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Abstract

We investigate the stability of a circular electrodes-coated dielectric membrane under the combined
action of an electric field and all-round in-plane tension. It is known that such a membrane is
susceptible to the limiting point instability (also known as pull-in instability) which is widely
believed to be a precursor to electric breakdown. However, there is experimental evidence showing
that the limiting point instability may not necessarily be responsible for rapid thinning and electric
breakdown. We explore the possibility that the latter is due to a new instability mechanism,
namely localised axisymmetric necking. The bifurcation condition for axisymmetric necking is first
derived and used to show that this instability may occur before the Treloar-Kearsley instability
or the limiting point instability for a class of free energy functions. A weakly nonlinear analysis
is then conducted and it is shown that the near-critical behavior is described by a fourth order
nonlinear ordinary differential equation with variable coefficients. This amplitude equation is solved
using the finite difference method and it is demonstrated that a localised solution does indeed
bifurcate from the homogeneous solution. Based on this analysis and what is already known for
the purely mechanical case, we may deduce that the necking evolution follows the same three stages
of initiation, growth and propagation as other similar localisation problems. The insight provided
by the current study is expected to be relevant in assessing the integrity of dielectric elastomer
actuators.

Keywords: Nonlinear electroelasticity, dielectric membranes, localisation, stability, bifurcation

1. Introduction

Dielectric elastomer actuators are believed to hold great potential in a wide range of applications
such as human-like robots, stretchable electronics, and energy harvesting (Pelrine et al., 1998, 2000;
Carpi et al., 2008; Duduta et al., 2019; Moretti et al., 2020; Collins et al., 2021; Zhang et al., 2022;
Yarali et al., 2022). It is known that such actuators are susceptible to a variety of instabilities
(Plante & Dubowsky, 2006; Zhao & Wang, 2014), and before they can be deployed with confidence,
a thorough understanding of their stability and buckling properties needs to be established. Thus,
over the past two decades, much effort has been devoted to the understanding of the Hessian
stability criterion (Zhao & Suo, 2007; Norris, 2008; Diaz-Calleja et al., 2008; De Tommasi et al.,
2010; Xu et al., 2010; Li et al., 2011; Lu et al., 2012; Zhao & Wang, 2014; Su et al., 2019; Li et al.,
2021), periodic wrinkling (Bertoldi & Gei, 2011; Rudykh & deBotton, 2011; Dorfmann & Ogden,
2014a; Gei et al., 2014; Yang et al., 2017; Su et al., 2018; Dorfmann & Ogden, 2019; Greaney et al.,
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2019; Su et al., 2020; Broderick et al., 2020; Xia et al., 2021; Bahreman et al., 2022; Khurana et al.,
2022), “two-phase” states (Plante & Dubowsky, 2006; Zhao et al., 2007; Zhou et al., 2008; Zhu
et al., 2012; Kollosche et al., 2012; Huang & Suo, 2012), and the interplay between the limiting
point instability and Treloar-Kearsley (TK) instability (Chen et al., 2021). We refer to Lu et al.
(2020) for a comprehensive review of the relevant literature.

The current study is concerned with a different kind of instability, namely necking, that has
received relatively less attention in the literature. Necking has traditionally been associated with
ductile materials and plastic deformations, but in recent years it has been realised that elastic
necking can occur in a wide range of soft materials under multiple fields; see, for instance, Na et al.
(2006), Mora et al. (2010), Zhao (2012) and Fu et al. (2021). The possibility of localised necking in
a dielectric elastomer has previously been suggested by Blok & LeGrand (1969) and analysed using
an approximate model in a series of papers by Puglisi & Zurlo (2012), Zurlo (2013), De Tommasi
et al. (2013) and Zurlo et al. (2017). The approximate model used in the latter papers is further
discussed in Fu et al. (2018b). For the case of uniaxial tension, localised necking was analysed
by Fu et al. (2018a) using analogies with the inflation problem associated with a rubber tube (Fu
et al., 2008). It was shown that localised necking would initiate when the limiting point of nominal
stress (as a function of stretch with fixed electric potential) or electric potential (as a function of
electric displacement with fixed nominal stress) is reached. As in the inflation problem, the localised
necking would evolve into a “two-phase” deformation that has been observed experimentally by
Plante & Dubowsky (2006), and analysed by Zhao et al. (2007); Zhou et al. (2008); Wang et al.
(2019).

Whereas the connection between the limiting point instability and localised necking is now
well understood in the case of uniaxial tension, this connection no longer exists in the case of
equibiaxial tension, as demonstrated recently by Wang et al. (2022) and Yu & Fu (2022) for
the purely mechanical case. For the case of equibiaxial tension, the limiting point behaviour may
disappear at a large enough dead load, but some kind of snap-through behavior can still be observed
that leads to pull-in failure (Huang et al., 2012). A likely scenario is that even if limiting point
instability does not exist, localised necking can still occur, and it is the axisymmetric necking that
leads to a “two-phase” deformation and possible pull-in failure. This scenario provides the major
motivation for the current study. This paper may also be viewed as a sequel to our earlier paper,
Wang et al. (2022), where the axisymmetric necking was analysed in the purely mechanical context
without an electric field. In that paper, the amplitude equation was left unsolved and it was not
clear whether the equation did have a well-defined localised solution or not although fully numerical
simulations seemed to have answered the question in the affirmative. In the current paper, we derive
the corresponding results for the electroelastic case, and solve the amplitude equation to show that
a localised solution does indeed bifurcate from the homogeneous solution.

To set the context for our current study, consider a dielectric square membrane that is coated
with electrodes and is subject to nominal stresses S1 and S2 in two mutually orthogonal directions
within the membrane plane and a nominal electric field E3 in the thickness direction (the 3-
direction). The associated stretches and nominal electric displacement are denoted by λ1, λ2 and
D3, respectively. In terms of the free energy function Ω(λ1, λ2, E3), these quantities are related by
(Dorfmann & Ogden, 2005)

S1 =
∂Ω

∂λ1
, S2 =

∂Ω

∂λ2
, D3 = − ∂Ω

∂E3
. (1.1)

Alternatively, defining Ω∗(λ1, λ2, D3) = Ω(λ1, λ2, E3) + E3D3, we have

S1 =
∂Ω∗

∂λ1
, S2 =

∂Ω∗

∂λ2
, E3 =

∂Ω∗

∂D3
. (1.2)
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The Hessian stability criterion (Zhao & Suo, 2007) states that the Hessian determinant defined by

H =

∣∣∣∣∣∣∣∣∣∣

∂2Ω∗

∂λ21

∂2Ω∗

∂λ1∂λ2
∂2Ω∗

∂λ1∂D3

∂2Ω∗

∂λ2∂λ1
∂2Ω∗

∂λ22

∂2Ω∗

∂λ2∂D3

∂2Ω∗

∂D3∂λ1
∂2Ω∗

∂D3∂λ2
∂2Ω∗

∂D2
3

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∂S1
∂λ1

∂S1
∂λ2

∂S1
∂D3

∂S2
∂λ1

∂S2
∂λ2

∂S2
∂D3

∂E3
∂λ1

∂E3
∂λ2

∂E3
∂D3

∣∣∣∣∣∣∣∣ (1.3)

should be positive definite for stability. Since H = 0 is equivalent to J(S1, S2, E3) = 0 where the
left-hand side denotes the Jacobian determinant of S1, S2 and E3 in (1.3), marginal violation of the
Hessian stability criterion means that the “displacement” (λ1, λ2, D3) cannot uniquely be expressed
in terms of the “force” (S1, S2, E3). Evaluating the Jacobian determinant at equibiaxial stretching
λ1 = λ2 ≡ λ where S1 = S2 ≡ S(λ,D3), E3 ≡ E(λ,D3), ∂S1/∂λ2 = ∂S2/∂λ1, ∂S1/∂λ1 = ∂S2/∂λ2,
∂E3/∂λ1 = ∂E3/∂λ2, etc, we find that

J(S1, S2, E3) =

(
∂S1

∂λ1
− ∂S1

∂λ2

)(
∂E

∂D3

∂S

∂λ
− ∂S

∂D3

∂E

∂λ

)
, (1.4)

where all quantities are evaluated at λ1 = λ2 = λ. The above expression may also be rewritten in
two more revealing forms:

J(S1, S2, E3) =
(∂S1

∂λ1
− ∂S1

∂λ2

)∣∣∣
E3 fixed

· ∂S(λ,D3)

∂λ

∣∣∣
E3 fixed

· ∂E3

∂D3

∣∣∣
λ fixed

, (1.5)

or

J(S1, S2, E3) =
(∂S1

∂λ1
− ∂S1

∂λ2

)∣∣∣
D3 fixed

· ∂S(λ,D3)

∂λ

∣∣∣
D3 fixed

· ∂E3

∂D3

∣∣∣
S fixed

. (1.6)

An application of L′Hopital’s rule gives the result(
∂S1

∂λ1
− ∂S1

∂λ2

)∣∣∣∣
D3 fixed

= lim
λ2→λ1

S2 − S1

λ2 − λ1

∣∣∣∣
D3 fixed

. (1.7)

It can also be shown that at equibiaxial stretching,(
∂S1

∂λ1
− ∂S1

∂λ2

)∣∣∣∣
D3 fixed

=

(
∂S1

∂λ1
− ∂S1

∂λ2

)∣∣∣∣
E3 fixed

. (1.8)

Thus, H = J(S1, S2, E3) = 0 is satisfied if any one of the following conditions is satisfied:

lim
λ2→λ1

S2 − S1

λ2 − λ1

∣∣∣∣
E3 fixed

= 0, (1.9)

∂S

∂λ

∣∣∣∣
D3 fixed

= 0,
∂S

∂λ

∣∣∣∣
E3 fixed

= 0, (1.10)

∂E3

∂D3

∣∣∣∣
λ fixed

= 0,
∂E3

∂D3

∣∣∣∣
S fixed

= 0. (1.11)

The condition in (1.9) obviously corresponds to the Treloar-Kearsley instability whereby unequal
stretches occur at equal nominal stresses (Ogden, 1985; Kearsley, 1986; Ogden, 1987), whereas the
other four conditions (1.10) and (1.11) correspond to the limiting points of S and E, respectively.
Also, it can be shown that (1.10)2 and (1.11)2 imply each other, and so we are left with four
independent conditions. Only a subset of these four conditions can be satisfied depending on the
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material model adopted. For instance, when the material is modelled as an ideal dielectric, the left-
hand side of (1.11)1 is always positive and (1.10)1 is satisfied only after (1.10)2 is already satisfied.
As a result, we are only left with two conditions: (1.9) and (1.11)2. The former was the focus of
study by Zhao & Suo (2007) and Norris (2008), whereas competition between the two conditions
was studied by Chen et al. (2021).

It is commonly believed that when the Hessian stability criterion H > 0 is violated, the dielectric
membrane would thin down uniformly, leading eventually to electric breakdown or other types of
failure (e.g. wrinkling). The result (1.9) provides one counter-example to this common wisdom –
the TK instability may occur first before uniform thickness thinning takes place. In this paper, we
explore another instability mechanism, namely localized axisymmetric necking whereby thickness
thinning is localized near the origin and decays exponentially in the radial direction; see Fig. 1
Our preliminary investigations in Wang et al. (2022) indicate that the condition for axisymmetric
necking is not given by H = 0 or the limiting point stability criterion although the necking condition
in the case of plane-strain does correspond to the nominal stress reaching a limiting point (Fu et al.,
2018a). We observe that in the problem of localized bulging of an inflated hyperelastic tube, the
bifurcation condition corresponds to the inflation pressure reaching a limiting point when the axial
force is fixed or the axial force reaching a maximum when the pressure is fixed (Fu & Il’ichev, 2015;
Guo et al., 2022).

The rest of this paper is divided into four sections as follows. In the next section we summarise
the governing equations of electroelasticity and derive the incremental governing equations to the
order that is required for the current analysis. Sections 3 and 4 present the linear and weakly
nonlinear analyses, respectively. The paper is concluded in Section 5 with a summary and some
additional comments.

(a) (b)

(c)

Figure 1: The three configurations of a circular plate: (a) the initial stress-free configuration B0, (b) the uniformly
deformed configuration Be, and (c) the current configuration Bt where localised necking has taken place.
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2. Governing equations

2.1. Equations of nonlinear electroelasticity

Consider a dielectric material that is free from volumetric free charges and mechanical body
forces within the material and whose constitutive behavior is governed by the free energy density
function Ω∗(F ,D) or Ω(F ,E) (=Ω∗(F ,D) − D · E), where F is the deformation gradient, D
and E are the nominal electric displacement and electric field vectors, respectively. The nominal
electric field, electric displacement, and the total nominal stress tensor S satisfy the field equations

CurlE = 0, DivD = 0, DivS = 0, (2.1)

where Curl and Div are the curl and divergence operators with respect to X, the position vector
in the undeformed configuration. The constitutive equations are either

S =
∂Ω∗

∂F
− pF−1, E =

∂Ω∗

∂D
, (2.2)

or

S =
∂Ω

∂F
− pF−1, D = − ∂Ω

∂E
, (2.3)

where we have assumed that the material is incompressible with p denoting the Lagrangian mul-
tiplier enforcing the constraint of incompressibility detF = 1. See Dorfmann & Ogden (2005) or
Suo et al. (2008) for further details.

It follows from (2.1)1 that the electric fieldE can be written in terms of an electrostatic potential
Φ:

E = −GradΦ. (2.4)

We consider the case when the potential Φ is specified on the two surfaces of the membrane through
the coating electrodes. As a result, the jump conditions at the interfaces between the membrane and
surrounding medium need not be considered. For a discussion of more general boundary conditions,
see Dorfmann & Ogden (2014a) and Broderick et al. (2020).

Following common practice, see, e.g., Dorfmann & Ogden (2014b), we consider an energy func-
tion Ω(F ,E) that is additively decomposed as a purely mechanical contribution and a part asso-
ciated with the electric field. We further specialize to the case when the electric contribution is
described by an isotropic constitutive formulation with constant permittivity ε (the so-called ideal
dielectric). Thus, we have

Ω(F ,E) = W (I1, I2)− 1

2
εE ·C−1E, (2.5)

where I1 and I2 are the two principal invariants of C(= F TF ). Correspondingly, in terms of the
principal stretches the functions Ω and Ω∗ in (1.1) and (1.2) take the specific forms

Ω(λ1, λ2, E3) = W (λ1, λ2)− 1

2
εE2

3(λ1λ2)2, (2.6)

Ω∗(λ1, λ2, D3) = W (λ1, λ2) +
1

2ε
D2

3(λ1λ2)−2, (2.7)

where we have used the same symbols Ω and W in (2.5) and (2.6) (although the arguments are
different) to avoid introducing extra notations. In the above equations, the incompressibility con-
dition has been used to eliminate the principal stretch λ3, and W (λ1, λ2) is sometimes referred to
as the reduced strain energy function.
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For the above class of free energy functions, the left-hand side of (1.11)1 is always positive and
we have

∂S

∂λ

∣∣∣∣
E3 fixed

=
∂S

∂λ

∣∣∣∣
D3 fixed

− 8λ2E2
3ε. (2.8)

This means that (1.10)2 is always satisfied before (1.10)1 is satisfied. As a result, the conditions
(1.11)1 and (1.10)1 can be neglected, and then (1.9) and (1.10)2 can be solved explicitly (the
condition (1.11)2 is not independent as remarked earlier). Thus, we have the following two solutions
for the bifurcation values of εE2

3 :

εE2
3

∣∣
TK

= λ−2(W12 −W11), (2.9)

εE2
3

∣∣
LP

=
1

3
λ−2(W12 +W11), (2.10)

where the subscripts “TK” and “LP” signify associations with the Treloar-Kearsley and limiting
point instabilities, respectively, and

W12 =
∂2W

∂λ1λ2

∣∣∣∣
λ1=λ2=λ

, W11 =
∂2W

∂λ2
1

∣∣∣∣
λ1=λ2=λ

. (2.11)

2.2. Incremental formulation

In this section we derive the equations governing incremental deformations up to and including
quadratic terms. For the linear version, see Dorfmann & Ogden (2010).

We denote the undeformed, uniformly stretched, and bifurcated configurations of the mem-
brane by B0, Be and Bt, and the position vectors of a representative material particle in the three
configurations by X, x and x̃, respectively. We use F , E, D and S to denote the deformation gra-
dient, the nominal electric field, nominal electric displacement and total nominal stress associated
with the deformation B0 → Bt. Their counterparts associated with the deformation B0 → Be are
denoted by F̄ , Ē, D̄ and S̄. We define the incremental fields η, e, d, and χ through

F = (I + η)F̄ , E = Ē + F̄
T
e, (2.12)

D = D̄ + J̄F̄
−1
d, S = S̄ + J̄F̄

−1
χT . (2.13)

The determinant J̄ (= det F̄ ) is unity but is kept in the above expressions to maintain the generality
of the formulae. With u(x) denoting the incremental displacement from Be to Bt, we have η =
gradu. From the governing equations (2.1) that apply to both the barred and unbarred fields, we
obtain the incremental governing equations

curl e = 0, divd = 0, divχT = 0, (2.14)

where div and curl are evaluated with respect to the position vector x.
We now proceed to derive the incremental forms of the constitutive equations (2.3). We first

expand ∂Ω/∂FiA around F = F̄ , E = Ē to obtain(
J̄−1F̄

∂Ω

∂F

)
li

= J̄−1F̄lA
∂Ω

∂FiA
= J̄−1F̄lA

∂Ω

∂FiA

∣∣∣∣ ¯F
+A(1)

lijkηkj + A(1)
li|kek

+
1

2
A(2)
lijknmηkjηmn + A(2)

lijk|nηkjen +
1

2
A(3)
li|jkejek, (2.15)
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where

A(1)
lijk = J̄−1F̄lAF̄jB

∂2Ω

∂FiA∂FkB

∣∣∣∣ ¯F
, A(2)

lijknm = J̄−1F̄lAF̄jBF̄nC
∂2Ω

∂FiA∂FkB∂FmC

∣∣∣∣ ¯F
, (2.16)

A(1)
li|k = J̄−1F̄lAF̄kB

∂2Ω

∂FiA∂EB

∣∣∣∣ ¯F
, A(2)

lijk|n = J̄−1F̄lAF̄jBF̄nC
∂3Ω

∂FiA∂FkB∂EC

∣∣∣∣ ¯F
, (2.17)

A(3)
li|jk = J̄−1F̄lAF̄jBF̄kC

∂3Ω

∂FiA∂EB∂EC

∣∣∣∣ ¯F
. (2.18)

We also have
pF̄ F−1 = (p̄+ p∗)(I + η)−1 = p̄(I − η + η2) + p∗(I − η) + · · · (2.19)

where p̄ and p̄+p∗ are the Lagrangian multipliers enforcing incompressibility in B0 and Bt, respec-
tively. Thus, it follows from (2.3)1 and (2.12)2 that

(χT )li = A(1)
lijkηkj + A(1)

li|kek +
1

2
A(2)
lijknmηkjηmn + A(2)

lijk|nηkjen +
1

2
A(3)
li|jkejek

+ p̄(ηli − ηlkηki)− p∗(δli − ηli) + · · · . (2.20)

For the electric displacement, we can similarly obtain

J̄−1F̄lM
∂Ω

∂EM
= J̄−1F̄lM

∂Ω

∂EM

∣∣∣∣ ¯F
+ J̄−1F̄lM F̄mA

∂2Ω

∂FiA∂EM

∣∣∣∣ ¯F
ηim + J̄−1F̄lM F̄jA

∂2Ω

∂EA∂EM

∣∣∣∣ ¯F
ej

+
1

2
J̄−1F̄lM F̄mAF̄nB

∂3Ω

∂FiA∂FkB∂EM

∣∣∣∣ ¯F
ηimηkn + J̄−1F̄lM F̄mAF̄nC

∂3Ω

∂FiA∂EC∂EM

∣∣∣∣ ¯F
ηimen

+
1

2
J̄−1F̄lM F̄iAF̄nC

∂3Ω

∂EA∂EC∂EM

∣∣∣∣ ¯F
eien + · · · . (2.21)

It then follows from (2.13)1 and (2.3)2 that

dl = J̄−1F̄lM (− ∂Ω

∂EM
+

∂Ω

∂EM

∣∣∣∣ ¯F
) = −A(1)

mi|lηim − A
(1)
jl ej

− 1

2
A(2)
mink|lηimηkn − A(3)

mi|nlηimen −
1

2
A

(2)
ilneien + · · · , (2.22)

where

A
(1)
jl = J̄−1F̄jAF̄lB

∂2Ω

∂EA∂EB

∣∣∣∣ ¯F
, A

(2)
iln = J̄−1F̄iAF̄lM F̄nC

∂3Ω

∂EA∂EM∂EC

∣∣∣∣ ¯F
. (2.23)

Finally, it follows from the incompressibility conditions det F̄ = 1 and detF = 1 that

Iη + IIη + IIIη = 0, (2.24)

where the three terms denote the three principal invariants of η, respectively. This is the incre-
mental incompressibility condition and its linear form is simply trη = divu = 0.

The governing equation (2.14)1 can be satisfied automatically by writing e = gradψ where
the scalar function ψ replaces e as one of the new dependent variables. The remaining governing
equations (2.14)2,3 are to be solved subjected to the boundary conditions

χ33 = 0, χ31 = 0, ψ = 0 on z = ±h/2. (2.25)

We take h = 1 in the remaining analysis, which is equivalent to using h as the length unit.
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3. Linear analysis

We now consider an axisymmetric perturbation represented by

u = u(r, z)er + v(r, z)ez, ψ = ψ(r, z), (3.1)

where r and z are the cylindrical coordinates for x, er and ez are the unit basis vectors, and u and
v are the associated displacement components. The tensor η (= gradu) now takes the form

η = urer ⊗ er + uzer ⊗ ez +
u

r
eθ ⊗ eθ + vrez ⊗ er + vzez ⊗ ez, (3.2)

where ur = ∂u/∂r, uz = ∂u/∂z, etc.
For the current axisymmetric problem, the two components of the equilibrium equation divχT =

0 that are not satisfied automatically are

χ1j,j +
1

r
(χ11 − χ22) = 0, χ3j,j +

1

r
χ31 = 0, (3.3)

where (1, 2, 3) corresponds to (r, θ, z). The linearization of the incompressibility condition (2.24),
namely divu = 0, may be written in the form

∂ (ru)

∂r
+
∂ (rv)

∂z
= 0, (3.4)

which can be satisfied automatically by introducing a ‘stream function’φ(r, z) such that

u =
1

r
φz, v = −1

r
φr, (3.5)

where as in (3.2) a subscript signifies differentiation (e.g. φz = ∂φ/∂z). The non-zero stress
components are given by

χ11 = (A(1)
1111 + p̄)ur +A(1)

1122

u

r
+A(1)

1133vz − p
∗, (3.6)

χ22 = A(1)
1122ur + (A(1)

2222 + p̄)
u

r
+A(1)

2233vz − p
∗, (3.7)

χ33 = A(1)
1133ur +A(1)

2233

u

r
+ (A(1)

3333 + p̄)vz − p∗ − 2E3ελ
2ψz, (3.8)

χ13 = A(1)
3131uz + (A(1)

3113 + p̄)vr − E3ελ
2ψr, (3.9)

χ31 = A(1)
1313vr + (A(1)

1331 + p̄)uz − E3ελ
2ψr, (3.10)

whereas the linearisation of (2.22) is given by

d1 = −E3ελ
2(uz + vr)− E3ψr, d2 = 0, d3 = −2E3ελ

2vz − E3ψz. (3.11)

On substituting these expressions together with (3.5) into (3.3) and then eliminating p∗ by cross-
differentiation, we obtain

α

(
φrrrr −

2

r
φrrr +

3

r2
φrr −

3

r3
φr

)
+ 2β

(
φrrzz −

1

r
φrzz

)
+ γφzzzz

+ E3ελ
2

(
rψrrr + ψrr −

1

r
ψr + rψrzz

)
= 0, (3.12)
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where
α = A(1)

2323, 2β = A(1)
2222 +A(1)

3333 − 2A(1)
2233 − 2A(1)

2332, γ = A(1)
3232. (3.13)

A second equation for φ and ψ is obtained by substituting (3.11) into (2.14)2:

ψzz +
1

r
ψr + ψrr − E3λ

2 1

r3

(
r2φrrr − rφrr + r2φrzz + φr

)
= 0. (3.14)

Equations (3.12) and (3.14) admit a “normal mode” buckling/wrinkling solution of the form

φ(r, z) = rJ1(kr)S(kz), ψ(r, z) = J0(kr)K(kz), (3.15)

where k is a constant playing the role of wavenumber, J0(x) and J1(x) are Bessel’s functions of the
first kind, and the other functions S(kz) and K(kz) are to be determined.

On substituting (3.15) into (3.12) and (3.14) and simplifying by making use of the identity

Jν(x) =
2(ν − 1)

x
Jν−1(x)− Jν−2(x),

the J1(kr) and J0(kr) can be cancelled in the resulting equations and we obtain two ordinary
differential equations:

γS(4)(kz)− 2βS′′(kz) + αS(kz) + k−1E3ελ
2(K(kz)−K ′′(kz)) = 0, (3.16)

and {
K ′′(kz)− E3kλ

2S′′(kz)
}
−
{
K(kz)− E3kλ

2S(kz)
}

= 0. (3.17)

The last equation can be integrated straightaway to yield

K(kz) = E3kλ
2S(kz) + c5 sinh(kz) + c6 cosh(kz), (3.18)

where c5 and c6 are constants. Equation (3.16) then reduces to

γS(4)(kz)− 2β∗S′′(kz) + α∗S(kz) = 0, (3.19)

where

α∗ = α+ E2
3ελ

4, β∗ = β +
1

2
E2

3ελ
4. (3.20)

The general solution of (3.19) may be written in the form

S(kz) = c1 sinh
k√
ζ1
z + c2 sinh

k√
ζ2
z + c3 cosh

k√
ζ1
z + c4 cosh

k√
ζ2
z, (3.21)

where c1, c2, c3, c4 are disposable constants, and

ζ1 =
1

α∗
(β∗ −

√
β∗2 − α∗γ), ζ2 =

1

α∗
(β∗ +

√
β∗2 − α∗γ). (3.22)

The boundary conditions (2.25) take the form

A(1)
3131uz + (A(1)

3113 + p̄)vr − E3ελ
2ψr = 0, on z = ±1/2, (3.23)

A(1)
1133ur +A(1)

2233

u

r
+ (A(1)

3333 + p̄)vz − p∗ − 2E3ελ
2ψz = 0, on z = ±1/2, (3.24)

ψ = 0, on z = ±1/2. (3.25)
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The p∗ in (3.24) can be eliminated by first differentiating (3.24) with respect to r and then using
(3.3)1 to eliminate p∗r . This gives

1

r2
(A(1)

2233 −A
(1)
2222 − p̄)

(
r2urr + rur − u

)
−A(1)

3232uzz

+ (A(1)
3333 −A

(1)
2332 −A

(1)
2233)vrz − E3ελ

2ψrz = 0, on z = ±1/2. (3.26)

On substituting (3.15), (3.18) and (3.21) into the six boundary conditions (3.23), (3.25) and (3.26),
we obtain six algebraic equations. Due to the symmetry of the membrane geometry and external
loads with respect to the mid-plane z = 0, this system of equations admits two types of solutions
corresponding to flexural and extensional modes, respectively. The bifurcation condition for the
extensional modes is what we shall focus on and is given by

d1 tanh

(
k

2

)
tanh

(
k

2
√
ζ1

)
− d2 tanh

(
k

2

)
tanh

(
k

2
√
ζ2

)

+ d3 tanh

(
k

2
√
ζ1

)
tanh

(
k

2
√
ζ2

)
= 0, (3.27)

where

d1 =
√
ζ1(1 + ζ1)(ζ2(2β∗ + γ)− γ),

d2 =
√
ζ2(1 + ζ2)(ζ1(2β∗ + γ)− γ), (3.28)

d3 = εE2
3λ

4
√
ζ1ζ2(ζ1 − ζ2).

Expanding (3.27) to order k2, we obtain

γ(β + γ) +
k2

24
γ(α− γ) +O(k4) = 0, (3.29)

where we have used (3.22) to eliminate ζ1 and ζ2. Note that the coefficient of k2 in the above
asymptotic expression is not unique: we can add an arbitrary multiple of γ(β + γ) to it without
changing the asymptotic order of the second term since the latter expression is of order k2.

As an illustrative example, consider the following two-term Ogden strain-energy function:

W =
2µ1

m2
1

(λm1
1 + λm1

2 + λm1
3 − 3) +

2µ2

m2
2
(λm2

1 + λm2
2 + λm2

3 − 3), (3.30)

with m1 = 1/2, m2 = 4, µ2 = µ1/80. Fig. 2 displays the bifurcation condition (3.27) and its
two-term approximation (3.29) in the small wavenumber limit. It is seen that the minimum of λ
is attained at k = 0 in the case of fixed E3 and the minimum of E3 is also attained at k = 0 in
the case of fixed λ. Based on the discussion in Fu (2001), we may postulate that the bifurcation
condition for localized necking can be obtained by setting the leading order term in (3.29) to zero,
that is β + γ = 0 since γ > 0, or equivalently,

A(1)
2222 +A(1)

3333 + 2A(1)
3232 − 2A(1)

2332 − 2A(1)
2233 = 0. (3.31)

It can be shown that this condition is equivalent to

∂S1

∂λ1

∣∣∣∣
λ1=λ2=λ

= 0, (3.32)
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exact

two-term

1 2 3 4
k

2.0

2.1

2.2

2.3

λ

(ϵ/μ1)E3
2=0.03

exact

two-term

1 2 3 4
k

0.01

0.02

0.03

0.04

0.05

0.06

(ϵ/μ1)E3
2

λ=2.1

(a) (b)

Figure 2: Bifurcation condition (3.27) for periodic and symmetric modes, and its two-term approximation (3.29) in
the small wavenumber limit.

where S1 has the same meaning as in Section 1. Corresponding to the free energy function (2.6),
this equation can be solved explicitly to give

(εE2
3)necking = λ−2W11, (3.33)

where

W11 =
∂2W

∂λ2
1

∣∣∣∣
λ1=λ2=λ

. (3.34)

The bifurcation condition may be compared with the conditions (2.9) and (2.10) for the TK and
limiting point instabilities.

LP

necking

TK

2.0 2.5 3.0 3.5 λ0.00

0.01

0.02

0.03

(ϵ/μ1)E3
2

LP

necking

TK

1.6 1.7 1.8 1.9 2.0 S0.00

0.01

0.02

0.03

0.04

0.05

(ϵ/μ1)E3
2

(a) (b)

Figure 3: Bifurcation conditions for the TK, limiting point (LP) and necking instabilities corresponding to the strain
energy function (3.30). The alternative representations in (b) are obtained by viewing E3 and S as functions of λ
and varying λ in the interval (1, 3.7). The three lines in (a) intersect at λ = 1.98 and 3.23, and the curve associated
with necking cuts the horizontal axis at λ = 2.44 and 2.92. In (b) the dotted line corresponding to the limiting point
instability is close but always above that for the necking instability.

Corresponding to the strain energy function (3.30), the three bifurcation conditions are shown
in Fig.3 by viewing E3 as a function of λ or S, respectively. Fig.3 (b) is obtained by eliminating E3
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from S = S(λ,E3) using the bifurcation conditions so that both S and E3 are parametric functions
of λ.

In the absence of an electric field (E3 = 0), there are two bifurcation values for the TK instability
and another two bifurcation values for necking, and limiting points do not exist. This purely
mechanical case has previously been discussed in Wang et al. (2022). In particular, it was shown that
although the first bifurcation value for the TK instability is smaller than the first bifurcation value
for necking, necking can still occur first when the membrane is stretched under edge displacement
control since in this case the TK instability will be suppressed.

When an electric field is applied (E3 6= 0), we consider two typical loading scenarios. One is to
first stretch the membrane to a specified value of λ, say λ = 2, in the absence of an electric field,
and then increase the electric field from zero with the edge fixed. This loading scenario corresponds
to displacement control and so TK instability is suppressed. Referring to Fig.3 (a), this means that
the first instability experienced by the membrane is the necking instability although the loading
path crosses the TK instability curve.

The other loading scenario is to first increase the nominal stress S to a specified value, say 1.5,
in the absence of an electric field, and then increase the electric field from zero with S fixed as a
dead load. This is the loading scenario adopted by Huang et al. (2012). Fig.3 (b) shows that again
the first instability experienced by the membrane is the necking instability.

4. Weakly nonlinear analysis

The linear analysis in the previous section only provides a necessary condition for necking.
Whether a necking solution really bifurcates from the homogeneous solution or not can only be
answered by a near-critical nonlinear analysis.

To fix ideas, we may assume that the strain energy function is given by (3.30) and the case to
be studied is when λ is fixed in the interval (1.98, 2.44) and E3 is gradually increased from zero.
As pointed out in the previous section, in this parameter regime necking would occur before the
limiting point instability or the TK instability.

We define a non-dimensional load parameter ω through

ω =
ε

µ1
E2

3 . (4.1)

Denoting its bifurcation value by ωcr (which depends on λ), we write

ω = ωcr + εω1, (4.2)

where ω1 is an O(1) constant and ε is a positive small parameter characterizing the derivation of
ω from ωcr. From the bifurcation condition (3.29) it can be deduced that in this parameter regime
the buckling mode will have k = O(

√
ε), which means that the dependence of the near-critical

solution on r should be through the stretched variable s defined by

s =
√
εr. (4.3)

The relative orders of u, v, p∗ and ψ can be deduced by expanding the linear solutions (3.15) for
small k. The absolute size of v is determined by the fact that the amplitude is expected to be a
linear function of ω − ωcr for the type of bifurcations under consideration. This gives v = O(ε).
Based on this analysis, we look for a near-critical solution of the form

u =
√
ε
{
u(1)(s, z) + εu(2)(s, z) + ε2u(3)(s, z) + · · ·

}
,
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v = ε
{
v(1)(s, z) + εv(2)(s, z) + ε2v(3)(s, z) + · · ·

}
, (4.4)

p∗ = ε
{
p(1)(s, z) + εp(2)(s, z) + ε2p(3)(s, z) + · · ·

}
,

ψ = ε2
{
ψ(1)(s, z) + εψ(2)(s, z) + ε2ψ(3)(s, z) + · · ·

}
,

where all the functions on the right hand sides are to be determined from successive approximations.
To ease descriptions, we scale all the governing equations and boundary conditions so that

the left hand side of each equation becomes of O(1). This is achieved by dividing by ε the elec-
tric equilibrium equation (2.14)2, the mechanical equilibrium equation (3.3)2, the incompressibility
condition (2.24) and the boundary condition (2.25)1, and by

√
ε the mechanical equilibrium e-

quation (3.3)1 and boundary condition (2.25)2. On substituting (4.4) into these scaled equations
and then equating the coefficients of like powers of ε, we obtain a hierarchy of boundary value
problems. In the following description, the two equilibrium equations in (3.3) are referred to as
the r- and z-equilibrium equations, respectively. At the n-th order (n = 1, 2 or 3), we integrate
the r-equilibrium equation subject to the boundary condition (2.25)2 to find u(n)(s, z), the incom-
pressibility condition to find v(n)(s, z), and finally the z-equilibrium equation subject to (2.25)1 to
find p(n)(s, z).

At leading order, the above procedure yields

u(1)(s, z) = A(s), v(1)(s, z) = −z 1

s
(sA(s))′ +B(s), (4.5)

p(1)(s, z) = −(A(1)
3333 −A

(1)
2233 +A(1)

3232 −A
(1)
3223)

1

s
(sA(s))′, (4.6)

where A(s) and B(s) are functions to be determined, and here and hereafter in this section all the
moduli are evaluated at ω = ωcr. The electric equilibrium equation (2.14)2 is satisfied automatically.

At second order, the general solution for u(2)(s, z) contains two new functions C(s) and D(s)
in the form C(s) + zD(s). Subtracting and adding the boundary condition (2.25)2 at z = ±1/2,
respectively, we obtain

A(1)
3333 − 2A(1)

2233 +A(1)
2222 + 2A(1)

3232 − 2A(1)
3223 = 0, (4.7)

and
D(s) = −B′(s). (4.8)

The first result (4.7) is equivalent to the bifurcation condition (3.31). The general solutions for
v(2)(s, z) and p2(s, z) contain new functions F (s) and E(s), respectively. On applying the boundary
condition (2.25)1 at z = ±1/2, we obtain sB′′(s) + B′(s) = 0, and an expression for E(s). It then
follows that B(s) = d1 ln s+d2. Since v(1) and hence B(s) should be bounded at s = 0, we must set
d1 = 0. Without loss of generality we may also impose the condition v(1)(0, 0) = 0 to eliminate any
rigid-body displacement. This yields d2 = 0 and hence B(s) = 0. Finally, integrating the electric
equilibrium equation (2.14)2 at this order subject to (2.25)3 at z = ±1/2 yields a unique expression
for ψ1(s, z).

At third order, nonlinear terms come into play and it is at this order that an amplitude equation
for A(s) is derived. We first solve the r-equilibrium equation to find an expression for u(3)(s, z).
It contains two new functions G(s) and H(s) in the form G(s) + zH(s). Subtracting and adding
(2.25)2 evaluated at z = ±1/2, respectively, we obtain the amplitude equation for A(s) and an
expression for H(s). After some simplification, it is found that the amplitude equation takes the
form

c0
d

ds

1

s

d

ds
sP ′(s) + c1ω1P

′(s) + c2
d

ds
P 2(s) + c3A

′′(s)

(
A′(s)− 1

s
A(s)

)
= 0, (4.9)
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where a prime signifies differentiation, P (s) is defined by

P (s) =
1

s
(sA(s))′, (4.10)

and the three coefficients are given by

c0 =
1

12

(
A(1)

2323 −A
(1)
3232

)
,

c1 = 2A(1)′

2233 + 2A(1)′

2332 −A
(1)′

2222 − 2A(1)′

3232 −A
(1)′

3333,

c2 =
1

4

(
−4A(1)

2222 − 2A(1)
2233 + 6A(1)

3333 −A
(2)
222222 + 4A(2)

222233 −A
(2)
112222

−6A(2)
223333 + 2A(2)

112233 + 2A(2)
333333

)
,

c3 = A(1)
2233 −A

(1)
2222 +A(2)

222233 −A
(2)
112233 −

1

2
A(2)

222222 +
1

2
A(2)

112222.

In the above expressions, A(1)′

2233 denotes dA(1)
2233/dω etc., and we have used the bifurcation condition

(4.7) to eliminate A(1)
2332. It can be seen that the amplitude equation (4.9) has the same structure

as its mechanical counterpart derived by Wang et al. (2022).
Corresponding to the specific free energy function specified by (2.5) and (3.30), we have

c0 = −−480λ17/2 + λ12 + 800λ7 + 3

960λ8
, c1 = λ4,

c2 =
−56λ17/2 + 240λ7 + 3

32λ8
, c3 =

√
λ

2
− 3λ4

80
. (4.11)

As a consistency check, we may neglect the nonlinear terms in (4.9) to obtain

c0
d

ds

1

s

d

ds
sP ′(s) + c1ω1P

′(s) = 0. (4.12)

On substituting a solution of the form P ′(s) = J1(ks/
√
ε) into (4.12), where k is a constant, we

obtain
c1(ω − ωcr)− c0k

2 = 0. (4.13)

On the other hand, expanding (3.29) around ω = ωcr, we obtain{
d

dω
(β + γ)

}
cr

(ω − ωcr) +
k2

24
(α− γ)

∣∣∣∣
cr

= 0, (4.14)

where the subscripts “cr” signify evaluation at ω = ωcr. We have verified that (4.13) is indeed
consistent with (4.14).

As another consistency check, we may expand (4.9) out fully and omit all the terms that are
divided by powers of s to obtain its planar counterpart:

c0A
(4)(s) + c1ω1A

′′(s) + c∗2A
′(s)A′′(s) = 0, (4.15)

where

c∗2 = 2c2 + c3 = 3A(1)
3333 − 3A(1)

2222 −A
(2)
222222 + 3A(2)

222233 − 3A(2)
223333 +A(2)

333333. (4.16)
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It has an exact solution given by

A(s) =
6c0

c∗2

√
−c1ω1

c0
tanh

(
1

2

√
−c1ω1

c0
s

)
. (4.17)

This solution has the property A′(s)→ 0 as s→∞ and is the localised necking solution in the 2D
case (Fu et al., 2018a).

It does not seem possible to find a similar analytical solution for the original amplitude e-
quation (4.9) that is fourth-order with variable coefficients. We thus resort to finding its nu-
merical solution with the use of the finite difference method. With the use of the substitution
A(s)→ (c0/c2)κ2A(κs), equation (4.9) may be reduced to

d

dt

1

t

d

dt
tP ′(t)− P ′(t) +

d

dt
P 2(t) +

c3

c2
A′′(t)

(
A′(t)− 1

t
A(t)

)
= 0, (4.18)

where t = κs, κ =
√
−c1ω1/c0 and P (t) is still defined by (4.10).

We replace the semi-infinite interval [0,∞) by a finite interval [0, L] and discretize the latter
into N equal intervals with node points

ti = ih̃, h̃ =
L

N
, i = 0, 1, 2, ..., N.

We apply the central finite difference scheme such that

A′(ti) =
Ai+1 −Ai−1

2h̃
, A′′(ti) =

Ai+1 − 2Ai +Ai−1

h̃2
, (4.19)

A′′′(ti) =
Ai+2 − 2Ai+1 + 2Ai−1 −Ai−2

2h̃3
, (4.20)

A(4)(ti) =
Ai+2 − 4Ai+1 + 6Ai − 4Ai−1 +Ai−2

h̃4
, (4.21)

where Ai = A(ti), etc. Evaluating the amplitude equation (4.9) at the N − 1 interior nodes
t1, t2, ..., tN−1, we obtain N − 1 equations that involve the N + 3 unknowns A−1, A0, ..., and AN+1.
The remaining four equations are obtained as follows.

First, it follows from the symmetry conditions

lim
s→0

u(1)(s, z) = 0 and lim
s→0

∂v(1)

∂s
(s,

1

2
) = 0

that limt→0A(t) = 0 and limt→0 P
′(t) = 0. By trying a series solution for small t, it is found that

the unique solution that satisfies the above conditions has the behavior A(t) ∼ a1t + a2t
3 + · · ·

for some constants a1 and a2. This gives limt→0A
′′(t) = 0. The two conditions A(0) = A′′(0) = 0

together with (4.19)2 then yield two additional equations.
Next, we consider the asymptotic behaviour of the solutions as t → ∞. Although the planar

solution (4.17) does not decay, we expect that the solution of (4.9) will experience algebraic decay
due to geometric spreading. Since quadratic terms are expected to decay faster than linear terms,
the decay behavior may be captured by neglecting the nonlinear terms:

d

dt

1

t

d

dt
tP ′(t)− P ′(t) = 0, as t→∞. (4.22)
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The unique decaying solution of (4.22) is given by

P (t) = P∞(t) ≡ a3K0(t), A(t) = A∞(t) ≡ a4

t
− a3K1(t), (4.23)

where a3 and s4 are constants, and K0 and K1 are the modified Bessel function of the second kind
that has the asymptotic behaviour

Kα(x) ∼
√

π

2x
e−x

[
1 +

4α2 − 1

8x
+ · · ·

]
, as x→∞. (4.24)

The asymptotic behaviour (4.23) is consistent with our earlier assumption that A(s) decays alge-
braically. We note that the above decay behaviour is based on the assumption that t is a real
variable, or equivalently κ is a real constant. This enables us to deduce that whenever a necking
bifurcation takes place, it is generally subcritical (ω1 < 0 since c1/c0 > 0).

If a function f(x) decays exponentially like e−ax as x → ∞ for some positive constant a, then
it is preferable to impose the “soft” asymptotic condition f ′(L) + af(L) = 0 instead of the “hard”
condition f(L) = 0 (since f ′(L) + af(L) is much smaller than f(L)). Extending this idea, we
use (4.23) to find the first three derivatives of A∞(s) and by eliminating a1 and a2 express A′′∞(s)
and A′′′∞(s) in terms of A∞(s) and A′∞(s). Replacing A∞(s) by A(s) and evaluating these two
expressions at s = sN = L followed by the use of (4.19)–(4.21), we obtain two more additional
equations. The system of N + 3 quadratic equations can then be solved provided an appropriate
initial guess is given. It is found that one good initial guess is the planar solution (4.17) divided
by 1 + s. For values of λ in the interval (1.979, 2.439), it is found that the coefficient c3/c2 is

□

□

□

□

□

□

□
□

□ □ □ □ □ □ □ □ □
0 2 4 6

t

0.5

1.0

1.5

2.0

P(t)

A(t)

Figure 4: Finite Difference solution of the amplitude equation (4.9) when λ = 2 and the strain energy function is
given by (3.30).

positive when λ < 2.096 and negative when λ > 2.096. So we consider two representative cases
corresponding to λ = 2 and 2.2, respectively. It is found that taking N = 1000 and L = 10
yields sufficiently accurate results. Fig.4 shows the finite difference solution corresponding to λ = 2
together with the approximate analytical solution

P (t) =
a

bt2 + 1
sech2(ct), (4.25)
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where the constants a, b, c are determined by fitting (4.25) to the finite difference solution. The
maximum relative error over the entire interval is less than 3.4%. The solution corresponding to
λ = 2.2 for which the c3/c2 is of opposite sign is very similar and is thus not displayed here.

5. Discussion and conclusion

Pull-in failure in dielectric elastomer actuators is widely believed to be associated with the
limiting point behaviour whereby the electric field as a function of the electric displacement or
stretch has a maximum. For the plane-strain or plane-stress case, this connection is well explained
using the analogy with the inflation problem associated with a rubber tube where the limiting point
behaviour is well-known to be associated with localised bulging that eventually evolves into a “two-
phase” state (Fu et al., 2018a; Huang & Suo, 2012). However, for the case of equibiaxial tension,
this explanation contradicts the fact that at large values of dead load, the limiting point behaviour
may disappear but pull-in failure can still be observed (Huang et al., 2012). Our current paper
offers an alternative explanation, namely that pull-in failure evolves from axisymmetric necking
through an unstable process. We note that the condition for necking does not necessarily require
limiting point behaviour.

We have only carried out a linear and weakly nonlinear analysis in the current study, but the
fully nonlinear numerical simulations carried out in our earlier paper (Wang et al., 2022) for the
purely mechanical case should also be indicative of what might be expected in the current elec-
troelastic case. Thus, combining the weakly nonlinear results in the previous section with the fully
nonlinear simulation results in Wang et al. (2022), we may draw the following conclusions. When
the bifurcation condition (3.33) is satisfied, a necking solution will bifurcate from the homogeneous
solution subcritically. If the membrane is gradually pulled further in the radial direction at the
edge, with the electric potential fixed, the necking solution will grow in amplitude, corresponding to
an increased reduction in thickness at the origin, and when a maximum amplitude is approached,
the necking solution will start to propagate in the radial direction in the form of a “two-phase”
deformation. This is very similar to the localised bulging of an inflated rubber tube except that
here the propagation is also accompanied by algebraic decay of the amplitude due to geometrical
spreading. On the other hand, if the electric potential is increased further from its bifurcation value
while the membrane edge is fixed, the membrane will snap to a “two-phase” deformation. This is
analogous to the pressure control case in the tube inflation problem (Guo et al., 2022).

We wish to highlight the fact that the predictions that can be made are sensitive to the material
model used. To fix ideas, we have used the strain energy function (3.30) as an example. To show
how our results depend on the strain energy function used, we have shown in Fig. 4 the counterpart
of Fig. 2 when the following Gent and Mooney-Rivlin material models are used:

W = −1

2
µJm ln(1− λ2

1 + λ2
2 + λ2

3 − 3

Jm
), (5.1)

W =
1

2
µ
{
λ2

1 + λ2
2 + λ2

3 − 3 + γ(λ−2
1 + λ−2

2 + λ−2
3 − 3)

}
, (5.2)

where µ, Jm and γ are material constants. It is found that the bifurcation curves have a very
weak dependence on the value of Jm and the curves corresponding to Jm = ∞ (the neo-Hookean
model) are almost the same as those in Fig. 4(a) for Jm = 97.2. It is seen that the main effect of
increasing the γ in (5.2) is to shift the curves for the TK and limiting instabilities upwards. As
a result, the TK instability is not possible for the Gent and neo-Hookean material models (since
the corresponding E3 is negative) but is possible for the Mooney-Rivlin material model. This is
well-known in the purely mechanical case. The bifurcation curve for necking is always above the
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Figure 5: Bifurcation conditions for the TK, limiting point (LP) and necking instabilities corresponding to (a) the
Gent strain energy function with Jm = 97.2, and (b) the Mooney-Rivlin strain energy function with γ = 0.3. The
dashed line corresponds to zero nominal stress in the radial direction above which the nominal stress is negative.

curve corresponding to zero nominal stress in the radial direction (dashed line). Thus, although
necking is theoretically possible, it is unlikely to be observable when the dielectric membrane
has the constitutive behaviour modelled by these two material models. It then remains an open
question whether there exist dielectric materials whose constitutive behaviour allows the type of
axisymmetric necking that is described in the current paper. It is hoped that this question will be
answered in our future experimental studies.
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