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Abstract

We derive a one-dimensional (1d) model for the analysis of bulging or necking in an inflated hy-

perelastic tube of finite wall thickness from the three-dimensional (3d) finite elasticity theory by

applying the dimension reduction methodology proposed by Audoly and Hutchinson (J. Mech.

Phys. Solids, 97, 2016). The 1d model makes it much easier to characterize fully nonlinear ax-

isymmetric deformations of a thick-walled tube using simple numerical schemes such as the finite

difference method. The new model recovers the diffuse interface model for analyzing bulging in

a membrane tube and the 1d model for investigating necking in a stretched solid cylinder as two

limiting cases. It is consistent with, but significantly refines, the exact linear and weakly nonlinear

bifurcation analyses. Comparisons with finite element simulations show that for the bulging prob-

lem, the 1d model is capable of describing the entire bulging process accurately, from initiation,

growth, to propagation. The 1d model provides a stepping stone from which similar 1d models

can be derived and used to study other effects such as anisotropy and electric loading, and other

phenomena such as rupture.
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1. Introduction

Hyperelastic tubes are commonly found in various applications ranging from soft robotics (Ma

et al., 2015; Lu et al., 2015, 2020; Stano & Percoco, 2021) to energy harvesting (Lu & Suo, 2012;

Bucchi & Hearn, 2013; Smith, 2016; Collins et al., 2021; Bastola & Hossain, 2021). They are also

used to model human arteries in order to understand pathological conditions such as aneurysms

(Fu et al., 2012; Alhayani et al., 2014; Demirkoparan & Merodio, 2017; Varatharajan & DasGupta,

2017; Hejazi et al., 2021). Inflation of a hyperelastic tube is one of the few boundary value problems

in nonlinear elasticity that have closed-form solutions, and it provides the simplest setup to explain

bifurcation, localization, loss of convexity, and “two-phase” deformations. Thus, understanding this
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problem is not only important for applications, but may also shed light on other more complicated

stability and bifurcation problems.

Simple inflation experiments with commercially available latex rubber tubes show that localized

bulging is the dominant deformation form. For almost all realistic constitutive models for rubber,

the pressure versus volume curve has an up-down-up shape under the condition of fixed resultant

axial force (Green & Adkins, 1960). This led Yin (1977) and Chater & Hutchinson (1984) to

analyze the final observable configuration as that corresponding to a “two-phase” deformation.

The subsequent experimental studies carried out by Kyriakides & Chang (1990, 1991), Pamplona

et al. (2006) and Goncalves et al. (2008) have provided a clear picture on how a localized bulge

initiates, grows and then propagates under fixed axial force or fixed-ends conditions.

When the membrane assumption is made, the governing equations for tube inflation can be

viewed as a finite-dimensional spatial dynamical system that has two conservation laws/integrals

(Pipkin, 1968). This realization enabled Fu et al. (2008) to demonstrate explicitly how a localized

solution initiates as a zero-wave-number mode from the uniform deformation and how it evolves

into a “two-phase” state. The stability of bulging solutions and their sensitivity to imperfections

have been studied under the same framework (Pearce & Fu, 2010; Fu & Xie, 2010; Fu & Il’ichev,

2015). Fresh analytical insight into the case of fixed ends has also been obtained. It is shown that

the bifurcation condition for this case corresponds to the axial force reaching a maximum at a fixed

pressure (Fu & Il’ichev, 2015); in other words, as pressure is increased, the critical pressure is the

value of pressure at which the axial force reaches a maximum when viewed as a function of the axial

stretch. Also, in contrast with the case of fixed axial force where the measured pressure approaches

a constant value (the propagation pressure), the measured pressure in the case of fixed ends has

an up-down-up shape where the right branch approaches a master curve that is independent of the

pre-axial-stretch or the tube length (Guo et al., 2022).

In some practical applications, however, the tube wall may be of moderate or even large thickness

and the membrane model no longer applies. For example, in the context of aneurysm formation,

a human artery can be as thick as a quarter of its outer radius (Müller et al., 2008), and fiber-

reinforcement also seems to reduce the range of validity of the membrane assumption (Wang &

Fu, 2018). Thus, recent studies have begun to consider hyperelastic tubes of finite wall thickness.

Fu et al. (2016) showed that the associated bifurcation condition for localized bulging corresponds

to the vanishing of the Jacobian determinant of the internal pressure and the resultant axial force

as functions of the azimuthal stretch on the inner surface and the axial stretch; see also Yu &

Fu (2022) for an alternative derivation. This provides a framework under which additional effects

such as rotation (Wang et al., 2017), double-fiber-reinforcement (Wang & Fu, 2018), bi-laying

(Liu et al., 2019; Ye et al., 2019), torsion (Althobaiti, 2022), and surface tension (Emery & Fu,

2021a,b,c; Emery, 2023) can be assessed in a systematic manner. Ye et al. (2020) conducted a

weakly non-linear analysis and derived the bulging solution explicitly. The analytic predictions

were corroborated by numerical simulations (Lin et al., 2020) and experiments (Wang et al., 2019).
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For tubes of finite wall thickness, the equations that govern their axisymmetric deformations

are coupled nonlinear partial differential equations. Although analytic solutions can be obtained in

the near-critical regime using asymptotic methods (Ye et al., 2020), the complexity of the governing

equations forbids any further analytic attempts to understand the bulging evolution further away

from the bifurcation point. The post-bifurcation behavior in the fully nonlinear regime has so far

only been investigated by resorting to Abaqus simulations (Wang et al., 2019; Lin et al., 2020).

This is not satisfactory since the insight provided by full-scale simulations tends to be limited and

there are situations where repeated calculations of the bulging profile are required (e.g. in the

assessment of the rupture potential (Hejazi et al., 2021)).

A recent series of studies by Audoly and coworkers has opened the possibility that a 1d reduced

model can be derived to describe the fully nonlinear evolution of bulging or necking. In the first

of this series, Audoly & Hutchinson (2016), the authors derived a 1d model for tensile necking

localization in a 3d prismatic solid of arbitrary cross-section. The key idea of their derivation is a

dimension reduction assuming slow variation in the axial direction that respects self-consistency.

In terms of the language of perturbation analysis, the leading-order solution is almost correct and

higher-order terms are only added to restore self-consistency. The method was later applied by

Lestrigant and Audoly to obtain a diffuse interface model for the characterization of propagating

bulges in membrane tubes (Lestringant & Audoly, 2018) and a 1d model for predicting surface

tension-driven necking in soft elastic cylinders (Lestringant & Audoly, 2020b). It has also been

used recently to derive a 1d model for elastic ribbons (Audoly & Neukirch, 2021) and for tape springs

(Kumar et al., 2022). The systematic reduction method for deriving 1d strain-gradient models for

nonlinear slender structures was further generalized by Lestringant & Audoly (2020a). It is worth

pointing out that although the 1d models are built on the assumption that localized solutions

vary slowly in the longitudinal direction, it is surprisingly accurate, even in the region where the

localization is well developed. This is illustrated by the numeric examples in the aforementioned

work and in the comparative studies by Wang & Fu (2021) and Fu et al. (2021).

This work aims to extend the diffuse interface model of Lestringant & Audoly (2018) for mem-

brane tubes to tubes of finite wall thickness, in a similar spirit as the previous work Fu et al. (2016)

and Ye et al. (2020) that extend the bifurcation condition and the weakly nonlinear analysis from

membrane tubes to thick-walled tubes. In contrast with the case under the membrane assumption

where the original governing equations are already one-dimensional, the governing equations for the

current case are two-dimensional, and the uniformly inflated deformation is no longer homogeneous

since the solution depends on the radial variable. It will be shown that a 1d reduced model can

still be derived with the associated energy functional simplified to the form

E1dras “

ż L

´L

´

Gpa, λpaqq `
1

2
Dpaqa1pZq2

¯

dZ ` Cpaqa1pZq|L´L, (1.1)

where L is the initial half length, Z is the axial coordinate, apZq is the azimuthal stretch on

the inner surface (a constant multiple of the deformed inner radius ) and the expressions for
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Gpa, λpaqq, Dpaq and Cpaq are given in (3.10), (4.22) and (4.23), respectively. The first term G in

(1.1) corresponds to the energy of the uniform deformation, which determines the amplitudes of

the two phases in the bulge propagation stage; the second term accounts for the contribution of the

strain gradient to the total energy, which describes how the two phases are connected. The Euler-

Lagrange equation associated with the energy functional (1.1) is a second-order nonlinear ordinary

differential equation for apZq, which is a drastic simplification from the original nonlinear partial

differential equations. This 1d model is validated by comparison with finite element simulations,

showing excellent agreement with numerical results even for the propagation stage.

The outline of this paper is as follows. In Section 2, we formulate the 3d axisymmetric finite-

strain model for a tube of finite wall thickness under inflation and axial stretching. In Section 3,

we summarize solutions corresponding to uniform inflation of the tube, making preparation for the

subsequent dimension reduction. In Section 4, we carry out the dimension reduction and derive the

aforementioned 1d strain-gradient model. The connection of the 1d model with prior work is given

in Section 5. In Section 6, we validate the 1d model by making comparison with finite element

simulations. Finally, concluding remarks are given in Section 7.

2. Three-dimensional finite-strain model

We consider a circular cylindrical tube that has a length 2L, inner radius A and outer radius B

in its reference configuration; see Fig. 1(a). The ratio of the outer radius to the length ε “ B{2L is

assumed to be small; thus ε ! 1. The tube deforms axisymmetrically under the combined action of

an internal pressure P and a resultant axial force N , as shown in Fig. 1(b). In terms of cylindrical

coordinates, the current position vector of a representative point is given by

x “ zpZ,Rqez ` rpZ,Rqer, (2.1)

where pR,Θ, Zq and pr, θ, zq are the coordinates of a representative point before and after defor-

mation, and per, eθ, ezq are the standard basis vectors associated with both pR,Θ, Zq and pr, θ, zq.

The deformation gradient related to (2.1) is given by

F “
r

R
eθ b eθ ` zZez b ez ` zRez b er ` rZer b ez ` rRer b er, (2.2)

where zZ :“ Bz{BZ, zR :“ Bz{BR, etc.

We assume that the tube is made of an incompressible isotropic hyperelastic material, associated

with the strain energy function W pλ1, λ2, λ3q, where λ1, λ2, λ3 denote the three principal stretches.

Throughout this paper, we identify the indices 1, 2, 3 such that in uniform inflation they coincide

with the θ-, z- and r-directions, respectively.

The total potential energy of the tube is composed of the elastic energy and the load potential,

which reads

E “
ż L

´L

´

ż B

A

`

wpλ1, λ2q ´N
˚zZ

˘

2πRdR´ Pπr2zZ
ˇ

ˇ

R“A

¯

dZ, (2.3)
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(a) (b)

Figure 1: A hyperelastic cylindrical tube of finite wall thickness in (a) reference (undeformed) configuration and (b)

current configuration.

where wpλ1, λ2q “ W pλ1, λ2, λ
´1
1 λ´1

2 q is the reduced strain energy function and N˚ “ N{pπpB2 ´

A2qq is the resultant axial force per unit cross-sectional area. The elastic model governed by the

energy functional (2.3) will be used as a starting point for the subsequent dimension reduction.

The governing equations for the two unknown functions rpZ,Rq and zpZ,Rq can be derived by

setting the first variation of E to zero, but these equations are not required in the approach that

we follow.

3. Uniform inflation

We now summarise the solution that corresponds to uniform inflation and extension of the tube.

This solution will be referred to as the uniform solution and is indicated by a superposed bar. For

a more detailed derivation, see Haughton & Ogden (1979).

First, incompressibility implies that the uniform solution must necessarily be of the form

z̄ “ λZ, r̄ “
a

a2A2 ` λ´1pR2 ´A2q, (3.1)

where λ and a denote the constant axial stretch and azimuthal stretch on the inner surface, respec-

tively. The three principal stretches are simply

λ̄1 “
r̄

R
, λ̄2 “ λ, λ̄3 “

dr̄

dR
“ λ̄´1

1 λ̄´1
2 , (3.2)

and the azimuthal stretch on the outer surface, denoted by b, is given by

b “ λ̄1|R“B “

a

a2A2 ` λ´1pB2 ´A2q

B
. (3.3)

The three associated principal Cauchy stresses σ̄11, σ̄22 and σ̄33 satisfy the relations

σ̄11 ´ σ̄33 “ λ̄1w1, σ̄22 ´ σ̄33 “ λw2, (3.4)
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where w1 “ Bwpλ̄1, λ̄2q{Bλ̄1 and w2 “ Bwpλ̄1, λ̄2q{Bλ̄2.

The only equilibrium equation that is not satisfied automatically is

dσ̄33

dr̄
“
σ̄11 ´ σ̄33

r̄
“
λ̄1w1

r̄
. (3.5)

On integrating this equation from R “ A to R “ B and making use of the boundary conditions

that σ̄33|R“A “ ´P and σ̄33|R“B “ 0, we obtain

P “ Qpa, λq :“

ż a

b

w1pλ̄1, λq

λ̄2
1λ´ 1

dλ̄1, (3.6)

where the second equation defines the function Qpa, λq and we have made use of the identity

dr̄

r̄
“ ´

dλ̄1

λ̄1pλ̄2
1λ´ 1q

, (3.7)

which can be deduced from (3.1)2 and (3.2)1.

The overall equilibrium in the axial direction implies

Mpa, λq ´
1

2
a2P ´

N

2πA2
“ 0, (3.8)

where Mpa, λq is given by

Mpa, λq :“
1

A2

ż B

A
λ´1σ̄22RdR “

ż a

b

pλ̄2
1 ´ a

2qw1pλ̄1, λq ` 2λ̄1λpa
2λ´ 1qw2pλ̄1, λq

2pλ̄2
1λ´ 1q2

dλ̄1. (3.9)

In view of (2.3), the total potential energy of the uniform deformation (3.1) per unit reference

length, after scaling by 2π, is

Gpa, λq “

ż B

A
wpλ̄1, λqRdR´

1

2
PA2a2λ´

N

2π
λ. (3.10)

The equilibrium equations (3.6) and (3.8) can also be obtained from BG{Ba “ 0 and BG{Bλ “ 0,

respectively. Once the loads P and N are specified, the deformation parameters a and λ can be

found by solving the equilibrium equations (3.6) and (3.8).

On differentiating the left-hand side of (3.8) with respect to λ, we find that its derivative takes

the form Hw22pa, λq{A` OpH
2q, where H “ B ´ A is the thickness of the tube. We assume that

the strong ellipticity condition is satisfied pointwise which guarantees that w22pa, λq is positive

(Knowles & Sternberg, 1976). This, combined with the implicit function theorem, implies that

(3.8) can be inverted to express λ in terms of a uniquely at least when H is small. We assume

that this remains true for arbitrary H. This enables us to view (3.8) as an implicit equation for

λ “ λpaq. We remark that λ is also dependent on P , but this dependence is not indicated explicitly

for notational brevity. Thus, by definition, λpaq is the solution to the implicit equation

Mpa, λpaqq ´
1

2
a2P ´

N

2πA2
“ 0. (3.11)
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Since λ has been viewed as a function of a, all quantities (except z̄ which also depends on Z) related

to the uniform solution are functions of a and R. For instance, r̄ now denotes the function

r̄pa,Rq “
a

a2A2 ` λpaq´1pR2 ´A2q. (3.12)

We denote σ̄33 by ´qpa,Rq so that

qpa,Rq :“ ´σ̄33 “

ż λ̄1

b

w1pλ̃1, λq

λ̃2
1λ´ 1

dλ̃1. (3.13)

We also define another function mpa,Rq through

mpa,Rq :“
1

R2

ż B

R
λ´1σ̄22T dT “

ż λ̄1

b

pλ̃2
1 ´ λ̄

2
1qw1pλ̃1, λq ` 2λ̃1λpλ̄

2
1λ´ 1qw2pλ̃1, λq

2pλ̃2
1λ´ 1q2

dλ̃1, (3.14)

and record the connections

qpa,Aq “ Qpa, λpaqq, mpa,Aq “Mpa, λpaqq. (3.15)

The 1d reduced model to be derived in the next section will be expressed in terms of the two

functions qpa,Rq and mpa,Rq. The integrals in these two functions can be evaluated explicitly for

some commonly used strain energy functions, including the neo-Hookean, Mooney-Rivlin and Gent

material models. The last one will be used in our illustrative examples.

4. Derivation of the one-dimensional model

In this section, we apply the dimension reduction methodology proposed by Audoly & Hutchin-

son (2016) to derive a one-dimensional model from the full three-dimensional model formulated in

Section 2.

4.1. Optimal correction

We start our dimension reduction by assuming that all dependent variables related to the

axisymmetric configuration vary slowly in the axial direction. More precisely, it is assumed that

all variables depend on Z through the “far distance” variable

S “ εZ. (4.1)

Recall that ε is the ratio of the outer radius to the length, which is assumed to be small. In

particular, we now allow a and λ to depend on S and write a “ apSq, λ “ λpapSqq. Our aim is to

derive a reduced model, an ordinary differential equation, that is satisfied by apSq. We recall that

apSq is the deformed inner radius divided by a constant (i.e. A).

A naive approach would be to use a “ apSq and λ “ λpapSqq to compute the two principal

stretches and then derive the equation satisfied by a “ apSq by minimizing the energy functional
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(2.3). However, this would yield an equation for apSq that is not self-consistent. The correct way

is to allow for higher-order correction terms by looking for an asymptotic solution of the form

zpZ,Rq “
1

ε

ż S

0
λpapT qq dT ` εv˚pS,Rq `Opε3q,

rpZ,Rq “ r̄papSq, Rq ` ε2u˚pS,Rq `Opε4q.

(4.2)

We note that the correction terms in zpZ,Rq and rpZ,Rq are of order ε and ε2, respectively.

This is because the Op1q-term in zpZ,Rq and the Opεq-term in rpZ,Rq correspond to a uniform

perturbation and can thus be absorbed into the leading terms.

On substituting (4.2) into (2.2) and truncating at order ε2, we obtain the deformation gradient

F “

¨

˚

˝

r̄{R` ε2u˚{R 0 0

0 λpapSqq ` ε2v˚S εv˚R
0 εr̄aa

1pSq r̄R ` ε
2u˚R

˛

‹

‚

, (4.3)

where the subscripts represent partial differentiation with respect to the indicated variables (in

particular r̄a “ Br̄{Ba). Consequently, the principal stretches λ1 and λ2 are given by

λ1 “ λ̄1 ` ε
2u
˚

R
,

λ2 “ λ̄2 ` ε
2
´

v˚S `
λpr̄2

aa
1pSq2 ` v˚2

R q ` 2λ̄3r̄aa
1pSqv˚R

2pλ2 ´ λ̄3q

¯

,
(4.4)

where λ̄1, λ̄2 and λ̄3 are still given by (3.2) but with a and λ replaced by apSq and λpapSqq,

respectively.

Substituting (4.4) into (2.3) and expanding to order ε2, we see that E can be written, in terms

of the un-scaled variables, as

E “ 2π
´

ż L

´L
GpapZq, λpapZqqq dZ ` E2

¯

`OpLε3q, (4.5)

where E2 represents the term of order ε2 and is given by

E2 “

ż L

´L

´

ż B

A

´

pw2 ´N
˚qvZ ` w2

λpr̄2
aa
12 ` v2

Rq ` 2λ̄3r̄aa
1vR

2pλ2 ´ λ̄2
3q

¯

RdR

`

ż B

A
w1u dR´

1

2
PA2a2vZ |R“A ´ PAaλu|R“A

¯

dZ.

(4.6)

In the above expression, vpZ,Rq “ εv˚pS,Rq and upZ,Rq “ ε2u˚pS,Rq denote the unscaled dis-

placements, and here and hereafter we write apZq for apSq and so a1 now denotes a1pZq. It is seen

that the only reason for introducing S above is to identify all terms of order ε2 that should be kept

in (4.6). With this task accomplished, the scaled variable S will no longer appear in the subsequent

analysis. Also, w1 “ w1pλ̄1, λq, w2 “ w2pλ̄1, λq in which λ is a function of a and λ̄1 is a function of

a and R.
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Our formulation in terms of the reduced strain energy function requires the solution (4.2) to

satisfy the incompressibility condition automatically. This can be achieved by eliminating u in

(4.6) with the use of detpF q “ 1 which takes the form

λpr̄uqR ` r̄pr̄RvZ ´ r̄aa
1vRq “ 0. (4.7)

To this end, we make use of the equilibrium equation (3.5) and write
ż B

A
w1u dR “ λ

ż B

A
σ̄33,Rr̄u dR “ λσ̄33r̄u|

B
A ´ λ

ż B

A
σ̄33pr̄uqR dR

“ λPAau|R“A ´

ż B

A
qr̄pr̄RvZ ´ r̄aa

1vRq dR,

(4.8)

where we have replaced σ̄33 by ´qpa,Rq (cf. (3.13)) and have used (4.7) to eliminate pr̄uqR.

On eliminating u in (4.6) with the use of (4.8), we can recast E2 in the form

E2 “

ż L

´L

´

ż B

A

`

pλ´1σ̄22 ´N
˚qvZ `

1

2
ζpr̄2

aa
12 ` v2

Rq ` ξr̄aa
1vR

˘

RdR

´
1

2
PA2a2vZ |R“A

¯

dZ,

(4.9)

where we have made use of the connection λw2 ´ q “ σ̄22 that follows from (3.4)2 with σ̄33 “ ´q,

and ζ and ξ are given by

ζ “
λw2

λ2 ´ λ̄2
3

, ξ “
λ̄3

λ
ζ ` qλ̄1. (4.10)

Then upon using integration by parts, we obtain

E2 “

ż L

´L

´

ż B

A
KpR, v, vRq dR` PA

2aa1v|R“A

¯

dZ

`

´

ż B

A
pλ´1σ̄22 ´N

˚qvR dR´
1

2
PA2a2v|R“A

¯ˇ

ˇ

ˇ

Z“L

Z“´L
,

(4.11)

where KpR, v, vRq is given by

KpR, v, vRq “ ´pλ
´1σ̄22qaa

1Rv `
1

2
Rζpr̄2

aa
12 ` v2

Rq `Rξr̄aa
1vR. (4.12)

In the last expression, pλ´1σ̄22qa denotes the partial derivative of λ´1σ̄22 with respect to a with R

fixed. To find the remaining correction field v “ vpZ,Rq, we treat the leading-order stretch apZq as

stipulated and seek the correction v such that the total potential energy is stationary (Audoly &

Hutchinson, 2016). As a result, the optimal v satisfies the following Euler-Lagrange equation and

boundary conditions:

BK

Bv
´

d

dR

´

BK

BvR

¯

“ 0, A ď R ď B, (4.13)

BK

BvR
“ PA2aa1, R “ A, (4.14)

BK

BvR
“ 0, R “ B. (4.15)
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Solution of the above boundary value problem requires satisfaction of the solvability condition

ż B

A

BK

Bv
dR “ ´PA2aa1,

that is
ż B

A
pλ´1σ̄22qaa

1RdR “ PA2aa1.

This is automatically satisfied in view of the definition (3.9) for Mpa, λq and the equilibrium con-

dition (3.8).

Written out explicitly, Eqs. (4.13) and (4.15) take the form

d

dR
pRζvRq “ ´

´

pλ´1σ̄22qaR`
d

dR
pRξr̄aq

¯

a1, A ď R ď B, (4.16)

RζvR “ ´Rξr̄aa
1, R “ B. (4.17)

Integrating (4.16) subject to the boundary condition (4.17) leads to

vR “ cpa,Rqa1pZq, (4.18)

where cpa,Rq is defined by

cpa,Rq “ ´
r̄a
λ̄1λ2

`
1

Rζ

´

R2 B

Ba
mpa,Rq ´ r̄r̄aqpa,Rq

¯

, (4.19)

and we have used (3.14) and (4.10). Once vR is found, the optimal correction v can be obtained

by integrating (4.18) from B to R, which yields

v “ ´

ˆ
ż B

R
cpa, T q dT

˙

a1pZq, (4.20)

where we have neglected the function arising from integration since it can be absorbed into λpapZqq.

4.2. Energy functional corresponding to the 1d reduced model

Substituting the correction function v found in (4.20) back into (4.11), after some simplification

(which is detailed in Appendix A), we obtain the final expression for the energy functional of the

1d model

E1dras “

ż L

´L

´

Gpa, λpaqq `
1

2
Dpaqa1pZq2

¯

dZ ` Cpaqa1pZq|L´L, (4.21)

where the gradient moduli D and C are given by

Dpaq “

ż B

A
Rζpr̄2

a ´ cpa,Rq
2q dR, (4.22)

Cpaq “

ż B

A
pλ´1σ̄22 ´N

˚qpc̃pa,Rq ´ c̃pa,AqqRdR, (4.23)
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with c̃pa,Rq “ ´
şB
R cpa, T q dT .

The associated equilibrium equation is obtained by extremizing (4.21) with respect to apZq and

is found to take the form

A2aλpaqpQpa, λpaqq ´ P q ´
1

2
D1paqa1pZq2 ´Dpaqa2pZq “ 0, (4.24)

where we have used the fact that BG{Bλ “ 0 as it is used to find the implicit relation between λ and

a (see (3.11)). Since Z does not explicitly appear in the integrand of (4.21) due to the translational

invariance of the current problem in Z, by the Beltrami identity, the equilibrium equation (4.24)

admits a first integral of the form

Gpa, λpaqq ´
1

2
Dpaqa1pZq2 “ constant. (4.25)

We remark that the variational problem (4.21) is ill-posed due to the presence of the boundary

terms Cpaqa1pZq|L´L. This is because the variational structure of the problem is broken when

higher-order terms are dropped. There are two possible ways to get around this issue (Lestringant

& Audoly, 2020a). The first one is to simply ignore the boundary terms, i.e., to set Cpaq “ 0. The

second one is to add an Opε2q-term to apZq so that the boundary terms go away, which is rigorous

but slightly more complex. It has previously been verified in Lestringant & Audoly (2020a) that

the simple and rigorous approaches yield curves that can hardly be distinguished visually in any of

the plots.

To summarize, the second-order nonlinear ordinary differential equation (4.24) is our approxi-

mate 1d model that governs the variation of the inner radius (which is A times apZq) in the axial

direction. Once apZq is determined, the 3d deformation is given by (3.1). We note that the func-

tion Qpa, λpaqq is explicit for most of the commonly used strain energy functions. The only slight

complication is that the function Dpaq is given by an integral; see (4.22), but the functions mpa,Rq,

qpa,Rq, and hence cpa,Rq and the integrand in (4.22) all have explicit expressions for most of the

commonly used strain energy functions. Thus, only one numerical integration is required. This can

easily be implemented on a symbolic manipulation platform such as Mathematica (Wolfram, 1991)

as we shall show later.

5. Connections with previous work

We now demonstrate that the 1d model derived in Section 4 can recover the 1d model of

Lestringant & Audoly (2018) for membrane tubes and that of Audoly & Hutchinson (2016) for

solid cylinders under appropriate limits, and it can also reproduce the same weakly nonlinear

bulging solution as that based on the exact 3d theory (Ye et al., 2020).
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5.1. Membrane limit

We first consider the reduction of the 1d model in the membrane limit where the tube thickness

H approaches zero. The general axisymmetric deformation of a membrane tube is described by

r “ rpZq, θ “ Θ, z “ zpZq, (5.1)

and the three principal stretches are given by

λ1 “
r

R
, λ2 “

a

r12 ` z12, λ3 “ 1{pλ1λ2q, (5.2)

where R denotes the constant radius of the mid-surface. The total energy (2.3) reduces to

E “ 2π

ż L

´L

´

w ´
1

2
P ˚λ2

1z
1 ´N˚z1

¯

dZ, (5.3)

where P ˚ denotes the pressure scaled by H{R. Setting the first variation δE to be zero then gives

the governing equations

w1 ´R
´w2

λ2
r1
¯1

´ P ˚λ1z
1 “ 0, (5.4)

w2

λ2
z1 ´

1

2
P ˚λ2

1 “ N˚. (5.5)

Under the assumption that |r1| ! 1, we have

λ2 “ z1 `
r12

2z1
` ¨ ¨ ¨ . (5.6)

As an algebraic equation for z1, Eq. (5.5) has an asymptotic solution of the form

z1 “ gpλ1q ` k1pλ1qr
12 ` ¨ ¨ ¨ , (5.7)

where the leading-order term gpλ1q obviously satisfies the algebraic equation

w2pλ1, gpλ1qq ´
1

2
P ˚λ2

1 ´N
˚ “ 0, (5.8)

and the function k1pλ1q can easily be found but is not required. Eq. (5.8) determines gpλ1q uniquely

under the assumption w22 ą 0.

With the use of (5.6) and (5.7), we may expand the integrand in (5.3) to order r12 and obtain

E “ 2π

ż L

´L

´

wpλ1, gpλ1qq ´
1

2
P ˚λ2

1gpλ1q ´N
˚gpλ1q `

1

2

w2pλ1, gpλ1qq

gpλ1q
r12

¯

dZ. (5.9)

This is the reduced model derived by Lestringant & Audoly (2018).

We now show that our general 1d model (4.21) can recover this 1d model in the limit H Ñ 0.

To this end, we first note that the uniformly deformed configuration in the zero-thickness limit is

given by

r̄ “ aR, z̄ “ λZ. (5.10)
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In particular, we have r̄a “ R. Since qpa,Rq and mpa,Rq involve integrals from R to B, they go to

zero as H Ñ 0. Consequently, the cpa,Rq defined in (4.19) takes the simple form

cpa,Rq “ ´
R

aλ2
. (5.11)

Taking the limit H Ñ 0 in (4.10) yields

ζ “
a2λ3w2

a2λ4 ´ 1
. (5.12)

Substituting (5.11) and (5.12) into (4.21), we obtain

lim
HÑ0

E1dras

H
“ R

ż L

´L

´

wpa, λpaqq ´
1

2
P ˚a2λpaq ´N˚λpaq `

1

2
R2w2pa, λpaqq

λpaq
a1pZq2

¯

dZ. (5.13)

Note that the modulus Cpaq vanishes in the membrane limit because it is of order H2. The

integrand on the right-hand side of (5.13) is the same as that on the right-hand side of (5.9) if we

identify λ1, gpλ1q and r1 with apZq, λpaq, and Ra1pZq, respectively.

5.2. Solid cylinder limit

Next we consider the other extreme limit corresponding to AÑ 0 and P Ñ 0. in this case, the

uniform solution takes the form

z̄ “ λZ, r̄ “ aR (5.14)

with a “ λ´1{2. The three principal stretches are

λ̄1 “ λ̄3 “ λ´1{2, λ̄2 “ λ. (5.15)

In particular, we have

w1pλ̄1, λ̄2q “ 0, w2pλ̄1, λ̄2q “ ŵ1pλq, (5.16)

where ŵpλq “W pλ´1{2, λ, λ´1{2q. It follows from (5.16)1 that qpa,Rq “ 0. Note that the deforma-

tion (5.14) is homogeneous, so (3.14) implies that

mpa,Rq “
A2pB2 ´R2q

R2pB2 ´A2q
mpa,Aq “

A2pB2 ´R2q

R2pB2 ´A2q
Mpa, λpaqq.

Differentiating this expression with respect to a and noting (3.11), we obtain Bmpa,Rq{Ba “ 0.

Thus cpa,Rq reduces to

cpa,Rq “ ´
R

λ3{2
. (5.17)

According to (4.10), the elastic modulus ζ is easily calculated as

ζ “
λ2ŵ1pλq

λ3 ´ 1
. (5.18)

13



Substituting (5.17) and (5.18) into (4.21), we obtain

2πE1drλs “

ż L

´L

´

πB2ŵpλq `
πB4

16

ŵ1pλq

λ4
λ1pZq2 ´Nλ

¯

dZ, (5.19)

where we have made use of the relation a1pZq “ ´λ1pZq{p2λ3{2q. This recovers the 1d model of

Audoly & Hutchinson (2016) specialized to an incompressible circular cylinder.

5.3. Comparison with exact weakly nonlinear analysis

Finally, we carry out a weakly nonlinear near-critical analysis using our 1d model and compare

the resulting amplitude equation with that obtained by Ye et al. (2020) from the exact 3d theory.

We focus on localized solutions in an infinitely long tube of finite wall thickness.

Denote by a8 the limit of apZq as Z Ñ 8 and λ8 “ λpa8q. It follows from (3.6) and (3.11)

that

P “ Qpa8, λ8q, N “ 2πA2F pa8, λ8q, (5.20)

where F pa8, λ8q is defined by

F pa8, λ8q “Mpa8, λ8q ´
1

2
a2
8Qpa8, λ8q. (5.21)

We look for a localized solution that bifurcates from the uniform solution by writing

apZq “ a8 ` ypZq, (5.22)

where ypZq is a small perturbation. Substituting (5.22) into the 1d equilibrium equation (4.24)

and expanding in terms of ypZq to quadratic order with the use of (5.20), we obtain

Dpa8qy
2pZq “ ωpa8, λ8qypZq ` γpa8, λ8qypZq

2, (5.23)

where the two coefficient functions ωpa, λq and γpa, λq are given by

ωpa, λq “ A2 2aλ

a2Qλ ` 2Fλ
Ωpa, λq, (5.24)

γpa, λq “ A2 aλpa
2Qa ` 2Faq

Fapa2Qλ ` 2Fλq2
Γpa, λq `A2ψpa, λqΩpa, λq. (5.25)

In the above expressions, Qa “ BQpa, λq{Ba, Qλ “ BQpa, λq{Bλ, etc., Ωpa, λq and Γpa, λq are defined

by

Ωpa, λq “
BQ

Ba

BF

Bλ
´
BQ

Bλ

BF

Ba
, Γpa, λq “

BΩ

Ba

BF

Bλ
´
BΩ

Bλ

BF

Ba
, (5.26)

and ψpa, λq is not written out as it is not required in the weakly nonlinear analysis.

The solution to the linearized equation of (5.23) changes character when the sign of ωpa8, λ8q

changes. Thus a bifurcation occurs when ωpa8, λ8q “ 0, or equivalently,

Ωpa8, λ8q “ 0. (5.27)
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Note that Qpa8, λ8q and F pa8, λ8q represent respectively the functional dependence of P and

N on a8 and λ8. Thus the above bifurcation condition is simply the vanishing of the Jacobian

determinant of P and N as functions of a8 and λ8. This is consistent with the previous work Fu

et al. (2016) and Yu & Fu (2022).

We consider two typical loading scenarios: either the resultant axial force N or the axial stretch

at infinity λ8 is fixed. The latter case is used to approximate the case of fixed axial length, which

can be realized more easily experimentally or in Abaqus simulations.

Let us first assume that the resultant axial force N “ Nc is fixed, where Nc is the prescribed

axial force. Denote by pacr, λcrq the root of the system of equations

ωpa8, λ8q “ 0, F pa8, λ8q “ Nc, (5.28)

at which the bifurcation occurs according to the previous discussion. In the vicinity of the bifurca-

tion point, the amplitude equation (5.23) reduces to

Dpacrqy
2pZq “ ω1pacr, λcrqpa8 ´ acrqypZq ` γpacr, λcrqypZq

2, (5.29)

where the prime on ω denotes d{da8 “ B{Ba8 ` pB{Bλ8qpdλ8{da8q. The above equation admits

a localized solution of the form

ypZq “ ´
3ω1pacr, λcrq

2γpacr, λcrq
pa8 ´ acrq sech2

´1

2

d

ω1pacr, λcrq

Dpacrq
pa8 ´ acrqZ

¯

. (5.30)

On the other hand, the weakly nonlinear amplitude equation derived from the 3d theory (Ye

et al., 2020) takes the form

c21pZq “ λ2
crk1pa8 ´ acrqc1pZq ` λ

2
crk2c1pZq

2, (5.31)

where c1pZq and ypZq are related by

ypZq “ kc1pZq (5.32)

with k “ ´2λpaq{λ1paq|a“acr , and k1 and k2 are constants available in Ye et al. (2020). One can

see that (5.29) and (5.31) are identical provided

k1 “
ω1pacr, λcrq

λ2
crDpacrq

, k2 “
kγpacr, λcrq

λ2
crDpacrq

. (5.33)

We have verified numerically that this is indeed the case, but the current expressions on the right-

hand sides of (5.33) are more compact and revealing.

The case of fixed λ8 can be handled similarly. Let pacr, λcrq be the solution to the system of

equations

ωpa8, λ8q “ 0, λ8 “ λc, (5.34)
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where λc is a given constant. In the vicinity of the bifurcation point, the amplitude equation

parallel to (5.29) is of the form

Dpacrqy
2pZq “ ω1pacr, λcrqpa8 ´ acrqypZq ` γpacr, λcrqypZq

2, (5.35)

where the prime on ω now signifies B{Ba8. Similar to the previous case, it can be verified that the

above amplitude equation is the same as its counterparts in Ye et al. (2020).

6. Comparison with Abaqus simulations

In this section, we demonstrate the power of the 1d model by applying it to investigate localized

bulging in an inflated tube of finite wall thickness in the fully nonlinear regime. Previous studies on

this problem usually treat the tube as a finite length tube, but the problem can be analyzed more

easily and very accurately by assuming the tube to be of infinite length. This assumption only fails

when the tube is very short and when bulging is no longer localized in the axial direction (Wang

& Fu, 2021). The reason is that bulging solutions decay exponentially towards the two ends. Thus

in the following analysis, we shall assume that the tube is effectively infinite and focus on solutions

subject to decaying boundary conditions. This assumption is validated by comparison with Abaqus

simulations based on tubes of finite lengths. We shall consider the two loading scenarios discussed

in Subsection 5.3 and compare the predictions of the 1d model with Abaqus simulations, which

allows us to quantify the accuracy of our 1d model and determine its range of validity. In all

numerical calculations and Abaqus simulations, we use the Gent material model

W “ ´
µ

2
Jm ln

´

1´
λ2

1 ` λ
2
2 ` λ

2
3 ´ 3

Jm

¯

, (6.1)

where µ is the shear modulus and Jm is a material constant. The Gent material model is chosen

because it is commonly adopted to model the latex rubber tubes used in inflation experiments

(Wang et al., 2019). We take µ “ 1 which is equivalent to scaling all stress variables by µ and

Jm “ 97.2 which is typical for rubber. The geometry of the tube is taken to be H{Rm “ 0.4 and

2L{Rm “ 40, where Rm “ pA ` Bq{2 is the average radius. In the Abaqus simulations, to ensure

that localized bulging occurs in the middle of the tube, a small section with length 0.1L around

the middle point of the tube is weakened by taking its shear modulus to be 0.9999 times that of

the rest of the tube.

The 1d differential equation (4.21) subject to appropriate end conditions (see (6.7) later) can

be solved numerically with the aid of the symbolic computation software Mathematica. Although

the gradient modulus Dpaq involves an integral that cannot be evaluated analytically, this integral

can be defined numerically in Mathematica with the built-in command ?NumericQ and can be

manipulated as elementary functions. Numerically solving the 1d equation is significantly faster

than Abaqus simulations. The 1d equation can typically be solved in a few seconds on a personal

computer for the case of fixed axial force.
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6.1. The case of fixed axial force

We first consider the loading scenario whereby the resultant axial force N is fixed. As mentioned

earlier, we assume that the tube is infinitely long and focus on the solution that satisfies the decaying

boundary condition

lim
ZÑ8

apZq “ a8. (6.2)

A linear analysis shows that the solution to (4.24) satisfying (6.2) decays exponentially as Z Ñ8.

Thus we have limZÑ8 a
1pZq “ 0 automatically. We assume that the bulging solution is symmetric

with respect to Z “ 0 so that a1p0q “ 0. We write λ8 “ λpa8q, a0 “ ap0q and λ0 “ λpap0qq. Since

pa8, λ8q satisfy (3.6) and (3.8), we have

Mpa8, λ8q ´
1

2
a2
8Qpa8, λ8q ´

N

2πA2
“ 0, (6.3)

Qpa8, λ8q ´ P “ 0. (6.4)

From the definition of λ0 and the conservation law (4.25), we see that pa0, λ0q satisfies

Mpa0, λ0q ´
1

2
a2

0Qpa8, λ8q “Mpa8, λ8q ´
1

2
a2
8Qpa8, λ8q, (6.5)

Gpa0, λ0q “ Gpa8, λ8q. (6.6)

Either a8 or P can be taken to be the load parameter. When a8 is specified, one can first obtain

λ8 from (6.3). The associated P is computed according to (6.4). Then solving (6.5) and (6.6) for

nontrivial solutions, one obtains the “initial” values a0 and λ0. The localized solution can be found

by solving the initial value problem

A2aλpaqpQpa, λpaqq ´ P q ´
1

2
D1paqa1pZq2 ´Dpaqa2pZq “ 0, (6.7)

ap0q “ a0, a1p0q “ 0. (6.8)

As a first example, fixing the axial force N to be zero, we find from the bifurcation condition (5.28)

that localized bulging takes place at a8 “ acr “ 1.86 with a critical pressure Pcr “ 0.308. As we

trace the bifurcation solution away from the bifurcation point, the pressure drops while the bulge

grows until it has almost reached a maximum amplitude after which the bulge will propagate at a

constant pressure. From Maxwell’s equal-areal rule, the propagation pressure is PM “ 0.197.

Fig. 2 shows the dependence of the pressure on ap0q and the bulging amplitude on a8 based on

Abaqus simulations and use of the 1d model. The bulging solutions given by Abaqus simulations

and the 1d model at the four states marked in Fig. 2(a) are shown in Fig. 3. It is seen that the 1d

solution agrees well with Abaqus simulations in the entire post-bifurcation regime. Remarkably,

the 1d solution remains highly accurate even in the final propagation stage, as shown in Fig. 3(d).

Note also that the Abaqus simulations and 1d calculations are conducted for 2L “ 40Rm and 8,

respectively. This verifies our earlier claim that the tube can effectively be viewed to be infinitely

long.
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Figure 2: Dependence of (a) pressure on ap0q and (b) bulging amplitude on a8, based on Abaqus simulations and

the 1d model (6.7) and (6.8) for fixed N “ 0. (Online version in color.)
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Figure 3: Bulging solutions given by Abaqus simulations and the 1d model at the four states marked in Fig. 2(a) for

fixed N “ 0: (a) P “ 0.3, (b) P “ 0.25, (c) P “ 0.22, (d) P “ 0.197. (Online version in color.)
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6.2. The case of fixed ends

Next, we consider the loading scenario whereby the tube is first stretched to a specified length

2` and then its two ends are fixed to prevent further axial displacement (whether the radial dis-

placement is restricted or not at the ends is immaterial since the tube is assumed to be sufficiently

long). In the previous subsection, we have solved the problem for a specified axial force N or

equivalently a specified λ8. For the current problem with a given `, we define λc “ `{L and we

need to find λ8 such that the following condition is satisfied:

ż L

0
λpapZqq dZ “ λcL. (6.9)

This can be achieved by a shooting procedure: for each λ8, we compute the left-hand side using

the procedure outlined in the previous subsection and adjust λ8 such that the left-hand side and

the right-hand side are equal. The procedure may be started by taking λ8 “ λc. However, solving

the present problem by the shooting procedure requires a lot of adjustments by hand due to the

fact that the localized solutions that we are looking for are extremely close to periodic solutions.

To find solutions for the current case in a more robust way, we use the finite difference method

instead.

To implement the finite difference method, we partition the domain r0, Ls using a uniform mesh

Z0, Z1, . . . , Zn with mesh size h “ L{n and coordinate of the j-th grid point given by Zj “ jh. We

use aj to represent the numerical approximation of apZjq. Applying the central difference scheme,

we convert the differential equation (6.7) into a set of algebraic equations

A2ajλpajqpQpaj , λpajqq ´ P q ´
1

2
D1pajq

´aj`1 ´ aj´1

2h

¯2

´Dpajq
aj`1 ´ 2aj ` aj´1

h2
“ 0, j “ 1, 2, . . . , n´ 1.

(6.10)

The left boundary condition is given by

a1p0q “ 0. (6.11)

We see from (5.23) that the solution to (6.7) subject to (6.2) has the asymptotic behavior

apZq „ a8 ` a1e
´κZ as Z Ñ8, (6.12)

where a1 is a constant and

κ “

d

ωpa8, λ8q

Dpa8q
.

Because of this, we may replace the decaying boundary condition (6.2) by the “soft” asymptotic

condition

a1pLq ` κpapLq ´ a8q “ 0. (6.13)
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To avoid the loss of accuracy at the two endpoints, we introduce two additional unknowns a´1 and

an`1. Then the left and right boundary conditions yield

a1 ´ a´1

2h
“ 0, (6.14)

an`1 ´ an´1

2h
` κpan ´ a8q “ 0. (6.15)

Solving for a´1 and an`1 from the above equations, and substituting them into the finite difference

equation (6.10) evaluated at j “ 0 and j “ n, we obtain the following discrete boundary conditions

with truncation errors of order h2:

A2a0λpa0qpQpa0, λpa0qq ´ P q ´ 2Dpa0q
a1 ´ a0

h2
“ 0, (6.16)

A2anλpanqpQpan, λpanqq ´ P q ´
1

2
D1panqκ

2pan ´ a8q
2

´ 2Dpanq
an´1 ´ an ´ hκpan ´ a8q

h2
“ 0.

(6.17)

Finally, the fixed-length restriction (6.9) gives

1

2
λpa0q `

n´1
ÿ

j“1

λpajq `
1

2
λpanq ´

λcL

h
“ 0. (6.18)

For the current loading scenario, one can still use a8 or P as the loading parameter. However,

it is more convenient to choose a0 as the loading parameter since it is monotonically increasing

during inflation, and treat a8 and λ8 as unknowns. We see from (6.3) that N is a function of a8

and λ8. It follows that λpµq and Dpµq also depend on a8 and λ8 through their dependence on

N . This implicit dependence should be considered when solving the above algebraic equations.

Given a0, setting n to be a sufficiently large number and solving the system of pn` 2q algebraic

equations consisting of (6.10), (6.16), (6.17) and (6.18) for aj , 1 ď j ď n, a8 and λ8 with a

suitable initial guess, we obtain the finite-difference solution for the present problem. We may use

the weakly nonlinear solution with λ8 “ λc “ `{L as an initial guess in the near-critical regime

and continue the solution to the fully nonlinear regime by always using the solution at the previous

step as the initial guess for the current step.

When the total length is fixed to be ` “ 2L, then initially λ8 “ 2 and localized bulging takes

place at a8 “ acr “ 1.74 with a critical pressure Pcr “ 0.198 according to (5.34). In Fig. 4, we have

shown the dependence of the pressure on ap0q and the bulging amplitude on a8 based on Abaqus

simulations and use of the 1d model. The bulging solutions determined by Abaqus simulations

and the 1d model at the four states indicated in Fig. 4(a) are presented in Fig. 5. It is observed

that the agreement between the 1d model and Abaqus simulations is again excellent in the fully

nonlinear regime.

Finally, Fig. 6 shows the actual variation of P against ap0q predicted by the 1d model when (a)

the averaged stretch λc is fixed and L is varied, or (b) L is fixed but λc is varied. These results
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Figure 4: Dependence of (a) pressure on ap0q and (b) bulging amplitude on a8, based on Abaqus simulations and

the 1d model with finite difference scheme for fixed length `{L “ 2. (Online version in color.)
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Figure 5: Bulging solutions based on Abaqus simulations and the 1d model at the four states indicated in Fig. 4(a)

for fixed length `{L “ 2: (a) P “ 0.19, (b) P “ 0.18, (c) P “ 0.173, (d) P “ 0.198. (Online version in color.)

confirm the theoretical prediction of Guo et al. (2022) that the right branches of these curves all

converge to a master curve that is independent of L or λc. These curves all terminate at the point

where the axial stress near each end of the tube has become compressive enough so that secondary

21



L=15

L=20

L=40

0 1 2 3 4 5 6 7
a(0)0.12

0.14

0.16

0.18

0.20

0.22
P

(a)

λc=1.5

λc=2

λc=2.8

0 1 2 3 4 5 6 7
a(0)0.00

0.05

0.10

0.15

0.20

0.25
P

(b)

Figure 6: Variation of P against ap0q predicted by the 1d model when the total length is fixed during inflation: (a)

λc “ 2 and L “ 15, 20 and 40, respectively, and (b) L “ 20 and λc “ 1.5, 2 and 2.8, respectively. (Online version in

color.)

Euler buckling or axisymmetric wrinkling becomes possible.

7. Conclusion

We have derived a 1d model for the analysis of axisymmetric deformations of an inflated cylin-

drical tube of finite wall thickness, and established its range of validity by comparing its predictions

with those of Abaqus simulations for two typical loading scenarios. The comparison shows that

the 1d model performs extremely well in both the near-critical and fully nonlinear regimes. The

dimension reduction started from three-dimensional finite elasticity theory and is performed in

terms of the energy functional and principal stretches. A key ingredient of the dimension reduc-

tion is the assumption of slow variation of the leading-order solution in the axial direction without

any restriction on its amplitude, which results in a 1d model that is simple but is still capable of

capturing the strain-gradient effect. This is in contrast with the traditional asymptotic analysis

where the leading order solution is assumed to be a small-amplitude perturbation from the primary

deformation. It is because of this difference that the 1d model has a much larger range of validity

than the expansion methods around the bifurcation point. The nonlinearity of the strain is kept

in the 1d model, reflected by the nonlinear potential Gpa, λpaqq and the nonlinear strain-gradient

modulus Dpaq. Our expression for the strain-gradient coefficient Dpaq is quite simple. For the

Gent material model, Dpaq can be calculated by integrating once. We remark that although the

derivation presented in this work is variational, the 1d model can also be derived by substituting

the asymptotic solution (4.2) into the 3d governing equations and solving the resulting equations

at successive orders.

The 1d model is amenable to asymptotic and numerical solutions. The bifurcation condition

and the weakly nonlinear amplitude equation predicted by the 1d model are exact. In fact, the

expressions (5.24) and (5.25) derived using the 1d model are more compact and more revealing
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than their counterparts in Ye et al. (2020). A major advantage of the 1d model is that the entire

evolution process of bulging or necking can be determined using the finite difference method which

is more accessible and much easier to implement than commercial packages such as Abaqus. This

advantage would become even more significant when other fields such as electric loadings and

residual stresses were also present. Such extra fields and new geometries (e.g. electric field (Fu

et al., 2018), axisymmetric necking of a stretched plate (Wang et al., 2022) or their combination

(Fu & Yu, 2023)) will be considered in our future studies.

A Mathematica code that produces all the results presented in the paper is available on GitHub

(https://github.com/yfukeele).
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Appendix A. Simplifying the one-dimensional energy functional

Substituting (4.20) into (4.12), we can write the integral of KpR, v, vRq as

ż B

A
KpR, v, vRq dR “ pI1 ` I2 ` I3qa

12, (A.1)

where

I1 “

ż B

A
pλ´1σ̄22qaR

ż B

R
cpa, T q dT dR, (A.2)

I2 “
1

2

ż B

A
Rζpr̄2

a ` cpa,Rq
2q dR, (A.3)

I3 “

ż B

A
Rξr̄acpa,Rq dR. (A.4)

By interchanging the order of integration, we can rewrite I1 as

I1 “

ż B

A

ż B

R
pλ´1σ̄22qaRcpa, T q dT dR

“

ż B

A

ż T

A
pλ´1σ̄22qaRcpa, T q dRdT

“

ż B

A
cpa, T q

B

Ba

´

ż T

A
λ´1σ̄22RdR

¯

dT.

(A.5)

From (3.14), we have

ż T

A
λ´1σ̄22RdR “ A2mpa,Aq ´ T 2mpa, T q. (A.6)
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Inserting (A.6) into (A.5) and noting (3.15)2 and (3.11), we can simplify I1 as

I1 “ PA2a

ż B

A
cpa,Rq dR´

ż B

A
cpa,RqR2 B

Ba
mpa,Rq dR. (A.7)

On account of (4.10), the integral I3 can be calculated as

I3 “

ż B

A
R
´

qλ̄1 `
λ̄3

λ
ζ
¯

r̄acpa,Rq dR “

ż B

A

´

r̄r̄aq `Rζ
r̄a
λ̄1λ2

¯

cpa,Rq dR. (A.8)

Adding up the three integrals, we obtain

ż B

A
KpR, v, vRq dR` PA

2aa1v|R“A “pI1 ` I2 ` I3qa
12 ´ PA2aa12

ż B

A
cpa,Rq dR

“a12
ż B

A

´

´ cpa,RqR2 B

Ba
mpa,Rq `

1

2
Rζpr̄2

a ` cpa,Rq
2q

`

´

r̄r̄aqpa,Rq `Rζ
r̄a
λ̄1λ2

¯

cpa,Rq
¯

dR

“a12
ż B

A

´1

2
Rζpr̄2

a ` cpa,Rq
2q ´Rζcpa,Rq2

¯

dR

“
1

2
a12

ż B

A
Rζpr̄2

a ´ cpa,Rq
2q dR.

(A.9)

This gives the expression of the coefficient Dpaq announced in (4.22). The expression of Cpaq in

(4.23) follows by a straightforward substitution and elimination of P using (3.11).
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