Firstly, the results for /(s) are noisier than those for /(v;p). Secondly,
for subvirial and virialized regions in the /(vop) case the trajectory
of Moran’s [ at late times is towards zero, but I(s) at t > 5 Myr
shows a steady increase in all cases. This is because at later stages
of dynamical evolution regions develop an active core and a slower
moving halo of stars. This paradigm of fast moving core stars and
slow moving halo stars represents a spatial correlation with s, so /(s)
increases. However, the directions of the stars (particularly in the
core) are regularly randomized by gravitational interactions, so their
is no directional correlation induced and I(v,p) tends to zero.

The impact of this is that in some cases /(s) can separate substruc-
tured and unsubstructured initial conditions better at ages 2 5 Myr
than I(vp). At earlier times it is also a useful metric to compute in
addition to I(vpp) to support the presence or absence of kinematic
substructure.

4 DIFFERENTIATING BETWEEN MODELS OF STAR
CLUSTER FORMATION

The models presented in Section 3 represent a variety of different
initial conditions for the formation of star clusters and groups of
stars. The theory of monolithic star cluster formation is best repre-
sented by the unsubstructured simulations (i.e., Plummer spheres)
that form in virial equilibrium (ay;; = 0.5). The o = 0.5 set is
used because in situ star formation (as predicted in the monolithic
model) requires the region to remain largely static, so using initial
conditions in virial equilibrium is appropriate.

The hierarchical model of star formation, on the other hand, is best
represented by the substructured simulations that are initialized in a
subvirial (0w = 0.3) state as the hierarchical model requires high
initial substructure and multi-scale collapse that is not unphysically
rapid. As shown in Fig. 1, both of these initial conditions lead to the
formation of a dense, centrally concentrated star cluster after a few
Myr, as commonly observed in nature.

In Fig. 6 the mean /(vop) of the simulations representing these
two model analogues are plotted as a function of time, with the re-
sults for the hierarchical model analogue being shown in blue and
the monolithic model analogue in orange. The standard deviation of
the results of the simulation sets is shown by the shaded areas of the
corresponding colours (note again that this does not represent the un-
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Figure 6. Plot of /(v,p) against time for two simulation sets. The hierarchical
model of star formation analogue is plotted in blue, and the monolithic model
analogue is plotted in orange. The standard deviation of the results for the
simulation sets is shown by shaded areas of the corresponding colour. N.B.
the standard deviation of the results for the monolithic model is very small
meaning the shaded orange area is very thin, but it is present.

certainty on a given measurement, merely the range of observed val-
ues given the initial conditions). The scatter on the monolithic model
results is extremely narrow; the results for this case are consistent
with zero within a standard deviation < 0.002 at all times. The mean
I(vop) 15 0.00019, and the mean standard deviation is 0.0013.

From this plot it is clear that Moran’s [ statistic can be used to
distinguish between these two initial condition types up to an age of
5-10 Myr depending on the precise evolution of the regions. Recall
from Section 2.1 that 5-10 Myr is a factor of two older than the time
at which the models are virtually impossible to distinguish visually.
By comparing the observed /(vop) with the results presented here it
can be determined whether the spatial autocorrelation of their stellar
velocity vectors is consistent with the hierarchical model analogue
presented here, the monolithic model analogue presented here, or
neither.

It is worth noting that even beyond an age of ~6 Myr (when the
two shared areas begin to overlap in Figure 6) Moran’s / statistic
could be used to test the monolithic star cluster formation model.
This is because the predicted values of Moran’s [ statistic for the
monolithic model analogue (shown in orange in Fig. 6) occupy such
a narrow band around zero that if a real star cluster had I(vop) 2
0.002 it could be confidently stated that the spatial autocorrelation
of their stellar velocity vectors is inconsistent with the monolithic
model analogue presented in this paper. There are different formu-
lations of the monolithic model, but this result will most likely hold
for any formulation which does not contain initial kinematic sub-
structure, as the above result shows that Moran’s I can demonstrate
the absence of kinematic substructure to high precision.

As a comparison an alternative statistical metric, the Q parame-
ter (Cartwright & Whitworth 2004), is applied to these simulations.
This widely used parameter is designed to quantify the degree of
spatial substructure in star-forming regions (e.g. Rodriguez et al.
(2020); Nony et al. (2021); Parker & Schoettler (2022)). Regions
with a Q parameter < 0.8 are considered to be spatially substruc-
tured, and regions with a Q parameter > 0.8 are considered to be
spatially smooth. In Fig. 7 Q is plotted against time for the two
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Figure 7. Plot of the Q parameter (Cartwright & Whitworth 2004) against
time for two simulation sets. As in Fig. 6, the hierarchical model of star for-
mation analogue is plotted in blue, the monolithic model analogue is plotted
in orange, and the standard deviation of the results for the simulation sets is
shown by shaded areas of the corresponding colour.

model analogues presented in Fig. 6. From contrasting these figures
it is clear that the Moran’s [ statistic is able to differentiate between
the different models much longer than the Q parameter. Moran’s /
statistic also has the additional advantage over the Q parameter that
it can incorporate multidimensional spatial-kinematic data, whereas
the Q parameter is best suited to 2D data sets (Cartwright 2009).

5 OBSERVATIONAL UNCERTAINTIES AND BIASES

Observational data suffer from a number of uncertainties and bi-
ases that simulated data do not, and therefore it is necessary to test
whether Moran’s [ statistic still produces robust and reliable results
when applied to kinematic data which have such imperfections. In
order to do this we apply such biases and uncertainties to the simu-
lated data and repeat the analysis to assess the impact this can have.
The biases considered are incompleteness effects, contamination of
the young star sample, and uncertainties on stellar velocities.

Binary stars also have the potential to introduce a number of ob-
servational uncertainties and biases. Close binaries with high orbital
velocities will blur kinematic substructure when measured using ra-
dial velocities as the instantaneous velocity measurement will in-
clude a component from the orbital motion. Wide binaries could
mimic very small-scale kinematic substructure as they will appear
as a small, co-moving group of stars. Quantifying the impact of bi-
naries is difficult as it will depend on a multitude of complex factors,
such as the original binary fraction of the region being studied, the
primordial semimajor axis distribution of those binaries, the exact
dynamical history of the region, how far away the region is, and the
properties of the observational setup used to measure stellar veloci-
ties.

However, a reasonable upper limit on the expected number of stars
in observable binaries can be estimated. Assuming the use of Gaia
data (which can distinguish stars separated by more than 0.7 arcsec)
and observing a cluster at a distance of 500 pc, binaries separated
by more than 350 AU will be separately resolvable. Assuming bina-
ries are randomly orientated, using the separation distribution of the
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companions of solar-type stars found by Raghavan et al. (2010), and
presuming from their findings around 46 per cent of stars are in bi-
naries (appropriate for solar-type stars, lower for less massive stars)
we find around 12 per cent of stars are expected to be in resolv-
able binaries. This fraction is likely to decrease over time as wide
binaries are destroyed via dynamical interactions (Parker & Meyer
2014). The impact of binaries on results will be further reduced by
the fact that they only have heightened velocity coherence with their
singular companion, but not with the other N — 2 stars in the region.
Because of this the impact of their heightened local velocity coher-
ence on the calculated Moran’s / statistic will be heavily diluted.

5.1 Simulating observational biases

To simulate the observational biases, we apply the following effects
to the results of the N-body simulations before measuring Moran’s /
statistic.

5.1.1 Incompleteness

When a star-forming region is observed not all stars will be detected
or identified to be young stars, most commonly because they are
insufficiently bright to be detected. To mimic real incompleteness
effects the lowest mass stars are removed from each data set (using
stellar mass as a proxy for brightness) and the analysis is re-run.
Note that this assumes that incompleteness is uniform across the
observed region. Completeness fractions of 20, 40, 60, and 80 per
cent are considered. As the simulated regions presented in this paper
have stellar masses drawn from the Maschberger IMF (Maschberger
2013) with the parameters outlined in Section 2.1 a completeness of
20 per cent means stars of masses > 0.63 M, are included in the
analysis. For 40 per cent this is 0.33 My, for 60 per cent it is 0.20
M, and for 80 per cent completeness stars > 0.14 M, are included.

5.1.2 Contamination

Background or foreground stars that are mistakenly thought to be
part of a star-forming region can contaminate observational data
sets. This observational bias is simulated by adding additional ‘ob-
served’ stars to the data set. The more similar a non-member star’s
spatial and kinematic properties are to those of true members the
more likely it is that it will be included. To reflect this the positions
of these contaminant stars are drawn from a Gaussian distribution
with the same mean and standard deviation as the positions of the
real members. The same approach is taken to draw velocities for the
simulated contaminants. The impact on the results of contaminant
fractions of 5, 10, and 15 per cent is examined.

5.1.3 Kinematic measurement uncertainties

Simulated measurement uncertainties of 0.25 km s~! and 0.5 km
s~1 are applied to the velocities by drawing ‘observed’ velocities
for each star from a Gaussian distribution with the mean of the true
velocity of the simulated star and a standard deviation of the velocity
uncertainty being mimicked. The uncertainties are applied to each
velocity component separately.

A velocity uncertainty of 0.25 km s~! corresponds approximately
to a uncertainty of 0.1 mas yr—! at 500 pc. This value is chosen as
it is the typical uncertainty on proper motions for G = 18 magni-
tude sources in the Gaia EDR3 catalogue (Gaia Collaboration et al.
2021). Observational uncertainties of 0.5 km s~! are also simulated



in order to present a more extreme case, such as would be faced by
fainter and/or more distant stars. The mean velocity dispersion of a
single component of the velocities in the initial conditions of simula-
tions presented in this paper is 0.66 km s~ '; the uncertainties applied
here represent a significant fraction of a region’s velocity dispersion.

5.2 The impact of observational biases on the results

The observational biases described above are applied to the substruc-
tured subvirial simulations. This simulation type is chosen because it
has a high degree of spatial autocorrelation in its kinematics, which
makes it easier to observe the impact of observational biases on the
measured Moran’s / statistic.

Fig. 8 shows the calculated /(vop) and I(s) as a function of time
after the above-described observational biases have been applied.
The impact of incompleteness effects are depicted in the top row
of the figure, contamination effects are shown on the middle row,
and velocity measurement errors on the bottom row. As in Fig. 2
I(v2p) as a function of time is plotted in the left column and I(s) as
a function of time is shown on the right.

For reference, in all figures the mean result for unsubstructured
regions initialized in virial equilibrium is depicted in black, and the
standard deviation of that simulation type’s results is shown by a
grey-shaded area. This is done to illustrate where observational un-
certainties would cause potential confusion between initial condition
types (and by extension star formation models) and where it would
not.

In all cases the impact of observational biases on the results is
to degrade them. In the case of reduced completeness one major
consequence to the results is to increase the level of noise. This is
logical because if there are fewer datapoints then increased noise on
the measurement is to be expected.

The other major impact of reduced completeness is to artificially
lower the measured /(v,p), and increase the measured I(s) at later
times (> 5 Myr). This is because after a few crossing times the re-
gions become increasingly mass segregated. As a result, when com-
pleteness is low the sample becomes biased towards stars at small
radii. To demonstrate this the mean distance of stars from the centre
of the region || is calculated at different completeness cuts. These
are divided by m for the complete sample, |rcomplete|- and the evolu-
tion of this ratio over time is plotted in Fig. 9.

The velocities of stars in the region’s cores are regularly random-
ized by gravitational interactions, resulting in the reduction /(vop)
at low completeness. By comparing Fig. 8a and Fig. 9 it is apparent
that incompleteness causes the measured /(vp) to deviate signifi-
< 0.94. I(s) is artifi-

‘rcomp]ele ‘ ~

cially increased at low completeness because stars in the halo have
lower mean velocities than core stars; by disproportionately remov-
ing halo stars from the sample the gradient in s with radius becomes
more pronounced.

Despite this, Moran’s [ statistic is able to trace the true signal well
enough to differentiate these regions from unsubstructured regions
(black line) at almost all completeness fractions and times. Over-
all the impact of even extremely low completeness on the results is
relatively minor, indicating this method is robust against incomplete-
ness.

Increased contamination (middle row) does not increase the de-
gree of noise, instead it reduces the calculated value of Moran’s /
statistic. Again this is logical as the spatial autocorrelation of a set
of datapoints will be reduced if datapoints without any spatial auto-
correlation are added, as they are when there is sample contamina-

cantly from its complete value when Ir

Quantifying structure in SFRs 9

Table 1. The observational biases applied in mild, moderate, and severe

cases.
Completeness  Contamination  Velocity error
(per cent) (per cent) (kms™1)
Mild 50 10 0.25
Moderate 30 20 0.5
Severe 10 30 1.0

tion. Again, the impact of this observational bias on the measured
result is relatively minor and it is still possible to easily distinguish
the substructured and unsubstructured regions from each other.

Finally, the impact of observational uncertainty is discussed. As
with contamination the effect of velocity measurement errors is to
dilute the measured spatial autocorrelation of the region’s kinemat-
ics, and so lower the calculated Moran’s [ statistic. I(vop) is im-
pacted much less severely than /(s) because v,p is a measure of the
change in velocity direction and the mean change in the direction of
a velocity vector with a component drawn from a Gaussian centred
on zero applied to it is zero. On the other hand, the mean magnitude
of a value drawn from such a Gaussian (i.e. the change in speed, s)
is > 0, so s is the more strongly impacted quantity.

Although the impact of observational bias is only presented here
for one simulation type (substructured initially subvirial regions) the
basic impact of biases on data with spatial-kinematic autocorrela-
tion will be similar. That is to say incompleteness increases noise,
and contamination and measurement uncertainties reduce the signif-
icance of the measured value of Moran’s [ statistic. Nevertheless the
impact of all but the most extreme observational biases on the results
is relatively minor.

Further, the only observational bias which can serve to cause an
artificial increase in Moran’s / statistic is reduced completeness, and
even then it has relatively little effect for completeness = 40 per cent,
and almost no impact for regions less than 4 Myr old. As a result if
a Moran’s [ value is measured that is not consistent with E(/), for a
sample such that incompleteness could not be responsible then it can
be determined that that signal is a real signature and not the result of
observational bias.

5.3 Impact of observational biases on model comparison

Most observational data sets will suffer from a combination of the
three types of observational bias discussed above and therefore we
combine these effects and simulate the impact they have on the mea-
surement of Moran’s [ statistic. We perform this for three different
levels of observational bias: mild, moderate, and severe. These three
levels are outlined in detail in Table 1, but as an example, in the mild
case a completeness cut at 50 per cent is used, a contamination rate
of 10 per cent, and a kinematic uncertainty of 0.25 km s~ ! is intro-
duced. This is in addition to the standard cut of stars beyond two
half-mass radii from the region’s centres of mass, which is applied
to all cases presented in this paper as discussed in Section 2.2.

The three levels of observational bias are then applied to the hier-
archical collapse and monolithic cluster formation model analogues
(discussed in Section 4) and the results are presented in Fig. 10 as a
function of time. The results for the mild case are shown in Fig. 10a
(top), the moderate biases results are shown in Fig. 10b (middle),
and the severe case is shown in Fig. 10c (bottom).

By comparing Fig. 10 and Fig. 6 it is apparent that the effect of
observational biases is to decrease the calculated /(vyp) and increase
the noise on the results. Given the findings presented in Section 5.2
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Figure 8. The results for substructured subvirial regions with different observational biases applied. The left-hand column shows the results for /(v2p) and on
the right is /(s). The impact of different completeness fractions is depicted on the top row, different contamination fractions are applied on the middle row, and
on the bottom row the effect of measurement uncertainties on velocities is shown. The mean result for unsubstructured initially virialised regions is shown on
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Figure 9. The mean distance of stars from their region’s centre under dif-
ferent completeness cuts (|r|) divided by the same for the complete sample
(|7complete)- This is plotted against time in Miyr.

this is entirely expected. However, the results in Fig. 10 still follow
the same overall pattern as those with unbiased data, presented in
Fig. 6. The results for the hierarchical model analogue (shown in
blue) I(vyp) still decrease with time, as in the unbiased case shown
in Fig. 6.

In the case of the monolithic model analogue (shown in orange)
the results remain close to zero at all times, but decrease a small
amount in the more biased cases. This is because the expected value
of Moran’s [ statistic for data without spatial-kinematic autocorrela-
tion, as is true for the monolithic case, is inversely proportional to
—N (recall equation 3 in Section 2.2). As completeness decreases,
N becomes smaller and therefore the expected value decreases too.
The precise expected value varies between simulations and over time
due to the exclusion of stars outside two half-mass radii of the centre
of mass. However, even in the cases with the most severe biases the
results for the monolithic case remain very close to zero. The calcu-
lated I(vyp) is -0.00095 4+ 0.0017 if there are mild biases, -0.0021
=+ 0.0019 if there are moderate biases, and -0.0066 £ 0.0036 in the
case of severe biases. These are all decreased from the case without
biases, where monolithic model simulations had I(v;p) of 0.00019
£ 0.0013. Nevertheless, it should be noted that the results for the
monolithic model analogue show remarkably low scatter even with
extreme observational biases applied.

Critically, it is still possible to differentiate between these mod-
els using /(vop) even when all the examined observational biases
are applied if the biases are mild or moderate. Therefore in regions
with such biases Moran’s [ statistic may indicate whether the re-
gion formed with or without kinematic substructure, and therefore
whether the hierarchical or monolithic model of star cluster forma-
tion best matches the observations. In a case with severe observa-
tional biases the degradation of the results is probably too extreme
to do this. However, in all the cases presented here the results for
the unsubstructured initial conditions occupy a very narrow band
close to zero, with the precise expected value given by equation 3.
This is true at ages up to (and likely beyond) 10 Myr. Therefore
if I(vop) of real star-forming regions is not consistent with the ex-
pected value according to equation 3 given their N within the toler-
ances found here (0.0017 given mild biases, 0.0019 given moderate
biases, 0.0036 given severe biases) it can therefore be determined
that observations are not consistent with having formed without sub-
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Figure 10. Plot of I(v,p) against time for two simulation sets that have had
artificial observational biases applied. The hierarchical model of star forma-
tion analogue is plotted in blue, and the monolithic cluster formation model
analogue is plotted in orange. The standard deviation of the results for the
simulation sets is shown by shaded areas of the corresponding colour. The
results are presented with mild (Fig. 10a, top), moderate (Fig. 10b, middle),
and severe (Fig. 10c, bottom) artificial observational biases applied. See Ta-
ble 1 for further details.
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structure as would be expected in the monolithic model of star clus-
ter formation.

6 SUMMARY

We have investigated whether Moran’s [ statistic can be used to
quantify the level of kinematic substructure in star clusters and if
it can be used to distinguish between the monolithic and hierarchi-
cal models of star cluster formation. The primordial morphology of
star-forming regions is quickly erased during their initial dynami-
cal evolution, as demonstrated in Fig. 1 where the two simulated
regions with different initial conditions, shown on the top row, are
virtually indistinguishable by-eye after evolving for just 3 Myr, as
shown on the bottom row. We apply Moran’s [ statistic to simulated
star-forming regions with different initial conditions and find that it
can successfully quantify their kinematic structure, and can differ-
entiate between them (see Fig. 2).

The evolution of Moran’s [ statistic for simulated analogues of the
monolithic and hierarchical star cluster formation models are closely
examined. From Fig. 6 we find that Moran’s [ statistic can differ-
entiate between them at ages < 6 Myr. Further, it may be used to
provide strong evidence that regions formed with some initial kine-
matic substructure (against the expectations of the monolithic model
of star formation) in regions even older than this. This is primarily
because our simulated unsubstructured, initially virialized regions,
which represent clusters that formed monolithically, show very low
values of I(v,p) at all times (a magnitude smaller than 0.01 even in
our worst-case scenarios). Therefore, if I(v,p) were to be measured
in a real star cluster and found to be significantly outside of this
range then this would indicate a region formed with some degree of
spatial and/or velocity substructure. A reasonably accurate age esti-
mate of a given region will be of great help in effectively exploiting
this metric.

It is difficult to distinguish between regions that formed in a sub-
virial state or in virial equilibrium. While it is true that regions ini-
tialized with lower virial ratios tend to have slightly lower I(v,p) at
later times the fact remains that Fig. 2a is very similar to Fig. 2b,
and Fig. 2d is very similar to Fig. 2e. However, there is a very clear
difference between the two bound cases and the unbound case pre-
sented in the bottom row of Fig. 2. From this it is clear that if I(vop)
is larger than 0.1 in a region older than around 5 Myr then the region
most likely formed in an unbound state.

The impact of observational biases on the results is investigated.
In summary, the impact of incompleteness is to increase the degree
of noise on the detected signal, and in the case of extreme incom-
pleteness (< 40 per cent of stars detected) artificially decrease I(vop)
and increase I(s). The impact of stellar contaminants and measure-
ment uncertainties on stellar velocities is to decrease the calculated
Moran’s I. These effects should be kept in mind when utilizing
Moran’s [ statistic to investigate the degree of kinematic substruc-
ture in a region and the implications for its origins, in order to evalu-
ate results with proper context. Overall these investigations find that
the impact of observational biases on Moran’s [ statistic is minor
in all but the most severe cases. It can still be used up to ages of 6
Myr to determine from observational data whether a region formed
with kinematic substructure consistent with the hierarchical model,
an absence of kinematic substructure (as would be expected by the
monolithic model), or a degree of substructure which is consistent
with neither model.

At greater ages, and in the case of severe observational biases this
is not possible as the results for the monolithic and hierarchical mod-
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els are partially degenerate. However, even in these cases the results
for the monolithic model occupy a very narrow band of /(v,p) ver-
sus ¢ parameter space very close to zero, (/(vop) = -0.0066 £ 0.0036
even in the case of severe biases). If the observed I(v,p) of real star-
forming regions deviates further than this from the expected value of
Moran’s [ statistic assuming no spatial autocorrelation, as defined in
equation 3, then it can be conclusively said that the data is inconsis-
tent with the monolithic star formation model analogue presented in
this paper, and this result can reasonably be extended to all formula-
tions of that model without initial spatial-kinematic substructure that
form in approximately stable state. As a result, calculating /(v,p) of
a set of real star forming regions presents an exciting opportunity to
provide strong quantitative evidence for/against the monolithic and
hierarchical models of star formation.

Examples of possible target regions include the Orion Nebula
Cluster and the nearby young clusters in Taurus, such as NGC 1333.
These regions are well-studied, meaning there is a wealth of data al-
ready available, and relatively close, meaning that the data available
is of high enough quality that, per the findings of Sections 5.2 and
5.3, the results of this analysis would be robust.
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APPENDIX A: GENERATING SUBSTRUCTURED STAR
FORMING REGIONS

Regions with substructured initial conditions are generated via a
fractal algorithm which always produces regions with kinematic
substructure, and which have a tunable amount of spatial substruc-
ture. In the substructured class, the spatial substructure is set to be
high.

The algorithm to generate fractal initial conditions is now de-
scribed. It is a minor variation on the algorithm explained and used
in Goodwin & Whitworth (2004), Allison et al. (2010), Arnold et al.
(2017), Daffern-Powell & Parker (2020) and Blaylock-Squibbs et al.
(2022) among others. The original method generates fractal initial
conditions by beginning with a cube of size unity. A single ‘parent’
star is placed at the centre of this cube. The cube is then divided
in two along each axis to form eight sub-cubes, and ‘child’ stars
are placed at the centre of these sub-cubes with some noise added
to avoid an unrealistic regular structure. Next the parent star and
a random subset of the child stars are deleted. The probability of
deletion is the same for every child star and is abstracted from the
user-defined fractal dimension, D.

The surviving child stars then become parents themselves. Their
host sub-cubes are further subdivided in two again along each axis,
and new child stars are placed approximately in the centre of each;
again, some noise is added to avoid an artificially grid-like structure.

The parent stars and a random subset of these new children are
deleted, and the process repeats until the desired number of stars for
the initial conditions, N has been overproduced. A sphere is then cut
from the original box; stars outside this sphere are deleted. Random
stars are then deleted until N stars remain.

The degree of spatial substructure in the generated initial condi-
tions is controlled by D. If D is low few stars will survive each gener-
ation, leaving large areas of empty space where no more generations
can propagate. Consequently, the resulting structure is highly spa-
tially substructured. If, on the other hand, D is large most child stars
will survive, all areas of the fractal will be approximately equally
populated and the resulting initial conditions will have low spatial
substructure.

Velocity substructure is engendered in the initial conditions as fol-
lows. The velocity of a given child star is assigned is:

Vehild = Yparent + éomnd (A1)

where G ,,,4 is arandom velocity vector and & is a scaling factor that
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decreases with each generation. This results in more closely related
stars having more similar velocities on average. Initial conditions
generated by this method always have velocity substructure, this is
independent of their degree of spatial substructure.

As discussed in Section 2.1, stars are assigned masses drawn from
the Maschberger IMF distribution (Maschberger 2013). Next the en-
tire initial conditions are re-scaled to reflect the user’s desired half-
mass radius. Finally, the velocity vectors are scaled in order to set
the virial ratio, oy, that is desired by the user.

As previously mentioned, the method used to produce the initial
conditions for the simulations in this paper is a minor variation on
the widely used one described above. In the above method cubes
are subdivided in two at each generation, and children are placed
in the approximate centre of each sub-cube. This tends to leave a
void in the centre of the parent box, which is particularly noticeable
at the first generation. This results in a significant underdensity of
stars in the centre of the completed initial conditions; they appear
unrealistically hollow. In the method used in this paper, the boxes
are divided in three along each axis at each generation, rather than
in two, in order to prevent this.

Additionally, rather than use a fractal dimension, D, to control
the degree of spatial substructure we directly set the probability P
of child stars surviving to become parents. At the stage where child
stars are culled prior to them becoming parents a value is drawn for
each child star from a uniform distribution between zero and one.
Those that have a value < P drawn survive. There is an exception for
this in the first two generations; it is required that at least six stars
survive both of these generations to prevent an overly concentrated
initial condition set being produced. If this requirement is not met
the initial conditions are regenerated.

To generate the substructured initial conditions used in this paper
P is set to 0.2. While P is used for convenience it is directly related
to D. A P of 0.2 translates to a D of 1.535, which is a close proxy
for the value D = 1.6 which has been used as a shorthand for high
substructure in several numerical studies, e.g. (Allison & Goodwin
2011; Parker et al. 2014, 2016; Arnold et al. 2017). At this P six
generations of stars are required to produce sufficient stars for the
spherical cutting stage. The exact diameter of the regions varies be-
cause while the half-mass radius is scaled to 2 pc in all cases the
exact distribution of stellar masses is randomly drawn, so the width
of the cut out sphere is not fixed. The mean diameter is 5.27 pc. This
means that the size of the smallest cubes that contain children (i.e.
the scale of the smallest structures in the region) is 5.27 pc divided
38 ~1 where the generation number, g, is six. Therefore the scale of
the smallest structures is 0.022 pc.

In this paper, the noise added to the locations of child stars to
avoid a grid-like structure takes the form of a displacement of the star
from the centre of the sub-cube by a 3D vector. Each component of
this vector is drawn from a Gaussian distribution of width t, defined
as:

1
~10L
and L is the side length of the sub-cube. This width is chosen as the
probability that a star will be be displaced outside of its host sub-
cube is small (this would require a 5 standard deviation displacing
vector), while still allowing for significant fluctuation from the rigid
grid structure. For clarity, this random vector is redrawn for each
star, rather than drawn once and applied to them all which would
simply displace the entire generation.

In the implementation of the algorithm used in this paper G,4,4
is a three dimensional vector where each component is randomly

1 (A2)
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drawn from a Gaussian distribution centred on zero with width one.
£ is defined such that

13
§=— (A3)
8n
where g, is one for the first generation of stars, their children have
gn = 2, and so on). & is chosen to be an inverse function of g,, to
ensure & decreases with each generation, as described. This is taken
to a power of one third in keeping with the decrease in spatial scale,
and squared in order to provide a more realistic overall velocity dis-
persion.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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