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A B S T R A C T

We investigate the stability of a circular electrodes-coated dielectric membrane under the combined action
of an electric field and all-round in-plane tension. It is known that such a membrane is susceptible to the
limiting point instability (also known as pull-in instability) which is widely believed to be a precursor to
electric breakdown. However, there is experimental evidence showing that the limiting point instability may
not necessarily be responsible for rapid thinning and electric breakdown. We explore the possibility that the
latter is due to a new instability mechanism, namely localised axisymmetric necking. The bifurcation condition
for axisymmetric necking is first derived and used to show that this instability may occur before the Treloar-
Kearsley instability or the limiting point instability for a class of free energy functions. A weakly nonlinear
analysis is then conducted and it is shown that the near-critical behaviour is described by a fourth order
nonlinear ordinary differential equation with variable coefficients. This amplitude equation is solved using
the finite difference method and it is demonstrated that a localised solution does indeed bifurcate from the
homogeneous solution. Based on this analysis and what is already known for the purely mechanical case, we
may deduce that the necking evolution follows the same three stages of initiation, growth and propagation as
other similar localisation problems. The insight provided by the current study is expected to be relevant in
assessing the integrity of dielectric elastomer actuators.
. Introduction

Dielectric elastomer actuators are believed to hold great potential
n a wide range of applications such as human-like robots, stretchable
lectronics, and energy harvesting (Pelrine et al., 1998, 2000; Carpi
t al., 2008; Duduta et al., 2019; Moretti et al., 2020; Collins et al.,
021; Zhang et al., 2022; Yarali et al., 2022). It is known that such actu-
tors are susceptible to a variety of instabilities (Plante and Dubowsky,
006; Zhao and Wang, 2014), and before they can be deployed with
onfidence, a thorough understanding of their stability and buckling
roperties needs to be established. Thus, over the past two decades,
uch effort has been devoted to the understanding of the Hessian

tability criterion (Zhao and Suo, 2007; Norris, 2008; Diaz-Calleja et al.,
008; De Tommasi et al., 2010; Xu et al., 2010; Li et al., 2011; Lu
t al., 2012; Zhao and Wang, 2014; Su et al., 2019; Li et al., 2021),
eriodic wrinkling (Bertoldi and Gei, 2011; Rudykh and deBotton,
011; Dorfmann and Ogden, 2014a; Gei et al., 2014; Yang et al., 2017;
u et al., 2018; Dorfmann and Ogden, 2019; Greaney et al., 2019; Su
t al., 2020; Broderick et al., 2020; Xia et al., 2021; Bahreman et al.,
022; Khurana et al., 2022), ‘‘two-phase’’ states (Plante and Dubowsky,
006; Zhao et al., 2007; Zhou et al., 2008; Zhu et al., 2012; Kollosche
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et al., 2012; Huang and Suo, 2012), and the interplay between the
limiting point instability and Treloar-Kearsley (TK) instability (Chen
et al., 2021). We refer to Lu et al. (2020) for a comprehensive review
of the relevant literature.

The current study is concerned with a different kind of instability,
namely necking, that has received relatively less attention in the liter-
ature. Necking has traditionally been associated with ductile materials
and plastic deformations, but in recent years it has been realised that
elastic necking can occur in a wide range of soft materials under
multiple fields; see, for instance, Na et al. (2006), Mora et al. (2010),
Zhao (2012), and Fu et al. (2021). The possibility of localised necking
in a dielectric elastomer has previously been suggested by Blok and
LeGrand (1969) and analysed using an approximate model in a series
of papers by Puglisi and Zurlo (2012), Zurlo (2013), De Tommasi et al.
(2013) and Zurlo et al. (2017). The approximate model used in the
latter papers is further discussed in Fu et al. (2018b). For the case of
uniaxial tension, localised necking was analysed by Fu et al. (2018a)
using analogies with the inflation problem associated with a rubber
tube (Fu et al., 2008). It was shown that localised necking would
initiate when the limiting point of nominal stress (as a function of
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stretch with fixed electric potential) or electric potential (as a function
of electric displacement with fixed nominal stress) is reached. As in
the inflation problem, the localised necking would evolve into a ‘‘two-
phase’’ deformation that has been observed experimentally by Plante
and Dubowsky (2006), and analysed by Zhao et al. (2007), Zhou et al.
(2008) and Wang et al. (2019).

Whereas the connection between the limiting point instability and
localised necking is now well understood in the case of uniaxial tension,
this connection no longer exists in the case of equibiaxial tension, as
demonstrated recently by Wang et al. (2022) and Yu and Fu (2022)
for the purely mechanical case. For the case of equibiaxial tension, the
limiting point behaviour may disappear at a large enough dead load,
but some kind of snap-through behaviour can still be observed that
leads to pull-in failure (Huang et al., 2012). A likely scenario is that
even if limiting point instability does not exist, localised necking can
still occur, and it is the axisymmetric necking that leads to a ‘‘two-
phase’’ deformation and possible pull-in failure. This scenario provides
the major motivation for the current study. This paper may also be
viewed as a sequel to our earlier paper, Wang et al. (2022), where
axisymmetric necking was analysed in the purely mechanical context
without an electric field. In that paper, the amplitude equation was left
unsolved and it was not clear whether the equation did have a well-
defined localised solution or not although fully numerical simulations
seemed to have answered the question in the affirmative. In the current
paper, we derive the corresponding results for the electroelastic case,
and solve the amplitude equation to show that a localised solution does
indeed bifurcate from the homogeneous solution.

To set the context for our current study, consider a dielectric square
membrane that is coated with electrodes and is subject to nominal
stresses 𝑆1 and 𝑆2 in two mutually orthogonal directions within the

embrane plane and a nominal electric field 𝐸3 in the thickness di-
ection (the 3-direction). The associated stretches and nominal electric
isplacement are denoted by 𝜆1, 𝜆2 and 𝐷3, respectively. In terms
f the free energy function 𝛺(𝜆1, 𝜆2, 𝐸3), these quantities are related
y (Dorfmann and Ogden, 2005)

1 =
𝜕𝛺
𝜕𝜆1

, 𝑆2 =
𝜕𝛺
𝜕𝜆2

, 𝐷3 = − 𝜕𝛺
𝜕𝐸3

. (1.1)

Alternatively, defining 𝛺∗(𝜆1, 𝜆2, 𝐷3) = 𝛺(𝜆1, 𝜆2, 𝐸3) + 𝐸3𝐷3, we have

𝑆1 =
𝜕𝛺∗

𝜕𝜆1
, 𝑆2 =

𝜕𝛺∗

𝜕𝜆2
, 𝐸3 =

𝜕𝛺∗

𝜕𝐷3
. (1.2)

The Hessian stability criterion (Zhao and Suo, 2007) states that the
Hessian determinant defined by
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(1.3)

hould be positive definite for stability. Since 𝐻 = 0 is equivalent
o 𝐽 (𝑆1, 𝑆2, 𝐸3) = 0 where the left-hand side denotes the Jacobian
eterminant of 𝑆1, 𝑆2 and 𝐸3 in (1.3), marginal violation of the Hessian
tability criterion means that the ‘‘displacement’’ (𝜆1, 𝜆2, 𝐷3) cannot
niquely be expressed in terms of the ‘‘force’’ (𝑆1, 𝑆2, 𝐸3). Evaluating
he Jacobian determinant at equibiaxial stretching 𝜆1 = 𝜆2 ≡ 𝜆 where
1 = 𝑆2 ≡ 𝑆(𝜆,𝐷3), 𝐸3 ≡ 𝐸(𝜆,𝐷3), 𝜕𝑆1∕𝜕𝜆2 = 𝜕𝑆2∕𝜕𝜆1, 𝜕𝑆1∕𝜕𝜆1 =
𝜕𝑆2∕𝜕𝜆2, 𝜕𝐸3∕𝜕𝜆1 = 𝜕𝐸3∕𝜕𝜆2, etc, we find that

𝐽 (𝑆1, 𝑆2, 𝐸3) =
(

𝜕𝑆1
𝜕𝜆1

−
𝜕𝑆1
𝜕𝜆2

)(

𝜕𝐸
𝜕𝐷3

𝜕𝑆
𝜕𝜆

− 𝜕𝑆
𝜕𝐷3

𝜕𝐸
𝜕𝜆

)

, (1.4)

where all quantities are evaluated at 𝜆1 = 𝜆2 = 𝜆. The above expression
ay also be rewritten in two more revealing forms:

(𝑆1, 𝑆2, 𝐸3) =
( 𝜕𝑆1 −

𝜕𝑆1
)

|

| ⋅
𝜕𝑆(𝜆,𝐷3) |

| ⋅
𝜕𝐸3 |

| , (1.5)
2

𝜕𝜆1 𝜕𝜆2 |𝐸3 f ixed 𝜕𝜆 |𝐸3 f ixed 𝜕𝐷3 |𝜆 f ixed
or

𝐽 (𝑆1, 𝑆2, 𝐸3) =
( 𝜕𝑆1
𝜕𝜆1

−
𝜕𝑆1
𝜕𝜆2

)

|

|

|𝐷3 f ixed
⋅
𝜕𝑆(𝜆,𝐷3)

𝜕𝜆
|

|

|𝐷3 f ixed
⋅
𝜕𝐸3
𝜕𝐷3

|

|

|𝑆 f ixed
. (1.6)

An application of L′Hopital’s rule gives the result
(

𝜕𝑆1
𝜕𝜆1

−
𝜕𝑆1
𝜕𝜆2

)

|

|

|

|

|𝐷3 f ixed
= lim
𝜆2→𝜆1

𝑆2 − 𝑆1
𝜆2 − 𝜆1

|

|

|

|𝐷3 f ixed
. (1.7)

It can also be shown that at equibiaxial stretching,
(

𝜕𝑆1
𝜕𝜆1

−
𝜕𝑆1
𝜕𝜆2

)

|

|

|

|

|𝐷3 f ixed
=

(

𝜕𝑆1
𝜕𝜆1

−
𝜕𝑆1
𝜕𝜆2

)

|

|

|

|

|𝐸3 f ixed
. (1.8)

Thus, 𝐻 = 𝐽 (𝑆1, 𝑆2, 𝐸3) = 0 is satisfied if any one of the following
conditions is satisfied:

lim
𝜆2→𝜆1

𝑆2 − 𝑆1
𝜆2 − 𝜆1

|

|

|

|𝐸3 f ixed
= 0, (1.9)

𝜕𝑆
𝜕𝜆

|

|

|

|𝐷3 f ixed
= 0, 𝜕𝑆

𝜕𝜆
|

|

|

|𝐸3 f ixed
= 0, (1.10)

𝜕𝐸3
𝜕𝐷3

|

|

|

|𝜆 f ixed
= 0,

𝜕𝐸3
𝜕𝐷3

|

|

|

|𝑆 f ixed
= 0. (1.11)

he condition in (1.9) obviously corresponds to the Treloar-Kearsley in-
tability whereby unequal stretches occur at equal nominal stresses (Og-
en, 1985; Kearsley, 1986; Ogden, 1987), whereas the other four
onditions (1.10) and (1.11) correspond to the limiting points of 𝑆
nd 𝐸, respectively. Also, it can be shown that (1.10)2 and (1.11)2
mply each other, and so we are left with four independent conditions.
nly a subset of these four conditions can be satisfied depending on the
aterial model adopted. For instance, when the material is modelled as

n ideal dielectric, the left-hand side of (1.11)1 is always positive and
1.10)1 is satisfied only after (1.10)2 is already satisfied. As a result, we
re only left with two conditions: (1.9) and (1.11)2. The former was
he focus of study by Zhao and Suo (2007) and Norris (2008), whereas
ompetition between the two conditions was studied by Chen et al.
2021).

It is commonly believed that when the Hessian stability criterion
> 0 is violated, the dielectric membrane would thin down uniformly,

eading eventually to electric breakdown or other types of failure
e.g. wrinkling). The result (1.9) provides one counter-example to this
ommon wisdom — the TK instability may occur first before uniform
hickness thinning takes place. In this paper, we explore another in-
tability mechanism, namely localised axisymmetric necking whereby
hickness thinning is localised near the origin and decays exponen-
ially in the radial direction; see Fig. 1. Our preliminary investigations
n Wang et al. (2022) indicate that the condition for axisymmetric
ecking is not given by 𝐻 = 0 or the limiting point stability crite-
ion although the necking condition in the case of plane-strain does
orrespond to the nominal stress reaching a limiting point (Fu et al.,
018a). We observe that in the problem of localised bulging of an
nflated hyperelastic tube, the bifurcation condition corresponds to the
nflation pressure reaching a limiting point when the axial force is fixed
r the axial force reaching a maximum when the pressure is fixed (Fu
nd Il’ichev, 2015; Guo et al., 2022).

The rest of this paper is divided into four sections as follows. In the
ext section we summarise the governing equations of electroelasticity
nd derive the incremental governing equations to the order that is
equired for the current analysis. Sections 3 and 4 present the linear
nd weakly nonlinear analyses, respectively. The paper is concluded in
ection 5 with a summary and some additional comments.

. Governing equations

.1. Equations of nonlinear electroelasticity

Consider a dielectric material that is free from volumetric free
harges and mechanical body forces within the material and whose
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Fig. 1. The three configurations of a circular plate: (a) the initial stress-free configuration 𝐵0, (b) the uniformly deformed configuration 𝐵𝑒, and (c) the current configuration 𝐵𝑡
where localised necking has taken place.
constitutive behaviour is governed by the free energy density function
𝛺∗(𝑭 ,𝑫) or 𝛺(𝑭 ,𝑬) (=𝛺∗(𝑭 ,𝑫) − 𝑫 ⋅ 𝑬), where 𝑭 is the deforma-
tion gradient, 𝑫 and 𝑬 are the nominal electric displacement and
electric field vectors, respectively. The nominal electric field, electric
displacement, and the total nominal stress tensor 𝑺 satisfy the field
equations

Curl𝑬 = 𝟎, Div𝑫 = 0, Div𝑺 = 𝟎, (2.1)

where Curl and Div are the curl and divergence operators with re-
spect to 𝑿, the position vector in the undeformed configuration. The
constitutive equations are either

𝑺 = 𝜕𝛺∗

𝜕𝑭
− 𝑝𝑭 −1, 𝑬 = 𝜕𝛺∗

𝜕𝑫
, (2.2)

or

𝑺 = 𝜕𝛺
𝜕𝑭

− 𝑝𝑭 −1, 𝑫 = − 𝜕𝛺
𝜕𝑬

, (2.3)

where we have assumed that the material is incompressible with 𝑝
denoting the Lagrangian multiplier enforcing the constraint of incom-
pressibility det 𝑭 = 1. See Dorfmann and Ogden (2005) or Suo et al.
(2008) for further details.

It follows from (2.1)1 that the electric field 𝑬 can be written in terms
of an electrostatic potential 𝛷:

𝑬 = −Grad𝛷. (2.4)

We consider the case when the potential 𝛷 is specified on the two
surfaces of the membrane through the coating electrodes. As a re-
sult, the jump conditions at the interfaces between the membrane
and surrounding medium need not be considered. For a discussion of
more general boundary conditions, see Dorfmann and Ogden (2014a)
and Broderick et al. (2020).

Following common practice, see, e.g., Dorfmann and Ogden
(2014b), we consider an energy function 𝛺(𝑭 ,𝑬) that is additively
decomposed as a purely mechanical contribution and a part associated
with the electric field. We further specialise to the case when the elec-
tric contribution is described by an isotropic constitutive formulation
with constant permittivity 𝜖 (the so-called ideal dielectric). Thus, we
have

𝛺(𝑭 ,𝑬) = 𝑊 (𝐼1, 𝐼2) −
1
2
𝜖𝑬 ⋅ 𝑪−1𝑬, (2.5)

where 𝐼1 and 𝐼2 are the two principal invariants of 𝑪 ( = 𝑭 𝑇𝑭 ).
Correspondingly, in terms of the principal stretches the functions 𝛺 and
𝛺∗ in (1.1) and (1.2) take the specific forms

𝛺(𝜆 , 𝜆 , 𝐸 ) = 𝑊 (𝜆 , 𝜆 ) − 1 𝜖𝐸2(𝜆 𝜆 )2, (2.6)
3

1 2 3 1 2 2 3 1 2
𝛺∗(𝜆1, 𝜆2, 𝐷3) = 𝑊 (𝜆1, 𝜆2) +
1
2𝜖
𝐷2

3(𝜆1𝜆2)
−2, (2.7)

where we have used the same symbols 𝛺 and 𝑊 in (2.5) and (2.6)
(although the arguments are different) to avoid introducing extra nota-
tions. In the above equations, the incompressibility condition has been
used to eliminate the principal stretch 𝜆3, and 𝑊 (𝜆1, 𝜆2) is sometimes
referred to as the reduced strain–energy function.

For the above class of free energy functions, the left-hand side of
(1.11)1 is always positive and we have

𝜕𝑆
𝜕𝜆

|

|

|

|𝐸3 f ixed
= 𝜕𝑆

𝜕𝜆
|

|

|

|𝐷3 f ixed
− 8𝜆2𝐸2

3𝜖. (2.8)

This means that (1.10)2 is always satisfied before (1.10)1 is satisfied.
As a result, the conditions (1.11)1 and (1.10)1 can be neglected, and
then (1.9) and (1.10)2 can be solved explicitly (the condition (1.11)2 is
not independent as remarked earlier). Thus, we have the following two
solutions for the bifurcation values of 𝜖𝐸2

3 :

𝜖𝐸2
3
|

|

|TK
= 𝜆−2(𝑊12 −𝑊11), (2.9)

𝜖𝐸2
3
|

|

|LP
= 1

3
𝜆−2(𝑊12 +𝑊11), (2.10)

where the subscripts ‘‘TK‘‘ and ‘‘LP’’ signify associations with the
Treloar-Kearsley and limiting point instabilities, respectively, and

𝑊12 =
𝜕2𝑊
𝜕𝜆1𝜆2

|

|

|

|𝜆1=𝜆2=𝜆
, 𝑊11 =

𝜕2𝑊
𝜕𝜆21

|

|

|

|

|

|𝜆1=𝜆2=𝜆

. (2.11)

2.2. Incremental formulation

In this section we derive the equations governing incremental de-
formations up to and including quadratic terms. For the linear version,
see Dorfmann and Ogden (2010).

We denote the undeformed, uniformly stretched, and bifurcated
configurations of the membrane by 𝐵0, 𝐵𝑒 and 𝐵𝑡, and the position
vectors of a representative material particle in the three configurations
by 𝑿, 𝒙 and �̃�, respectively. We use 𝑭 , 𝑬, 𝑫 and 𝑺 to denote the
deformation gradient, the nominal electric field, nominal electric dis-
placement and total nominal stress associated with the deformation 𝐵0
→ 𝐵𝑡. Their counterparts associated with the deformation 𝐵0 → 𝐵𝑒 are
denoted by �̄� , �̄�, �̄� and �̄�. We define the incremental fields 𝜼, 𝒆, 𝒅,
and 𝝌 through

𝑭 = (𝑰 + 𝜼)�̄� , 𝑬 = �̄� + �̄� 𝑇 𝒆, (2.12)
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𝑫 = �̄� + 𝐽 �̄� −1𝒅, 𝑺 = �̄� + 𝐽 �̄� −1𝝌𝑇 . (2.13)

The determinant 𝐽 (= det �̄� ) is unity but is kept in the above expres-
sions to maintain the generality of the formulae. With 𝒖(𝒙) denoting
the incremental displacement from 𝐵𝑒 to 𝐵𝑡, we have 𝜼 = grad 𝒖, the
gradient of 𝒖 with respect to 𝒙. From the governing equations (2.1) that
apply to both the barred and unbarred fields, we obtain the incremental
governing equations

curl 𝒆 = 𝟎, div𝒅 = 0, div𝝌𝑇 = 𝟎, (2.14)

where div and curl are evaluated with respect to the position vector 𝒙.
We now proceed to derive the incremental forms of the constitutive

equations (2.3). We first expand 𝜕𝛺∕𝜕𝐹𝑖𝐴 around 𝑭 = �̄� , 𝑬 = �̄� to
obtain
(

𝐽−1�̄� 𝜕𝛺
𝜕𝑭

)

𝑙𝑖
= 𝐽−1𝐹𝑙𝐴

𝜕𝛺
𝜕𝐹𝑖𝐴

= 𝐽−1𝐹𝑙𝐴
𝜕𝛺
𝜕𝐹𝑖𝐴

|

|

|

|�̄�
+(1)

𝑙𝑖𝑗𝑘𝜂𝑘𝑗 + A(1)
𝑙𝑖|𝑘𝑒𝑘

+1
2
(2)
𝑙𝑖𝑗𝑘𝑛𝑚𝜂𝑘𝑗𝜂𝑚𝑛 + A(2)

𝑙𝑖𝑗𝑘|𝑛𝜂𝑘𝑗𝑒𝑛 +
1
2
A(3)
𝑙𝑖|𝑗𝑘𝑒𝑗𝑒𝑘, (2.15)

where

(1)
𝑙𝑖𝑗𝑘 = 𝐽−1𝐹𝑙𝐴𝐹𝑗𝐵

𝜕2𝛺
𝜕𝐹𝑖𝐴𝜕𝐹𝑘𝐵

|

|

|

|�̄�
,

(2)
𝑙𝑖𝑗𝑘𝑛𝑚 = 𝐽−1𝐹𝑙𝐴𝐹𝑗𝐵𝐹𝑛𝐶

𝜕2𝛺
𝜕𝐹𝑖𝐴𝜕𝐹𝑘𝐵𝜕𝐹𝑚𝐶

|

|

|

|�̄�
,

(2.16)

(1)
𝑙𝑖|𝑘 = 𝐽−1𝐹𝑙𝐴𝐹𝑘𝐵

𝜕2𝛺
𝜕𝐹𝑖𝐴𝜕𝐸𝐵

|

|

|

|�̄�
,

(2)
𝑙𝑖𝑗𝑘|𝑛 = 𝐽−1𝐹𝑙𝐴𝐹𝑗𝐵𝐹𝑛𝐶

𝜕3𝛺
𝜕𝐹𝑖𝐴𝜕𝐹𝑘𝐵𝜕𝐸𝐶

|

|

|

|�̄�
,

(2.17)

A(3)
𝑙𝑖|𝑗𝑘 = 𝐽−1𝐹𝑙𝐴𝐹𝑗𝐵𝐹𝑘𝐶

𝜕3𝛺
𝜕𝐹𝑖𝐴𝜕𝐸𝐵𝜕𝐸𝐶

|

|

|

|�̄�
. (2.18)

We also have

𝑝�̄� 𝑭 −1 = (�̄� + 𝑝∗)(𝑰 + 𝜼)−1 = �̄�(𝑰 − 𝜼 + 𝜼2) + 𝑝∗(𝑰 − 𝜼) +⋯ , (2.19)

where �̄� and �̄� + 𝑝∗ are the Lagrangian multipliers enforcing incom-
pressibility in 𝐵𝑒 and 𝐵𝑡, respectively. Thus, it follows from (2.3)1 and
(2.13)2 that

(𝝌𝑇 )𝑙𝑖 = (1)
𝑙𝑖𝑗𝑘𝜂𝑘𝑗 + A(1)

𝑙𝑖|𝑘𝑒𝑘 +
1
2
(2)
𝑙𝑖𝑗𝑘𝑛𝑚𝜂𝑘𝑗𝜂𝑚𝑛 + A(2)

𝑙𝑖𝑗𝑘|𝑛𝜂𝑘𝑗𝑒𝑛 +
1
2
A(3)
𝑙𝑖|𝑗𝑘𝑒𝑗𝑒𝑘

+�̄�(𝜂𝑙𝑖 − 𝜂𝑙𝑘𝜂𝑘𝑖) − 𝑝∗(𝛿𝑙𝑖 − 𝜂𝑙𝑖) +⋯ . (2.20)

For the electric displacement, we can similarly obtain

𝐽−1𝐹𝑙𝑀
𝜕𝛺
𝜕𝐸𝑀

= 𝐽−1𝐹𝑙𝑀
𝜕𝛺
𝜕𝐸𝑀

|

|

|

|�̄�
+ 𝐽−1𝐹𝑙𝑀𝐹𝑚𝐴

𝜕2𝛺
𝜕𝐹𝑖𝐴𝜕𝐸𝑀

|

|

|

|�̄�
𝜂𝑖𝑚

+𝐽−1𝐹𝑙𝑀𝐹𝑗𝐴
𝜕2𝛺

𝜕𝐸𝐴𝜕𝐸𝑀

|

|

|

|�̄�
𝑒𝑗

+1
2
𝐽−1𝐹𝑙𝑀𝐹𝑚𝐴𝐹𝑛𝐵

𝜕3𝛺
𝜕𝐹𝑖𝐴𝜕𝐹𝑘𝐵𝜕𝐸𝑀

|

|

|

|�̄�
𝜂𝑖𝑚𝜂𝑘𝑛

+𝐽−1𝐹𝑙𝑀𝐹𝑚𝐴𝐹𝑛𝐶
𝜕3𝛺

𝜕𝐹𝑖𝐴𝜕𝐸𝐶𝜕𝐸𝑀

|

|

|

|�̄�
𝜂𝑖𝑚𝑒𝑛

+1
2
𝐽−1𝐹𝑙𝑀𝐹𝑖𝐴𝐹𝑛𝐶

𝜕3𝛺
𝜕𝐸𝐴𝜕𝐸𝐶𝜕𝐸𝑀

|

|

|

|�̄�
𝑒𝑖𝑒𝑛 +⋯ . (2.21)

It then follows from (2.13)1 and (2.3)2 that

𝑑𝑙 = 𝐽−1𝐹𝑙𝑀

(

− 𝜕𝛺
𝜕𝐸𝑀

+ 𝜕𝛺
𝜕𝐸𝑀

|

|

|

|�̄�

)

= −A(1)
𝑚𝑖|𝑙𝜂𝑖𝑚 − 𝖠(1)

𝑗𝑙 𝑒𝑗

−1
2
A(2)
𝑚𝑖𝑛𝑘|𝑙𝜂𝑖𝑚𝜂𝑘𝑛 − A(3)

𝑚𝑖|𝑛𝑙𝜂𝑖𝑚𝑒𝑛 −
1
2
𝖠(2)
𝑖𝑙𝑛𝑒𝑖𝑒𝑛 +⋯ , (2.22)

where

𝖠(1)
𝑗𝑙 = 𝐽−1𝐹𝑗𝐴𝐹𝑙𝐵

𝜕2𝛺
𝜕𝐸𝐴𝜕𝐸𝐵

|

|

|

|�̄�
, 𝖠(2)

𝑖𝑙𝑛 = 𝐽−1𝐹𝑖𝐴𝐹𝑙𝑀𝐹𝑛𝐶
𝜕3𝛺

𝜕𝐸𝐴𝜕𝐸𝑀𝜕𝐸𝐶

|

|

|

|�̄�
.

4

(2.23) 𝛼
Finally, it follows from the incompressibility conditions det �̄� = 1 and
det 𝑭 = 1 that

𝐼𝜂 + 𝐼𝐼𝜂 + 𝐼𝐼𝐼𝜂 = 0, (2.24)

where the three terms denote the three principal invariants of 𝜼,
respectively. This is the incremental incompressibility condition and its
linear form is simply tr 𝜼 = div 𝒖 = 0.

The governing equation (2.14)1 can be satisfied automatically by
writing 𝒆 = grad𝜓 where the scalar function 𝜓 replaces 𝒆 as one of the
new dependent variables. The remaining governing equations (2.14)2,3
are to be solved subjected to the boundary conditions

𝜒33 = 0, 𝜒31 = 0, 𝜓 = 0 on 𝑧 = ±ℎ∕2. (2.25)

We take ℎ = 1 in the remaining analysis, which is equivalent to using
ℎ as the length unit.

3. Linear analysis

We now consider an axisymmetric perturbation represented by

𝒖 = 𝑢(𝑟, 𝑧)𝒆𝑟 + 𝑣(𝑟, 𝑧)𝒆𝑧, 𝜓 = 𝜓(𝑟, 𝑧), (3.1)

here 𝑟 and 𝑧 are the cylindrical coordinates for 𝒙, 𝒆𝑟 and 𝒆𝑧 are
he unit basis vectors, and 𝑢 and 𝑣 are the associated displacement
omponents. The tensor 𝜼 (= grad 𝒖) now takes the form

= 𝑢𝑟𝒆𝑟 ⊗ 𝒆𝑟 + 𝑢𝑧𝒆𝑟 ⊗ 𝒆𝑧 +
𝑢
𝑟
𝒆𝜃 ⊗ 𝒆𝜃 + 𝑣𝑟𝒆𝑧 ⊗ 𝒆𝑟 + 𝑣𝑧𝒆𝑧 ⊗ 𝒆𝑧, (3.2)

here 𝑢𝑟 = 𝜕𝑢∕𝜕𝑟, 𝑢𝑧 = 𝜕𝑢∕𝜕𝑧, etc.
For the current axisymmetric problem, the two components of the

equilibrium equation div𝝌𝑇 = 0 that are not satisfied automatically are

𝜒1𝑗,𝑗 +
1
𝑟
(𝜒11 − 𝜒22) = 0, 𝜒3𝑗,𝑗 +

1
𝑟
𝜒31 = 0, (3.3)

where (1, 2, 3) corresponds to (𝑟, 𝜃, 𝑧). The linearisation of the incom-
pressibility condition (2.24), namely div 𝒖 = 0, may be written in the
form
𝜕 (𝑟𝑢)
𝜕𝑟

+
𝜕 (𝑟𝑣)
𝜕𝑧

= 0, (3.4)

which can be satisfied automatically by introducing a ‘‘stream function’’
𝜙(𝑟, 𝑧) such that

𝑢 = 1
𝑟
𝜙𝑧, 𝑣 = −1

𝑟
𝜙𝑟, (3.5)

where as in (3.2) a subscript signifies differentiation (e.g. 𝜙𝑧 = 𝜕𝜙∕𝜕𝑧).
The non-zero stress components are given by

𝜒11 = ((1)
1111 + �̄�)𝑢𝑟 +(1)

1122
𝑢
𝑟
+(1)

1133𝑣𝑧 − 𝑝
∗, (3.6)

22 = (1)
1122𝑢𝑟 + ((1)

2222 + �̄�)
𝑢
𝑟
+(1)

2233𝑣𝑧 − 𝑝
∗, (3.7)

33 = (1)
1133𝑢𝑟 +(1)

2233
𝑢
𝑟
+ ((1)

3333 + �̄�)𝑣𝑧 − 𝑝
∗ − 2𝐸3𝜖𝜆

2𝜓𝑧, (3.8)

13 = (1)
3131𝑢𝑧 + ((1)

3113 + �̄�)𝑣𝑟 − 𝐸3𝜖𝜆
2𝜓𝑟, (3.9)

𝜒31 = (1)
1313𝑣𝑟 + ((1)

1331 + �̄�)𝑢𝑧 − 𝐸3𝜖𝜆
2𝜓𝑟, (3.10)

whereas the linearisation of (2.22) is given by

𝑑1 = −𝐸3𝜖𝜆
2(𝑢𝑧 +𝑣𝑟)−𝐸3𝜓𝑟, 𝑑2 = 0, 𝑑3 = −2𝐸3𝜖𝜆

2𝑣𝑧 −𝐸3𝜓𝑧. (3.11)

On substituting these expressions together with (3.5) into (3.3) and
then eliminating 𝑝∗ by cross-differentiation, we obtain

𝛼
(

𝜙𝑟𝑟𝑟𝑟 −
2
𝑟
𝜙𝑟𝑟𝑟 +

3
𝑟2
𝜙𝑟𝑟 −

3
𝑟3
𝜙𝑟

)

+ 2𝛽
(

𝜙𝑟𝑟𝑧𝑧 −
1
𝑟
𝜙𝑟𝑧𝑧

)

+ 𝛾𝜙𝑧𝑧𝑧𝑧

+𝐸3𝜖𝜆
2
(

𝑟𝜓𝑟𝑟𝑟 + 𝜓𝑟𝑟 −
1
𝑟
𝜓𝑟 + 𝑟𝜓𝑟𝑧𝑧

)

= 0, (3.12)

here

= (1) , 2𝛽 = (1) +(1) − 2(1) − 2(1) (1)

2323 2222 3333 2233 2332, 𝛾 = 3232. (3.13)
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𝜁

w

𝑑

A second equation for 𝜙 and 𝜓 is obtained by substituting (3.11) into
(2.14)2:

𝜓𝑧𝑧 +
1
𝑟
𝜓𝑟 + 𝜓𝑟𝑟 − 𝐸3𝜆

2 1
𝑟3

(

𝑟2𝜙𝑟𝑟𝑟 − 𝑟𝜙𝑟𝑟 + 𝑟2𝜙𝑟𝑧𝑧 + 𝜙𝑟
)

= 0. (3.14)

Equations (3.12) and (3.14) admit a ‘‘normal mode’’ buckling/wrinkling
solution of the form

𝜙(𝑟, 𝑧) = 𝑟𝐽1(𝑘𝑟)𝑆(𝑘𝑧), 𝜓(𝑟, 𝑧) = 𝐽0(𝑘𝑟)𝐾(𝑘𝑧), (3.15)

where 𝑘 is a constant playing the role of wavenumber, 𝐽0(𝑥) and 𝐽1(𝑥)
are Bessel’s functions of the first kind, and the other functions 𝑆(𝑘𝑧)
and 𝐾(𝑘𝑧) are to be determined.

On substituting (3.15) into (3.12) and (3.14) and simplifying by
making use of the identity

𝐽𝜈 (𝑥) =
2(𝜈 − 1)

𝑥
𝐽𝜈−1(𝑥) − 𝐽𝜈−2(𝑥),

the 𝐽1(𝑘𝑟) and 𝐽0(𝑘𝑟) can be cancelled in the resulting equations and
we obtain two ordinary differential equations:

𝛾𝑆(4)(𝑘𝑧) − 2𝛽𝑆′′(𝑘𝑧) + 𝛼𝑆(𝑘𝑧) + 𝑘−1𝐸3𝜖𝜆
2(𝐾(𝑘𝑧) −𝐾 ′′(𝑘𝑧)) = 0, (3.16)

and
{

𝐾 ′′(𝑘𝑧) − 𝐸3𝑘𝜆
2𝑆′′(𝑘𝑧)

}

−
{

𝐾(𝑘𝑧) − 𝐸3𝑘𝜆
2𝑆(𝑘𝑧)

}

= 0. (3.17)

The last equation can be integrated straightaway to yield

𝐾(𝑘𝑧) = 𝐸3𝑘𝜆
2𝑆(𝑘𝑧) + 𝑐5 sinh(𝑘𝑧) + 𝑐6 cosh(𝑘𝑧), (3.18)

where 𝑐5 and 𝑐6 are constants. Equation (3.16) then reduces to

𝛾𝑆(4)(𝑘𝑧) − 2𝛽∗𝑆′′(𝑘𝑧) + 𝛼∗𝑆(𝑘𝑧) = 0, (3.19)

where

𝛼∗ = 𝛼 + 𝐸2
3𝜖𝜆

4, 𝛽∗ = 𝛽 + 1
2
𝐸2
3𝜖𝜆

4. (3.20)

The general solution of (3.19) may be written in the form

𝑆(𝑘𝑧) = 𝑐1 sinh
𝑘

√

𝜁1
𝑧+𝑐2 sinh

𝑘
√

𝜁2
𝑧+𝑐3 cosh

𝑘
√

𝜁1
𝑧+𝑐4 cosh

𝑘
√

𝜁2
𝑧, (3.21)

here 𝑐1, 𝑐2, 𝑐3, 𝑐4 are disposable constants, and

1 =
1
𝛼∗

(𝛽∗ −
√

𝛽∗2 − 𝛼∗𝛾), 𝜁2 =
1
𝛼∗

(𝛽∗ +
√

𝛽∗2 − 𝛼∗𝛾). (3.22)

The boundary conditions (2.25) take the form

(1)
3131𝑢𝑧 + ((1)

3113 + �̄�)𝑣𝑟 − 𝐸3𝜖𝜆
2𝜓𝑟 = 0, on 𝑧 = ±1∕2, (3.23)

(1)
1133𝑢𝑟 +(1)

2233
𝑢
𝑟
+ ((1)

3333 + �̄�)𝑣𝑧 − 𝑝
∗

−2𝐸3𝜖𝜆
2𝜓𝑧 = 0, on 𝑧 = ±1∕2, (3.24)

𝜓 = 0, on 𝑧 = ±1∕2. (3.25)

The 𝑝∗ in (3.24) can be eliminated by first differentiating (3.24) with
respect to 𝑟 and then using (3.3)1 to eliminate 𝑝∗𝑟 . This gives

1
𝑟2
((1)

2233 −(1)
2222 − �̄�)

(

𝑟2𝑢𝑟𝑟 + 𝑟𝑢𝑟 − 𝑢
)

−(1)
3232𝑢𝑧𝑧

+((1)
3333 −(1)

2332 −(1)
2233)𝑣𝑟𝑧 − 𝐸3𝜖𝜆

2𝜓𝑟𝑧 = 0, on 𝑧 = ±1∕2. (3.26)

On substituting (3.15), (3.18) and (3.21) into the six boundary con-
ditions (3.23), (3.25) and (3.26), we obtain six algebraic equations.
Due to the symmetry of the membrane geometry and external loads
with respect to the mid-plane 𝑧 = 0, this system of equations admits
two types of solutions corresponding to flexural and extensional modes,
respectively. The bifurcation condition for the extensional modes is
what we shall focus on and is given by

𝑑1 tanh
(𝑘) tanh

(

𝑘
√

)

− 𝑑2 tanh
(𝑘) tanh

(

𝑘
√

)

5

2 2 𝜁1 2 2 𝜁2
+𝑑3 tanh

(

𝑘
2
√

𝜁1

)

tanh

(

𝑘
2
√

𝜁2

)

= 0, (3.27)

here

1 =
√

𝜁1(1 + 𝜁1)(𝜁2(2𝛽∗ + 𝛾) − 𝛾),

𝑑2 =
√

𝜁2(1 + 𝜁2)(𝜁1(2𝛽∗ + 𝛾) − 𝛾), (3.28)
𝑑3 = 𝜖𝐸2

3𝜆
4√𝜁1𝜁2(𝜁1 − 𝜁2).

Expanding (3.27) to order 𝑘2, we obtain

𝛾(𝛽 + 𝛾) + 𝑘2

24
𝛾(𝛼 − 𝛾) + 𝑂(𝑘4) = 0, (3.29)

where we have used (3.22) to eliminate 𝜁1 and 𝜁2. Note that the
coefficient of 𝑘2 in the above asymptotic expression is not unique: we
can add an arbitrary multiple of 𝛾(𝛽 + 𝛾) to it without changing the
asymptotic order of the second term since the latter expression is of
order 𝑘2.

As an illustrative example, consider the following two-term Ogden
strain–energy function:

𝑊 =
2𝜇1
𝑚2
1

(𝜆𝑚1
1 + 𝜆𝑚1

2 + 𝜆𝑚1
3 − 3) +

2𝜇2
𝑚2

2
(𝜆𝑚2

1 + 𝜆𝑚2
2 + 𝜆𝑚2

3 − 3), (3.30)

with 𝑚1 = 1∕2, 𝑚2 = 4, 𝜇2 = 𝜇1∕80. Fig. 2 displays the bifurcation
condition (3.27) and its two-term approximation (3.29) in the small
wavenumber limit. It is seen that the minimum of 𝜆 is attained at 𝑘 = 0
in the case of fixed 𝐸3 and the minimum of 𝐸3 is also attained at 𝑘 = 0
in the case of fixed 𝜆.

Based on the discussion in Fu (2001), we may postulate that the
bifurcation condition for localised necking can be obtained by setting
the leading order term in (3.29) to zero, that is 𝛽 + 𝛾 = 0 since 𝛾 > 0,
or equivalently,

(1)
2222 +(1)

3333 + 2(1)
3232 − 2(1)

2332 − 2(1)
2233 = 0. (3.31)

It can be shown that this condition is equivalent to
𝜕𝑆1
𝜕𝜆1

|

|

|

|𝜆1=𝜆2=𝜆
= 0, (3.32)

where 𝑆1 has the same meaning as in Section 1. Corresponding to the
free energy function (2.6), this equation can be solved explicitly to
give

(𝜖𝐸2
3 )necking = 𝜆−2𝑊11. (3.33)

This bifurcation condition may be compared with the conditions (2.9)
and (2.10) for the TK and limiting point instabilities.

Corresponding to the strain–energy function (3.30), the three bi-
furcation conditions are shown in Fig. 3 by viewing 𝐸3 as a function
of 𝜆 or 𝑆, respectively. Fig. 3(b) is obtained by eliminating 𝐸3 from
𝑆 = 𝑆(𝜆, 𝐸3) using the bifurcation conditions so that both 𝑆 and 𝐸3 are
parametric functions of 𝜆.

In the absence of an electric field (𝐸3 = 0), there are two bifurcation
values for the TK instability and another two bifurcation values for
necking, and limiting points do not exist. This purely mechanical
case has previously been discussed in Wang et al. (2022). In partic-
ular, it was shown that although the first bifurcation value for the
TK instability is smaller than the first bifurcation value for necking,
necking can still occur first when the membrane is stretched under
edge displacement control since in this case the TK instability will be
suppressed.

When an electric field is applied (𝐸3 ≠ 0), we consider two typical
loading scenarios. One is to first stretch the membrane to a specified
value of 𝜆, say 𝜆 = 2, in the absence of an electric field, and then
increase the electric field from zero with the edge fixed. This loading
scenario corresponds to displacement control and so TK instability is
suppressed. Referring to Fig. 3(a), this means that the first instability
experienced by the membrane is the necking instability although the

loading path crosses the TK instability curve.
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Fig. 2. Bifurcation condition (3.27) for periodic and symmetric modes, and its two-term approximation (3.29) in the small wavenumber limit.
Fig. 3. Bifurcation conditions for the TK, limiting point (LP) and necking instabilities corresponding to the strain–energy function (3.30). The alternative representations in (b) are
obtained by viewing 𝐸3 and 𝑆 as functions of 𝜆 and varying 𝜆 in the interval (1, 3.7). The three lines in (a) intersect at 𝜆 = 1.98 and 3.23, and the curve associated with necking
cuts the horizontal axis at 𝜆 = 2.44 and 2.92. In (b) the dotted line corresponding to the limiting point instability is close but always above that for the necking instability.
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The other loading scenario is to first increase the nominal stress 𝑆
o a specified value, say 1.5, in the absence of an electric field, and
hen increase the electric field from zero with 𝑆 fixed as a dead load.
his is the loading scenario adopted by Huang et al. (2012). Fig. 3(b)
hows that again the first instability experienced by the membrane is
he necking instability.

. Weakly nonlinear analysis

The linear analysis in the previous section only provides a necessary
ondition for necking. Whether a necking solution really bifurcates
rom the homogeneous solution or not can only be answered by a
ear-critical nonlinear analysis.

To fix ideas, we may assume that the strain–energy function is given
y (3.30) and the case to be studied is when 𝜆 is fixed in the interval
1.98, 2.44) and 𝐸3 is gradually increased from zero. As pointed out in
he previous section, in this parameter regime necking would occur
efore the limiting point instability or the TK instability.

We define a non-dimensional load parameter 𝜔 through

𝜔 = 𝜖
𝜇1
𝐸2
3 . (4.1)

Denoting its bifurcation value by 𝜔cr (which depends on 𝜆), we write

𝜔 = 𝜔cr + 𝜀𝜔1, (4.2)

where 𝜔1 is an 𝑂(1) constant and 𝜀 is a positive small parameter char-
6

acterising the derivation of 𝜔 from 𝜔cr . From the bifurcation condition o
(3.29) it can be deduced that in this parameter regime the buckling
mode will have 𝑘 = 𝑂(

√

𝜀), which means that the dependence of the
near-critical solution on 𝑟 should be through the stretched variable 𝑠
defined by

𝑠 =
√

𝜀𝑟. (4.3)

he relative orders of 𝑢, 𝑣, 𝑝∗ and 𝜓 can be deduced by expanding the
linear solutions (3.15) for small 𝑘. The absolute size of 𝑣 is determined
by the fact that the amplitude is expected to be a linear function of
𝜔 − 𝜔cr for the type of bifurcations under consideration. This gives
𝑣 = 𝑂(𝜀). Based on this analysis, we look for a near-critical solution
of the form

𝑢 =
√

𝜀
{

𝑢(1)(𝑠, 𝑧) + 𝜀𝑢(2)(𝑠, 𝑧) + 𝜀2𝑢(3)(𝑠, 𝑧) +⋯
}

,

= 𝜀
{

𝑣(1)(𝑠, 𝑧) + 𝜀𝑣(2)(𝑠, 𝑧) + 𝜀2𝑣(3)(𝑠, 𝑧) +⋯
}

, (4.4)

∗ = 𝜀
{

𝑝(1)(𝑠, 𝑧) + 𝜀𝑝(2)(𝑠, 𝑧) + 𝜀2𝑝(3)(𝑠, 𝑧) +⋯
}

,

= 𝜀2
{

𝜓 (1)(𝑠, 𝑧) + 𝜀𝜓 (2)(𝑠, 𝑧) + 𝜀2𝜓 (3)(𝑠, 𝑧) +⋯
}

,

here all the functions on the right hand sides are to be determined
rom successive approximations.

To ease descriptions, we scale all the governing equations and
oundary conditions so that the left hand side of each equation becomes
f 𝑂(1). This is achieved by dividing by 𝜀 the electric equilibrium
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equation (2.14)2, the mechanical equilibrium equation (3.3)2, the in-
ompressibility condition (2.24) and the boundary condition (2.25)1,
nd by

√

𝜀 the mechanical equilibrium equation (3.3)1 and boundary
condition (2.25)2. On substituting (4.4) into these scaled equations
and then equating the coefficients of like powers of 𝜀, we obtain a
ierarchy of boundary value problems. In the following description,
he two equilibrium equations in (3.3) are referred to as the 𝑟- and
-equilibrium equations, respectively. At the 𝑛th order (𝑛 = 1, 2 or
), we integrate the 𝑟-equilibrium equation subject to the boundary
ondition (2.25)2 to find 𝑢(𝑛)(𝑠, 𝑧), the incompressibility condition to
ind 𝑣(𝑛)(𝑠, 𝑧), and finally the 𝑧-equilibrium equation subject to (2.25)1

to find 𝑝(𝑛)(𝑠, 𝑧).
At leading order, the above procedure yields

𝑢(1)(𝑠, 𝑧) = 𝐴(𝑠), 𝑣(1)(𝑠, 𝑧) = −𝑧 1
𝑠
(𝑠𝐴(𝑠))′ + 𝐵(𝑠), (4.5)

𝑝(1)(𝑠, 𝑧) = −((1)
3333 −(1)

2233 +(1)
3232 −(1)

3223)
1
𝑠
(𝑠𝐴(𝑠))′, (4.6)

where 𝐴(𝑠) and 𝐵(𝑠) are functions to be determined, and here and
hereafter in this section all the moduli are evaluated at 𝜔 = 𝜔cr . The
electric equilibrium equation (2.14)2 is satisfied automatically.

At second order, the general solution for 𝑢(2)(𝑠, 𝑧) contains two new
functions 𝐶(𝑠) and 𝐷(𝑠) in the form 𝐶(𝑠)+𝑧𝐷(𝑠). Subtracting and adding
the boundary condition (2.25)2 at 𝑧 = ±1∕2, respectively, we obtain

(1)
3333 − 2(1)

2233 +(1)
2222 + 2(1)

3232 − 2(1)
3223 = 0, (4.7)

and

𝐷(𝑠) = −𝐵′(𝑠). (4.8)

The first result (4.7) is equivalent to the bifurcation condition (3.31).
The general solutions for 𝑣(2)(𝑠, 𝑧) and 𝑝2(𝑠, 𝑧) contain new functions
𝐹 (𝑠) and 𝐸(𝑠), respectively. On applying the boundary condition (2.25)1
at 𝑧 = ±1∕2, we obtain 𝑠𝐵′′(𝑠) + 𝐵′(𝑠) = 0, and an expression for 𝐸(𝑠).
It then follows that 𝐵(𝑠) = 𝑑1 ln 𝑠+ 𝑑2. Since 𝑣(1) and hence 𝐵(𝑠) should
be bounded at 𝑠 = 0, we must set 𝑑1 = 0. Without loss of generality we
may also impose the condition 𝑣(1)(0, 0) = 0 to eliminate any rigid-body
displacement. This yields 𝑑2 = 0 and hence 𝐵(𝑠) = 0. Finally, integrating
the electric equilibrium equation (2.14)2 at this order subject to (2.25)3
at 𝑧 = ±1∕2 yields a unique expression for 𝜓1(𝑠, 𝑧).

At third order, nonlinear terms come into play and it is at this
order that an amplitude equation for 𝐴(𝑠) is derived. We first solve the
𝑟-equilibrium equation to find an expression for 𝑢(3)(𝑠, 𝑧). It contains
two new functions 𝐺(𝑠) and 𝐻(𝑠) in the form 𝐺(𝑠) + 𝑧𝐻(𝑠). Subtracting
and adding (2.25)2 evaluated at 𝑧 = ±1∕2, respectively, we obtain the
amplitude equation for 𝐴(𝑠) and an expression for 𝐻(𝑠). After some
simplification, it is found that the amplitude equation takes the form

𝑐0
𝑑
𝑑𝑠

1
𝑠
𝑑
𝑑𝑠
𝑠𝑃 ′(𝑠) + 𝑐1𝜔1𝑃

′(𝑠) + 𝑐2
𝑑
𝑑𝑠
𝑃 2(𝑠) + 𝑐3𝐴′′(𝑠)

(

𝐴′(𝑠) − 1
𝑠
𝐴(𝑠)

)

= 0,

(4.9)

here a prime signifies differentiation, 𝑃 (𝑠) is defined by

(𝑠) = 1
𝑠
(𝑠𝐴(𝑠))′, (4.10)

and the three coefficients are given by

𝑐0 = 1
12

(

(1)
2323 −(1)

3232

)

,

𝑐1 = 2(1)′
2233 + 2(1)′

2332 −(1)′
2222 − 2(1)′

3232 −(1)′
3333,

2 = 1
4

(

−4(1)
2222 − 2(1)

2233 + 6(1)
3333 −(2)

222222 + 4(2)
222233 −(2)

112222

−6(2)
223333 + 2(2)

112233 + 2(2)
333333

)

,

𝑐3 = (1)
2233 −(1)

2222 +(2)
222233 −(2)

112233 −
1
2
(2)

222222 +
1
2
(2)

112222.

n the above expressions, (1)′
2233 denotes 𝑑(1)

2233∕𝑑𝜔 etc., and we have
sed the bifurcation condition (4.7) to eliminate (1) . It can be
7

2332
een that the amplitude equation (4.9) has the same structure as its
echanical counterpart derived by Wang et al. (2022).

Corresponding to the specific free energy function specified by (2.5)
nd (3.30), we have

0 = −−480𝜆17∕2 + 𝜆12 + 800𝜆7 + 3
960𝜆8

, 𝑐1 = 𝜆4,

𝑐2 =
−56𝜆17∕2 + 240𝜆7 + 3

32𝜆8
, 𝑐3 =

√

𝜆
2

− 3𝜆4
80

. (4.11)

s a consistency check, we may neglect the nonlinear terms in (4.9) to
btain

0
𝑑
𝑑𝑠

1
𝑠
𝑑
𝑑𝑠
𝑠𝑃 ′(𝑠) + 𝑐1𝜔1𝑃

′(𝑠) = 0. (4.12)

n substituting a solution of the form 𝑃 ′(𝑠) = 𝐽1(𝑘𝑠∕
√

𝜀) into (4.12),
where 𝑘 is a constant, we obtain

𝑐1(𝜔 − 𝜔cr ) − 𝑐0𝑘2 = 0. (4.13)

On the other hand, expanding (3.29) around 𝜔 = 𝜔cr , we obtain
{ 𝑑
𝑑𝜔

(𝛽 + 𝛾)
}

cr
(𝜔 − 𝜔cr ) +

𝑘2

24
(𝛼 − 𝛾)

|

|

|

|cr
= 0, (4.14)

here the subscripts ‘‘cr’’ signify evaluation at 𝜔 = 𝜔cr . We have
erified that (4.13) is indeed consistent with (4.14).

As another consistency check, we may expand (4.9) out fully and
mit all the terms that are divided by powers of 𝑠 to obtain its planar
ounterpart:

0𝐴
(4)(𝑠) + 𝑐1𝜔1𝐴

′′(𝑠) + 𝑐∗2𝐴
′(𝑠)𝐴′′(𝑠) = 0, (4.15)

here

∗
2 = 2𝑐2 + 𝑐3 = 3(1)

3333 −3(1)
2222 −(2)

222222 +3(2)
222233 −3(2)

223333 +(2)
333333.

(4.16)

t has an exact solution given by

(𝑠) =
6𝑐0
𝑐∗2

√

−𝑐1𝜔1
𝑐0

tanh
(

1
2

√

−𝑐1𝜔1
𝑐0

𝑠
)

. (4.17)

his solution has the property 𝐴′(𝑠) → 0 as 𝑠 → ∞ and is the localised
ecking solution in the 2D case (Fu et al., 2018a).

It does not seem possible to find a similar analytical solution for
he original amplitude equation (4.9) that is fourth-order with variable
oefficients. We thus resort to finding its numerical solution with the
se of the finite difference method. With the use of the substitution
(𝑠) → (𝑐0∕𝑐2)𝜅2𝐴(𝜅𝑠), equation (4.9) may be reduced to
𝑑
𝑑𝑡

1
𝑡
𝑑
𝑑𝑡
𝑡𝑃 ′(𝑡) − 𝑃 ′(𝑡) + 𝑑

𝑑𝑡
𝑃 2(𝑡) +

𝑐3
𝑐2
𝐴′′(𝑡)

(

𝐴′(𝑡) − 1
𝑡
𝐴(𝑡)

)

= 0, (4.18)

where 𝑡 = 𝜅𝑠, 𝜅 =
√

−𝑐1𝜔1∕𝑐0 and 𝑃 (𝑡) is still defined by (4.10).
We replace the semi-infinite interval [0,∞) by a finite interval [0, 𝐿]

and discretise the latter into 𝑁 equal intervals with node points

𝑡𝑖 = 𝑖ℎ̃, ℎ̃ = 𝐿
𝑁
, 𝑖 = 0, 1, 2,… , 𝑁.

We apply the central finite difference scheme such that

𝐴′(𝑡𝑖) =
𝐴𝑖+1 − 𝐴𝑖−1

2ℎ̃
, 𝐴′′(𝑡𝑖) =

𝐴𝑖+1 − 2𝐴𝑖 + 𝐴𝑖−1
ℎ̃2

, (4.19)

𝐴′′′(𝑡𝑖) =
𝐴𝑖+2 − 2𝐴𝑖+1 + 2𝐴𝑖−1 − 𝐴𝑖−2

2ℎ̃3
, (4.20)

𝐴(4)(𝑡𝑖) =
𝐴𝑖+2 − 4𝐴𝑖+1 + 6𝐴𝑖 − 4𝐴𝑖−1 + 𝐴𝑖−2

ℎ̃4
, (4.21)

where 𝐴𝑖 = 𝐴(𝑡𝑖), etc. Evaluating the amplitude equation (4.9) at the
𝑁 − 1 interior nodes 𝑡1, 𝑡2,… , 𝑡𝑁−1, we obtain 𝑁 − 1 equations that
involve the 𝑁 +3 unknowns 𝐴−1, 𝐴0,…, and 𝐴𝑁+1. The remaining four

equations are obtained as follows.
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Fig. 4. Finite difference solution (solid lines) of the amplitude equation (4.9) when 𝜆 = 2 and the strain–energy function is given by (3.30). The hollow squares correspond to the
approximate solution given by (4.25).
First, it follows from the symmetry conditions

lim
𝑠→0

𝑢(1)(𝑠, 𝑧) = 0 and lim
𝑠→0

𝜕𝑣(1)

𝜕𝑠
(𝑠, 1

2
) = 0

that lim𝑡→0 𝐴(𝑡) = 0 and lim𝑡→0 𝑃 ′(𝑡) = 0. By trying a series solution
for small 𝑡, it is found that the unique solution that satisfies the above
conditions has the behaviour 𝐴(𝑡) ∼ 𝑎1𝑡+𝑎2𝑡3+⋯ for some constants 𝑎1
and 𝑎2. This gives lim𝑡→0 𝐴′′(𝑡) = 0. The two conditions 𝐴(0) = 𝐴′′(0) = 0
together with (4.19)2 then yield two additional equations.

Next, we consider the asymptotic behaviour of the solutions as 𝑡→
∞. Although the planar solution (4.17) does not decay, we expect that
the solution of (4.9) will experience algebraic decay due to geometric
spreading. Since quadratic terms are expected to decay faster than
linear terms, the decay behaviour may be captured by neglecting the
nonlinear terms:
𝑑
𝑑𝑡

1
𝑡
𝑑
𝑑𝑡
𝑡𝑃 ′(𝑡) − 𝑃 ′(𝑡) = 0, as 𝑡→ ∞. (4.22)

The unique decaying solution of (4.22) is given by

𝑃 (𝑡) = 𝑃∞(𝑡) ≡ 𝑎3𝐾0(𝑡), 𝐴(𝑡) = 𝐴∞(𝑡) ≡
𝑎4
𝑡
− 𝑎3𝐾1(𝑡), (4.23)

where 𝑎3 and 𝑠4 are constants, and 𝐾0 and 𝐾1 are the modified Bessel
function of the second kind that has the asymptotic behaviour

𝐾𝛼(𝑥) ∼
√

𝜋
2𝑥

e−𝑥
[

1 + 4𝛼2 − 1
8𝑥

+⋯
]

, as 𝑥→ ∞. (4.24)

The asymptotic behaviour (4.23) is consistent with our earlier assump-
tion that 𝐴(𝑠) decays algebraically. We note that the above decay
ehaviour is based on the assumption that 𝑡 is a real variable, or equiv-

alently 𝜅 is a real constant. This enables us to deduce that whenever a
necking bifurcation takes place, it is generally subcritical (𝜔1 < 0 since
𝑐1∕𝑐0 > 0).

If a function 𝑓 (𝑥) decays exponentially like e−𝑎𝑥 as 𝑥 → ∞ for
ome positive constant 𝑎, then it is preferable to impose the ‘‘soft‘‘
symptotic condition 𝑓 ′(𝐿) + 𝑎𝑓 (𝐿) = 0 instead of the ‘‘hard’’ condition
𝑓 (𝐿) = 0 (since 𝑓 ′(𝐿) + 𝑎𝑓 (𝐿) is much smaller than 𝑓 (𝐿)). Extending
this idea, we use (4.23) to find the first three derivatives of 𝐴∞(𝑠) and
by eliminating 𝑎1 and 𝑎2 express 𝐴′′

∞(𝑠) and 𝐴′′′
∞ (𝑠) in terms of 𝐴∞(𝑠) and

𝐴′
∞(𝑠). Replacing 𝐴∞(𝑠) by 𝐴(𝑠) and evaluating these two expressions at

𝑠 = 𝑠𝑁 = 𝐿 followed by the use of (4.19)–(4.21), we obtain two more
additional equations. The system of 𝑁 +3 quadratic equations can then
be solved provided an appropriate initial guess is given. It is found that
one good initial guess is the planar solution (4.17) divided by 1 + 𝑠.

For values of 𝜆 in the interval (1.979, 2.439), it is found that the
coefficient 𝑐3∕𝑐2 is positive when 𝜆 < 2.096 and negative when 𝜆 >
8

2.096. So we consider two representative cases corresponding to 𝜆 = 2
and 2.2, respectively. It is found that taking 𝑁 = 1000 and 𝐿 = 10 yields
sufficiently accurate results. Fig. 4 shows the finite difference solution
corresponding to 𝜆 = 2 together with the approximate analytical
solution

𝑃 (𝑡) = 𝑎
𝑏𝑡2 + 1

sech2(𝑐𝑡), (4.25)

where the constants 𝑎, 𝑏, 𝑐 are determined by fitting (4.25) to the finite
difference solution. The maximum relative error over the entire interval
is less than 3.4%. The solution corresponding to 𝜆 = 2.2 for which the
𝑐3∕𝑐2 is of opposite sign is very similar and is thus not displayed here.

5. Discussion and conclusion

Pull-in failure in dielectric elastomer actuators is widely believed to
be associated with the limiting point behaviour whereby the electric
field as a function of the electric displacement or stretch has a maxi-
mum. For the plane-strain or plane-stress case, this connection is well
explained using the analogy with the inflation problem associated with
a rubber tube where the limiting point behaviour is well-known to be
associated with localised bulging that eventually evolves into a ‘‘two-
phase’’ state (Fu et al., 2018a; Huang and Suo, 2012). However, for
the case of equibiaxial tension, this explanation contradicts the fact
that at large values of dead load, the limiting point behaviour may
disappear but pull-in failure can still be observed (Huang et al., 2012).
Our current paper offers an alternative explanation, namely that pull-in
failure evolves from axisymmetric necking through an unstable process.
We note that the condition for necking does not necessarily require
limiting point behaviour.

We have only carried out a linear and weakly nonlinear analysis in
the current study, but the fully nonlinear numerical simulations carried
out in our earlier paper (Wang et al., 2022) for the purely mechanical
case should also be indicative of what might be expected in the cur-
rent electroelastic case. Thus, combining the weakly nonlinear results
in the previous section with the fully nonlinear simulation results
in Wang et al. (2022), we may draw the following conclusions. When
the bifurcation condition (3.33) is satisfied, a necking solution will
bifurcate from the homogeneous solution subcritically. If the membrane
is gradually pulled further in the radial direction at the edge, with the
electric potential fixed, the necking solution will grow in amplitude,
corresponding to an increased reduction in thickness at the origin, and
when a maximum amplitude is approached, the necking solution will
start to propagate in the radial direction in the form of a ‘‘two-phase’’
deformation. This is very similar to the localised bulging of an inflated
rubber tube except that here the propagation is also accompanied by

algebraic decay of the amplitude due to geometrical spreading. On
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Fig. 5. Bifurcation conditions for the TK, limiting point (LP) and necking instabilities corresponding to (a) the Gent strain–energy function with 𝐽𝑚 = 97.2, and (b) the Mooney–Rivlin
train–energy function with 𝛾 = 0.3. The dashed line corresponds to zero nominal stress in the radial direction above which the nominal stress is negative.
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he other hand, if the electric potential is increased further from its
ifurcation value while the membrane edge is fixed, the membrane will
nap to a ‘‘two-phase’’ deformation. This is analogous to the pressure
ontrol case in the tube inflation problem (Guo et al., 2022).

We wish to highlight the fact that the predictions that can be made
re sensitive to the material model used. To fix ideas, we have used the
train–energy function (3.30) as an example. To show how our results
epend on the strain–energy function used, we have shown in Fig. 5
he counterpart of Fig. 3 when the following Gent and Mooney–Rivlin
aterial models are used:

= −1
2
𝜇𝐽𝑚 ln(1 −

𝜆21 + 𝜆
2
2 + 𝜆

2
3 − 3

𝐽𝑚
), (5.1)

𝑊 = 1
2
𝜇
{

𝜆21 + 𝜆
2
2 + 𝜆

2
3 − 3 + 𝛾(𝜆−21 + 𝜆−22 + 𝜆−23 − 3)

}

, (5.2)

here 𝜇, 𝐽𝑚 and 𝛾 are material constants.
It is found that the bifurcation curves have a very weak dependence

n the value of 𝐽𝑚 and the curves corresponding to 𝐽𝑚 = ∞ (the
eo-Hookean model) are almost the same as those in Fig. 5(a) for
𝑚 = 97.2. It is seen that the main effect of increasing the 𝛾 in (5.2)
s to shift the curves for the TK and limiting instabilities upwards.
s a result, the TK instability is not possible for the Gent and neo-
ookean material models (since the corresponding 𝐸3 is negative) but

s possible for the Mooney–Rivlin material model. This is well-known in
he purely mechanical case. The bifurcation curve for necking is always
bove the curve corresponding to zero nominal stress in the radial
irection (dashed line). Thus, although necking is theoretically possi-
le, it is unlikely to be observable when the dielectric membrane has
he constitutive behaviour modelled by these two material models. It
hen remains an open question whether there exist dielectric materials
hose constitutive behaviour allows the type of axisymmetric necking

hat is described in the current paper. It is hoped that this question will
e answered in our future experimental studies.
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