L .
E@ future internet

Article

An Experimental Performance Evaluation of
Cloud-API-Based Applications

Yara Abuzrieq !, Amro Al-Said Ahmad 12

check for

updates
Citation: Abuzrieq, Y.; Ahmad,
A.A.-S.; Younes, M.B. An
Experimental Performance
Evaluation of Cloud-API-Based
Applications. Future Internet 2021, 13,
314. https://doi.org/10.3390/
fi13120314

Academic Editor: Joel J. P. C.
Rodrigues

Received: 11 November 2021
Accepted: 8 December 2021
Published: 13 December 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Maram Bani Younes 1'*

Faculty of Information Technology, Philadelphia University, P.O. Box 1, Amman 19392, Jordan;
Yara.abuzrieq@gmail.com (Y.A.); asaid@philadelphia.edu.jo (A.A.-S5.A.)

School of Computing and Mathematics, Keele University, Newcastle-under-Lyme ST5 5BG, UK
* Correspondence: mbani047@uottawa.ca

Abstract: Cloud Application Programming Interfaces (APIs) have been developed to link several
cloud computing applications together. API-based applications are widely used to provide flexible
and reliable services over cloud platforms. Recently, a huge number of services have been attached to
cloud platforms and widely utilized during a very short period of time. This is due to the COVID-19
lockdowns, which forced several businesses to switch to online services instantly. Several cloud
platforms have failed to support adequate services, especially for extended and real-time-based
applications. Early testing of the available platforms guarantees a level of suitability and reliability
for the uploaded services. In this work, we first selected two different API-based applications
from education and professional taxonomies, the two most recently used applications that have
switched to the cloud environment. Then, we aimed to evaluate the performance of different API-
based applications under different cloud platforms, in order to measure and validate the ability of
these platforms to support these services. The advantages and drawbacks of each platform were
experimentally investigated for each application.

Keywords: performance; SaaS; cloud application; cloud platform; Application Programming Inter-
faces (APIs)

1. Introduction

The advanced usability and popularity of cloud computing encourage developers to
intensively investigate its environment. Evaluating the performance of several existing
cloud platforms assists consumers’ decisions regarding the optimal environment option [1].
Cloud computing has introduced scalable and elastic network resources that are offered as
services through the Internet. The information, data, and shared resources are provided to
the consumers upon request [2]. However, the performance evaluation of the applications
uploaded to cloud computing platforms is considered highly complex. It is affected by
the complexity of the infrastructure of the cloud environment where the applications are
executed [3].

Application Programming Interfaces (APIs) represent a set of programming codes
that permit and control the data transmission between different connected applications.
Two main components are included in any API: technical specifications and the software
interface. The technical specifications define the choices and rules of the data exchange
among the connected applications. These specifications comprise the request for data
delivery and the processing protocols. The software interface is written for the indicated
specifications. When a certain application (i.e., requesting application) needs to access
some operation or information from another application (i.e., providing application), it
calls the corresponding API to determine how this operation or these data can be provided.
The providing application, in turn, returns the requested operation or information directly
to the requesting application. The API specifies the interface through which the requesting
and providing applications can communicate.

Future Internet 2021, 13, 314. https:/ /doi.org/10.3390/£i13120314

https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-1144-3053
https://orcid.org/0000-0002-3844-6409
https://doi.org/10.3390/fi13120314
https://doi.org/10.3390/fi13120314
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13120314
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi13120314?type=check_update&version=2

Future Internet 2021, 13, 314

20f12

APIs provide several advantages to the software development field in terms of speed-
ing up and simplifying the development process. Developers can add functionalities and
operations from other existing providers to their proposed software. The APIs can also
serve as a layer of abstraction between two systems, where the working and complex
details of the finalsystem are hidden [4]. Today, there are many applications and APIs that
different corporations provide over the Internet. The user can access these services and
applications any time and any where. Therefore, the servers that offer these applications
and services must handle a massive number of simultaneously received requests. Thus, en-
terprises have adopted this promising cloud computing technology since not all companies
have the resources to create data centers or purchase many servers for these applications.

The performance evaluation of different API-based applications uploaded to cloud
platforms is an important issue. It assists in selecting the right and suitable platform to run
newly developed services and applications. Several research studies have been conducted
in this field considering different circumstances, cloud platforms, applications, and APIs.
Here, we introduce another performance evaluation study that seeks to assess different
cloud computing platforms for different API-based application categories. Amazon AWS
EC2 and Microsoft Azure are considered the most commonly adopted cloud platforms [5].
We used these two platforms in our experiments since they are the top cloud service
providers. Moreover, we selected web-APIs to test different mobile applications. Two
taxonomies were selected and compared in this work: educational (i.e., Sebawayh) and
professional (i.e., TaqTak) services. Education and professional services have witnessed a
high percentage of switching to the cloud environment recently. This is due to the COVID-
19 lockdowns, with schools and universities running online classes, and likewise for several
businesses’ activities. An experimental comparison of the performance of the API-based
applications under the Amazon AWS EC2 and Microsoft Azure platforms in terms of
response time, latency, processing time, and throughput is presented in this work. These
experiments were performed with several users. From the experimental study, we can infer
that the Microsoft Azure platform is the best choice for uploading high-computational-
resource applications. On the other hand, for educational applications, Amazon AWS EC2
provides less latency compared to Microsoft Azure.

In this study, we measured the performance of cloud-API-based applications from a
technical perspective, which becomes important as more API-based applications migrate
to the cloud. The experimental analysis of the results considered four sets of comparisons,
in order to provide a platform to construct a methodology to effectively compare the perfor-
mance of cloud-API-based applications and consequently support deployment decisions
with technical arguments.

The remainder of this paper is organized as follows. Section 2 reviews some of the
previous studies in the literature. Section 3 presents the methodology and sets the experi-
mental parameters of this study. Section 4 presents the obtained results and the discussion.
Finally, Section 5 presents the conclusions for the entire work and the future work.

2. Related Work

Several studies have assessed and evaluated cloud computing applications by con-
sidering several techniques [6-8]. Researchers have investigated the capacity of cloud
servers and the performance of the applications uploaded to these cloud environments.
Jackson et al. [6] presented an efficient assessment study that compared HPC and the Ama-
zon AWS EC2 cloud platform. The experiments employed real applications that represented
the workload of a super-computing center. From the experimental results, it was shown
that using a Linux cluster was six-times faster than Amazon AWS EC2, and modern HPC
systems were found to be twenty-times faster than Amazon AWS EC2. The performance of
the tested applications was limited by interconnecting with the Amazon AWS EC2 platform.
Moreover, the Amazon AWS EC2 platform introduces substantial variability.

Moreover, Bautista et al. [7] used “ISO Quality Characteristics” to evaluate the per-
formance of the applications uploaded to the cloud computing environment. The main

Future Internet 2021, 13, 314

30f12

consideration regarding this experimental study was the high complexity of the cloud envi-
ronment, which is directly inherited from the complex infrastructure. In this experimental
study, they adopted a new measurement framework and applied it to log data obtained
from the data center. This was performed to map and examine particular quality character-
istics of the ISO (i.e., the behavior during a period of time). A particular industrial private
cloud was used to conduct this experimental study. The experimental results confirmed
the effectiveness of the proposed framework at measuring and evaluating the performance
of the uploaded applications. Ravanello et al. [3] investigated the performance of big data
applications, which combine the concepts of software quality from the ISO25010 model.
Their experimental study aimed to fill the gap in the numerical representation of these
concepts and the measurement of big data applications’ performance.

New models and frameworks have been proposed, aiming to facilitate the experi-
mental study of applications uploaded to the cloud environment. Addamani and Basu [8]
presented a new model to analyze the performance of web applications in the cloud com-
puting environment. They modeled the laaS platform as multiple queues and “Virtual
Machines” (VMs) as service centers. This model depends on the application behavior
of the reverse instances on Amazon EC2. On the other hand, Vasar et al. [9] proposed
a new framework that combines different monitoring and benchmarking tools. Perfor-
mance engineers can use this framework to test the applications under different loads and
configurations. Moreover, the dynamic allocation of the sever is supported through this
framework depending on the incoming load by employing response-time-aware heuristics.

Many researchers have investigated different performance metrics of the cloud en-
vironment for several applications. An experimental assessment of the performance of
an analytic application that is run through different configurations of the storage service
was presented in [10]. The authors analyzed the performance achieved through analytic
workloads and explained the problems that occurred due to impedance mismatch, which
occurs in some configurations. Marian et al. [11] tried to help the users choose the optimal
configuration of each application by creating a prediction model using the cloud providers
for the offered system. This model of prediction was created by applying machine-learning
methods. They used the OpenStack cloud system to ensure the validity of the suggested
methodology. Kotas et al. measured the performance of the most commonly used cloud
platforms (i.e., Amazon AWS EC2 and Microsoft Azure). The experiments were run by
generating clusters of Azure and AWS instances. Then, they executed the benchmarks
related to the several instances. Another recent work investigated the performance of
real-time-stream-processing systems for Internet of Things (IoT) applications [12]. The pa-
per measured and compared the performance of a number of IoT applications based on
response time, throughput, jitter, and scalability. Moreover, Ismail and Materwala [13]
evaluated and compared the performance of the blockchain and the client/server cloud
paradigms for healthcare applications.

Furthermore, scalability has been investigated in the cloud environment to determine
the capacity of the uploaded applications. Expésito et al. [14] proposed methods to reduce
the virtualization overhead effect on the scalability of communication-intensive HPC codes.
A method that combined multiple threading and message-passing techniques to run HPC
applications was presented. The scalability and the cost efficiency were the major metrics
used to evaluate the performance. An experimental evaluation of the auto-scaling policies’
performance was performed in [15] as well. These experiments performed different group
and pairwise comparisons to recognize the performance dissimilarities among the seven
strategies. A recent work by Potodar et al. [16] presented a performance evaluation of cloud
docker containers and VMs in terms of CPU performance, throughput, disk input/output,
load testing, and operation speed measurement. The work used multiple benchmarking
tools in order to compare docker containers and VMs, and the comparisons showed that
dockers performed better in terms of the chosen technical measurements. Al-Said Ahmad
and Andras [17] also used a technical scalability measurement for cloud-based software
services. They were inspired by the technical scalability and elasticity metrics. They

Future Internet 2021, 13, 314

40f12

employed two different cloud-based systems, Media-Wiki and OrangeHRM, to illustrate
their metrics” usefulness and compared the performance of these systems in terms of
scalability on two platforms: Amazon AWS EC2 and Microsoft Azure.

In this work, we aim to continue the work presented in [17]. Thereby, we investigated
the performance of two popular and commonly used API-based applications for different
numbers of users on cloud platforms.

3. Methodology and Experimental Setting

As discussed earlier, cloud computing is one of the most common promising technolo-
gies. Individuals, organizations, and enterprises can focus on developing their main activi-
ties while leaving the IT services” maintenance and development to the cloud providers.
APIs act as the interfaces that connect the service providers to the customers or other
developed services. The most recent services provided on cloud platforms are performed
through APIs. These APIs are used to provide services to the consumers in addition to
managing and monitoring them. Investigating the performance of different API-based
applications on different cloud platforms is considered an important issue. It facilitates
the process of selecting the most suitable platform for each developed application and/or
service and the main effects or considered parameters.

3.1. Testing Process and Approach

In this work, we introduce a performance evaluation study that aims to assess different
cloud computing platforms for different API-based application categories (i.e., educational
and professional). These categories were selected because they have been the ones most
commonly deployed in the cloud environment during the COVID-19 lockdowns. The entire
world suddenly switched to online studies, and most professional businesses went online
as well.

Figure 1 summarizes the sequential steps of the proposed experimental study. The
first step was to select applications for the testing process and investigate their charac-
teristics and the parameters affected. In our work, two mobile applications based on
web-APIs were selected from two different categories. These applications were Sebawayh
(i.e., educational application) and TaqTak (i.e., professional application). Sebawayh is an
educational web-API and smartphone app for Arabic language learning. It has three main
users: students, teachers, and system administrators. It has multiple learning levels and
categories. The system has a registration form for the students before starting any level
of learning on the system. It has a smartphone interface that sends HTTP requests to the
web-API On the other hand, TaqTak is a solar power renewable energy design, monitoring,
and management application. It is utilized to monitor power system usage and to show
reports about the system. It can also be utilized by engineers to calculate the voltage
requirements of any system. It calculates the voltages and battery power and monitors
consumption. It can be connected to a third-party application to receive power usage data
for the monitoring process.

The next step was to lease cloud servers and configure them according to the tested
applications. The most popular and commonly used platforms were selected in this study
(i.e., Amazon AWS EC2 and Microsoft Azure). The third step was to deploy the APIs on
the configured servers. A load test method was used to compare the two applications on
the two cloud platforms. To test these web services/APIs, an open-source load-testing
framework was utilized, named Apache JMeter [18]. This framework is used for application
and web service testing, as well as for measuring and analyzing the performance of a variety
of web services including web-based /cloud applications. JMeter, considered as a multi-
threading framework, allows concurrent workload sampling [19]. It can be configured to
automate web services’ testing regarding different parameters. Finally, the collected results
were analyzed and compared according to the considered parameters, as illustrated in
Figure 1. In this study, we focused on collecting technical performance parameters. All

Future Internet 2021, 13, 314 50f12

monitoring data were extracted from JMeter after each test completed [20]. The investigated
parameters of this study were:

* Response time: measures the required time for handling the request and returning
the results for the request;

* Latency: measures the required time for the request to reach the server. This time is
used to measure the network quality between the server location and clients. It also
can be impacted by the load that hits the server;

* Processing time: measures the required time of the operating system to work or
process a request;

¢ Throughput: measures the number of tasks that have been completed during a
certain period of time. In the cloud environment, throughput measures how fast the
application can transfer the data between a client and a server.

Choose projects Create Servers Deployments
. C(Eb;
¥ Eus e)
o |kl .
~ e =k
e g @
Testing Analysis Comparison

A [

P |__| B & s YS! wicoicn nume
e ayacd IR Y *

Tl ==

Figure 1. Steps of the experimental study.

3.2. Cloud Platforms’ Configuration

In order to perform the comparison study, we leased two cloud servers in the same
geographical location. The first server was leased and configured for Amazon AWS.
The other server was configured for the Microsoft Azure platform. The two web-API (i.e.,
Sebawayh and TaqTak) were deployed on these servers. These applications adopt the
Django web framework. The configuration parameters of these two servers are given in
Table 1. The Ubuntu operating system was utilized on both servers with two CPUs, with
four gigabytes of RAM memory and five gigabytes assigned as a secondary storage for
each server in these experiments.

Table 1. Servers’ configuration parameters.

Parameters Amazon AWS EC2 Microsoft Azure
Server Type Ubuntu Ubuntu

Instant Type T2 medium T2 medium
Number of CPUs 2 2

RAM 4 4

Storage 5 5

This framework was configured to automate the performance tests with different
parameters, such as the number of requests, the number of users, and the minimum and
maximum delay time between the different requests. Apache JMeter was configured two
times for the different tested applications. The load test was also performed using these

Future Internet 2021, 13, 314

6 of 12

configurations on both leased servers. Table 2 shows the pages that were requested by the
Sebawayh application. Two main methods were tested in this set of experiments: “Post”
and “Get”. Different HTTP requests were applied for the different APIs/paths as well.
Moreover, Table 3 gives the pages requested by the TaqTak application and their paths.

Table 2. Pages requested by the Sebawayh application.

No. HTTP Request Method API/Path

1 authentication Post /api/v1/auth/authenticating/
2 user Get /api/v1/auth/user/2/

3 language Get /api/v1/language/

4 language info Get /api/v1/language_levels/2/
5 language level Get /api/v1l/language_levels/

6 language to learn Get /api/v1/lang_to_learn/

7 setting Get /api/v1/setting/

8 notification Get /api/v1/notification/

9 to learn Get /api/vl/why_To_Learn/

10 why to learn post Post /api/v1/why_To_Learn/

Table 3. Pages requested by the TaqTak application.

No. HTTP Request Method API/Path

1 authentication Post /api/v1/auth/authenticating/
2 user Get /api/v1/auth/user/2/
3 country Get /api/v1/country/

4 city Get /api/v1/city/

5 notification Get /api/v1/notification/
6 role Get /api/v1/role/

7 project Get /api/v1/project/

8 category Get /api/v1/category/

9 ticket Get /api/v1/ticket/

10 setting Get /api/v1/setting/1/

During the time of the experimental test, all network applications were disabled on
the computer used. Moreover, all other devices in the lab where we ran our experiments
were disconnected from the Internet to reduce the latency and the delay of the experiments.
This set of experiments required around sixty hours of execution time on the leased servers.
Furthermore, the tested experiments were run for different numbers of users: 500 users,
1000 users, 2000 users, and 4000 users. Table 4 illustrates the parameter setting for the
different numbers of tested users, including the experiment time, number of iterations,
number of experiments, and total running time.

Table 4. Experimental parameter setting.

No. of Users Experiment Time No. of Iterations No. of Experiments Total Time
500 500s 10 40 5h

1000 1000 s 10 40 11h

2000 2000 s 10 40 22h

4000 4000 s 5 20 22h

4. Experimental Results and Analysis

To compare the applications from the two different API-based categories on both cloud
platforms, four performance metrics were selected: response time, latency, processing time,
and throughput.

Future Internet 2021, 13, 314

7 of 12

4.1. The Experimental Scenarios

Table 5 gives the scenarios that were utilized in this work. The four performance
metrics were measured for both applications on the two different investigated cloud
platforms. Then, the outputs of these four experiments were compared. We emphasize that
we compared the two application categories (i.e., education and professional) in the cloud
environment and how they behaved in the different cloud paradigms.

Table 5. The experimental scenarios.

Platform Scenariol Scenario2 Scenario3 Scenario4

Amazon

AWS Sebawayh TaqTak E\(I)’tl};

EC2

Microsoft Sebawayh TaqTak - Both APIs
zure

4.2. Results for Different Cloud-API-Based Applications on the Amazon AWS EC2 Platform

We investigated the four measured parameters for the selected applications on the
AWS EC2 platform. Figure 2a shows the response time of both cloud-API-based applica-
tions. We can see from the figure that the response time of each application was stable for
the different numbers of tested users. The number of users never affected the system’s per-
formance or its ability to handle the requests. However, we can observe that Sebawayh had
a faster response time than the TaqTak application. The reason behind this is the size of the
data transmitted in each application. A larger number of request and response messages
of the applications increased the response time parameter on the tested cloud platform.
TaqTak requires transferring more parameters between the two end nodes compared to
Sebawayh. The black interval lines in all performance evaluation figures illustrate the
variation of the response times of the different pages requested for each application to
provide accurate results.

The latency parameter of these APIs on the Amazon AWS EC2 platform is illustrated in
Figure 2b. It was approximately the same for both applications for the different investigated
numbers of users. However, the latency of the two applications was different. The latency
of Sebawayh was less than that of TaqTak. This was due to the size of the transmitted data
and the complexity of the investigated applications.

Moreover, Figure 2c shows the processing time of these two applications. We can
observe that Sebawayh required more processing time than the TaqTak service application.
Sebawayh'’s algorithm depends on image processing and the different database transactions
of the users’ levels, grades, and exams. Under a high processing time, the response time of
this application became lower, as seen in Figure 2c, since most of the work was processed
on the servers and did not involve the network. Another observation from Figure 2c is
that the variation of the processing time results of TaqTak was greater than the variation
results of Sebawayh. This was affected by the required services of the different pages in
these applications.

Finally, Figure 2d shows the throughput of the network for these applications in the
Amazon AWS EC2 environment. We can observe that both of these applications obtained a
100% throughput in all tested scenarios, which means that no packets were dropped and
no requests were delayed or ignored.

Future Internet 2021, 13, 314

8of 12

Response Time Latency

5 & &
2 g 2

]

Requestimilisecands
Requestimiliseconds

g
g

=
g

300
250
200
150
100
mmm AWS_Sebawayh = ANS_Sebawayh
-— AWS Taqlak — NNS Taqlak
0 0

500 User 1000 User 2000 User 4000 User 500 User 1000 User 2000 User 4000 User

Number of Users Number of Users

10
08
06
04
0z

== AWS_Sebawayh m— ANS_Sebawayh

— ms Taqtak m—AE Taclzk
oo

Process Time Throughput
500 User 1000 User 2000 User 4000 User 500 User 1000 User 2000 User 4000 User
Number of Users Number of Users

(c) (d)

Figure 2. Results for different cloud-API-based applications on Amazon AWS EC2. (a) Response
time of both APIs on AWS EC2. (b) Latency of both APIs on AWS EC2. (c) Processing time of both
APIs on AWS EC2. (d) Throughput of both APIs on AWS EC2.

2
]

a8 & a
Requestissc

Requestimilisecands
]

2

0

4.3. Results for Different Cloud-API-Based Applications on Microsoft Azure

The same experiments were performed on the Microsoft Azure cloud platform.
Figure 3a shows the response time of these applications on Azure. The same as the results
on AWS EC2, the response time did not depend on the number of users or the number of
requests. The response times for the different numbers of users were the same. We can
also observe that the response time of the TaqTak application was greater than that of the
Sebawayh application. This depends on the complexity of the request/response activities
and the size of the data in the request and the response messages of these categories.

Figure 3b illustrates the latency of both applications on Microsoft Azure. We can
infer from the figure that both obtained similar results, with a higher latency for TaqTak
compared to the Sebawayh application. We can also observe that the number of users did
not affect the latency parameter for either application since the results in all four cases (i.e.,
500 users, 1000 users, 2000 users, 4000 users) were approximately the same.

Figure 3c shows the processing time performance of these investigated applications
on the Azure platform. The processing time of the Sebawayh application was higher than
the processing time of TaqTak, the same as on the AWS EC2 environment. The number of
users also did not impact the processing time parameter on this cloud platform. Finally,
Figure 3d shows the throughput parameter of these two applications on Azure. We can
observe from this figure that both applications obtained approximately 100% efficiency
regarding the throughput.

Future Internet 2021, 13, 314

9of12

Response Time Latency

0
300
250
200
150
100
50
= azure_Ssbawayh = azure_Sebawayh
= = aure_Tagia
o

500 User 1000 User 2000 User 4000 User 500 User 1000 User 2000 User 4000 User

Number of Users Number of Users
10
08
06
04
02
= azure_Sebawayh = Azure_Sebawayh
— e Tagiok
o 0o

Process Time Throughput
500 User 1000 User 2000 User 4000 User 500 User 1000 User 2000 User 4000 User
Number of Users Number of Users

(c) (d)

Figure 3. Results for different cloud-API-based applications on Microsoft Azure. (a) Response time
of both APIs on Azure. (b) Latency of both APIs on Azure. (c) Processing time of both APIs on Azure.
(d) Throughput of both APIs on Azure.

5 & &
2 g 2

]

Requestimilisecands
Requestimiliseconds

= g
g g

2

0

a8 & a
Requestisec

Requestimilisecands
]

2

4.4. Comparison of the Educational Category API on the Two Platforms

In this set of experiments, we aimed to evaluate the performance of the Sebawayh
application on the two different cloud platforms. This would help in recommending the
most suitable platform for the educational category. First, Figure 4b shows the response
time of this application on the two cloud platforms. AWS EC2 had, on average, a 20%
slower response time than Azure. The same was true for the latency parameter. Figure 4a
shows the latency obtained for the educational application on AWS EC2 and Azure. We
can observe that the performance on AWS EC2 had lower latency in all scenarios compared
to that on Azure. The average difference under all scenarios was approximately 2%. This
does not mean that AWS is better than Azure all the time. However, for the educational
application and the location of our clients, AWS EC2 offered lower latency than Azure.

Figure 4c shows the processing time of this application on both cloud platforms. We
can observe from the figure that the processing time of AWS EC2 was much greater than that
of Azure for this application. This means that for other application categories that depend
heavily on processing time, Azure offers a better choice with respect to the computational
delay. Another observation in this figure is that the processing time on Azure changed
when the number of users changed. It slightly increased when increasing the number of
users. It is worth mentioning that our leased server crashed for 4000 users with Azure,
and we repeated the experiment several times to confirm this. This is considered a serious
issue for a salable environment where the number of users is expanding. Figure 4d shows
the throughput for Sebawayh in these environments. The throughput was identical for this
application on the two cloud platforms, as it only depends on the number of transferred
messages, and this was the same in all experiments.

Future Internet 2021, 13, 314

10 of 12

Response Time

360 >0

200 20

250 20

200 8 w0

150 150

100 100

5 50
- ANS_Sebawayh = ANS_Sebawayh
=" = Azure_Sebawayh

500 User 1000 User 2000 User 4000 User 500 User 1000 User 2000 User 4000 User
Number of Users Number of Users.

Requestimilliseconds
Requestimilliseconds

(a) (b)
Process Time Throughput

50

40
,
s
;
;
:
Zx 8a
E 2
3 4
E 2
g 2 g
['4 D(

10

W AWS_Sebawayh
= Aczure_Seba wayh
[] . AVS_Sebawayh
e = oS
’\ > 500 User 1000 User 2000 User 4000 User
Number of Users Number of Users.
(c) (d)

Figure 4. Comparison of the educational category API under the two platforms. (a) Response time
of the Sebawayh application. (b) Latency of the Sebawayh application. (c) Processing time of the
Sebawayh application. (d) Throughput of the Sebawayh application.

4.5. Comparison of the Professional Service Category API on the Two Cloud Platforms

This last set of experiments aimed to determine the best cloud platform for the profes-
sional services category. Figure 5a shows the response time of the professional category
application on the two cloud platforms. We can observe from the figure that the response
time was approximately the same for both cloud environments. It was slightly higher for
AWS EC2 than Azure. This was not the same as for the educational category. This shows
that the selected cloud service depends heavily on the application category that will be
operated or offered.

On the other hand, Figure 5b shows the latency of both platforms. We can observe that
the latency of AWS was lower than that of Azure. Moreover, the number of users on both
platforms did not impact the latency. Figure 5c shows the processing time of both cloud
platforms. We can observe that Azure obtained a lower processing time than AWS EC2,
the same as for the educational category. This means that for higher computational and
processing power, Azure should be selected. Finally, Figure 5d shows the throughput of this
application on both platforms. Again, a 100% throughput was obtained for both platforms.

Future Internet 2021, 13, 314

110f12

Requestimiliseconds
g B ¥ & 8
8 2 g 2

=
g

m— ANS_Taqtak
- Amre Taqtak
0

2

500 User

Response Time

1000 User 2000 User 4000 User
Number of Users.

(@)

Process Time

Requestimilliseconds

Latency

500 User 1000 User 2000 User
Number of Users

(b)

Throughput

m— AWS_Tagtak
= cure_Tagiak

4000 User

&

8
Requestissc

Requestimilisecands
]

2

10
50
08
06
04
0z
= ANS_Taqtak = AWS_Tagtak
— Amre Taqu Ao Tagtak
0 oo

500 User 1000 User 2000 User 4000 User 500 User 1000 User 2000 User 4000 User
Number of Users Number of Users

(c) (d)

Figure 5. Comparison of the professional service category API on the two cloud platforms. (a) Re-
sponse time of the TaqTak API. (b) Latency of the TaqTak API. (c) Processing time of the TagTak API.
(d) Throughput of the TaqTak APL

5. Conclusions and Future Work

In this work, we evaluated the performance of two different categories of API-based
applications on the Amazon AWS EC2 and Microsoft Azure cloud platforms. A perfor-
mance evaluation study was conducted to compare the performance of Sebawayh and
TaqTak on these two most commonly adopted cloud platforms. The experimental results
showed that: the performance metric selected depended mainly on the API category rather
than the number of users. The educational API (i.e., Sebawayh) had less response time and
less latency than the professional application (i.e., TaqTak) on the leased cloud platforms.
The processing time of Azure was lower than that of AWS EC2. The throughput of these
applications did not change or decreased when moving from one cloud platform to the
other. This means that the Azure platform is the best choice for API-based applications
that require heavy computations.

As future works, other API categories/taxonomies will be investigated, tested, and
compared to show the differences among them. Then, a full guideline for deployment in
all categories can be constructed. Other parameters could be tested on cloud environments
for different loads and basic parameters. Moreover, the usability of API-based applications
can be further investigated, also considering the user’s quality of experience.

Author Contributions: Conceptualization, Y.A. and M.B.Y.; methodology, Y.A. and M.B.Y.; software,
Y.A. and M.B.Y; validation, Y.A. and M.B.Y,; investigation, Y.A. and M.B.Y.; resources, Y.A. and
M.B.Y,; data curation, Y.A. and M.B.Y.; writing—original draft preparation, Y.A.; writing—review
and editing, A.A.-S.A. and M.B.Y,; visualization, Y.A.; supervision, A.A.-S.A. and M.B.Y.; project
administration, A.A.-S.A ; funding acquisition, A.A.-S.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is partially supported by the scientific research Deanship of Philadelphia University.

Future Internet 2021, 13, 314 12 of 12

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Acknowledgments: This work has been done in Philadelphia University, Amman, Jordan as a part
of master thesis.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Khanghahi, N.; Ravanmehr, R. Cloud Computing Performance evaluation: Issues and Challenges. Int. |. Cloud Comput. Serv.
Archit. 2013, 5, 29-41. [CrossRef]

2. Khalid, R.; Abdullah, T.; Rashid, I. Performance Degradation Factors in Cloud Computing. Int. J. Sci. Eng. Res. 2016, 7, 384-394.

3. Ravanello, R.; Desharnais, J.; Villalpando, L.; April, A.; Gherbi, A. Performance meas-urement for cloud computing applications
using ISO 25010 standard characteristics. In Proceedings of the 2014 Joint Conference of the International Workshop on Software
Measurement and the International Conference on Software Process and Product Measurement, Rotterdam, The Netherlands,
6-8 October 2014; pp. 41-49.

4. Altexsoft: What Is API: Definition, Types, Specifications, Documentation. Available online: https://www.altexsoft.com/blog/
engineering/what-is-api-definition-types-specifications-documentation/ (accessed on 10 April 2021).

5. ZDNET Homepage. Available online: https:/ /www.zdnet.com/article/the-top-cloud-providers-of-2021-aws-microsoft-azure-
google-cloud-hybrid-saas/ (accessed on 29 April 2021).

6. Jackson, K.; Muriki, K.; Canon, S.; Cholia, S.; Shalf, J. Performance Analysis of High Performance Computing Applications on the
Amazon Web Services Cloud. In Proceedings of the 2nd IEEE Interna-tional Conference on Cloud Computing Technology and
Science, Indianapolis, IN, USA, 30 November—3 December 2010; pp. 159-168.

7. Bautista, L.; Abran, A.; April, A. Design of a Performance Measurement Framework for Cloud Computing. J. Softw. Eng. Appl.
2012, 5, 69-75. [CrossRef]

8. Addamani, S.; Basu, A. Performance Analysis of Web Applications on IaaS Cloud Computing Platform. Int.]. Comput. Appl. 2013,
64, 0975-8887. [CrossRef]

9. Vasar, M,; Srirama, S.; Dumas, M. Framework for Monitoring and Testing Web Application Scalability on the Cloud. In Proceedings
of the WICSA /ECSA "12: WICSA /ECSA 2012 Proceedings Companion Volume, Helsinki, Finland, 20-24 August 2012.

10. Pace, F; Milanesio, M.; Venzano, D.; Carra, D.; Michiardi, P. Experimental Performance Evaluation of Cloud-Based Analytics-as-a-
Service. In Proceedings of the 2016 IEEE 9th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA,
27 June-2 July 2016.

11. Mariani, G.; Anghel, A.; Jongerius, R.; Dittmann, G. Predicting Cloud Performance for HPC Applications: A User-oriented
Approach. In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Madrid,
Spain, 14-17 May 2017; pp. 524-533.

12. Mishra, L.; Varma, S. Performance evaluation of real-time stream processing systems for Internet of Things applications. Future
Gener. Comput. Syst. 2020, 113, 207-217.

13. Ismail, L.; Materwala, H. Blockchain paradigm for healthcare: Performance evaluation. Symmetry 2020, 12, 1200. [CrossRef]

14. Expésito, R.; Taboada, G.; Ramos, S.; Tourifio, J.; Doallo, R. Performance analysis of HPC applications in the cloud. Future Gener.
Comput. Syst. 2013, 29, 218-229. [CrossRef]

15. Ilyushkin, A.; Ali-Eldin, A.; Herbst, N. An Experimental Performance Evaluation of Au-toscaling Policies for Complex Workflows.
In Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, L’Aquila, Italy, 22-26 April 2017.

16. Potdar, A.M.; Narayan, D.G.; Kengond, S.; Mulla, M.M. Performance Evaluation of Docker Container and Virtual Machine.
Procedia Comput. Sci. 2020, 171, 1419-1428. [CrossRef]

17. Al-Said Ahmad, A.; Andras, P. Scalability analysis comparisons of cloud-based software services. J. Cloud Comput. 2019, 8, 10.
[CrossRef]

18. Nevedrov, D. Using JMeter to Performance Test Web Services. dev2dev 2006, 1-11. Available online: https:/ /loadstorm.com/files/
Using-JMeter-to-Performance-Test-Web-Services.pdf (accessed on 10 April 2021)..

19. JMeter: Apache [Meter. Available online: https:/ /jmeter.apache.org/ (accessed on 10 April 2021).

20. JMeter Glossary: [Meter Glossary. Available online: https://jmeter.apache.org/usermanual/glossary.html (accessed on

10 April 2021).

http://doi.org/10.5121/ijccsa.2013.3503
https://www.altexsoft.com/blog/engineering/what-is-api-definition-types-specifications-documentation/
https://www.altexsoft.com/blog/engineering/what-is-api-definition-types-specifications-documentation/
https://www.zdnet.com/article/the-top-cloud-providers-of-2021-aws-microsoft-azure-google-cloud-hybrid-saas/
https://www.zdnet.com/article/the-top-cloud-providers-of-2021-aws-microsoft-azure-google-cloud-hybrid-saas/
http://dx.doi.org/10.4236/jsea.2012.52011
http://dx.doi.org/10.5120/10707-5668
http://dx.doi.org/10.3390/sym12081200
http://dx.doi.org/10.1016/j.future.2012.06.009
http://dx.doi.org/10.1016/j.procs.2020.04.152
http://dx.doi.org/10.1186/s13677-019-0134-y
https://loadstorm.com/files/Using-JMeter-to-Performance-Test-Web-Services.pdf
https://loadstorm.com/files/Using-JMeter-to-Performance-Test-Web-Services.pdf
https://jmeter.apache.org/
 https://jmeter.apache.org/usermanual/glossary.html

	Introduction
	Related Work
	Methodology and Experimental Setting
	Testing Process and Approach
	Cloud Platforms' Configuration

	Experimental Results and Analysis
	The Experimental Scenarios
	Results for Different Cloud-API-Based Applications on the Amazon AWS EC2 Platform
	Results for Different Cloud-API-Based Applications on Microsoft Azure
	Comparison of the Educational Category API on the Two Platforms
	Comparison of the Professional Service Category API on the Two Cloud Platforms

	Conclusions and Future Work
	References

