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The effect of contact conditions on the performance of flexural seismic metasurfaces
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Abstract. Plane-strain motion of a flexural seismic metasurface in the form of a regular array of thin Kirchhoff plates attached
to the surface of an elastic half-space is analysed. Two types of contact conditions, including simply supported plates and
plates moving along horizontal rails are studied. Dispersion of time harmonic waves is investigated both asymptotically and
numerically. A major effect of the contact conditions on metasurface behaviour is discovered. In particular, it is shown that
frequency band gaps are not the feature of the array composed of simply supported plates. It is also demonstrated that
the scaling laws, expressed through geometric and material problem parameters, drastically differ from each other for two
considered setups.
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1. Introduction

Flexural seismic metasurfaces are currently much less studied than their counterparts composed of arrays
of elastic rods bars or mass-spring resonators transmitting longitudinal vibrations, see for example [3,
11,18,19]. These ‘metasurfaces’, motivated by experimental results of real life seismic systems [2], have
consistently been demonstrated to produce significant band gap effects for surface waves in a variety of
media [9,13,20], with potential applications in wave suppression and energy harvesting [1].

In previous treatments, flexural metasurfaces have been shown to also produce these band gap effects
but oriented to surface wave suppression over a lower-frequency range [10]. However, in contrast to
longitudinal vibrations, the transcendental frequency equations for transverse vibrations in general do
not have a simple explicit solution, often leading to computational approaches and to more involved and
sophisticated dispersion relations governing wave propagation along flexural metasurfaces. The form of the
aforementioned dispersion relations is strongly affected by the contact conditions imposed at the interface
between the flexural array and elastic half-space. Several examples of basic contact conditions have been
recently considered in [16]. The aim of the cited paper was to adapt a previously developed specialised
asymptotic formulation for Rayleigh-type surface waves, for examples, see [5,7,17] and references within,
for modelling of flexural metasurfaces. This formulation was also implemented for other types of seismic
metasurfaces in [4,17].

Below, we develop further the framework established in [16] aiming a deeper analytical insight into
the effect of contact conditions on the overall performance of flexural metasurfaces. A plane-strain time-
harmonic problem is considered for a regular array of thin Kirchhoff plates attached to the surface of an
elastic half-space. Two setups of contact conditions, including the simplest case of simply supported plates
and plates moving without friction along rigid horizontal rails are tackled. The latter is partly inspired by
fresh treatments of multi-scale gyroscopic systems, where uni-directional Rayleigh and interfacial waves
can be generated [6,12].
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The dispersion relations for both types of the contact conditions are derived from the 2D dynamic
equations in linear elasticity approximating a discrete flexural array by continuous surface stresses, similar
to previous considerations on the subject, for example see [3,17] and also an earlier contribution [15]. The
local expansions of the dispersion relations near the eigenvalues for 1D problems for a Kirchhoff plate
with a free upper end and specific boundary conditions at its lower end, arising in each of the two studied
scenario, are derived. The limiting behaviours of the derived expansions at wavelength ranges of interest,
including a short-wavelength behaviour, are subsequently investigated.

A number of useful conclusions emerge from the presented asymptotic analysis. In particular, it is
demonstrated that an array of simply supported plates does not support frequency band gaps. In addition,
the dimensionless aggregates expressing the scaling laws are determined for both sets of contact conditions,
as in [14]. These are shown to depend on geometric and physical problem parameters, including the lengths
and thickness of the plates considered, the distance between plates in the array, as well as the ratios of
material densities and stiffnesses between the plates and the elastic half-space. It is shown that due to
the different contact conditions, these two scaling laws differ significantly; most notably the scaling law
for plates on rails does not depend on the ratio of stiffnesses.

The content of the paper is organised as follows: The statement of the problem, including two studied
setups of contact conditions, is presented in Sect. 2. Sections 3 and 4 consider the arrays of simply sup-
ported plates and the plates moving along rails, respectively, deriving scaling laws for the wave behaviour
of each system. The transcendental frequency equations for one-dimensional boundary value problems in
the theory of plate bending are more fully explained in “Appendix”.

2. Statement of the problem

Consider a regular array of thin identical Kirchhoff plates attached to the surface of an elastic half-
space, see Fig. 1. We restrict ourselves to the plane-strain problem in Cartesian coordinates xi, i = 1, 2
(−∞ < x1 < ∞, 0 < x2 < ∞) expressing the displacement vector u = [u1, u2]T through the wave
potentials ϕ and ψ as

u1 =
∂ϕ

∂x1
− ∂ψ

∂x2
and u2 =

∂ϕ

∂x2
+

∂ψ

∂x1
. (1)

In this case, the stresses entering into the boundary conditions considered below are given by

σ12 = μ
(
2

∂2ϕ

∂x1∂x2
+

∂2ψ

∂x2
1

− ∂2ψ

∂x2
2

)
, σ22 = λ

(∂2ϕ

∂x2
1

+
∂2ϕ

∂x2
2

)
+ 2μ

(∂2ϕ

∂x2
2

+
∂2ψ

∂x1∂x2

)
, (2)

where λ and μ are Lamé’s first and second parameters, respectively. The potentials satisfy the linear wave
equations

∂2ϕ

∂x2
1

+
∂2ϕ

∂x2
2

− 1
c21

∂2ϕ

∂t2
= 0 and

∂2ψ

∂x2
1

+
∂2ψ

∂x2
2

− 1
c22

∂2ψ

∂t2
= 0, (3)

where t is time, c1 =
√

(λ + 2μ)/ρ and c2 =
√

μ/ρ are the longitudinal and shear wave speed, respectively,
and ρ is the volume mass density of the half-space.

The flexural motion of the thin elastic plates forming the studied array each obey the classical Kirchhoff
plate equation over the interval −L ≤ x2 ≤ 0, where L is the height of each plate

D
∂4w

∂x4
2

+ 2ρ0h
∂2w

∂t2
= 0, (4)

with D = 2E0h
3/3(1 − ν2

0). Here, w(x2, t) is the plate displacement parallel to the surface of the half-
space, h is the plate half thickness, E0 and ν0 the Young modulus and Poisson ratio of the plate material,
and ρ0 is the mass density.
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Fig. 1. A periodic array of thin plates, with array constant l, height L and half thickness h, attached to the surface of an
elastic half-space

The considered problem can be also formulated in terms of a beam array as in the recent paper
[16]; however, the reduction in original 3D setup to a 2D plane strain problem appears to be more
straightforward for a plate array, see Fig. 1.

The individual bending moment G(x2, t) and the transverse shear force N(x2, t) of each plate are
given by

G = −D
∂2w

∂x2
2

and N = −D
∂3w

∂x3
2

. (5)

The ends of the plates at x2 = −L are assumed to be traction free, i.e.

G = N = 0 (6)

In what follows, we concentrate on two types of contact conditions along the junction between the half-
space and plate array, namely simply supported plates and also plates moving along a rail, see [16] for
further detail.

For simply supported plates, the aforementioned conditions at x2 = 0 can be written as

w = u1 and
∂2w

∂x2
2

= 0, (7)

and

σ21 =
N

l
and σ22 = 0. (8)

Here, l is the horizontal distance between two neighbouring plates at x2 = 0. In the parameter range of
interest, where a characteristic wavelength of the travelling wave is supposed to be large in comparison
with l, we assume that the surface shear stress σ21, due to the effect of plate array, is uniformly distributed,
e.g. see [3,4,15].

For plates on rails, the vertical gradient of half-space is supposed to be equal to the horizontal gradient
of a plate, resulting in the following contact condition at x2 = 0

∂w

∂x2
=

∂u2

∂x1
, (9)
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together with

G =
h2

3
∂T

∂x1
, N = 0, (10)

and

σ21 = 0 and σ22 =
T

l
, (11)

where T is a vertical force transmitted to the half-space from the plates.
The main focus of the paper is on a comparative analysis of these two types of the boundary conditions

on the performance of the studied seismic metasurface, including the influence of the problem parameters
on the associated band gaps along with the derivation of scaling laws, e.g. see [14].

3. Simply supported plates

The travelling surface wave solution of Eq. (3) can be written as

ϕ = Aϕei(kx1−ωt)−kαx2 and ψ = Aψei(kx1−ωt)−kβx2 , (12)

where k is wave number, ω is frequency, Aϕ and Aψ are constants and

α =
√

1 −
( ω

c1k

)2

and β =
√

1 −
( ω

c2k

)2

. (13)

Substituting (12) into the boundary conditions 8 and expressing the transverse shear force N from the
solution of the 1D problem for a plate, see Eqs. (4)–(7), we arrive at a linear set of algebraic equations
for the constants Aϕ and Aψ. These can be expressed as

ik(2μkα + S)Aϕ + k
(
μk(β2 + 1) + βS

)
Aψ = 0,

(
λ − α2(λ + 2μ)

)
Aϕ + i2μβAψ = 0,

(14)

where

S =
D

L3l

γ3P (2)

P (1)
and γ =

(
3(1 − ν2

0)
ρ0
E0

)1/4
√

ω

h
L, (15)

with the functions P (1)(γ) and P (2)(γ) defined by (A3) and (A4) in “Appendix”.
Equating the determinant of (14) to zero, we arrive at the sought for dispersion relation

R +
β(β2 − 1)

μk
S = 0, (16)

where

R = (1 + β2)2 − 4αβ, (17)

is the Rayleigh denominator. The second term in the derived dispersion relation represents the effect of
the plate array suppressing the Rayleigh wave propagation. This becomes dominant at the zeros γ = γ1
of the function P (1)(γ) corresponding to the eigenfunctions of a plate with a clamped end x2 = 0, also
see “Appendix”. In the vicinity of γ = γ1, we obtain from (16)

R1 +
β1(β2

1 − 1)
μk(γ − γ1)

S1 = 0, (18)

with

S1 =
D

L3l

γ3
1P

(2)
1

[P (1)]1
, (19)
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where the suffix ‘1’ means that all the functions above are taken at γ = γ1 or ω = ω1. Here and below

ωn =
γ2

n

L2

√
D

2ρ0h
, n = 1, 2, 3, 4. (20)

The numerator of the second term in formula (18) takes zero values at β1 = 0 and β1 = 1. At β1 = 0,
the studied travelling wave is no longer confined to propagating along the surface, switching to a wave
radiating into interior. In this case, k =

ω1

c2
at γ = γ1. To derive a local approximation at |γ −γ1| � 1 we

substitute back β instead of β1 outside the brackets in the numerator of the second term in (18) having

k ≈ ω

c2

(
1 +

1
2
A2(γ − γ1)2

)
, (21)

where

A =
ω1μ

c2S1
. (22)

The value β1 = 1 is related to the short wavelength limit as k → ∞. At k � 1, we have from (13)

α1 ≈ 1 − 1
2

( ω1

c1k

)2

and β1 ≈ 1 − 1
2

( ω1

c2k

)2

. (23)

Then, inserting these into (18), we finally deduce

k ≈ B1

γ − γ1
(24)

with

B1 =
S1

μ

c21
2(c22 − c21)

. (25)

At the same time, the plate array does not suppress the surface wave propagation at the zeroes γ = γ2
of the function P (2)(γ) in the numerator of (16), associated with the eigenvalues of a plate with a free
end at x2 = 0. Near γ = γ2 and c = cR, where c =

ω

k
and cR is the Rayleigh wave speed satisfying the

equation (17), the original dispersion relation (16) may be simplified as

R′(c2 − c2R) +
βR(β2

R − 1)(γ − γ2)
μk

S2 = 0, (26)

where

S2 =
D

L3l

γ3
2

[
P (1)

]′
2

P
(1)
2

, R′ = 2
( βR

c21αR
+

αR

c22βR
− 2(1 + β2

R)
c22

)
(27)

and

αR =

√
1 − c2R

c21
, βR =

√
1 − c2R

c22
(28)

In the formulae above, the suffix ‘2’ plays the same role as the suffix ‘1’ for the local dispersion relation
(18). The solution of the shortened dispersion equation (26) can be written as

c ≈ cR

(
1 + m(γ − γ2)

)
, (29)

where

m =
βR(1 − β2

R)L2

√
2μcRR′γ2

2

√
ρ0h

D
S2. (30)
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Fig. 2. Dispersion curves calculated by (16)

The approximation (29) is in line with the asymptotic treatment in [16], based on an explicit model for
the Rayleigh wave.

Next, making natural assumptions γ2 ∼ 1, αR ∼ 1, βR ∼ 1, cR ∼ c1 ∼ c2, R′ ∼ 1/c22 and S2 ∼
μ0h

3L−3l−1, we get

m ∼ h2

Ll

√
μ0ρ0
μρ

, (31)

where μ0 = E0/2(1 + γ0). The last formula defines the scaling characteristic of the near Rayleigh regime
and is of particular importance for understanding multi-parameter nature of the problem.

Numerical examples are presented in Figs. 2, 3 and 4. The problem parameters are L = 8 m, l = 2 m,
h = 0.5 m, ρ0 = 1000 kg/m3, E0 = 15 GPa, ν0 = 0.3, λ = 50 MPa, μ = 20 MPa and ρ = 1500 kg/m3. In
Fig. 2, the dispersion curves are plotted using the full dispersion relation (16). The frequencies ω1 and ω2

are calculated by the formula (20) for the smallest roots of the transcendental equations (A2) at n = 1
and n = 2. Here and below the lines, ω = kc2 and ω = kcR are also shown.

In Figs. 3 and 4, asymptotic results are compared with exact ones. As in Fig. 2, the solid line cor-
responds to the dispersion curve calculated by (16). The dispersion curves evaluated by the asymptotic
formula (24) in Fig. 3 and (21) in Fig. 4 are plotted with dashed lines. These figures clearly demonstrate
that the array of simply supported plates does not manifest band gaps near the frequency ω1.

4. Plates on rails

In the case of the contact conditions (9)–(11), the constants Aϕ and Aψ in the formula (12) for the
travelling wave solution satisfy the linear equations

2αiAϕ + (β2 + 1)Aψ = 0,[
k2

(
λ − α2(λ + 2μ)

)
+ αQ

]
iAϕ −

[
2μk2β − Q

]
Aψ = 0,

(32)

where

Q =
3D

L2lh2

γ2P (2)(γ)
P (3)(γ)

, (33)

with P (2)(γ) and P (3)(γ) given by (A4) and (A5), respectively, and all other quantities defined as before.
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Fig. 3. Dispersion curves calculated by (16) (solid line) and (24) (dashed line)

Fig. 4. Dispersion curves calculated by (16) (solid line) and (21) (dashed line)

The dispersion relation corresponding to (32) takes the form

R +
α(β2 − 1)

μk2
Q = 0, (34)

with R given by (17).
Near each of the roots γ = γ3 of the denominator of Q a local form of (34) can be written as

R3 +
α3(β2

3 − 1)
μk2(γ − γ3)

Q3 = 0, (35)

where

Q3 =
3D

L2lh2

γ2
3P

(2)
3[

P (3)
]′
3

, (36)

with the suffix ‘3’ defined similarly to the suffices ‘1’ and ‘2’ in the previous section.
The asymptotic behaviour of the last dispersion relation at k � 1, when β3 → 1, is given by

k2 ≈ β3

γ − γ3
, (37)
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Fig. 5. Dispersion curves calculated by (34)

Fig. 6. Dispersion curves calculated by (34) (solid line) and (37) (dashed line)

with

β3 =
Q3

μ

c21
2(c22 − c21)

. (38)

In contrast to the dispersion relation (18) in the previous section, the numerator of the second term in
the formula (35) does not take a zero value at β3 = 0. Thus, the investigated travelling wave radiates
into the half-space over a vicinity of γ = γ3. As a result, the considered contact conditions (9)–(11) may
support stop bands, which are not the feature of the contact conditions (7)–(8) corresponding to simply
supported plates.

Let us return to the dispersion relation (34), in order to determine the upper band gap border γ = γ4.
At β = 0, it becomes

P (4)(γ) = 0, (39)

where

P (4)(γ) = P (3)(γ) − 3

√
2

1 − ν

L2

lh

ρ0
ρ

P (2)(γ)
γ2

. (40)
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Now, in formula (29), for the near Rayleigh behaviour, we set

m =
αR(1 − β2

R)
μR′D

ρ0hL4

γ4
2

Q2 (41)

with

Q2 =
D

L2lh2

γ2
2

[
P (2)

]′
2

P
(3)
2

. (42)

In this case,

m ∼ L2

lh

ρ0
ρ

, (43)

which exhibit significantly different physical relations to the similar scaling law in the previous section,
see (31); most notably, this scaling law does not depend on the ratio of stiffnesses between the plates and
half-space.

It is worth noting that for m � 1 or m � 1, the stop band border γ4 may be explicitly evaluated
as perturbations to the values γ2 and γ3, respectively, starting from formulae (39) and (40), predicting a
proximity of the frequency γ4 to its limiting values γ2 and γ3 at small or large m.

Numerical data is shown in Figs. 5 and 6. The values of the problem parameters and meaning of all
lines are the same as in the previous section. The frequencies ω3 and ω4 correspond to the smallest roots
of (A2) at n = 3 and (39), respectively.

5. Concluding remarks

The performance of flexural seismic meta-surfaces drastically depends on coupling between elastic media
and plate arrays incorporated via contact conditions along related interfaces. This is illustrated by two
examples concerned with the arrays of simply supported plates and plates moving along rigid horizontal
rails, see (7), (8) and (9)–(11), respectively. In the development of the recent consideration [16], mainly
restricted to the numerical validation of the specialised surface model in [5,7,17], the focus is moved to
asymptotic analysis of the original plane-strain problem in Sect. 2. The full dispersion relations (16) and
(34) are examined over the most important ranges of wavelength and frequencies, including band gap
borders and near Rayleigh zones, where the array considered does not significantly distort surface wave
propagation.

The short-wave limiting behaviours associated with lower band gaps borders are given by the formulae
(24) and (37) predicting horizontal asymptotes at k → ∞ for both types of contact conditions. At the
same time, as it follows from the asymptotic expansion (21) for the array of simply supported plates, the
upper band gap border occurs at the same frequency as the associated short wave asymptote. Therefore,
the array in question does not support any frequency band gaps. Numerical results presented in Sect. 4
show that this is not the case for the array composed of plates on rails.

The local approximations near the points shown in dispersion diagrams corresponding to the Rayleigh
wave, see (29) with (30) and (41), may be related to the dimensionless aggregates (31) and (43) involving
the problem parameters h, L, ρ, ρ0, μ and μ0 defined in Sect. 2. These aggregates determine scaling laws
characterising the efficiency of surface wave suppression by these flexural arrays. It is remarkable that
the aforementioned formulae have little in common. Importantly, the second scaling law (43) for plates
on rails does not contain the ratio of material stiffnesses μ and μ0. In spite of all the same problem
parameters, they are governed by principally different coupling mechanisms.



  194 Page 10 of 11 A. S. M. Alzaidi et al. ZAMP

Appendix

The time-harmonic solution of the plate equation (3) satisfying the boundary conditions (5) with (6) can
be written as

w = e−iωt
[
C1

(
cos(γx) + cosh(γx)

)
+ C2

(
sin(γx) + sinh(γx)

)]
, (A1)

where x = x2/L + 1 (0 ≤ x ≤ 1), Cj , j = 1, 2 are arbitrary constants, and the frequency parameter γ
is given by (15).

Consider three types of boundary conditions at x = 1 given by
1. w = w′ = 0 (hinge),
2. w′′ = w′′′ = 0 (free edge),
3. w′ = w′′′ = 0 (rail).
On substituting the solution (A1) into each of them, we arrive at the associated transcendental fre-

quency equations

P (n)(γ) = 0, n = 1, 2, 3 (A2)

with

P (1)(γ) = cosh(γ) sin(γ) − cos(γ) sinh(γ), (A3)

P (2)(γ) = cos(γ) cosh(γ) − 1 (A4)

and

P (3)(γ) = cosh(γ) sin(γ) + cos(γ) sinh(γ). (A5)

Asymptotic formulae for the solutions of these equations may be found in [8].
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