
Journal of Integrative Bioinformatics 2023; 20(1): 20220058

Lukas Buecherl, Thomas Mitchell, James Scott-Brown, Prashant Vaidyanathan, Gonzalo

Vidal, Hasan Baig, Bryan Bartley, Jacob Beal, Matthew Crowther, Pedro Fontanarrosa,

Thomas Gorochowski, Raik Grünberg, Vishwesh Kulkarni, James McLaughlin, Göksel

Mısırlı, Ernst Oberortner, Anil Wipat and Chris Myers*

Synthetic biology open language (SBOL)
version 3.1.0

https://doi.org/10.1515/jib-2022-0058

Received December 9, 2022; accepted January 24, 2023; published online March 13, 2023

Abstract: Synthetic biology builds upon genetics, molecular biology, and metabolic engineering by applying

engineering principles to the design of biological systems. When designing a synthetic system, synthetic biolo-

gists need to exchange information about multiple types of molecules, the intended behavior of the system, and

actual experimental measurements. The Synthetic Biology Open Language (SBOL) has been developed as a stan-

dard to support the specification and exchange of biological design information in synthetic biology, following

an open community process involving both bench scientists and scientific modelers and software develop-

ers, across academia, industry, and other institutions. This document describes SBOL 3.1.0, which improves

on version 3.0.0 by including a number of corrections and clarifications as well as several other updates and

enhancements. First, this version includes a complete set of validation rules for checking whether documents

are valid SBOL 3. Second, the best practices section has been moved to an online repository that allows for

more rapid and interactive of sharing these conventions. Third, it includes updates based upon six commu-

nity approved enhancement proposals. Two enhancement proposals are related to the representation of an

object’s namespace. In particular, the Namespace class has been removed and replaced with a namespace

property on each class. Another enhancement is the generalization of the CombinatorialDeriviation class to

allow direct use of Features andMeasures. Next, the Participation class now allow Interactions to be partic-

ipants to describe higher-order interactions. Another change is the use of Sequence Ontology terms for Feature

orientation. Finally, this version of SBOL has generalized from using Unique Reference Identifiers (URIs) to

Internationalized Resource Identifiers (IRIs) to support international character sets.

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or

the U.S. Export Administration Regulations.

*Corresponding author: Chris Myers, University of Colorado Boulder, Boulder, USA, E-mail: chris.myers@colorado.edu

Lukas Buecherl and Pedro Fontanarrosa, University of Colorado Boulder, Boulder, USA. https://orcid.org/0000-0002-4844-6605

(L. Buecherl), https://orcid.org/0000-0002-0535-2684 (P. Fontanarrosa)

Thomas Mitchell, Bryan Bartley and Jacob Beal, Raytheon BBN Technologies, Cambridge, USA. https://orcid.org/0000-0002-1663-

5102 (J. Beal)

James Scott-Brown, University of Edinburgh, Edinburgh, UK. https://orcid.org/0000-0001-5642-8346

Prashant Vaidyanathan, Oxford Biomedica, Oxford, UK

Gonzalo Vidal, Matthew Crowther, JamesMcLaughlin and Anil Wipat, Newcastle University, Newcastle upon Tyne, UK. https://orcid

.org/0000-0003-3543-520X (G. Vidal)

Hasan Baig, University of Connecticut, Storrs, USA

Thomas Gorochowski, University of Bristol, Bristol, UK

Raik Grünberg, King Abdullah University for Science and Technology, Thuwal, SA

Vishwesh Kulkarni, University of Warwick, Coventry, UK

Göksel Mısırlı, Keele University, Newcastle, UK

Ernst Oberortner, DOE Joint Genome Institute, Berkeley, USA

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International

License.

https://doi.org/10.1515/jib-2022-0058
mailto:chris.myers@colorado.edu
https://orcid.org/0000-0002-4844-6605
https://orcid.org/0000-0002-0535-2684
https://orcid.org/0000-0002-1663-5102
https://orcid.org/0000-0002-1663-5102
https://orcid.org/0000-0001-5642-8346
https://orcid.org/0000-0003-3543-520X
https://orcid.org/0000-0003-3543-520X

Synthetic Biology Open Language
(SBOL) Version 3.1.0

Editors:
Lukas Buecherl University of Colorado Boulder, USA
Thomas Mitchell Raytheon BBN Technologies, USA
James Scott-Brown University of Edinburgh, UK
Prashant Vaidyanathan Oxford Biomedica, UK
Gonzalo Vidal Peña Newcastle University, UK

editors@sbolstandard.org

Chair:
Chris Myers University of Colorado Boulder, USA

Additional authors:
Hasan Baig University of Connecticut, USA
Bryan Bartley Raytheon BBN Technologies, USA
Jacob Beal Raytheon BBN Technologies, USA
Matthew Crowther Newcastle University, UK
Pedro Fontanarrosa University of Colorado Boulder, USA
Thomas Gorochowski University of Bristol, UK
Raik Grünberg KAUST, SA
Vishwesh Kulkarni University of Warwick, UK
James McLaughlin Newcastle University, UK
Goksel Misirli Keele University, UK
Ernst Oberortner DOE Joint Genome Institute, USA
Anil Wipat Newcastle University, UK

Version 3.1.0

October 26, 2022

Copyright (C) all authors listed on the front page of this document.

This work is made available under the Creative Commons Attribution 4.0 International Public License.

Contents
1 Purpose 4
2 A Brief History of SBOL 6
3 Overview of SBOL 8
4 Conventions 10

4.1 Terminology Conventions . 10
4.2 UML Diagram Conventions . 10
4.3 Naming and Typographic Conventions . 11

5 Identifiers and Types 12
5.1 Internationalized Resource Identifiers . 12
5.2 SBOL URLs . 12
5.3 Primitive Data Types . 12
5.4 SBOL Types . 13
5.5 Object Closure and Document Composition . 13

6 SBOL Data Model 15
6.1 Identified . 15
6.2 TopLevel . 16
6.3 Sequence . 16
6.4 Component . 18

6.4.1 Feature . 22
6.4.1.1 SubComponent . 23
6.4.1.2 ComponentReference . 24
6.4.1.3 LocalSubComponent . 25
6.4.1.4 ExternallyDefined . 25
6.4.1.5 SequenceFeature . 25

6.4.2 Location . 26
6.4.2.1 Range . 27
6.4.2.2 Cut . 27
6.4.2.3 EntireSequence . 27

6.4.3 Constraint . 27
6.4.4 Interaction . 28

6.4.4.1 Participation . 31
6.4.5 Interface . 32

6.5 CombinatorialDerivation . 33
6.5.1 VariableFeature . 34

6.6 Implementation . 36
6.7 ExperimentalData . 37
6.8 Model . 37
6.9 Collection . 38

6.9.1 Experiment . 39
6.10 Attachment . 39
6.11 Annotation and Extension of SBOL . 40

7 Recommended Best Practices 41
7.1 SBOL Versions . 41
7.2 Compliant SBOL Objects . 41
7.3 Versioning SBOL Objects . 42
7.4 Annotations: Embedded Objects vs. External References . 42
7.5 Completeness and Validation . 42
7.6 Recommended Ontologies for External Terms . 42
7.7 Annotating Entities with Date & Time . 43
7.8 Annotating Entities with Authorship information . 43
7.9 Host Context / Ontologies for Experiments . 43

7.9.1 Mixtures via Components . 43
7.9.2 Media, Inducers, and Other Reagents . 43
7.9.3 Samples . 44
7.9.4 Other Experimental Parameters . 44

7.10 Multicellular System Designs . 44
7.10.1 Representing Cell Types . 45
7.10.2 Multiple Cell Types in a Single Design . 45
7.10.3 Cell Ratios . 45

8 SBOL RDF Serialization 48
9 SBOL Compliance 49

Page 2 of 81

Section Contents

10 Mapping Between SBOL 1, SBOL 2, and SBOL3 50
10.1 Mapping between SBOL 1 and SBOL 2 . 50
10.2 Mapping between SBOL 2 and SBOL 3 . 50

References 54
A Complementary Standards 55

A.1 Adding Provenance with PROV-O . 55
A.1.1 prov:Activity . 57
A.1.2 prov:Usage . 58
A.1.3 prov:Association . 58
A.1.4 prov:Plan . 59
A.1.5 prov:Agent . 59

A.2 Adding Measures/Parameters with OM . 61
A.2.1 om:Measure . 61
A.2.2 om:Unit . 62
A.2.3 om:SingularUnit . 63
A.2.4 om:CompoundUnit . 63
A.2.5 om:UnitMultiplication . 63
A.2.6 om:UnitDivision . 64
A.2.7 om:UnitExponentiation . 64
A.2.8 om:PrefixedUnit . 64
A.2.9 om:Prefix . 64
A.2.10 om:SIPrefix . 65
A.2.11 om:BinaryPrefix . 65

B Validation Rules 66

Section Contents Page 3 of 81

1 Purpose

Synthetic biology builds upon genetics, molecular biology, and metabolic engineering by applying engineering

principles to the design of biological systems. When designing a synthetic system, synthetic biologists need

to exchange information about multiple types of molecules, the intended behavior of the system, and actual

experimental measurements. Furthermore, there are often multiple aspects to a design such as a specified nucleic

acid sequence (e.g., a sequence that encodes an enzyme or transcription factor), the molecular interactions that

a designer intends to result from the introduction of this sequence (e.g., chemical modification of metabolites or

regulation of gene expression), and the experiments and data associated with the system. All these perspectives

need to be connected together to facilitate the engineering of biological systems.

The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and

exchange of biological design information in synthetic biology, following an open community process involving

both “wet” bench scientists and “dry” scientific modelers and software developers, across academia, industry, and

other institutions. Previous nucleic acid sequence description formats lack key capabilities relative to SBOL, as

shown in Figure 1. Simple sequence encoding formats such as FASTA encode little besides sequence information.

More sophisticated formats such as GenBank and Swiss-Prot provide a flat annotation of sequence features that is

well suited to describing natural systems but unable to represent the functional relations and multi-layered design

structure common to engineered systems. Modeling languages, such as the Systems Biology Markup Language

(SBML) Hucka et al. (2003), can be used to represent biological processes, but are not sufficient to represent the

associated nucleotide or amino acid sequences. SBOL covers both of these needs, by providing a modular and

hierarchical representation of the structure and function of a genetic design, as well as its relationship to and use

within experiment plans, data, models, etc.

SBOL uses existing Semantic Web practices and resources, such as Uniform Resource Identifiers (IRIs) and ontologies,

to unambiguously identify and define biological system elements, and to provide serialization formats for encoding

this information in electronic data files. The SBOL standard further describes the rules and best practices on how to

use this data model and populate it with relevant design details. The definition of the data model, the rules on the

addition of data within the format, and the representation of this in electronic data files are intended to make the

SBOL standard a useful means of promoting data exchange between laboratories and between software programs.

Differences from Prior Versions of SBOL

SBOL 1 focused on representing the structural aspects of genetic designs: it allowed the exchange of information

about DNA designs and their sequence features, but could not represent molecules other than DNA or the functional

aspects of designs. SBOL 2 enabled the description and exchange of hierarchical, modular representations of both

the intended structure and function of designed biological systems, as well as providing support for representing

provenance, combinatorial designs, genetic design implementations, external file attachments, experimental

data, and numerical measurements. SBOL 3.0, defined by this document, condenses and simplifies these prior

representations based on experiences in deployment across a variety of scientific and industrial settings.

Specifically, SBOL 3.0 improves on its predecessor SBOL 2.3 by:

■ Separating sequence features from part/sub-part relationships.

■ Renaming ComponentDefinition/Component to Component/SubComponent.

■ Merging Component and Module classes.

■ Ensuring consistency between data model and ontology terms.

■ Extending the means to define and reference SubComponents.

■ Refining requirements on object IRIs.

Section 1 Purpose Page 4 of 81

Section

GenBank

FASTA TATAATAGGATT CCGCAATG GATTACAGGGTTAGC AAATGGCAGC CTGATTA CAGG GTTAGCAA ATGGCAGCCT

TATAATAGGATT CCGCAATG GATTACAGGGTTAGC AAATGGCAGC CTGATTA CAGG GTTAGCAA ATGGCAGCCT
Promoter RBS CDS Terminator Promoter RBS CDS Terminator

TATAATAGGATT CTGATTA CAGG ATGGCAGCCTversion 1

version 2

version 3

TATAATAGGATT CTGATTA CAGG ATGGCAGCCT

TATAATAGGATT CTGATTA CAGG ATGGCAGCCT

Figure 1: SBOL extends prior sequence description formats to represent both the structure and function of a genetic
design in a modular, hierarchical manner, as well as its relationship to, and use within, experiments, plans, data,
models, etc.

■ Enabling graph-based serialization.

■ Moving to Systems Biology Ontology (SBO) for Component types.

■ Making all sequence associations explicit.

■ Making interfaces explicit.

■ Generalizing SequenceConstraints into a general structural Constraint class.

■ Expanding the set of allowed sequence constraints.

Section 1 Purpose Page 5 of 81

2 A Brief History of SBOL

The SBOL effort was started in 2006 with the goal of developing a data exchange standard for genetic designs.

Herbert Sauro (University of Washington) secured a grant from Microsoft in the field of computational synthetic

biology, which was used to fund the initial meeting in Seattle on April 26-27, 2008. This workshop was organized

by Herbert Sauro, Sean Sleight, and Deepak Chandran, and included talks by Raik Gruenberg, Kim de Mora, John

Cumbers, Christopher Anderson, Mac Cowell, Jason Morrison, Jean Peccoud, Ralph Santos, Andrew Milar, Vincent

Rouilly, Mike Hucka, Michael Blinov, Lucian Smith, Sarah Richardson, Guillermo Rodrigo, Jonathan Goler, and

Michal Galdzicki.

Michal’s early efforts were instrumental in making SBOL successful. As part of his doctoral work, he led the develop-

ment of PoBol (Provisional BioBrick Language), as SBOL was originally known. He organized annual workshops from

2008 to 2011 and kept the idea of developing a genetic design standard alive. The original SBOL 1.0 was developed

by a small group of dedicated researchers calling themselves the Synthetic Biology Data Exchange Working Group,

meeting at Stanford in 2009 and Anaheim, CA in 2010. During the Anaheim meeting, the community decided to

write a letter to Nature Biotechnology highlighting the issue of reproducibility in synthetic biology Peccoud et al.

(2011). This letter was initiated by Jean Peccoud and submitted by participants of the Anaheim meeting, including

Deepak Chandran, Douglas Densmore, Dmytriv, Michal Galdzicki, Timothy Ham, Cesar Rodriquez, Jean Peccoud,

Herbert Sauro, and Guy-Bart Stan. The overall pace of development quickened when several new members joined

at the next workshop in Blacksburg, Virginia on January 7-10, 2011. This early work was also supported by an

STTR grant from the National Institute of Health (NIH #1R41LM010745 and #9R42HG006737, from 2010-13) in

collaboration with Clark & Parsia, LLC (Co-PIs: John Gennari and Evren Sirin). New members included Cesar

Rodriguez, Mandy Wilson, Guy-Bart Stan, Chris Myers, and Nicholas Roehner.

The SBOL Developers Group was officially established at a meeting in San Diego in June 2011. Rules of governance

were established, and the first SBOL editors were elected: Mike Galdzicki, Cesar Rodriguez, and Mandy Wilson.

At our next meeting in Seattle in January 2012, Herbert Sauro was elected the SBOL chair, and two new editors

were added: Matthew Pocock and Ernst Oberortner. New developers joining at these workshops included several

representatives from industry, Kevin Clancy, Jacob Beal, Aaron Adler, and Fusun Yaman Sirin. New members from

Newcastle University included Anil Wipat, Matthew Pocock, and Goksel Misirli.

Development of the first software library (libSBOLj) based on the SBOL standard was initiated by Allan Kuchinsky, a

research scientist from Agilent, at the 2011 meeting. By the time of the 2012 meeting, the first data exchange between

software tools using SBOL was conducted when a design was passed from Newcastle University’s VirtualParts

Repository to Boston University’s Eugene tool, and finally to University of Utah’s iBioSim tool.

SBOL 1.0 was officially released in October 2011. In March 2012, SBOL 1.1 was released, the version that this

document replaces. SBOL 1.1 did not make any major changes, but provided a number of small adjustments and

clarifications, particularly around the annotation of sequences. Multi-institutional data exchange using SBOL 1.1

was later demonstrated in Nature Biotechnology Galdzicki et al. (2014).

While SBOL 1.1 had a number of significant advantages over the GenBank representation of DNA sequences, such

as representing hierarchical organization of DNA components, it was still limited in other respects. The major

topic of discussion at the 8th SBOL Workshop at Boston University in November 2012 was how to address these

shortcomings through extensions. Several extensions were discussed at this meeting, such as a means to describe

genetic regulation, which later became important classes in the 2.x specification.

A general framework for SBOL 2.0 emerged at the 9th SBOL workshop at Newcastle University in April 2013.

Subsequently, Nicholas Roehner, Matthew Pocock, and Ernst Oberortner drafted a proposal for SBOL 2.0, and

Nicholas presented this proposal at the SEED conference in Los Angeles in July 2014 Roehner et al. (2015). The

proposed 2.0 data model was discussed over the course of the 10th, 11th, and 12th workshops. The SBOL 2.0

specification document was drafted at the 13th workshop in Wittenberg, Germany. The SBOL 2.x data model

presented was essentially the result of these meetings and ongoing discussions conducted through the SBOL

Developers mailing lists, plus minor adjustments and updates approved by the community through subsequence

Section 2 A Brief History of SBOL Page 6 of 81

Section

meetings and mailing list discussions.

From 2014 to 2019, development of SBOL 2.x was funded in large part by a grant from the National Science

Foundation (DBI-1355909 and DBI-1356041). The SBOL 2.x specification documents and the supporting software

libraries are due in no small part to this support. Any opinions, findings, and conclusions or recommendations

expressed in SBOL materials are those of the author(s) and do not necessarily reflect the views of the National

Science Foundation.

The Computational Modeling in Biology Network (COMBINE) holds regular workshops at which synthetic biologists

and systems biologists work toward a common goal of integrating biological knowledge through interoperable

and non-overlapping data standards. Several SBOL Developers proposed that SBOL join this larger standards

community after attended a COMBINE workshop in April 2014. The proposal passed and SBOL workshops have

been co-located with COMBINE meetings since the 11th workshop at the University of Southern California in August

2014.

In 2019 the SBOL Industrial Consortium was established as a pre-competitive non-profit organization supporting

innovation, dissemination, and integration of SBOL standards, tools and practices for practical applications in an

industrial environment. The SBOL Industrial Consortium meets regularly to coordinate its activities, and organises

an Industrial Advisory Board to give an industrial perspective on SBOL, as well as providing financial support

for projects, activities, and infrastructure within the SBOL community. Member organizations include Raytheon

BBN Technologies, Doulix, Integrated DNA Technologies, Twist Bioscience, Amyris, Inscripta, Teselagen, Shipyard

Toolchains, and Zymergen.

Discussions related to SBOL 3 began at the COMBINE meetings and on the mailing list beginning in the summer

of 2018. Over the next year and a half, several SBOL Enhancement Proposals (SEPs) were written and discussed.

During the early months of 2020, these SEPs were voted on and approved by the SBOL community. The initial

version of the SBOL 3 specification was drafted during HARMONY 2020 at the European Bioinformatics Institute

(EBI) in Hinxton, United Kingdom in March 2020.

The authors would also like to thank Michael Hucka for developing the LaTeX style file used to develop this

document (Hucka, 2017).

Section 2 A Brief History of SBOL Page 7 of 81

3 Overview of SBOL

Synthetic biology designs can be described using:

■ Structural terms, e.g., a set of annotated sequences or information about the chemical makeup of components.

■ Functional terms, e.g., the way that components might interact with each other.

As an example, consider an expression cassette, such as the one found in the plasmid pUC18 Norrander et al. (1983).

The system is designed to visually indicate whether a gene has been inserted into the plasmid: in the presence of

IPTG, it expresses an enzyme that hydrolyses X-gal to form a blue product, but successful insertion disrupts the

expression cassette and prevents the formation of this product. Internally, it has a number of parts, including a

promoter, the lac repressor binding site, and the lacZ coding sequence. These parts have specific component-level

interactions with IPTG and X-gal, as well as native host gene products, transcriptional machinery, and translational

machinery that collectively cause the desired system-level behavior.

In SBOL 3, both the structural and functional aspects are described using a class called Component, as depicted in

Figure 2. Namely, to represent structural aspects, a Component can include Features, some of which may be at some

Location within a Sequence. A Component can also include Constraints between these features. To represent

functional aspects, a Component can include Interactions that can refer to relationships between participating

Features. Finally, a Component can have its behavior described using a Model.

Constraint Feature

Component Interaction

Model

Location

Sequence

Participation

Structure
Function

Figure 2: The SBOL Component object and related objects. Solid arrows indicates ownership, whereas a dashed
arrow represents a reference to an object of another class. Red boxes represent structural objects, while blue boxes
represent functional objects. To represent structural aspects, a Component can include Features, which may refer
to Locations within a Sequence. A Component can also include Constraints between these features. To represent
functional aspects, a Component can include Interactions that can refer to relationships between participating
Features. Finally, a Component can have its behavior described using a Model.

To continue with the pUC18 example, the description would begin with a top-level Component that represents the

entire system. This Component specifies the structural elements that make up the cassette by referencing a number

of SubComponent objects. These would include the DNA SubComponent for the promoter and the simple chemical

SubComponent for IPTG, for example. The Component objects can be organized hierarchically. For example, the

plasmid Componentmight reference SubComponents for the promoter, coding sequence, etc. Each Component object

Section 3 Overview of SBOL Page 8 of 81

Section

can also include the actual Sequence information (if available), as well as SubComponent objects that identify the

Locations of the promoters, coding sequences, etc., on the Sequence. In order to specify functional information, the

Component can also specify Interaction objects that describe any qualitative relationships among SubComponent

Participations, such as how IPTG and X-gal interact with the gene products. Finally, a Component object can

point to a Model object that provides a reference to a complete computational model expressed in a language such

as SBML Hucka et al. (2003), CellML Cuellar et al. (2003), or MATLAB MathWorks (2015).

Whereas Figure 2 provides an overview of the classes used for describing designs within the SBOL 3 data model,

Figure 3 shows the rest of the classes used to describe the usage of a design within design-build-test-learn workflows

in general. In particular, designs can be expressed using CombinatorialDerivations, Components, and Sequences.

These can describe not only genetic designs, but also designs for strains, multicellular systems, media, samples,

etc. A CombinatorialDerivation allows one to specify a design pattern where individual SubComponents can be

selected from a set of variants. The Implementation class is the build class, and it is used to represent physical

artifacts like an actual sample of a plasmid. The Experiment and ExperimentalData classes are the test classes,

allowing description of a collection of data generated in an experiment. The Model class, discussed earlier, associates

learned information with a design. The prov:Activity class is taken from the provenance ontology (PROV-O),

which is described in Section A.1. For example, a build prov:Activity describes how an Implementation is

constructed using a Component description. On the other hand, a test prov:Activity describes how an Experiment

is conducted using an Implementation artifact. The Collection class has members, which can be of any of these

types or Collections themselves. Finally, all of these objects can refer to objects of the Attachment class, which

are used to link out to external data (images, spreadsheets, textual documents, etc.). The next sections provide

complete definitions and details for all of these classes.

Implementation

Collection

Model

Component

Sequence

Combinatorial
Derivation Experiment

Experimental Data

Attachment

Build
Test
Learn

Activity

Design

Figure 3: Main classes of information represented by the SBOL 3 standard, and their relationships. Green boxes
represent design classes, orange boxes represent build classes, purple boxes represent test classes, yellow boxes
represent learn classes, and the gray boxes represent additional utility classes. Each of these classes will be described
in more detail below.

Section 3 Overview of SBOL Page 9 of 81

4 Conventions

This section provides some preliminary information to aid in the understanding of the specification. The SBOL

data model is specified using Unified Modeling Language (UML) 2.0 diagrams (OMG 2005). This section reviews

terminology conventions, the basics of UML diagrams, and our naming conventions.

4.1 Terminology Conventions

This document indicates requirement levels using the controlled vocabulary specified in IETF RFC 2119. In

particular, the key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD

NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC

2119.

■ The words “MUST”, “REQUIRED”, or “SHALL” mean that the item is an absolute requirement.

■ The phrases “MUST NOT” or “SHALL NOT” mean that the item is an absolute prohibition.

■ The word “SHOULD” or the adjective “RECOMMENDED” mean that there might exist valid reasons in

particular circumstances to ignore a particular item, but the full implications need to be understood and

carefully weighed before choosing a different course.

■ The phrases “SHOULD NOT” or “NOT RECOMMENDED” mean that there might exist valid reasons in

particular circumstances when the particular behavior is acceptable or even useful, but the full implications

need to be understood and the case carefully weighed before implementing any behavior described with this

label.

■ The word “MAY” or the adjective “OPTIONAL” mean that an item is truly optional.

4.2 UML Diagram Conventions

The types of biological design data modeled by SBOL are commonly referred to as classes, especially when discussing

the details of software implementation. Each SBOL class can be instantiated by many SBOL objects. These objects

MAY contain data that differ in content, but they MUST agree on the type and form of their data as dictated by their

common class. Classes are represented in UML diagrams as rectangles labeled at the top with class names (see

Figure 4 for examples).

ChildObjectReferencedObject
SubClass

-subProperty[1..*] : IRI

Class

-requiredProperty[1] : IRI
-optionalProperty[0..1] : IRI
-unboundedProperty[0..*] : IRI
-requiredUnboundedProperty[1..*] : IRI

hasReferencedObject
 0..*

hasChildObject
1

Figure 4: Examples of UML diagram conventions used in this document

Classes can be connected to other classes by association properties, which are represented in UML diagrams as

arrows. These arrows are labeled with data cardinalities in order to indicate how many values a given association

Section 4 Conventions Page 10 of 81

Section 4.3 Naming and Typographic Conventions

property can possess (see below). The remaining (non-association) properties of a class are listed below its name.

Each of the latter properties is labeled with its data type and cardinality.

In the case of an association property, the class from which the arrow originates is the owner of the association

property. A diamond at the origin of the arrow indicates the type of association. Open-faced diamonds indicate

shared aggregation, also known as a reference, in which the owner of the association property exists independently

of its value.

By contrast, filled diamonds indicate composite aggregation, also known as a part-whole relationship, in which the

value of the association property MUST NOT exist independently of its owner. In addition, in the SBOL data model,

it is REQUIRED that the value of each composite aggregation property is a unique SBOL object (that is, not the value

for more than one such property). Note that in all cases, composite aggregation is used in such a way that there

SHOULD NOT be duplication of such objects. Such objects are also commonly referred to as “child” objects, and

their owning objects as “parent” objects.

All SBOL properties are labeled with one of several restrictions on data cardinality. These are defined, per RDF, as:

■ 1 - EXACTLY ONE: the property is REQUIRED, and there MUST be exactly one value for this property.

■ 0. . .1 - ZERO OR ONE: the property is optional, such that there MAY be a single value for this property, or it

MAY be absent.

■ 0. . .∗ - ZERO OR MORE: the property is unbounded, such that there MAY be any number of values for this

property, including none.

■ 1. . .∗ - ONE OR MORE: the property is REQUIRED, such that there MAY be any number of values for this

property, as long as there is at least one.

Finally, classes can inherit the properties of other classes. Inheritance relationships are represented in UML diagrams

as open-faced, triangular arrows that point from the inheriting class to the inherited class. Some classes in the SBOL

data model cannot be instantiated as objects and exist only to group common properties for inheritance. These

classes are known as abstract classes and are noted as such in their descriptions.

4.3 Naming and Typographic Conventions

SBOL classes are named using upper “camel case,” meaning that each word is capitalized and all words are run

together without spaces, e.g., Identified, SequenceFeature. Properties, on the other hand, are named using

lower camel case, meaning that they begin lowercase (e.g., role) but if they consist of multiple words, all words

after the first begin with an uppercase letter (e.g., roleIntegration).

SBOL properties are always given singular names irrespective of their cardinality, e.g., role is used rather than

roles even though a component can have multiple roles. This is because each relation can potentially stand on its

own, irrespective of the existence of others in the set.

Two conventions are used for property names, name and hasName. When a property is pointing to a class using

the same name, it uses the hasName convention (e.g., the Component class uses hasFeature to point to a Feature

object). When the property uses a different name than the class of the object it points to, it uses the name convention

instead (e.g., the Constraint class uses subject to point to a Feature object).

Section 4 Conventions Page 11 of 81

5 Identifiers and Types

5.1 Internationalized Resource Identifiers

As SBOL is built upon the Resource Description Framework (RDF), all class instances are identified by an Interna-

tionalized Resource Identifier (IRI), such as a URL or UUID. In the SBOL data model, the value of an association

property MUST be a IRI or set of IRIs that refer to SBOL objects belonging to the class at the tip of the arrow.

Every Identified object’s IRI MUST be globally unique among all other Identified object IRIs. It is also highly

RECOMMENDED that the IRI structure follows the recommended best practices for compliant IRIs specified in

Section 7.2.

Whenever a TopLevel object’s URI is a URL (e.g., following the conventions of HTTP(S) rather than a UUID), its

structure MUST comply with the following rules:

■ A TopLevelURL MUST use the following pattern: [namespace]/[local]/[displayId], where namespace

and displayId are required fragments, and the local fragment is an optional relative path.

For example, a Componentmight have the URL https://synbiohub.org/public/igem/BBa_J23070, where

namespace is https://synbiohub.org, local is public/igem, and displayId is BBa_J23070.

■ A TopLevel object’s URL MUST NOT be included as prefix for any other TopLevel object.

For example, the BBa_J23070_seq Sequence object cannot have a URL of https://synbiohub.org/public/

igem/BBa_J23070/BBa_J23070_seq, since the https://synbiohub.org/public/igem/BBa_J23070 prefix

is already used as a URL for the BBa_J23070 Component object.

■ The URL of any child or nested object MUST use the following pattern:[parent]/[displayId], where

parent is the URL of its parent object. Multiple layers of child objects are allowed using the same

[parent]/[displayId] pattern recursively.

For example, a SequenceFeature object owned by the BBa_J23070 Component and having a displayId of

SequenceFeature1will have a URL of https://synbiohub.org/public/igem/BBa_J23070/SequenceFeature1.

Similarly, if the SequenceFeature1 object has a Location child object with a displayId of Location1, then

that object will have the URL https://synbiohub.org/public/igem/BBa_J23070/SequenceFeature1/

Location1.

5.2 SBOL URLs

The SBOL namespace, which is http://sbols.org/v3#, is used to indicate which entities and properties in an SBOL

document are defined by SBOL. For example, the URL of the type Component is http://sbols.org/v3#Component.

This convention is assumed throughout the specification. The SBOL namespace MUST NOT be used for any entities

or properties not defined in this specification.

Other namespaces are also used by SBOL, however. Where possible, we have re-used predicates from widely-used

terminologies (such as Dublin Core DCMI Usage Board (2012)) to expose as much of the data as practical to such

standard RDF tooling. Similarly, existing biological ontologies are used where applicable for specifying types, roles,

etc. Likewise, Section Section A details complementary standards that are RECOMMENDED for use in combination

with SBOL.

5.3 Primitive Data Types

When SBOL uses simple “primitive” data types such as Strings or Integers, these are defined as the following

specific formal types:

■ String: http://www.w3.org/2001/XMLSchema#string

Section 5 Identifiers and Types Page 12 of 81

Section 5.4 SBOL Types

Example: “LacI coding sequence”

■ Integer: http://www.w3.org/2001/XMLSchema#integer

Example: 3

■ Long: http://www.w3.org/2001/XMLSchema#long

Example: 9223372036854775806

■ Double: http://www.w3.org/2001/XMLSchema#double

Example: 3.14159

■ Boolean: http://www.w3.org/2001/XMLSchema#boolean

Example: true

The term literal is used to denote an object that can be any of the five types listed above.

In addition to the simple types listed above, SBOL also uses objects with types Internationalized Resource Identifier

(IRI). It is important to realize that in RDF, a IRImight or might not be a resolvable URL (web address). A IRI is

always a globally unique identifier within a structured namespace. In some cases, that name is also a reference to

(or within) a document, and in some cases that document can also be retrieved (e.g., using a web browser).

5.4 SBOL Types

All SBOL objects are given the most specific rdfType in the SBOL 3 namespace (“http://sbols.org/v3#”) that

defines the type of the object. Likewise, properties in the SBOL 3 namespace should only be used by objects with an

SBOL 3 rdfType.

SBOL does not use multiple inheritance: all SBOL classes are disjoint except with respect to their abstract parent

classes. Accordingly, an object MUST NOT be given two rdfType properties referring to disjoint classes in the

SBOL 3 namespace. An object MAY have redundant rdfType properties for its parent types, but this is NOT

RECOMMENDED.

For example, an object cannot have both the rdfType of Collection and Component. A Component could also have

an rdfType for TopLevel and Identified, but this is discouraged.

5.5 Object Closure and Document Composition

In RDF, there is no requirement that all of the information about an object be stored in one location. Instead, there

is a “open world” assumption that additional triples describing the object may be acquired at any time. Documents

are allowed to be fragmented and composed in an arbitrary manner, down to their underlying atomic triples, with

no consideration for object structure.

This limits the ability to reason about properties of objects and validate the correctness of a model. For example, it

would not be possible to validate that an Identified object has no more than one value for its displayId property,

because it would not be possible to determine whether some other document somewhere in the world holds a

second value for the property.

SBOL addresses this by adding an object closure assumption that allows stronger reasoning about individual objects

and their children. For any given SBOL document, if the document contains an rdfType statement regarding an

Identified object X , then it is assumed that the document also contains all other property statements about object

X as well. This enables strong validation rules, since any statement of the form “X predicate Y ” that is not present

can be assumed to be false. For example, if a document has one value for an object’s displayId, then it is valid to

conclude that there are no other displayId values, and thus its "zero or one" cardinality requirement is satisfied.

We further assume that any document containing an object also contains all of its child objects. In other words,

the fundamental unit of SBOL documents is the TopLevel object, and any document containing a TopLevel

also contains the complete set of information necessary to describe that TopLevel—but not necessarily any

Section 5 Identifiers and Types Page 13 of 81

Section 5.5 Object Closure and Document Composition

other TopLevel objects that it refers to. For example, a document containing a Component describing a plasmid is

guaranteed to contain every Feature of the plasmid as well as every Interaction and Constraint that relates those

features, but the document might not contain the Sequence for the plasmid or the definitions for the Component

objects linked from its SubComponent parts.

An SBOL document thus cleaves naturally along the boundaries of TopLevel objects, implying the following set of

rules of fragmentation and composition of documents:

■ Any subset of TopLevel objects in a valid SBOL document is also a valid SBOL document.

■ Any disjoint set of TopLevel objects from different SBOL documents MAY be composed to form a new SBOL

document. The result is not guaranteed to be valid, however, since the composition may expose problems

due to the relationships between TopLevel objects from different documents.

■ If two TopLevel objects in different SBOL documents have the same identity and and both they and their

child objects contain equivalent sets of property assertions, then they MAY be treated as identical and freely

merged.

■ If two TopLevel objects in different SBOL documents have the same identity but different property values,

then they MUST be considered different (possibly conflicting) versions, and any merger managed through

some version control process.

Section 5 Identifiers and Types Page 14 of 81

6 SBOL Data Model

The section describes the SBOL data model in detail. Best practices when using the standard can be found in

Section 7.

6.1 Identified

All SBOL-defined classes are directly or indirectly derived from the Identified abstract class. This inheritance

means that all SBOL objects are uniquely identified using IRIs that uniquely refer to these objects within an SBOL

document or at locations on the World Wide Web.

As shown in Figure 5, the Identified class includes the following properties: displayId, name, description,

prov:wasDerivedFrom, and prov:wasGeneratedBy.

Ident i f ied

-displayId[0..1] : String
-name[0..1] : String
-description[0..1] : String
-prov:wasDerivedFrom[0..*] : IRI prov:Act ivi ty

om:Measure

prov:wasGeneratedBy
0..*

hasMeasure
0..*

Figure 5: Diagram of the Identified abstract class and its associated properties

The displayId property

The displayId property is an OPTIONAL identifier with a data type of String. This property is intended to be an

intermediate between a IRI and the name property that is machine-readable, but more human-readable than the

full IRI of an object.

If the displayId property is used, then its String value MUST be composed of only alphanumeric or underscore

characters and MUST NOT begin with a digit.

Note that for objects whose IRI is a URL, the requirements on URL structure in Section 5.1 imply that the displayId

MUST be set.

The name property

The name property is OPTIONAL and has a data type of String. This property is intended to be displayed to a

human when visualizing an Identified object.

If an Identified object lacks a name, then software tools SHOULD instead display the object’s displayId or IRI. It

is RECOMMENDED that software tools give users the ability to switch perspectives between name properties that

are human-readable and displayId properties that are less human-readable, but are more likely to be unique.

The description property

The description property is OPTIONAL and has a data type of String. This property is intended to contain a more

thorough text description of an Identified object.

The prov:wasDerivedFrom property

An Identified object MAY have zero or more prov:wasDerivedFrom properties, each of type IRI. This property

is defined by the PROV-O ontology and is located in the https://www.w3.org/ns/prov# namespace (Reference:

Section 6 SBOL Data Model Page 15 of 81

Section 6.2 TopLevel

Section A.1).

An Identified object with this property refers to one or more non-SBOL resources or SBOL Identified objects

from which this object was derived. An Identified object MUST NOT refer to itself via its own prov:wasDerivedFrom

property or form a cyclical chain of references via its prov:wasDerivedFromproperty and those of other Identified

objects. For example, the reference chain “A was derived from B and B was derived from A” is cyclical.

The prov:wasGeneratedBy property

An Identified object MAY have zero or more prov:wasGeneratedBy properties, each of type IRI. This property

is defined by the PROV-O ontology and is located in the https://www.w3.org/ns/prov# namespace (Reference:

Section A.1).

An Identified object with this property refers to one or more prov:Activity objects that describe how this object

was generated. Provenance history formed by prov:wasGeneratedBy properties of Identified objects and entity

references in prov:Usage objects MUST NOT form circular reference chains.

The hasMeasure property

An Identified object MAY have zero or more hasMeasure properties, each of which refers to a om:Measure object

that describe measured parameters for this object. om:Measure objects are defined by the OM ontology and

is located in the http://www.ontology-of-units-of-measure.org/resource/om-2/ namespace (Reference:

Section A.2).

6.2 TopLevel

TopLevel is an abstract class that is extended by any Identified class that can be found at the top level of an SBOL

document or file. In other words, TopLevel objects are not nested inside any other object via composite aggregation

(represented by a filled diamond arrowhead on the UML diagrams). Instead of nesting, composite TopLevel objects

refer to subordinate TopLevel objects by their IRIs using shared aggregation (represented by an open-faced/non-

filled diamond arrowhead on the UML diagrams). The TopLevel classes defined in this specification are Sequence,

Component, Model, Collection, CombinatorialDerivation, Implementation, Attachment, ExperimentalData,

prov:Activity, prov:Agent, prov:Plan (see Figure 6). Each of these classes is described in more detail below,

except for the classes from the provenance ontology (PROV-O), which are described in Section A.1.

The hasNamespace property

A TopLevel object MUST have precisely one hasNamespace property, which contains a URL that defines the names-

pace portion of URLs for this object and any child objects. If the IRI for the TopLevel object is a URL, then the URL

of the hasNamespace property MUST prefix match that URL.

Note that the requirement for a hasNamespace property holds even for objects with IRIs that are not URLs, in order

to allow them to be copied into datastores that use URLs. In this case, however, there is no prefix requirement.

The hasAttachment property

A TopLevel object can have zero or more hasAttachment properties, each of type IRI specifying an Attachment

object. The Attachment class is described in more detail in Section 6.10.

6.3 Sequence

The purpose of the Sequence class is to represent the primary structure of a Component object and the manner

in which it is encoded. This representation is accomplished by means of the elements property and encoding

property (Figure 7).

Section 6 SBOL Data Model Page 16 of 81

Section 6.3 Sequence

TopLevel

-hasNamespace[1] : URL

prov:Act ivi ty

prov:Agent

prov:PlanImplementat ion

Collection

ExperimentalData

Attachment

CombinatorialDerivat ion

Component

Model

Sequence

Ident i f ied

hasAttachment
0..*

Figure 6: Classes that inherit from the TopLevel abstract class.

Sequence

-elements[0..1] : String
-encoding[0..1] : IRI

TopLevel

Figure 7: Diagram of the Sequence class and its associated properties.

The elements property

The elements property is an OPTIONAL String of characters that represents the constituents of a biological or

chemical molecule. For example, these characters could represent the nucleotide bases of a molecule of DNA, the

amino acid residues of a protein, or the atoms and chemical bonds of a small molecule.

If the elements property is not set, then it means the particulars of this Sequence have not yet been determined.

The encoding property

The encoding property has a data type of IRI, and is OPTIONAL unless elements is set, in which case it is RE-

QUIRED. This property MUST indicate how the elements property of a Sequence are formed and interpreted. The

encoding property SHOULD respectively contain a IRI identifying from the textual format (https://identifiers.

org/edam:format_2330) branch of the EDAM ontology.

For example, the elements property of a Sequencewith an IUPAC DNA encoding property MUST contain characters

that represent nucleotide bases, such as a, t, c, and g. The elements property of a Sequence with a Simplified

Molecular-Input Line-Entry System (SMILES) encoding, on the other hand, MUST contain characters that represent

atoms and chemical bonds, such as C, N, O, and =.

Section 6 SBOL Data Model Page 17 of 81

Section 6.4 Component

Table 1 contains a partial list of possible IRI values for the encoding property. These terms are organized by the

type of Component (see Table 2) that typically refer to a Sequencewith such an encoding. It is RECOMMENDED

that the encoding property of a Sequence contains a IRI from Table 1. When the encoding of a Sequence is well

described by one of the IRIs in Table 1, it MUST contain that IRI.

Encoding URL Component Type

IUPAC DNA, RNA https://identifiers.org/edam:format_1207 DNA, RNA
IUPAC Protein https://identifiers.org/edam:format_1208 Protein
InChI https://identifiers.org/edam:format_1197 Simple Chemical
SMILES https://identifiers.org/edam:format_1196 Simple Chemical

Table 1: URLs for specifying the encoding property of a Sequence, organized by the type of Component (see Table 2)
that typically refer to a Sequencewith such an encoding.

6.4 Component

The Component class represents the structural and/or functional entities of a biological design. The primary usage

of this class is to represent entities with designed sequences, such as DNA, RNA, and proteins, but it can also be

used to represent any other entity that is part of a design, such as simple chemicals, molecular complexes, strains,

media, light, and abstract functional groupings of other entities.

As shown in Figure 8, the Component class describes a design entity using the following properties: type, role,

hasSequence, hasFeature, hasConstraint, hasInteraction, hasInterface, and hasModel. The hasSequence,

hasFeature, and hasConstraint properties are used to represent structural information, while the

hasInteraction, hasInterface, and hasModel are used to represent functional information.

TopLevel

Interact ion

Interface

Sequence Model

Feature

Constraint

Component
 -type[1..*] : IRI
 -role[0..*] : IRI

hasInteraction
0..*

hasSequence
0..*

hasInterface
0..1

hasModel
0..*

hasFeature
0..*

hasConstraint
0..*

Figure 8: Diagram of the Component class and its associated properties.

The type property

A ComponentMUST have one or more type properties, each of type IRI specifying the category of biochemical or

physical entity (for example DNA, protein, or simple chemical) that a Component object abstracts for the purpose

of engineering design. For DNA or RNA entities, additional type properties MAY be used to describe nucleic acid

Section 6 SBOL Data Model Page 18 of 81

Section 6.4 Component

topology (circular / linear) and strandedness (double- or single-stranded).

The type properties of every ComponentMUST include one or more IRIs that MUST identify terms from appropriate

ontologies, such as the physical entity representation branch of the Systems Biology Ontology Courtot et al. (2011)

or the ontology of Chemical Entities of Biological Interest (ChEBI) Degtyarenko et al. (2008). In order to maximize

the compatibility of designs, the type property of a Component SHOULD contain a URL from the physical entity

representation branch of the Systems Biology Ontology Courtot et al. (2011). Table 2 provides a partial list of

ontology terms and their URLs, and any Component that can be well-described by one of the terms in Table 2 MUST

use the URL for that term as a type. Finally, if the type property contains multiple IRIs, then they MUST identify

non-conflicting terms (otherwise, it might not be clear how to interpret them). For example, the SBO terms provided

by Table 2 would conflict because they specify classes of biochemical entities with different molecular structures.

Component Type URL for SBO Term

DNA (Deoxyribonucleic acid) https://identifiers.org/SBO:0000251

RNA (Ribonucleic acid) https://identifiers.org/SBO:0000250

Protein (Polypeptide chain) https://identifiers.org/SBO:0000252

Simple Chemical https://identifiers.org/SBO:0000247

Non-covalent complex https://identifiers.org/SBO:0000253

Functional Entity https://identifiers.org/SBO:0000241

Table 2: Partial list of the most common SBO terms to specify the molecule type using the type property of
a Component. Systems of multiple interacting molecules (e.g., a plasmid expressing a protein) should use the
functional entity type.

Nucleic Acid Topology types

Any Component classified as DNA (see Table 2) is RECOMMENDED to encode circular/linear topology information

in an additional type field. This (topology) type field SHOULD specify a URL from the Topology Attribute branch

of the Sequence Ontology (SO): this is currently just ‘linear’ or ‘circular’ as given in Table 3. Topology information

SHOULD be specified for DNA Component records with a fully specified sequence, except in three scenarios: if

the DNA record does not have sequence information, or if the DNA record has incomplete sequence information,

or if topology is genuinely unknown. For any Component classified as RNA (see Table 2), a topology type field is

OPTIONAL. The default assumption in this case is linear topology. In any case, conflicting topologies MUST NOT be

specified.

Any Component classified as DNA or RNA MAY also have strand information encoded in an additional (third) type

field using a URL from the Strand Attribute branch of the SO (currently there are only two possible terms for single

or double-stranded nucleic acids, given in Table 3). In absence of this field, the default strand information assumed

for DNA is ‘double-stranded’ and for RNA is ‘single-stranded’.

Any other type of Component record (protein, simple chemical, etc.) SHOULD NOT have any type field pointing to

SO terms from the topology or strand attribute branches of SO.

Note that a circular topology instructs software to interpret the beginning / end position of a given sequence (be it

DNA or RNA) as arbitrary, meaning that sequence features MAY be mapped or identified across this junction. Double

stranded instructs software to apply sequence searches to both strands (i.e., sequence and reverse complement of

sequence).

The role property

A ComponentMAY have any number of role properties, each of type IRI, that MUST identify terms from ontologies

that are consistent with the type property of the Component. For example, the role property of a DNA or RNA

Component could contain URLs identifying terms from the Sequence Ontology (SO). As a best practice, a DNA or

RNA Component SHOULD contain exactly one URL that refers to a term from the sequence feature branch of the

Section 6 SBOL Data Model Page 19 of 81

Section 6.4 Component

Nucleic Acid Topology URL for Nucleic Acid Topology Term in SO

linear http://identifiers.org/SO:0000987

circular http://identifiers.org/SO:0000988

single-stranded http://identifiers.org/SO:0000984

double-stranded http://identifiers.org/SO:0000985

Table 3: Sequence Ontology (SO) terms to encode DNA or RNA topology information in the type properties of a
Component.

SO. Similarly, the role properties of a protein and simple chemical Component SHOULD respectively contain URLs

identifying terms from the MolecularFunction (GO:0003674) branch of the Gene Ontology (GO) and the role

(CHEBI:50906) branch of the CHEBI ontology. Table 4 contains a partial list of possible ontology terms for the role

properties and their URLs. These terms are organized by the type of Component to which they SHOULD apply (see

Table 2). Any Component that can be well-described by one of the terms in Table 4 MUST use the URL for that term

as a role.

These IRIs might identify descriptive biological roles, such as “metabolic pathway” and “signaling cascade,” but

they can also identify identify “logical” roles, such as “inverter” or “AND gate”, or other abstract roles for describing

the function of design. Interpretation of the meaning of such roles currently depends on the software tools that read

and write them.

Component Role URL for Ontology Term Component Type

Promoter http://identifiers.org/SO:0000167 DNA
RBS http://identifiers.org/SO:0000139 DNA
CDS http://identifiers.org/SO:0000316 DNA
Terminator http://identifiers.org/SO:0000141 DNA
Gene http://identifiers.org/SO:0000704 DNA
Operator http://identifiers.org/SO:0000057 DNA
Engineered Region http://identifiers.org/SO:0000804 DNA
mRNA http://identifiers.org/SO:0000234 RNA
Effector http://identifiers.org/CHEBI:35224 Small Molecule
Transcription Factor http://identifiers.org/GO:0003700 Protein

Table 4: Partial list of ontology terms to specify the roleproperty of a Component, organized by the type of Component
to which they are intended to apply (see Table 2).

The hasSequence property

A ComponentMAY have any number of hasSequence properties, each of type IRI, that MUST reference a Sequence

object (see Section 6.3). These objects define the primary structure or structures of the Component.

If a Feature of a Component refers to a Location, and this Location refers to a Sequence, then the Component

MUST also include a hasSequence property that refers to this Sequence.

Many Component objects will have exactly one hasSequence property that refers to a Sequence object. In this

case, if its has a type from Table 2 and there is an encoding that is cross-listed with this term in Table 1, then the

Sequence objects MUST have this encoding (e.g., a Component of typeDNA must have a Sequencewith an IUPAC

DNA encoding). This Sequence is implicitly the entire sequence for this Component (In other words, it is equivalent

to a SequenceFeaturewith an EntireSequence Location that refers to this Sequence).

Section 6 SBOL Data Model Page 20 of 81

Section 6.4 Component

The hasFeature property

A ComponentMAY have any number of hasFeature properties, each of type IRI that MUST reference a Feature

object (see Section 6.4.1). The set of relations between Feature and Component objects MUST be strictly acyclic.

Taking the Component class as analogous to a blueprint or specification sheet for a biological part or a system of

interacting biological elements, the Feature class represents the specific occurrence of a part, subsystem, or other

notable aspect within that design. This mechanism also allows a biological design to include multiple instances

of a particular part (defined by reference to the same Component). For example, the Component of a polycistronic

gene could contain two SubComponent objects that refer to the same Component of a CDS. As another example,

consider the Component for a network of two-input repressor devices in which the particular repressors have not yet

been chosen. This Component could contain multiple SubComponent objects that refer to the same Component of an

abstract two-input repressor device.

The hasFeature properties of Component objects can be used to construct a hierarchy of SubComponent and

Component objects. If a Component in such a hierarchy refers to a Location object, and there exists a Component

object lower in the hierarchy that refers to a Location object that refers to the same Sequence with the same

encoding, then the elements properties of these Sequence objects SHOULD be consistent with each other, such

that well-defined mappings exist from the “lower level” elements to the “higher level” elements in accordance

with their shared encoding properties. This mapping is also subject to any restrictions on the positions of the

Feature objects in the hierarchy that are imposed by the SubComponent, SequenceFeature, or Constraint objects

contained by the Component objects in the hierarchy.

For example, in a plasmid Component with a promoter SubComponent, the sequence at the promoter’s Location

within the plasmid should be the sequence for the promoter. More concretely, consider DNA Component that

refers to a Sequencewith an IUPAC DNA encoding and an elements String of “gattaca.” In turn, this Component

could contain a SubComponent that refers to a “lower level” Component that also refers to a Sequencewith an IUPAC

DNA encoding. Consequently, a consistent elements String of this “lower level” Sequence could be “gatta,” or

perhaps “tgta” if the SubComponent is positioned by a Locationwith an orientation of “reverse complement”

(see Section 6.4.2).

The hasConstraint property

A Component MAY have any number of hasConstraint properties, each of type IRI, that MUST reference a

Constraint object (see Section 6.4.3). These objects describe, among other things, any restrictions on the relative,

sequence-based positions and/or orientations of the Feature objects contained by the Component, as well as spatial

relations such as containment and identity relations. For example, the Component of a gene might specify that

the position of its promoter SubComponent precedes that of its CDS SubComponent. This is particularly useful

when a Component lacks a Sequence and therefore cannot specify the precise, sequence-based positions of its

SubComponent objects using Location objects.

The hasInteraction property

A Component MAY have any number of hasInteraction properties, each of type IRI, that MUST reference an

Interaction object (see Section 6.4.4).

The Interaction class provides an abstract, machine-readable representation of behavior within a Component

(whereas a more detailed model of the system might not be suited to machine reasoning, depending on its im-

plementation). Each Interaction contains Participation objects that indicate the roles of the Feature objects

involved in the Interaction.

The hasInterface property

A ComponentMAY have zero or one hasInterface property of type IRI that MUST reference an Interface object

(see Section 6.4.5).

An Interface object indicates the inputs, outputs, and non-directional points of connection to a Component.

Section 6 SBOL Data Model Page 21 of 81

Section 6.4 Component

The hasModel property

A ComponentMAY have any number of hasModel properties, each of type IRI, that MUST reference a Model object

(see Section 6.8).

Model objects are placeholders that link Component objects to computational models of any format. A Component

object can link to more than one Model since each might encode system behavior in a different way or at a different

level of detail.

6.4.1 Feature

The Feature class, as shown in Figure 9 is used to compose Component objects into a structural or functional

hierarchy. Feature is an abstract class; only its child classes are actually instantiated.

Location Location

SequenceFeatureLocalSubComponent

-type[1..*] : IRI

ComponentReferenceSubComponent

-roleIntegration[0..1] : IRI

ExternallyDefined

-type[1..*] : IRI
-definition[1] : IRI

Ident i f ied

Feature

-role[0..*] : IRI
-orientation[0..1] : IRI

Component

Location

 hasLocation
 0..*

 hasLocation
 1..*

 refersTo
 1

inChildOf
1 instanceOf

1
sourceLocation
 0..*

hasLocation
 0..*

Figure 9: Diagram of the Feature class, its children, and associated properties.

The role property

Each Feature can have zero or more role property IRIs describing the purpose or potential function of this

Feature in the context of its parent Component. If the role for a SubComponent is left unspecified, then the role is

determined by the role property of the Component that it is an instanceOf. If provided, these role property IRIs

MUST identify terms from appropriate ontologies. Roles are not restricted to describing biological function; they

may annotate a Feature’s function in any domain for which an ontology exists. A table of recommended ontology

terms for role is given in Table 4.

It is RECOMMENDED that these role property IRIs identify terms that are compatible with the type properties

of the Feature’s parent Component. For example, a role of a Featurewhich belongs to a Component of type DNA

might refer to terms from the Sequence Ontology. Likewise, for any feature that is a SubComponent, the role

SHOULD be compatible with the type of the Component that it links to through its instanceOf property.

The orientation property

The orientation property is OPTIONAL and has a data type of IRI. This can be used to indicate how any associated

double-stranded Feature is oriented on the elements of a Sequence from their parent Component. If a Feature

object has an orientation, then it is RECOMMENDED that it come from Table 5; for reasons of backwards

compatability it MAY instead come from Table 6.

Section 6 SBOL Data Model Page 22 of 81

Section 6.4 Component

Orientation URL Description

https://identifiers.org/SO:0001030 The region specified by this Feature or Location is on the elements of a
Sequence.

https://identifiers.org/SO:0001031 The region specified by this Feature or Location is on the reverse-
complement mapping of the elements of a Sequence. The exact nature
of this mapping depends on the encoding of the Sequence.

Table 5: RECOMMENDED URLs for the orientation property

Orientation URL Description

http://sbols.org/v3#inline The region specified by this Feature or Location is on the elements of a
Sequence.

http://sbols.org/v3#reverseComplement The region specified by this Feature or Location is on the reverse-
complement mapping of the elements of a Sequence. The exact nature
of this mapping depends on the encoding of the Sequence.

Table 6: Permitted alternative URLs for the orientation property. The URLs listed in Table 5 are preferred and
SHOULD be used instead where possible.

6.4.1.1 SubComponent

The SubComponent class is a subclass of the Feature class that can be used to specify structural hierarchy. For

example, the Component of a gene might contain four SubComponent objects: a promoter, RBS, CDS, and termi-

nator, each linked to a Component that provides the complete definition. In turn, the Component of the promoter

SubComponentmight itself contain SubComponent objects defining various operator sites, etc.

The roleIntegration property

A roleIntegration specifies the relationship between a SubComponent instance’s own set of role properties and

the set of role properties on the included Component.

The roleIntegration property has a data type of IRI. A SubComponent instance with zero role properties MAY

OPTIONALLY specify a roleIntegration. A SubComponent instance with one or more role properties MUST

specify a roleIntegration from Table 7. If zero SubComponent role properties are given and no SubComponent

roleIntegration is given, then http://sbols.org/v3#mergeRoles is assumed. It is RECOMMENDED to specify

SubComponent role values only if the result would differ from the role values belonging to this SubComponent’s

included Component.

roleIntegration URL Description

http://sbols.org/v3#overrideRoles In the context of this SubComponent, ignore any role given for the included
Component. Instead use only the set of zero or more role properties given for
this SubComponent.

http://sbols.org/v3#mergeRoles Use the union of the two sets: both the set of zero or more role properties given for
this SubComponent as well as the set of zero or more role properties given for the
included Component.

Table 7: Each roleIntegrationmode is associated with a rule governing how a SubComponent’s role values are to
be combined with the included Component’s role values.

Section 6 SBOL Data Model Page 23 of 81

Section 6.4 Component

The instanceOf property

The instanceOf property is a REQUIRED IRI that refers to the Component providing the definition for this

SubComponent. Among other things, as described in the previous section, this Component effectively provides

information about the type and role of the SubComponent.

The instanceOf property MUST NOT refer to the same Component as the one that contains the SubComponent.

Furthermore, SubComponent objects MUST NOT form a cyclical chain of references via their instanceOf properties

and the Component objects that contain them. For example, consider the SubComponent objects A and B and the

Component objects X and Y . The reference chain “X has feature A, A is an instance of Y , Y has feature B , and B is

an instance of X ” is cyclical.

The hasLocation property

A SubComponentMAY have any number of hasLocation properties, each of type IRI, that MUST refer to Location

objects that indicates the location of the Sequence from the instanceOf Component in a Sequence of the parent

Component.

If any hasLocation is defined, then there MUST BE precisely one Sequence in the instanceOf Component, as

otherwise this relationship is ill-defined.

If no hasLocation is defined, this indicates a part / sub-part relationship for which sequence details have not (yet)

been determined or involving types for which sequence relationships are not relevant (e.g., inclusion of a reaction

chain within a larger metabolic network).

Allowing multiple Location objects on a single SubComponent is intended to enable representation of discontinuous

regions (for example, a coding sequence encoded across a set of exons with interspersed introns). As such, the

Location objects of a single SubComponentMUST NOT specify overlapping regions, since it is not clear what this

would mean. There is no such concern with different objects, however, which can freely overlap in Location (for

example, specifying overlapping linkers for sequence assembly).

The sourceLocation property

The sourceLocation property allows for only a portion of a Component’s Sequence to be included, rather than its

entirety. For example, when composing parts with certain assembly methods, some bases on the boundary may be

removed or replaced. Another example is describing a deletion or replacement of a portion of a sequence.

A SubComponent MAY have any number of sourceLocation properties, each of type IRI, that MUST refer to

Location objects that indicate which elements of the instanceOf Component’s Sequence are used in defining the

parent of the SubComponent.

If there are no sourceLocation properties, then the whole Sequence is assumed to be included.

6.4.1.2 ComponentReference

The ComponentReference class is a subclass of Feature that can be used to reference Features within

SubComponents.

The inChildOf property

The inChildOf property is a REQUIRED IRI that refers to a SubComponent. The inChildOf property MUST refer

to a SubComponent pointed directly to by the parent of the ComponentReference. Specifically:

■ If the parent of the ComponentReference is a Component, then inChildOfMUST be one of its SubComponents.

■ If the parent of the ComponentReference is another ComponentReference, then inChildOf MUST be a

SubComponent of the Component linked as instanceOf the parent’s inChildOf SubComponent.

Section 6 SBOL Data Model Page 24 of 81

Section 6.4 Component

The refersTo property

The refersTo property is a REQUIRED IRI that refers to a Feature.

This can be used to either link to the Feature being referenced or to chain hierarchically through additional layers

of SubComponent.

■ If the Feature is a ComponentReference, then that ComponentReference acts as a hierarchical link in a chain

of references, and MUST be either a child of the ComponentReference linking to it via refersTo or a child of

the Component linked as instanceOf the ComponentReference’s inChildOf SubComponent.

■ Otherwise, if the refersTo refers to any other type of Feature, that Feature MUST be a child of the

Component linked as instanceOf the ComponentReference’s inChildOf SubComponent.

For example, ComponentReference R1 looking into a SubComponent for a plasmid might link with refersTo to its

own child ComponentReference R2, which in turn looks within the Component defining the plasmid to the plasmid’s

CDS SubComponent, in turn using refersTo to reference a SequenceFeature within the Component that defines

that CDS.

6.4.1.3 LocalSubComponent

The LocalSubComponent class is a subclass of Feature. This class serves as a way to create a placeholder in more

complex Components, such as a variable to be filled in later or a composite that exists only within the context of the

parent Component.

The type property

The type property is REQUIRED and contains one or more IRIs. The type property is identical to its use in

Component.

The hasLocation property

A LocalSubComponentMAY have any number of hasLocation properties, each of type IRI, that MUST refer to

Location objects. These follow the same restrictions as for the hasLocation of a SubComponent, notably that the

Locations of hasLocation properties attached to the same LocalSubComponentMUST NOT overlap.

6.4.1.4 ExternallyDefined

The ExternallyDefined class has been introduced so that external definitions in databases like ChEBI or UniProt

can be referenced.

The type property

The type property is REQUIRED and contains one or more IRIs. The type property is identical to its use in

Component.

The definition property

The definition property is REQUIRED and is of type IRI that links to a canonical definition external to SBOL.

When possible, such definitions SHOULD use the recommended external resources in Section 7.6. For example, an

ExternallyDefined simple chemical might link to ChEBI and a protein might link to UniProt.

6.4.1.5 SequenceFeature

The SequenceFeature class describes one or more regions of interest on the Sequence objects referred to by its

parent Component.

Section 6 SBOL Data Model Page 25 of 81

Section 6.4 Component

The hasLocation property

The hasLocation is REQUIRED and contains one or more IRIs, which MUST refer to Location objects. These

follow the same restrictions as for the hasLocation of a SubComponent, notably that the Locations of hasLocation

properties attached to the same SequenceFeatureMUST NOT overlap.

6.4.2 Location

The Location class (as shown in Figure 10) is used to represent the location of Features within Sequences. This

class is extended by the Range, Cut, and EntireSequence classes Location is an abstract class; only its child classes

are actually instantiated.

Location

-orientation[0..1] : IRI
-order[0..1] : Integer

Sequence

EntireSequence

Ident i f ied

Range
-start[1] : Integer > 0
-end[1] : Integer > 0

Cut
-at[1] : Integer >= 0

hasSequence
 1

Figure 10: Diagram of the Location class and its associated properties.

The orientation property

The orientation property is OPTIONAL and has a data type of IRI. All subclasses of Location share this property,

which can be used to indicate how any associated double-stranded Feature is oriented on the elements of a

Sequence from their parent Component. If a Location object has an orientation, then it is RECOMMENDED that

it come from Table 5; for reasons of backwards compatability it MAY instead come from Table 6.

As is typical practice in biology, any change in orientation is applied after indices are interpreted. Thus, for example,

in a DNA Sequencewith elements AAAAACCCCCTTTTTGGGGGTTTTTGGGGG, indices 1-6 with a reverse orientation will

select AAAAAC, which would then be reverse complemented to obtain GTTTTT.

The order property

The order property is OPTIONAL and has a data type of Integer. If there are multiple Location objects associated

with a Feature, the orderproperty is used to specify the order (in increasing value) in which the specified Locations

are to be joined to form the sequence of the Feature. Note that order values MAY be non-sequential and non-

positive, if desired.

The hasSequence property

The hasSequence property is REQUIRED and MUST contain the IRI of a Sequence object. All subclasses of

Location share this property, which indicates which Sequence object referenced by the containing Component is

referenced by the Location.

Section 6 SBOL Data Model Page 26 of 81

Section 6.4 Component

6.4.2.1 Range

A Range object specifies a region via discrete, inclusive start and end positions that correspond to indices for

characters in the elements String of a Sequence.

Note that the index of the first location is 1, as is typical practice in biology, rather than 0, as is typical practice in

computer science.

The start property

The start property specifies the inclusive starting position of the Range. This property is REQUIRED and MUST

contain an Integer value greater than zero.

The end property

The end property specifies the inclusive ending position of the Range. This property is REQUIRED and MUST

contain an Integer value greater than zero. In addition, this Integer value MUST be greater than or equal to that

of the start property.

6.4.2.2 Cut

The Cut class has been introduced to enable the specification of a region between two discrete positions. This

specification is accomplished using the at property, which specifies a discrete position that corresponds to the

index of a character in the elements String of a Sequence (except in the case when at is equal to zero—see below).

The at property

The at property is REQUIRED and MUST contain an Integer value greater than or equal to zero. The region

specified by the Cut is between the position specified by this property and the position that immediately follows

it. When the at property is equal to zero, the specified region is immediately before the first discrete position or

character in the elements String of a Sequence.

6.4.2.3 EntireSequence

The EntireSequence class does not have any additional properties. Use of this class indicates that the linked

Sequence describes the entirety of the Component or Feature parent of this Location object.

6.4.3 Constraint

The Constraint class can be used to assert restrictions on the relationships of pairs of Feature objects contained

by the same parent Component. Uses of this class include expressing containment (e.g., a plasmid transformed into

a chassis strain), identity mappings (e.g., replacing a placeholder value with a complete definition), and expressing

relative, sequence-based positions (e.g., the ordering of features within a template). Each Constraint includes the

subject, object, and restriction properties.

The subject property

The subject property is REQUIRED and MUST contain a IRI that refers to a Feature contained by the same parent

Component that contains the Constraint.

The object property

The object property is REQUIRED and MUST contain a IRI that refers to a Feature contained by the same parent

Component that contains the Constraint. This FeatureMUST NOT be the same Feature that the Constraint

refers to via its subject property.

Section 6 SBOL Data Model Page 27 of 81

Section 6.4 Component

Ident i f ied

Constraint

-restriction[1] : IRI

Feature

subject
 1

object
 1

Figure 11: Diagram of the Constraint class and its associated properties.

The restriction property

The restriction property is REQUIRED and has a data type of IRI. This property MUST indicate the type of

restriction on the locations, orientations, or identities of the subject and object Feature objects in relation to

each other. The IRI value of this property SHOULD come from the RECOMMENDED URLs in Table 8, Table 9, and

Table 10.

Restriction URL Description

http://sbols.org/v3#verifyIdentical The subject and object, after tracing through any layers
of ComponentReference, MUST both refer to SubComponent
objects with the same instanceOf value or both refer to
ExternallyDefined objects with the same definition. Exam-
ple: a promoter included via two different subsystems must be the
identical.

http://sbols.org/v3#differentFrom The subject and object, after tracing through any layers of
ComponentReference, MUST NOT both refer to SubComponent
objects with the same instanceOf value or both refer to
ExternallyDefined objects with the same definition. Exam-
ple: two fluorescent reporters must be different.

http://sbols.org/v3#replaces In the context of the parent object of the Constraint, information
about the subject should be used in place of all instances of the
object. Example: the J23101 promoter replaces a generic promoter.

http://sbols.org/v3#sameOrientationAs The subject and object Component objects MUST have the same
orientation. Example: a promoter has the same orientation as the
coding sequence it controls.

http://sbols.org/v3#oppositeOrientationAs The subject and object Component objects MUST have opposite
orientations. Example: a promoter has the opposite orientation as an
invertase-activated coding sequence it controls.

Table 8: RECOMMENDED URLs for expressing identity and orientation with the restriction property.

6.4.4 Interaction

The Interaction class (as shown in Figure 12) provides more detailed description of how the Feature objects

of a Component are intended to work together. For example, this class can be used to represent different forms

of genetic regulation (e.g., transcriptional activation or repression), processes from the central dogma of biology

(e.g. transcription and translation), and other basic molecular interactions (e.g., non-covalent binding or enzy-

matic phosphorylation). Each Interaction includes type properties that refer to descriptive ontology terms and

Section 6 SBOL Data Model Page 28 of 81

Section 6.4 Component

Restriction URL Description

http://sbols.org/v3#isDisjointFrom The subject and object do not overlap in space. Example: a
plasmid is disjoint from a chromosome.

http://sbols.org/v3#strictlyContains The subject entirely contains the object: they do not share a
boundary. Example: a cell contains a plasmid

http://sbols.org/v3#contains The subject contains the object and they might or might not
share a boundary (i.e., union of strictlyContains, equals, and
covers. Example: a cell contains a protein that may or may not bind
to its membrane.

http://sbols.org/v3#equals The subject and object occupy the same location in space. Ex-
ample: a small molecule is distributed throughout an entire sample.

http://sbols.org/v3#meets The subject and object are connected at a shared boundary.
Example: two strains of adherent cells meet at their membranes.

http://sbols.org/v3#covers The subject contains the object but also shares a boundary. Ex-
ample: a cell covers its transmembrane proteins.

http://sbols.org/v3#overlaps The subject and object overlap in space, but portions of each are
outside of the other. Example: a transmembrane protein overlaps the
cell membrane.

Table 9: RECOMMENDED URLs for expressing topological relations with the restriction property.

hasParticipation properties that describe which Feature objects participate in which ways in the Interaction.

Ident i f ied

Participation
Interact ion

-type[1..*] : IRI
hasParticipation

0..*

Figure 12: Diagram of the Interaction class and its associated properties.

The type property

An Interaction is REQUIRED to have one or more type properties, each of type IRI, that describes the behavior

represented by an Interaction.

Each type property MUST identify terms from appropriate ontologies. It is RECOMMENDED that exactly one IRI

specified by a type property refer to a term from the occurring entity branch of the Systems Biology Ontology (SBO).

Table 11 provides a partial list of possible SBO terms for the type property and their corresponding URLs.

If an Interaction is well described by one of the terms from Table 11, then a type property MUST refer to the URL

that identifies this term. Lastly, if there are multiple type properties for an Interaction, then they MUST identify

non-conflicting terms. For example, the SBO terms “stimulation” and “inhibition” would conflict.

The hasParticipation property

An InteractionMAY have any number of hasParticipation properties, each of type IRI, that MUST reference a

Participation object, each of which identifies the role that its referenced Feature plays in the Interaction.

Even though an Interaction generally contains at least one Participation, the case of zero Participation

Section 6 SBOL Data Model Page 29 of 81

Section 6.4 Component

Restriction URL Description

http://sbols.org/v3#precedes The start of the location for subject is less than the start of the
location for object (i.e., union of strictlyPrecedes, meets, and
overlaps). Example: a promoter precedes a ribosome entry site, but
the exact boundary between the two will be determined by sequence
optimization and assembly planning.

http://sbols.org/v3#strictlyPrecedes The end of the location for subject is less than the start of the loca-
tion for object. Example: a promoter strictly precedes a terminator
(with a CDS between them).

http://sbols.org/v3#meets The end of the location for subject is equal to the start of the
location for object. Note: this is a stronger interpretation of meets
from Table 9 in the context of a linear sequence. Example: the 3’
region adjacent to a blunt restriction site meets the 5’ region adjacent
to the site.

http://sbols.org/v3#overlaps The start of the location for subject is before the start of the location
for object and the end of the location for subject is before the end
of the location for object. Note: this is a stronger interpretation of
overlaps from Table 9 in the context of a linear sequence. Example:
two adjacent oligos overlap in a Gibson assembly plan.

http://sbols.org/v3#contains The start of the location for subject is less than or equal to the start
of the location for object and the end of the location for subject
is greater than or equal to the end of the location for object (i.e.,
union of strictlyContains, equals, finishes, and starts).
Note: this is a stronger interpretation of contains from Table 9 in
the context of a linear sequence. Example: a composite part contains
a promoter.

http://sbols.org/v3#strictlyContains The start of the location for subject is before the start of the location
for object and the end of the location for subject is after the end
of the location for object. Note: this is a stronger interpretation of
strictlyContains from Table 9 in the context of a linear sequence.
Example: an RNA transcript strictly contains an intron.

http://sbols.org/v3#equals The start and end of the location for subject are equal to the start
and end of the location for object. Note: this is a stronger interpre-
tation of equals from Table 9 in the context of a linear sequence.
Example: the transcribed region of a CDS part equals the entire part.

http://sbols.org/v3#finishes The start of the location for subject is after the start of the location
for object and the end of the location for subject is equal to the
end of the location for object. Example: a terminator finishes an
expression cassette.

http://sbols.org/v3#starts The start of the location for subject is equal to the start of the
location for object and the end of the location for subject is before
the end of the location for object. Example: a promoter starts an
expression cassette.

Table 10: RECOMMENDED URLs for expressing sequential relations with the restriction property. Note that these
relations are only well-defined when the subject and object can be located on the same Sequence (though this
may be something that is inferred rather than known a priori). In interpreting these relations, it is important to
remember that for Range objects, the start and end indices refer to whole bases/residues such that a Rangewith
end equal to 9 meets a Rangewith start equal to 10, while it strictlyPrecedes a Cutwith at equal to 10.

objects is allowed because it is plausible that a designer might want to specify that an Interactionwill exist, even

if its participants have not yet been determined.

Section 6 SBOL Data Model Page 30 of 81

Section 6.4 Component

Interaction Type URL for SBO Term

Inhibition http://identifiers.org/SBO:0000169

Stimulation http://identifiers.org/SBO:0000170

Biochemical Reaction http://identifiers.org/SBO:0000176

Non-Covalent Binding http://identifiers.org/SBO:0000177

Degradation http://identifiers.org/SBO:0000179

Genetic Production http://identifiers.org/SBO:0000589

Control http://identifiers.org/SBO:0000168

Table 11: Partial list of SBO terms to specify the type property of an Interaction.

6.4.4.1 Participation

Each Participation (see Figure 13) represents how a particular Feature behaves in its parent Interaction.

Interact ionFeature

Participation

-role[1..*] : IRI

Ident i f ied

higherOrderParticipant
[0..1]

participant
[0..1]

Figure 13: Diagram of the Participation class and its associated properties.

The role property

A Participation is REQUIRED to have one or more role properties, each of type IRI, that describes the behavior

of a Participation (and by extension its referenced Feature) in the context of its parent Interaction.

Each role property MUST identify terms from appropriate ontologies. It is RECOMMENDED that exactly one IRI

specified by a role property refer to a term from the participant role branch of the SBO. Table 12 provides a partial

list of possible SBO terms for the role properties and their corresponding IRIs.

If a Participation is well described by one of the terms from Table 12, then a role property MUST refer to the IRI

that identifies this term. Also, if a Participation belongs to an Interaction that has a type listed in Table 11, then

the Participation SHOULD have a role that is cross-listed with this type in Table 12. Lastly, if there are multiple

role properties for a Participation, then they MUST identify non-conflicting terms. For example, the SBO terms

“stimulator” and “inhibitor” would conflict.

The participant property

The participant property indicates a Feature object that plays the designated role in its parent Interaction

object. Precisely one value MUST be specified for precisely one of participant or higherOrderParticipant.

The higherOrderParticipant property

The higherOrderParticipantproperty indicates an Interaction object that plays the designated role in its parent

Interaction object. Precisely one value MUST be specified for precisely one of participant or higherOrderParticipant.

Section 6 SBOL Data Model Page 31 of 81

Section 6.4 Component

Participation Role URL for SBO Term Interaction Types

Inhibitor http://identifiers.org/SBO:0000020 Inhibition
Inhibited http://identifiers.org/SBO:0000642 Inhibition
Stimulator http://identifiers.org/SBO:0000459 Stimulation
Stimulated http://identifiers.org/SBO:0000643 Stimulation
Reactant http://identifiers.org/SBO:0000010 Non-Covalent Binding, Degradation
Biochemical Reaction
Product http://identifiers.org/SBO:0000011 Non-Covalent Binding,
Genetic Production, Biochemical Reaction
Promoter http://identifiers.org/SBO:0000598 Inhibition, Stimulation, Genetic Production
Modifier http://identifiers.org/SBO:0000019 Biochemical Reaction, Control
Modified http://identifiers.org/SBO:0000644 Biochemical Reaction, Control
Template http://identifiers.org/SBO:0000645 Genetic Production

Table 12: Partial list of SBO terms to specify the role properties of a Participation.

6.4.5 Interface

The Interface class (shown in Figure 14) is a way of explicitly specifying the interface of a Component.

Feature

Feature

Feature

Ident i f ied

Interface

nondirectional
0..*

input
0..*

output
0..*

Figure 14: Diagram of the Interface class and its associated properties.

The input property

An InterfaceMAY have any number of input properties, each of type IRI, that MUST reference a Feature object

in the same Component.

The output property

An InterfaceMAY have any number of output properties, each of type IRI, that MUST reference a Feature object

in the same Component.

The nondirectional property

An Interface MAY have any number of nondirectional properties, each of type IRI, that MUST reference a

Feature object in the same Component. Note that nondirectional can imply both bidirectional as well as situations

where there are no flows (for instance – a physical interface).

Section 6 SBOL Data Model Page 32 of 81

Section 6.5 CombinatorialDerivation

6.5 CombinatorialDerivation

The purpose of the CombinatorialDerivation class is to specify combinatorial biological designs without hav-

ing to specify every possible design variant. For example, a CombinatorialDerivation can be used to spec-

ify a library of reporter gene variants that include different promoters and RBSs without having to specify a

Component for every possible combination of promoter, RBS, and CDS in the library. Component objects that realize

a CombinatorialDerivation can be derived in accordance with the class properties template,

hasVariableFeature, and strategy (see Figure 15).

VariableFeature

TopLevel

CombinatorialDerivat ion
-strategy[0..1] : IRI

Component

 template
 1

hasVariableFeature
0..*

Figure 15: Diagram of the CombinatorialDerivation class and its associated properties.

The template property

The template property is REQUIRED and MUST contain a IRI that refers to a Component. This Component is

expected to serve as a template for the derivation of new Component objects. Consequently, its hasFeature

properties SHOULD contain one or more Feature objects that will serve as the variables whose values are set during

derivation (referred to hereafter as template Feature objects). Its other property values describe aspects of the

template that will not change based on the values that may be varied.

The hasVariableFeature property

Each VariableFeature child of a CombinatorialDerivation defines the set of possible values for one of the

variables in the template. A CombinatorialDerivation object can have zero or more hasVariableFeature

properties, each of type IRI, specifying a VariableFeature. The set of hasVariableFeature properties MUST

NOT contain two or more VariableFeature objects that refer to the same template

sbolFeature via their variable properties (i.e., do not define the same variable twice).

The variable properties of VariableFeature objects determined which Feature objects in the template are

modified in a derived Component, and which ones will not be changed. In particular, we will refer to a Feature in

the template Component that is referred to by some variable property as a variable Feature, and one that is not

referred to by any as a static Feature.

The strategy property

The strategy property is OPTIONAL and has a data type of IRI. Table 13 provides a list of REQUIRED strategy

URLs. If the strategy property is not empty, then it MUST contain a URL from Table 13. This property recommends

how many Component objects SHOULD be derived from the template Component.

Executing a derivation

When a CombinatorialDerivation is evaluated to produce a set of derived Component objects, the relationship

between the two SHOULD be recorded by means of prov:wasDerivedFrom properties. In particular:

Section 6 SBOL Data Model Page 33 of 81

Section 6.5 CombinatorialDerivation

Strategy URL Description

http://sbols.org/v3#enumerate Derivation SHOULD produce all possible Component objects specified by the
CombinatorialDerivation.

http://sbols.org/v3#sample Derivation SHOULD produce a subset of possible Component objects specified by
CombinatorialDerivation. The manner in which this subset is chosen is left
unspecified.

Table 13: REQUIRED URLs for the strategy property.

■ Any derived Component SHOULD have a prov:wasDerivedFromproperty that refers to the CombinatorialDerivation.

■ Any Feature in a derived Component SHOULD have a prov:wasDerivedFrom property that refers to its

corresponding Feature in the template Component.

■ Any Collectionproduced by the derivation process and containing only derived Component objects SHOULD

also have a prov:wasDerivedFrom property that refers to the CombinatorialDerivation.

All derived objects MUST be consistent with the specification provided in the CombinatorialDerivation. In

particular:

■ Every value of the type and role properties of the template Component SHOULD be contained in the values

of the corresponding properties in each derived Component.

■ Any static Feature in the template Component SHOULD correspond to a Featurewith identical properties in

each derived Component.

■ Any variable Feature in the template Component SHOULD be replaced in each derived Component by

a number of Feature objects constrained by the number specified by the cardinality property of the

VariableFeature (see Table 14).

■ Each property of a Feature object in the derived Component that replaces a variable Feature in the template

ComponentMUST be derived from the values of the associated VariableFeature.

■ All derived Feature object MUST follow the restriction properties of any Constraint objects that refer to

their corresponding template Feature. This will typically be used to rule out illegal combinations of variable

values.

■ The role property of a derived Feature SHOULD contain the same values as the role property did in the

template Feature.

■ The type property of a derived Feature or its type-determining referent (instanceOf for SubComponent, or

that determined for the Feature referred to by a ComponentReference) SHOULD contain the same values as

the type property did in the template Feature or its type-determining referent.

6.5.1 VariableFeature

As described above, the VariableFeature class specifies a variable and set of values that will replace one of the

Feature objects in the template of a CombinatorialDerivation. The variable is specified by the variable prop-

erty, and the set of values is defined by the union of Component objects referred to by the variant, variantCollection,

and variantDerivation properties.

Note that this union is intended to be a set and not a multi-set. For example, if the variant property con-

tains a Component A and the variantCollection property has a Collection containing both Component A and

Component B , then A SHOULD NOT be selected twice during enumeration, and it SHOULD NOT be selected twice

as much as B during sampling.

Section 6 SBOL Data Model Page 34 of 81

Section 6.5 CombinatorialDerivation

Given a set of values linked from a VariableFeature, it SHOULD be the case that all value are of type om:Measure

or else all values are of type Feature. At present, it is explicitly left undefined how derivation of new components

ought to handle mixtures of om:Measure and Feature values.

om:Measure
VariableFeature

-cardinality[1] : IRI

Component

Collection

CombinatorialDerivat ion

Feature

Ident i f ied

variantMeasure
0..*

variable
1

variant
0..*

variantCollection
0..*

variantDerivation
0..*

Figure 16: Diagram of the VariableFeature class and its associated properties.

The variable property

The variable property is REQUIRED and MUST contain a IRI that refers to a template Feature in the template

Component referred to by this VariableFeature’s parent CombinatorialDerivation

The variantMeasure property

A VariableFeature object can have zero or more variantMeasure properties, each of type IRI, specifying a

om:Measure object. This property specifies numerical values that are options to be applied to the variable

Feature from the templatewhen deriving a new Component.

Note that because a om:Measure is not a TopLevel, the vlaues of variantMeasuremust be child objects of the

VariableFeature.

The variant property

A VariableFeature object can have zero or more variant properties, each of type IRI, specifying a Component

object. This property specifies individual Component objects to serve as options when deriving a new Feature for

the variable Feature from the template.

The variantCollection property

A VariableFeature object can have zero or more variantCollection properties, each of type IRI, specifying a

Collection object. Such a CollectionMUST NOT contain any objects besides Component objects or Collection

objects that themselves contain only Component or Collection objects. This property enables the specification of

existing groups of Component objects to serve as options.

The variantDerivation property

A VariableFeature object can have zero or more variantDerivation properties, each of type IRI, specifying a

CombinatorialDerivation object. This property enables the specification of Component objects derived in accor-

dance with another CombinatorialDerivation to serve as options when deriving a new Feature for the variable

Section 6 SBOL Data Model Page 35 of 81

Section 6.6 Implementation

Feature from the template. The variantDerivation properties of a VariableFeatureMUST NOT refer to the

CombinatorialDerivation that contains this VariableFeature. Furthermore, such VariableFeature objects

MUST NOT form a cyclical chain of references via their variantDerivationproperties and the CombinatorialDerivation

objects that contain them.

The cardinality property

The cardinality property is REQUIRED and has type of IRI. This property specifies how many Feature objects

SHOULD be derived from the template Feature during the derivation of a new Component. The value of this

property MUST come from the URLs provided in Table 14.

Cardinality URL Description

http://sbols.org/v3#zeroOrOne No more than one Feature in the derived Component SHOULD have a
prov:wasDerivedFrom property that refers to the template Feature.

http://sbols.org/v3#one Exactly one Feature in the derived Component SHOULD have a
prov:wasDerivedFrom property that refers to the template Feature.

http://sbols.org/v3#zeroOrMore Any number of Feature objects in the derived Component MAY have
prov:wasDerivedFrom properties that refer to the template Feature.

http://sbols.org/v3#oneOrMore At least one Feature in the derived Component SHOULD have a
prov:wasDerivedFrom property that refers to the template Feature.

Table 14: REQUIRED URLs for the cardinality property.

6.6 Implementation

An Implementation represents a realized instance of a Component, such a sample of DNA resulting from fabricating

a genetic design or an aliquot of a specified reagent. Importantly, an Implementation can be associated with a

laboratory sample that was already built, or that is planned to be built in the future. An Implementation can also

represent virtual and simulated instances. An Implementationmay be linked back to its original design using the

prov:wasDerivedFrom property inherited from the Identified superclass. An Implementationmay also link to

a Component that specifies its realized structure and/or function.

Component

TopLevel

Implementat ion

bui l t
0..1

Figure 17: Diagram of the Implementation class and its associated properties.

Section 6 SBOL Data Model Page 36 of 81

Section 6.7 ExperimentalData

The built property

The built property is OPTIONAL and MAY contain a IRI that MUST refer to a Component. This Component is

intended to describe the actual physical structure and/or functional behavior of the Implementation. When

the built property refers to a Component that is also linked to the Implementation via PROV-O properties such

as prov:wasDerivedFrom (see Section A.1), it can be inferred that the actual structure and/or function of the

Implementationmatches its original design. When the built property refers to a different Component, it can be

inferred that the Implementation has deviated from the original design. For example, the latter could be used to

document when the DNA sequencing results for an assembled construct do not match the original target sequence.

6.7 ExperimentalData

Attachment

ExperimentalData

TopLevel
hasAttachment

0..*

Figure 18: Diagram of the ExperimentalData class and its associated properties.

The purpose of the ExperimentalData class is to aggregate links to experimental data files. An ExperimentalData

is typically associated with a single sample, lab instrument, or experimental condition and can be used to describe

the output of the test phase of a design-build-test-learn workflow. For an example of the latter, see Figure 28.

As shown in Figure 18, the ExperimentalData class aggregates links to experimental data files using the OPTIONAL

hasAttachment property that it inherits from the TopLevel class.

6.8 Model

Model

-source[1] : URI
-language[1] : URI
-framework[1] : URI

TopLevel

Figure 19: Diagram of the Model class and its associated properties.

The purpose of the Model class is to serve as a placeholder for an external computational model and provide

additional meta-data to enable better reasoning about the contents of this model. In this way, there is minimal

duplication of standardization efforts and users of SBOL can elaborate descriptions of Component function in the

language of their choice.

Section 6 SBOL Data Model Page 37 of 81

Section 6.9 Collection

The meta-data provided by the Model class include the following properties: the source or location of the actual

content of the model, the language in which the model is implemented, and the model’s framework.

The source property

The source property is REQUIRED and MUST contain a IRI reference to the source file for a model.

The language property

The language property is REQUIRED and MUST contain a IRI that specifies the language in which the model is

implemented. It is RECOMMENDED that this IRI refer to a term from the EMBRACE Data and Methods (EDAM)

ontology. Table 15 provides a list of a few suggested languages from this ontology and their IRIs. If the language

property of a Model is well-described by one these terms, then it MUST contain the IRI for this term as its value.

Model Language URL for EDAM Term

SBML http://identifiers.org/EDAM:format_2585

CellML http://identifiers.org/EDAM:format_3240

BioPAX http://identifiers.org/EDAM:format_3156

Table 15: Terms from the EDAM ontology to specify the language property of a Model.

The framework property

The framework property is REQUIRED and MUST contain a IRI that specifies the framework in which the model

is implemented. It is RECOMMENDED this IRI refer to a term from the modeling framework branch of the SBO

when possible. A few suggested modeling frameworks and their corresponding IRIs are shown in Table 16. If the

framework property of a Model is well-described by one these terms, then it MUST contain the IRI for this term as

its value.

Framework URL for SBO Term

Continuous http://identifiers.org/SBO:0000062

Discrete http://identifiers.org/SBO:0000063

Table 16: SBO terms to specify the framework property of a Model.

6.9 Collection

The Collection class is a class that groups together a set of TopLevel objects that have something in common.

Some examples of Collection objects:

■ Results of a query to find all Component objects in a repository that function as promoters.

■ A set of Component objects representing a library of genetic logic gates.

■ A “parts list” for Componentwith a complex design, containing both that component and all of the Component,

Sequence, and Model objects used to provide its full specification.

The member property

A Collection object can have zero or more member properties, each of type IRI specifying a TopLevel object.

Section 6 SBOL Data Model Page 38 of 81

Section 6.10 Attachment

Experiment

Collection

TopLevel

member
0..*

Figure 20: Diagram of the Collection class and its associated properties.

6.9.1 Experiment

The purpose of the Experiment class is to aggregate ExperimentalData objects for subsequent analysis, usually

in accordance with an experimental design. Namely, the member properties of an Experiment MUST refer to

ExperimentalData objects.

6.10 Attachment

TopLevel

Attachment

source[1]: IRI
format[0..1]: IRI
size[0..1]: Long
hash[0..1]: String
hashAlgorithm[0..1]: String

hasAttachment
0..*

Figure 21: Diagram of the Attachment class and its associated properties.

The purpose of the Attachment class is to serve as a general container for data files, especially experimental data

files. It provides a means for linking files and metadata to SBOL designs.

The meta-data provided by the Attachment class include the following properties: the source or location of the

actual file of the attachment, the format of the file, the size of the file, and the hash for the file.

The source property

The source property is REQUIRED and MUST contain a IRI reference to the source file.

The format property

The format property is OPTIONAL and MAY contain a IRI that specifies the format of the attached file. It is

RECOMMENDED that this IRI refer to a term from the EMBRACE Data and Methods (EDAM) ontology.

The size property

The size property is OPTIONAL and MAY contain a long indicating the file size in bytes.

Section 6 SBOL Data Model Page 39 of 81

Section 6.11 Annotation and Extension of SBOL

The hash property

The hash property is OPTIONAL and MAY contain a hash value for the file contents represented as a hexadecimal

digest.

The hashAlgorithm property

The hashAlgorithm property is OPTIONAL and MAY contain the name of the hash algorithm used to generate

the value of the hash property. The value of this property SHOULD be a hash name string from the IANA Named

Information Hash Algorithm Registry, of which sha3-256 is currently RECOMMENDED. If the hash property is set,

then hashAlgorithmMUST be set as well.

6.11 Annotation and Extension of SBOL

SBOL intentionally does not attempt to describe how all types of biological design data should be captured, since

many of these data types (e.g., biological context and design performance metrics) are already covered by other

standards, or lack a clear consensus on their proper representation, or are outside of the scope of SBOL.

SBOL is built upon the Resource Description Framework (RDF), and therefore can be used in conjunction with

complementary standards as described in Section A. For example, use of the PROV-O ontology is recommended

to capture provenance (see Section A.1). Additionally, user-defined RDF can be used in conjunction with SBOL

objects to capture custom application-specific information that does not yet have a standardized representation.

This annotation and extension mechanism is designed to enable new types of data to be easily incorporated into

the SBOL standard once there is community consensus on their proper representation.

Several methods are supported for connecting the SBOL data model with other types of application-specific data:

■ Custom data can be added to an SBOL object by annotating that object with non-conflicting properties. These

properties could contain literal data types such as Strings or IRIs that require a resolution mechanism

to obtain external data. An example is annotating a Component with a property that contains a String

description and IRI for the parts registry from which its source data was originally imported.

■ SBOL object classes can be extended to custom classes that add additional information. This works just like

adding custom data via non-conflicting properties, except that the object receives both an rdf:type for the

SBOL class that has been extended and also an rdf:type specifying the extension class.

■ Custom data in the form of independent objects can participate in the SBOL data model if they are assigned

one of the SBOL types Identified or TopLevel. An example is an RDF object that is annotated such that it

represents a data sheet that describes the performance of a Component in a particular context.

■ Finally, just as custom objects can be embedded in an SBOL document, external documents can embed or

refer to SBOL objects. Support for this last case is not explicitly provided in this specification. Rather, this case

depends on the external non-SBOL system managing its relationship to SBOL and data serialized in RDF, and

is included here for completeness.

Each Identified object MAY be annotated with application-specific properties, which MUST be labelled using

RDF predicates outside of the SBOL namespace. Additionally, application-specific types may be used in conjunction

with the SBOL data model. These application-specific types MUST have at least two rdf:type properties: one type

outside of the SBOL namespace AND an additional SBOL type of either:

■ TopLevel, if the object is to be considered an SBOL top level (i.e., not owned by another object)

■ Identified, if the object is not to be considered an SBOL top level (i.e., is owned by another object)

■ The most specific applicable SBOL type, if the object is an instance of a custom class extending an SBOL class.

As with SBOL Identified objects, custom Identified objects (and thus also all other custom objects) MAY also

include the properties displayId, name, description, etc.

Section 6 SBOL Data Model Page 40 of 81

7 Recommended Best Practices

7.1 SBOL Versions

To differentiate between major versions of SBOL, different namespaces are used. For example, SBOL3 has the

namespace http://sbols.org/v3#, while SBOL2 has the namespace http://sbols.org/v2#. These different

versions of SBOL SHOULD NOT be semantically mixed. For example, an SBOL 3.x SubComponent SHOULD NOT

refer to an SBOL 2.x ComponentInstance, and, likewise, an SBOL 2.x ComponentInstance SHOULD NOT refer to

an SBOL 1.x DnaComponent.

7.2 Compliant SBOL Objects

Maintaining unique IRIs for all SBOL objects can be challenging. To reduce this burden, users of SBOL 3.x are

encouraged to follow a few simple rules when constructing URLs and related properties for SBOL objects. When

these rules are followed in constructing an SBOL object, we say that this object is compliant. These rules are as

follows:

Compliant URLs for TopLevel objects MUST conform to the following pattern:

〈namespace〉/〈collection_structure〉/〈displayId〉

The 〈namespace〉 token MAY further decompose into 〈domain〉/〈root〉 tokens. The 〈root〉 and 〈collection_structure〉

tokens may optionally be omitted; alternatively, they may consist of an arbitrary number of delimiter-separated

layers. Note that this pattern means that SBOL-compliant URLs can be automatically decomposed with the aid of a

TopLevel object’s hasNamespace property. SBOL-compliant objects can be easily remapped into new namespaces

by changing only the 〈namespace〉.

Consider, for example, the SBOL-compliant URL:

“https://synbiohub.org/igem/2017_distribution/promoters/constitutive/BBa_J23101”

for a Component with a hasNamespace value “https://synbiohub.org/igem/2017_distribution”. This URL can be

decomposed as follows:

namespace: “https://synbiohub.org/igem/2017_distribution”

domain: “https://synbiohub.org”

root: “igem/2017_distribution”

collection: “promoters/constitutive”

displayId: “BBa_J23101”

SBOL-compliant URLs also facilitate auto-construction of child objects with unique URLs. Child objects of TopLevel

objects with compliant URLs MUST conform to the following pattern:

“〈parent_url〉/〈child_type〉〈child_type_counter〉” where the 〈parent_url〉 refers to the URL of the parent object, the

〈child_type〉 refers to the SBOL class of the child object, and 〈child_type_counter〉 is a unique index for the child

object. The 〈child_type_counter〉 of a new object SHOULD be calculated at time of object creation as 1 + the maxi-

mum 〈child_type_counter〉 for each 〈child_type〉 object in the parent (e.g., “〈parent_url〉/SequenceAnnotation37”).

Note that numbering is independent for each type, so a Component can have children “SubComponent37” and

“Constraint37”.

All examples in this specification use compliant URLs.

Section 7 Recommended Best Practices Page 41 of 81

Section 7.3 Versioning SBOL Objects

7.3 Versioning SBOL Objects

SBOL 3.x does not specify an explicit versioning scheme. Rather it is left for experimentation across different

tools. This allows version information to be included in the root (e.g., GitHub style: “igem/HEAD/”), collection

structure (e.g., “promoters/constitutive/2/”), in tool-specific conventions on displayId (e.g., “BBa_J23101_v2”) or

in information outside of the IRI (e.g., by attaching prov:wasRevisionOf properties).

7.4 Annotations: Embedded Objects vs. External References

When annotating an SBOL document with additional information, there are two general methods that can be used:

■ Embed the information in the SBOL document using properties outside of the SBOL namespace.

■ Store the information separately and annotate the SBOL document with IRIs that point to it.

In theory, either method can be used in any case. (Note that a third case not discussed here is to annotate external

objects with links to SBOL documents, rather than annotating SBOL documents with links to external objects.)

In practice, embedding large amounts of non-SBOL data into SBOL documents is likely to cause problems for people

and software tools trying to manage and exchange such documents. Therefore, it is RECOMMENDED that small

amounts of information (e.g., design notes or preferred graphical layout) be embedded in the SBOL model, while

large amounts of information (e.g., the contents of the scientific publication from which a model was derived or flow

cytometry data that characterizes performance) be linked with IRIs pointing to external resources. The boundary

between “small” and “large” is left deliberately vague, recognizing that it will likely depend on the particulars of a

given SBOL application.

7.5 Completeness and Validation

RDF documents containing serialized SBOL objects might or might not be entirely self-contained. A SBOL document

is self-contained or “complete” if every SBOL object referred to in the document is contained in the document. It is

RECOMMENDED that serializations be complete whenever practical. In order words, when serializing an SBOL

object, serialize all of the other objects that it points to, then serialize all of the other objects that these objects point

to, etc., until the document is complete.

It is important to note that there is no guarantee that an RDF document contains valid SBOL. When SBOL objects

are read from an RDF document, the program doing so SHOULD verify that all of the property values encoded

therein have the correct data type (e.g., that the object pointed to by the Sequence property of a Component is really

a Sequence). For complete files, this validation can be carried out entirely locally. For files that are not complete, an

implementation either needs to have a means of validating those external references (e.g., by retrieving them from a

repository), or it needs to mark them as unverified and not depend on their correctness.

7.6 Recommended Ontologies for External Terms

External ontologies and controlled vocabularies are an integral part of SBOL. SBOL uses IRIs (typically URLs to

access existing biological information through these resources. New SBOL-specific terms are defined only when

necessary. For example, Component types, such as DNA or protein, are described using Systems Biology Ontology

(SBO) terms. Similarly, the roles of a DNA or RNA Component are described via Sequence Ontology (SO) terms.

Although RECOMMENDED ontologies have been indicated in relevant sections where possible, other resources

providing similar terms can also be used. A summary of these external sources can be found in Table 17.

The IRIs for ontological terms SHOULD be URLs from identifiers.org. However, it is acceptable to use terms from

purl.org as an alternative, for example when RDF tooling requires URLs to be represented as compliant QNames.

SBOL software may convert between these forms as required.

Section 7 Recommended Best Practices Page 42 of 81

Section 7.7 Annotating Entities with Date & Time

SBOL Entity Property Preferred External Resource More Information

Component type SBO (physical entity branch) http://www.ebi.ac.uk/sbo/main/

type SO (nucleic acid topology) http://www.sequenceontology.org

role SO (DNA or RNA) http://www.sequenceontology.org

role CHEBI (small molecule) https://www.ebi.ac.uk/chebi/

role PubChem (small molecule) https://pubchem.ncbi.nlm.nih.gov/

role UniProt (protein) https://www.uniprot.org/

role NCIT (samples) https://ncithesaurus.nci.nih.gov/

Interaction type SBO (occurring entity branch) http://www.ebi.ac.uk/sbo/main/

Participation role SBO (participant roles branch) http://www.ebi.ac.uk/sbo/main/

Model language EDAM http://bioportal.bioontology.org/

ontologies/EDAM

framework SBO (modeling framework branch) http://www.ebi.ac.uk/sbo/main/

om:Measure type SBO (systems description parameters) http://www.ebi.ac.uk/sbo/main/

Table 17: Preferred external resources from which to draw values for various SBOL properties.

7.7 Annotating Entities with Date & Time

Entities in an SBOL document can be annotated with creation and modification dates. It is RECOMMENDED that

predicates, or properties, from DCMI Metadata Terms SHOULD be used to include date and time information.

The created and modified terms SHOULD respectively be used to annotate SBOL entities with creation and

modification dates. Date and time values SHOULD be expressed using the XML Schema DateTime datatype (Biron

et al., 2004). For example, “2016-03-16T20:12:00Z” specifies that the day is 16 March 2016 and the time is 20:12pm

in UTC (Coordinated Universal Time).

7.8 Annotating Entities with Authorship information

Authorship information should ideally be added to TopLevel entities where possible. It is RECOMMENDED that

the creatorDCMI Metadata term SHOULD be used to annotate SBOL entities with authorship information using

free text. This property can be repeated for each author.

7.9 Host Context / Ontologies for Experiments

7.9.1 Mixtures via Components

Any Component can be interpreted as specifying a mixture of the material entity (SBO:0000240) Features that

it includes. The amount of each such instance included in the mixture SHOULD be specified by attaching a

om:Measurewith a type set to the appropriate SBO term. The SBO terms that are RECOMMENDED as appropriate

are members of the Systems Description Parameter (SBO:0000545) branch of SBO. Examples include:

■ SBO:0000540: fraction of an entity pool (e.g., 1/3 CHO cells, 2/3 HEK cells)

■ SBO:0000472: molar concentration of an entity (e.g., 1 mM arabinose)

■ SBO:0000361: amount of an entity pool (e.g., 200 uL M9 media)

Mixtures MAY be defined recursively, as mixtures of mixtures of mixtures, etc.

7.9.2 Media, Inducers, and Other Reagents

Each reagent, whether “atomic” (e.g., rainbow bead control) or mixture (e.g., M9 media), SHOULD be represented

as a Component and/or as a Feature of a Component in which the reagent is used. For example, a custom media

Section 7 Recommended Best Practices Page 43 of 81

Section 7.10 Multicellular System Designs

mixture might be defined as a Component and used as a SubComponent, while a commercially supplied reagent

might be used as an ExternallyDefined feature linking to its PubChem identifiers.

The roles of reagents may vary in context: for example, arabinose may serve as an inducer or as a media carbon

source. As such, contextual role SHOULD be indicated by an NCI Thesaurus (NCIT) term in a role property of the

Feature. Examples include:

■ NCIT:C64356: Positive Control

■ NCIT:C12508: Cell

■ NCIT:C85504: Growth Medium

■ NCIT:C14419: Organism Strain

■ NCIT:C120268: Inducer

For more information on representing cells, strains, plasmids, and genomes, see Section 7.10.1

7.9.3 Samples

A complete specification of a sample SHOULD be a Component that includes at least:

■ A Feature instantiating each strain in the sample

■ A Feature for the media or buffer

■ A Feature for each additional reagent added to the media (e.g., inducers, antibiotics)

■ om:Measures on each of these specifying the amount in the sample

■ om:Measures on the Component for each environmental parameter (e.g., temperature, pH, culturing time)

7.9.4 Other Experimental Parameters

In order to deal with parameters associated with the context in general but not specific instances, e.g., temperature,

pH, total sample volume, the hasMeasure property of Identified can be used. The hasMeasure of a Component

provides context-free information (e.g., the pH of M9 media, the GC-content of a GFP coding sequence), while the

hasMeasure of a material entity (SBO:0000240) Feature provides a measurement in context (e.g., the dosage of

arabinose in a sample).

Values of these parameters SHOULD be specified by attaching a om:Measurewith a type set to the appropriate SBO

term. The SBO terms that are RECOMMENDED as appropriate are members of the Systems Description Parameter

(SBO:0000545) branch of SBO. Examples include:

■ SBO:0000147: thermodynamic temperature (e.g., culturing at 27 C)

■ SBO:0000332: half-life of an exponential decay (e.g., decay rate of a gRNA)

■ SBO:0000304: pH (e.g., pH of M9 media)

7.10 Multicellular System Designs

SBOL has been used extensively to represent designs in homogeneous systems, where the same design is imple-

mented in every cell. However, in recent years there has been increasing interest in multicellular systems, where

biological designs are split across multiple cells to optimize the system behavior and function. Therefore, there is a

need to define a set of best practices so that multicellular systems can be captured using SBOL in a standard way.

Section 7 Recommended Best Practices Page 44 of 81

Section 7.10 Multicellular System Designs

7.10.1 Representing Cell Types

To represent multicellular systems using SBOL, it is first necessary to represent cells. When doing so, it is important

to be able to capture the following information: (i) taxonomy of the strain used, (ii) interactions occurring within cells

of this type, and (iii) components inside the type of cell (e.g. genomes, plasmids). The approach RECOMMENDED

in this section is capable of capturing this information, as shown in the example in Figure 22. It uses a Component to

represent a system that contains cells of the given type. The cells themselves are represented by a Feature inside

the Component, in this case a SubComponent that is an instanceOf a Component capturing information about the

species and strain of the cell in the design. This Component has a type of “cell” from the Cell Ontology (CL:0000000),

and a role of “physical compartment” (SBO:0000290). Taxonomic information is captured by annotating the class

instance with a IRI for an entry in the NCBI Taxonomy Database.

As usual, other entities besides the cell that are relevant to the design are also captured as Features. When these are

contained within the cell, they are captured using a Constraintwith restriction containswith the cell as subject

and contained object as object. Interactions which occur in this system are captured using the Interaction

and Participation classes. Interactions which occur within the cell are specified by Interaction classes which

contain the Feature instance representing the cell as a participant with a role of “physical compartment”

(SBO:0000290).

7.10.2 Multiple Cell Types in a Single Design

The same approach can be extended to represent systems with multiple types of cells. The multicellular system

can be represented as a Component that includes each strain of cell as a Feature, in this example a SubComponent

that is an instanceOf a Component defining its strain. Interactions and constraints, such as a molecule that both

strains interact with, are implemented using ComponentReferences to link to the definitions within each cell system

description. An example is shown in Figure 23.

7.10.3 Cell Ratios

The proportion of cell types present in a multicellular system can be captured using om:Measure on the represen-

tations of cells in the design. As a best practice, the value of these measure classes is a percentage less than or

equal to 100%, representing the amount of a cell type present in the system compared to all other cell types present.

Therefore, the sum of all these values specified in the system will typically be equal to 100%, though this may not be

the case if the system is not completely defined. An example is shown in Figure 24.

Section 7 Recommended Best Practices Page 45 of 81

Section 7.10 Multicellular System Designs

Component

...
name: Organism
type: cell [CL:0000000]
role: physical compartment [SBO:0000290]
organism: NCBI URI

Component

...
name: System
role: functional compartment [SBO:0000289]

instanceOf

SubComponent

...
name: Molecule A

SubComponent

...
name: Molecule B

SubComponent

...
name: Cell

Participation

...
name: Cell
role: physical compartment
 [SBO:0000290]

Participation

...
name: Molecule B
role: URI

Participation

...
name: Molecule A
role: URI

Interact ion

...
type: URI

hasParticipanthasParticipanthasParticipant

Figure 22: This is a proposed approach for capturing cell designs in SBOL. A Component annotated with a IRI
pointing to an entry in the NCBI Taxonomy Database is used to capture information about the cell’s strain/species.
The Component has a type of “Cell” from the Gene Ontology (GO), and a role of “physical compartment”. Another
Component is used to represent a system in which the cell is implemented. Entities, including the cell, are instantiated
as Features, and processes are captured using the Interaction class. Processes that are contained within the cell
are represented by including the cell as a participant with a role of “physical compartment”.

Section 7 Recommended Best Practices Page 46 of 81

Section 7.10 Multicellular System Designs

Component

...
name: Receiver System
role: functional compartment [SBO:0000289]

Component

...
name: Multicellular System
role: functional compartment [SBO:0000289]

Component

...
name: Organism 1
type: cell [CL:0000000]
role: physical compartment [SBO:0000290]
organism: NCBI URI

Component

...
name: Organism 2
type: cell [CL:0000000]
role: physical compartment [SBO:0000290]
organism: NCBI URI

Component

...
name: Molecule A
type: Small Molecule

Component

...
name: Sender System
role: functional compartment [SBO:0000289]

Constraint

...
restriction: contains

Constraint

...
restriction: contains

hasFeature
ComponentReference

...
name: Molecule A in Cell 2

ComponentReference

...
name: Molecule A in Cell 1

SubComponent

...
name: Receiver System

SubComponent

...
name: Sender System

Constraint

...
restriction: verifyIdentical

hasFeature

instanceOfinstanceOf

object subjectobjectsubject

object

inChildOf

subject

inChildOf

instanceOfinstanceOf

SubComponent

...
name: Molecule A

SubComponent

...
name: Cell 2

SubComponent

...
name: Cell 1

SubComponent

...
name: Molecule A

instanceOf instanceOf

Figure 23: Captured here is a design involving two cells which both interact with the small molecule “Molecule A”.
Designs for the sender and receiver systems are captured using constraint to show that each of these cells interacts
with the Molecule A contained within it. The overall multicellular system is represented by a Componentwith a role
of “functional compartment”, which is an SBO term. The two systems are included in this multicellular design as
Features, and the fact that Molecule A is shared between systems is indicated with a constraint.

Component

...
name: Multicellular System
role: functional compartment [SBO:0000289]

Measure

hasNum.Value: 50
hasUnit: om:percentage
types: fraction of an entity pool [SBO:0000470]

SubComponent

...
name: Cell System 2

SubComponent

...
name: Cell System 1

Measure

hasNum.Value: 50
hasUnit: om:percentage
types: fraction of an entity pool [SBO:0000470]

 Measures Measures

Figure 24: Annotating class instances with cellular proportions. Instances of the Measure class are used to capture
the percentage of each cell type present in the multicellular system design.

Section 7 Recommended Best Practices Page 47 of 81

8 SBOL RDF Serialization

In order for SBOL objects to be readily stored and exchanged, it is important that they are able to be serialized, i.e.,

converted to a sequence of bytes that can be stored in a file or exchanged over a network. The serialization format

for SBOL is designed to meet several competing requirements. First, SBOL needs to support ad-hoc annotations and

extensions. Second, SBOL needs to support processing by general database and semantic web software tools that

have little or no knowledge of the SBOL data model. Finally, it ought to be relatively simple to write a new software

implementation, so that SBOL can be readily used even in software environments where community-maintained

implementations are not available.

To meet these goals, SBOL builds upon the Resource Description Framework (RDF). RDF is an abstract language for

describing conceptual graph-oriented data models, and therefore does not mandate any specific serialization format.

Instead, a number of different serialization formats are provided as separate specifications, such as RDF/XML,

N-Triples, JSON-LD, and Turtle. These serialization formats are widely supported by RDF libraries such as rdflib for

Python and Apache Jena for Java. For example, a simple SBOL definition of pLac can be serialized in RDF/XML as

follows:

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:sbol="http://sbols.org/v3#">
 <sbol:Component rdf:about="http://example.com#pLac">
 <sbol:name>pLac</sbol:name>
 <sbol:description>lactose inducible promoter</sbol:description>
 <sbol:sequence rdf:resource="http://example.com#sequence"/>
 </sbol:Component>
 <sbol:Sequence rdf:about="http://example.com#sequence">
 <sbol:encoding rdf:resource="http://sbols.org/v3#iupacNucleicAcid"/>
 <sbol:elements>caatacgcaaaccgcctctccccgcgc</sbol:elements>
 </sbol:Sequence>
</rdf:RDF>

Alternatively, the same example can be serialized in Turtle as follows:

@prefix sbol: <http://sbols.org/v3#> .
@base <http://example.com#> .
@prefix : <http://example.com#> .

:pLac a sbol:Component ;
 sbol:name "pLac" ;
 sbol:description "lactose inducible promoter" ;
 sbol:sequence :sequence .

:sequence a sbol:Sequence ;
 sbol:encoding <http://sbols.org/v3#iupacNucleicAcid> ;
 sbol:elements "caatacgcaaaccgcctctccccgcgc" .

All SBOL libraries SHOULD support at least RDF/XML, N-Triples, JSON-LD, and Turtle. Other SBOL tools SHOULD

support at least one of these four formats.

Section 8 SBOL RDF Serialization Page 48 of 81

9 SBOL Compliance

There are different types of software compliance with respect to the SBOL specification. First, a software tool can

either support all classes of the SBOL 3 data model or only its structural subset. The structural subset includes the

following classes:

■ Sequence

■ Component

• SubComponent

• ComponentReference

• LocalSubComponent

• SequenceFeature

• Location

• Constraint

■ Collection

Second, an SBOL-compliant software tool can support import of SBOL, export of SBOL, or both. If it supports both

import and export, it can do so in either a lossy or lossless fashion.

In order to test import compliance, developers are encouraged to use the SBOL test files found here:

https://github.com/SynBioDex/SBOLTestSuite

Examples of every meaningful subset of objects are provided, including both structural-only SBOL (that is, annotated

DNA sequence data) and complete tests.

In order to test export compliance, developers are encouraged to validate SBOL files generated by their software

with the SBOL Validator found here:

https://validator.sbolstandard.org

This validator can also be used to check lossless import/export support, since it can compare the data content of

files imported and exported by a software tool.

Finally, developers of SBOL-compliant tools are encouraged to notify the SBOL editors

(sbol-editors@googlegroups.com) when they have determined that their tool is SBOL compliant, so their tool can be

publicly categorized as such on the SBOL website.

Section 9 SBOL Compliance Page 49 of 81

10 Mapping Between SBOL 1, SBOL 2, and SBOL3

In broad strokes, the SBOL 1 standard focused on conveying physical, structural information, whereas SBOL 2

expanded the scope to include functional aspects as well. The physical information about a designed genetic

construct includes the order of its constituents and their descriptions. Specifying the exact locations of these

constituents and their sequences allows genetic constructs to be defined unambiguously and reused in other

designs. SBOL 2 extended SBOL 1 in several ways: it extends physical descriptions to include entities beyond DNA

sequences, and it added support for functional descriptions of designs. SBOL 3 refines the SBOL 2 data model to

simplify the representation of common use cases.

10.1 Mapping between SBOL 1 and SBOL 2

Figure 25 depicts the mapping of SBOL 1.1 classes to SBOL 2.x classes, indicating corresponding classes/properties

by color. The SBOL 2.x Model and ModuleDefinition classes have no SBOL 1.1 equivalent, and thus are not shown.

The mapping from SBOL 1.1 to SBOL 2.x proceeds as follows:

■ SBOL 1.1 Collection objects containing DnaComponent objects map to SBOL 2.x Collection objects that

contain ComponentDefinition objects with DNA type properties.

■ SBOL 1.1 DnaComponent objects map to SBOL 2.x ComponentDefinition objects with DNA type properties.

■ SBOL 1.1 DnaSequence objects map to an SBOL 2.x Sequence objects with IUPAC DNA encoding properties.

■ SBOL 1.1 SequenceAnnotation objects with bioStart and bioEnd properties map to SBOL 2.x

SequenceAnnotation objects that contain Range objects.

■ SBOL 1.1 SequenceAnnotation objects that lack bioStart and bioEnd properties map to an SBOL 2.x

SequenceFeature objects that contain GenericLocation objects.

■ Each SBOL 1.1 SequenceAnnotation also maps to an SBOL 2.x Component, which represents the instantiation

or usage of the appropriate ComponentDefinition.

■ Each SBOL 1.1 precedes property maps to an SBOL 2.x SequenceConstraint that specifies a precedes

restriction property.

10.2 Mapping between SBOL 2 and SBOL 3

The base classes of Identified and TopLevel vary in the following ways between SBOL 2.x and SBOL 3.x:

■ SBOL 3.x uses IRIs while SBOL 2.x uses URIs, which are a strict subset of IRIs. In practice, however, many

existing SBOL 2 tools actually provide support for IRIs and not just URIs. Accordingly, conversion from SBOL

3.x to SBOL 2.x SHOULD map all IRIs to URIs and conversion from SBOL 2.x to SBOL 3.x MAY convert escaped

unicode characters into non-escaped characters in an IRI.

■ The SBOL 2.x Identified property persistentIdentity maps to the SBOL 3.x identity property. The

version property does not exist in SBOL 3.x, but SHOULD be retained through conversion to support

conversion back to SBOL 2.x.

■ When SBOL 3.x Identified object is converted to SBOL 2.x, if its identity is a URL, then the identity of

the SBOL 2.x object SHOULD be constructed as [SBOL3 identity]/[SBOL2 version]. If the object does

not have an SBOL2 version property, then its version SHOULD default to 1.

■ The SBOL 3.x TopLevel property hasNamespace does not exist in SBOL 2, and cannot be inferred from an

SBOL 2 URI. When converting from SBOL 3.x to SBOL 2.x, the hasNamespace property SHOULD be retained

to support conversion back to SBOL 3.x.

Section 10 Mapping Between SBOL 1, SBOL 2, and SBOL3 Page 50 of 81

Section 10.2 Mapping between SBOL 2 and SBOL 3

…

Collection

…
-type[0..*] : URI

DnaComponent

…
-bioStart[0..1] : Integer > 0
-bioEnd[0..1] : Integer > 0
-strand[0..1] : ‘+’ or ‘-’

SequenceAnnotation

…
-nucleotides[1] : String

DNASequence

components
0..*

subComponent
1

precedes
0..*

dnaSequence
0..1

…

Collection

…
-types[1..*] : URI
-roles[0..*] : URI

ComponentDefinition

…

SequenceAnnotation

…
-elements[1] : String
-encoding[1] : URI

Sequence

members
0..*

sequenceAnnotations
0..*

sequences
0..*

Location

…
-start[1] : Integer > 0
-end[1] : Integer > 0
-orientation[0..1] : URI

Range

…
-orientation[0..1] : URI

GenericLocation

locations
1..*

SBOL Version 1.1 SBOL Version 2.0

…
-restriction[1] : URI

SequenceConstraint

sequenceConstraints
0..*

…
-access[1] : URI

Component

subject
1

object
1 definition

1

components
0..*

component
0..1

annotations
0..*

Figure 25: The mapping from the SBOL 1.1 data model to the SBOL 2.x data model, indicating corresponding
classes/properties by color.

Figure 26 depicts the mapping of SBOL 2.3 classes to SBOL 3.x classes, indicating corresponding classes/properties by

color. The SBOL 2.x Attachment, CombinatorialDerivation, ExperimentalData, Experiment, Implementation,

Model, Participation,

Sequence, and VariableFeature classes are omitted or abstracted, since they are essentially unchanged in SBOL

3.x except for the following minor changes:

■ In Sequence, the encoding property values map according to Table 18.

■ The SBOL 2.x VariableComponent class has been renamed VariableFeature.

■ In VariableComponent, the SBOL 2.x operator property maps to the SBOL 3.x cardinality property.

■ In VariableComponent, the variantMeasure property has been added, which does not exist in SBOL 2.x.

■ In Experiment, the SBOL 2.x experimentalData property maps to the SBOL 3.x member property.

■ In Location, the SBOL 2.x sequence property maps to an SBOL 3.x hasSequence property. If there sequence

property was not set, then the hasSequence property is set to one of the values of the sequences property

of the ComponentDefinition that contained the SBOL 2.x Location. If there is more than one value for

sequences, behavior is left deliberately unspecified, and is allowed to be considered an error condition.

The mapping from SBOL 2.x to SBOL 3.x proceeds as follows:

■ SBOL 2.x ComponentDefinition objects map to SBOL 3.x Component objects. The type property is mapped

according to Table 19.

■ SBOL 2.x ModuleDefinition objects map to SBOL 3.x Component objects with a type of SBO:0000241 (func-

tional entity)

■ Every FunctionalComponent in an SBOL 2.x ModuleDefinition with a "direction" property that is not

"none" is listed in the Interface of its SBOL 3.x Component. The mapping from direction to interface

Section 10 Mapping Between SBOL 1, SBOL 2, and SBOL3 Page 51 of 81

Section 10.2 Mapping between SBOL 2 and SBOL 3

properties is: "in"–>"inputs", "out"–>"outputs", "inout" –> "nondirectional". Finally, every Component with

"access"="public" and "direction"="none" is listed as "nondirectional" in the Interface.

■ Every Component in an SBOL 2.x ComponentDefinitionwith "access"="public" is listed as "nondirectional"

in the Interface of its SBOL 3.x Component.

■ SBOL 2.x Component, Module, and FunctionalComponent objects map to SBOL 3.x SubComponent objects

■ SBOL 2.x SequenceAnnotation objects map to SBOL 3.x SequenceFeature objects if they do not have a

component. If they do have a component, their locations are added to the corresponding SBOL3 SubComponent.

■ SBOL 2.x SequenceConstraint objects map to SBOL 3.x Constraint objects

■ SBOL 2.x MapsTo objects are converted by transforming each MapsTo into two SBOL 3.x objects:

a ComponentReference and a Constraint.

• For the ComponentReference, the inChildOf attribute of this ComponentReference attribute refer-

ences the object that has the MapsTo as a child, and the refersTo attribute references the object referred

by the remote attribute from the MapsTo object.

• The Constraint links this ComponentReference and the SubComponent referred to be the local at-

tribute from the MapsTo object. The property values of the Constraint depend on the value of the

refinement value for the MapsTo object:

p If the refinement is useRemote, then the restriction is replaces, the subject is the

ComponentReference and the object is the SubComponent.

p If the refinement is useLocal, then the restriction is replaces, the subject is the SubComponent

and the object is the ComponentReference.

p If the refinement is verifyIdentical, then the restriction is verifyIdentical, the subject is

the ComponentReference and the object is the SubComponent.

p The merge refinementwas never well defined and rarely if ever used, so it has been removed from

SBOL 3.x. If a merge is encountered, it SHOULD be handled as a useRemote.

• As an OPTIONAL optimization, if the SubComponent referred to by the local property of the MapsTo is a

“placeholder” with no significant content apart from its MapsTo relationships, then it may be eliminated,

all objects that pointed to it can point directly to the new ComponentReference instead, and all transitive

constraints using it as a bridge reduced to link the endpoints directly.

SBOL 2.x Type SBOL 3.x Type

http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html https://identifiers.org/edam:format_1207
http://www.chem.qmul.ac.uk/iupac/AminoAcid/ https://identifiers.org/edam:format_1208
http://www.opensmiles.org/opensmiles.html https://identifiers.org/edam:format_1196

Table 18: Mapping of Sequence encoding values from SBOL2 to SBOL3

SBOL 2.x Type SBOL 3.x Type

http://www.biopax.org/release/biopax-level3.owl#Dna https://identifiers.org/SBO:0000251 (DNA)
http://www.biopax.org/release/biopax-level3.owl#DnaRegion https://identifiers.org/SBO:0000251 (DNA)
http://www.biopax.org/release/biopax-level3.owl#Rna https://identifiers.org/SBO:0000250 (RNA)
http://www.biopax.org/release/biopax-level3.owl#RnaRegion https://identifiers.org/SBO:0000250 (RNA)
http://www.biopax.org/release/biopax-level3.owl#Protein https://identifiers.org/SBO:0000252 (Protein)
http://www.biopax.org/release/biopax-level3.owl#SmallMolecule https://identifiers.org/SBO:0000247 (Simple Chemical)
http://www.biopax.org/release/biopax-level3.owl#Complex https://identifiers.org/SBO:0000253 (Non-covalent Complex)

Table 19: Mapping of SBOL2 ComponentDefinition types to SBOL3 Component types

Section 10 Mapping Between SBOL 1, SBOL 2, and SBOL3 Page 52 of 81

Section 10.2 Mapping between SBOL 2 and SBOL 3

MapsTo

-refinement[1]:URI

Model

Cut

Interaction

ModuleDefinition

-roles[0..*]:URI

FunctionalComponent

-direction[1]:URI

ComponentInstance

-access[1]:URI

GenericLocationRange

Location

-orientation[0..1]:URI

SequenceSequenceAnnotation	

Component

-roles[0..*]:URI

SequenceConstraint

-restriction[1]:URI

ComponentDefinition

-types[1..*]:URI
-roles[0..*]:URI

Collection

sequence
0..1

remote
1

local
1 mapsTos

0..*

members
0..*

models
0..*

interactions

0..*

members
0..*

sequences
0..*

locations
1..*

component
0..1

components
0..*

definition
1

object
1

subject
1

sequenceConstraint
0..*

members
0..*

(a) SBOL 2.3

ComponentReference

Model

Cut

SequenceFeature SubComponent

Interaction

Interface

-input[0..*]: IRI
-output[0..*]: IRI
-nondirectional[0..*]:IRI

EntireSequenceRange

Location

-orientation[0..1]:IRI
-order[0..1]:Integer

Sequence
Feature	

-role[0..*]:IRI
-orientation [0..1]:IRI

Constraint

-restriction[1]:IRI

Component

-type[1..*]:IRI
-role[0..*]:IRI

Collection

hasFeature
1

inChildOf
1

hasModel
0..*

member
0..*

hasSequence
1

hasLocation
0..*

sourceLocation
0..*hasLocation

1..*

 hasInteraction
 0..*

hasInterface
0..1

hasSequence
0..*

hasFeature
0..*

object
1

subject
1

hasConstraint
0..*

member
0..*

(b) SBOL 3.x

Figure 26: The mapping from the SBOL 2.3 data model to the SBOL 3.x data model, indicating corresponding
classes/properties by color.

Section 10 Mapping Between SBOL 1, SBOL 2, and SBOL3 Page 53 of 81

References

Biron, P. V., Permanente, K., and Malhotra, A. (2004). XML schema part 2: Datatypes second edition.

Courtot, M., Juty, N., Knüpfer, C., Waltemath, D., Zhukova, A., Dräger, A., Dumontier, M., Finney, A., Golebiewski,

M., Hastings, J., et al. (2011). Controlled vocabularies and semantics in systems biology. Molecular systems biology,

7(1):543.

Cuellar, A. A., Lloyd, C. M., Nielsen, P. F., Bullivant, D. P., Nickerson, D. P., and Hunter, P. J. (2003). An overview of

CellML 1.1, a biological model description language. SIMULATION, 79(12):740–747.

DCMI Usage Board (2012). DCMI metadata terms. DCMI recommendation, Dublin Core Metadata Initiative.

Degtyarenko, K., de Matos, P., Ennis, M., Hastings, J., Zbinden, M., McNaught, A., AlcÃąntara, R., Darsow, M., Guedj,

M., and Ashburner, M. (2008). ChEBI: a database and ontology for chemical entities of biological interest. Nucleic

Acids Research, 36:D344–D350.

Galdzicki, M., Clancy, K. P., Oberortner, E., Pocock, M., Quinn, J. Y., Rodriguez, C. A., Roehner, N., Wilson, M. L.,

Adam, L., Anderson, J. C., et al. (2014). The synthetic biology open language (SBOL) provides a community standard

for communicating designs in synthetic biology. Nature Biotechnology, 32(6):545–550.

Hucka, M. (2017). SBMLPkgSpec: a LATEX style file for SBML package specification documents. BMC Research Notes,

10(1):451.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein, B. J., Bray, D., Cornish-

Bowden, A., Cuellar, A. A., Dronov, S., Gilles, E. D., Ginkel, M., Gor, V., Goryanin, I. I., Hedley, W. J., Hodgman, T. C.,

Hofmeyr, J.-H., Hunter, P. J., Juty, N. S., Kasberger, J. L., Kremling, A., Kummer, U., Novere, N. L., Loew, L. M., Lucio,

D., Mendes, P., Minch, E., Mjolsness, E. D., Nakayama, Y., Nelson, M. R., Nielsen, P. F., Sakurada, T., Schaff, J. C.,

Shapiro, B. E., Shimizu, T. S., Spence, H. D., Stelling, J., Takahashi, K., Tomita, M., Wagner, J., Wang, J., and the

rest of the SBML Forum (2003). The systems biology markup language (SBML): a medium for representation and

exchange of biochemical network models. volume 19, pages 524–531. Oxford University Press (OUP).

MathWorks (2015). MATLAB.

Norrander, J., Kempe, T., and Messing, J. (1983). Construction of improved M13 vectors using oligodeoxynucleotide-

directed mutagenesis. Gene, 26:101–106.

Peccoud, J., Anderson, J. C., Chandran, D., Densmore, D., Galdzicki, M., Lux, M. W., Rodriguez, C. A., Stan, G.-B.,

and Sauro, H. M. (2011). Essential information for synthetic DNA sequences. Nature Biotechnology, 29(1):22–22.

Roehner, N., Oberortner, E., Pocock, M., Beal, J., Clancy, K., Madsen, C., Misirli, G., Wipat, A., Sauro, H., and Myers,

C. J. (2015). Proposed data model for the next version of the synthetic biology open language. ACS Synthetic Biology,

4(1):57–71.

Section 10 Mapping Between SBOL 1, SBOL 2, and SBOL3 Page 54 of 81

A Complementary Standards

Here we discuss two complementary standards that have been adapted for use as part of SBOL representation,

following the pattern for extension of SBOL described in Section Section 6.11. In both cases, the extension uses the

pattern in which object from another ontology are also assigned to either the SBOL Identified or TopLevel types.

Note that this means that the object receives both an rdf:type for the SBOL class and also an rdf:type in their

own namespace.

A.1 Adding Provenance with PROV-O

The PROV-O ontology (https://www.w3.org/ns/prov#) defines a complementary data model that is leveraged

by SBOL to describe provenance. Provenance is central to a range of workflow management, quality control,

and attribution tasks within the Synthetic Biology design process. Tracking attribution and derivation of one

resource from another is paramount for managing intellectual property purposes. Source designs are often modified

in systematic ways to generate derived designs, for example, by applying codon optimization or systematically

removing all of a class of restriction enzyme sites. Documenting the transformation used, and any associated

parameters, makes this explicit and potentially allows the process to be reproduced systematically. If a design has

been used within other designs, and is later found to be defective, it is paramount that all uses of it, including uses

of edited versions of the design, can be identified, and ideally replaced with a non-defective alternative. When

importing data from external sources, it is important not only to attribute the original source (for example, GenBank),

but also the tool used to perform the import, as this may have made arbitrary choices as to how to represent the

source knowledge as SBOL. All these activities have in common that it is necessary to track what resource, and what

transformation process was applied by whom to derive an SBOL design.

This section describes a minimal subset of PROV-O terms and classes that may be used by SBOL tools to support

representation of provenance1, and how it has been adapted for use with SBOL by assigning PROV-O classes to

SBOL Identified or TopLevel types per Section Section 6.11. Although the full-set of PROV-O terms can be used

in SBOL documents, a subset of PROV-O is adopted as a best practice. It is advised that SBOL tools should at least

understand this subset, defined in Figure 27. Providers of provenance information are free to make use of more

of PROV-O than is described here. It is acceptable for tools that understand more than this subset to use as much

as they are able. Tools that only understand this subset must treat any additional data as annotations. Tools that

are not aware of SBOL provenance at all MUST maintain and provide access to this information as annotations.

This specification does not state what the newly added properties must point to. As long as they are resources that

are consistent with the PROV-O property domains, they are legal. For example, a Componentmay be derived from

another Component, but it would probably not make sense for it to be derived from a Collection.

The most basic and general type of provenance relationship can be represented using the prov:wasDerivedFrom

property. This relationship describes derivation of an SBOL entity from another. Any Identified object may be

annotated with this property. More specific provenance relationships can also be defined using PROV-O, such as

prov:wasGeneratedBy. Generation of a new object is defined by the W3C PROV-O specification as follows:

...the completion of production of a new entity by an activity. This entity did not exist before generation

and becomes available for usage after this generation.

These relationships are leveraged in SBOL tooling for describing multi-stage synthetic biology workflows.

Synthetic biology workflows may involve multiple stages, multiple users, multiple organizations, and interdisci-

plinary collaborations. These workflows can be described using four core PROV-O classes: prov:Entity,

prov:Activity, prov:Agent, and prov:Plan. Any SBOL Identified object can implicitly act as an instance of

PROV-O’s prov:Entity class. Workflow histories (retrospective provenance) and workflow specifications (prospec-

tive provenance) can be described in SBOL using prov:Activity objects to link Identified objects into workflows.

1We thank Dr Paolo Missier from the School of Computing Science, Newcastle University for discussions regarding the use of PROV-O.

Section A Complementary Standards Page 55 of 81

Section A.1 Adding Provenance with PROV-O

An prov:Agent (for example a software or a person) runs an prov:Activity according to a prov:Plan to generate

new entities. Resources representing prov:Agent, prov:Activity and prov:Plan classes should be handled as

TopLevel, whilst prov:Usage and prov:Association resources should be treated as child Identified objects

within their parent prov:Activity objects.

A design-build-test-learn SBOL ontology has been adopted for use with PROV-O classes (see Table 20). The terms

design, build, test, and learn provide a high level workflow abstraction that allows tool-builders to quickly search for

and isolate provenance histories relevant to their domain, while keeping track of the flow of data between different

users working in different domains of synthetic biology. These terms SHOULD BE used on the type property of the

prov:Activity class. (Note that this property is a special property added by the SBOL specification, and is not part

of the original PROV-O specification.) Additionally, these terms SHOULD BE used in the prov:hadRole properties

on prov:Usage to qualify how the referenced prov:entity is used by the parent prov:Activity.

Activity Type URL Description

Design http://sbols.org/v3#design Design describes the process by which a conceptual representation of an
engineer’s imagined and intended design for a biological system is created
or derived.

Build http://sbols.org/v3#build Build describes the process by which a biological construct, sample, or
clone is implemented in the laboratory.

Test http://sbols.org/v3#test Test describes the process of performing experimental measurements to
characterize a synthetic biological construct.

Learn http://sbols.org/v3#learn Learn describes the process of analyzing experimental measurements to
produce a new entity that represents biological knowledge.

Table 20: Synthetic biology workflow ontology

Logical constraints are placed on the order in which different types of prov:Activitys are chained into design-

build-test-learn workflows. These rules additionally place constraints on the types of objects that may be used as

inputs for a particular type of prov:Activity. For example, a design prov:Usagemay be used as an input for either

a design or build prov:Activity but SHOULD NOT be used as an input for a test prov:Activity. An example of

how these terms are used is provided in Figure 28. The ordering of stages and constraints on referred object type are

given in Table 21.

Stage Preceding Stage Referred Object Type

http://sbols.org/v3#design http://sbols.org/v3#learn TopLevel other than Implementation
http://sbols.org/v3#build http://sbols.org/v3#design Implementation

http://sbols.org/v3#test http://sbols.org/v3#build ExperimentalData

http://sbols.org/v3#learn http://sbols.org/v3#test Identified other than Implementation

Table 21: Ordering of design-build-test-learn stages, and the types of objects RECOMMENDED to be associated
with them.

In addition to the design-build-test-learn terms, users may also wish to include more specific terms to specify how

SBOL objects are used in-house in their own recipes, protocols, or computational analyses. In fact, it is expected that

the SBOL workflow ontology will be expanded over time, as users experiment with and develop their own custom

ontologies. For now, however, it is RECOMMENDED that SBOL tools also include the high-level terms in Table 20 to

support data exchange across interdisciplinary boundaries.

Section A Complementary Standards Page 56 of 81

Section A.1 Adding Provenance with PROV-O

prov:Plan

prov:Usage

- prov:entity [1]: IRI
- prov:hadRole [0..*]: IRI

prov:Agent

prov:Association

- prov:hadRole [0..*]: IRI

prov:Act ivi ty

- type [0..*]: IRI
- prov:startedAtTime [0..1]: DateTime
- prov:endedAtTime [0..1]: DateTime

TopLevel

Ident i f ied

- prov:wasDerivedFrom [0..*] : IRI

prov:wasInformedBy
0..*

prov:hadPlan
0..1

 prov:qualifiedUsage
0..*

prov:agent
1

prov:wasGeneratedBy
 0..*

 prov:qualifiedAssociation
0..*

Figure 27: Relationships between SBOL and PROV-O classes. The PROV-O classes prov:Activity, prov:Plan, and
prov:Agent all derive from TopLevel in the context of the SBOL data model.

A.1.1 prov:Activity

A generated prov:Entity is linked through a prov:wasGeneratedBy relationship to an prov:Activity, which is

used to describe how different prov:Agents and other entities were used. An prov:Activity is linked through a

prov:qualifiedAssociation to prov:Associations, to describe the role of agents, and is linked through

prov:qualifiedUsage to prov:Usages to describe the role of other entities used as part of the activity. Moreover,

each prov:Activity includes optional prov:startedAtTime and prov:endedAtTime properties. When using

prov:Activity to capture how an entity was derived, it is expected that any additional information needed will be

attached as annotations. This may include software settings or textual notes. Activities can also be linked together

using the prov:wasInformedBy relationship to provide dependency without explicitly specifying start and end

times.

The type property

An prov:ActivityMAY have one or more type properties, each of type IRI that explicitly specifies the type of the

provenance prov:Activity in more detail. If specified, it is RECOMMENDED that at least one type property refers

to a URL from Table 20.

The prov:startedAtTime property

The prov:startedAtTime property is OPTIONAL and contains a DateTime (see Section 7.7) value, indicating when

the activity started. If this property is present, then the prov:endedAtTime property is REQUIRED.

Section A Complementary Standards Page 57 of 81

Section A.1 Adding Provenance with PROV-O

The prov:endedAtTime property

The prov:endedAtTime property is OPTIONAL and contains a DateTime (see Section 7.7) value, indicating when

the activity ended.

The prov:qualifiedAssociation property

An prov:ActivityMAY have one or more prov:qualifiedAssociation properties, each of type IRI that refers

to an prov:Association object.

The prov:qualifiedUsage property

An prov:ActivityMAY have one or more prov:qualifiedUsage properties, each of type IRI that refers to an

prov:Usage object.

The prov:wasInformedBy property

An prov:ActivityMAY have one or more prov:wasInformedBy properties, each of type IRI that refers to another

prov:Activity object.

A.1.2 prov:Usage

How different entities are used in an prov:Activity is specified with the prov:Usage class, which is linked from

an prov:Activity through the prov:Usage relationship. A prov:Usage is then linked to an prov:Entity through

the prov:entity property IRI and the prov:hadRole property species how the prov:Entity is used. When the

prov:wasDerivedFrom property is used together with the full provenance described here, the entity pointed at by

the prov:wasDerivedFrom property MUST be included in a prov:Usage.

The prov:entity property

The prov:entity property is REQUIRED and MUST contain a IRIwhich MAY refer to an Identified object.

The prov:hadRole property

An prov:UsageMAY have one or more prov:hadRole properties, each of type IRI that refers to particular term(s)

describing the usage of an prov:Entity referenced by the prov:entity property. Recommended terms that are

defined in Table 20 can be used to indicate how the referenced prov:Entity is being used in this prov:Activity.

A.1.3 prov:Association

An prov:Association is linked to an prov:Agent through the prov:agent relationship. The prov:Association

includes the prov:hadRole property to qualify the role of the prov:Agent in the prov:Activity.

The prov:agent property

The prov:agent property is REQUIRED and MUST contain a IRI that refers to an prov:Agent object.

The prov:hadRole property

An prov:AssociationMAY have one or more prov:hadRole properties, each of type IRI that refers to particular

term(s) that describes the role of the prov:Agent in the parent prov:Activity.

The prov:hadPlan property

The prov:hadPlan property is OPTIONAL and contains a IRI that refers to a prov:Plan.

Section A Complementary Standards Page 58 of 81

Section A.1 Adding Provenance with PROV-O

A.1.4 prov:Plan

The prov:Plan entity can be used as a place holder to describe the steps (for example scripts or lab protocols) taken

when an prov:Agent is used in a particular prov:Activity.

A.1.5 prov:Agent

Examples of agents are a person, organization, or software tool. These agents should be annotated with additional

information, such as software version, needed to be able to run the same prov:Activity again.

Example - Codon optimization

Codon optimization is an example of where provenance properties can be applied. The relationship between

an original CDS and the codon-optimized version could simply be represented using the prov:wasDerivedFrom

predicate, in a light-weight form. With more comprehensive use of the PROV ontology, the codon optimization can

be represented as an prov:Activity. This prov:Activity can then include additional information, such as the

prov:Agent responsible (in this case, codon-optimizing software), and additional parameters.

Example - Deriving strains

Bacterial strains are often derived from other strains through modifications such as gene knockouts or mutations.

For example, the Bacillus subtilis 168 strain was derived from the NCIMB3610 strain in the 1940s through x-radiation.

B. subtilis 168 is a laboratory strain and has several advantages as a model organism in synthetic biology. The

relationship between the original strain and the 168 strain can be represented using the prov:wasDerivedFrom

predicate or, more comprehensively, with an prov:Activity describing the protocols used.

Example - Design-build-test-learn Workflow

Figure 28 illustrates one complete iteration through a design-build-test-learn cycle. The workflow begins with a

Modelwhich describes the hypothesized behavior of a biological device. Using a computational tool, a new Design

(Component) is composed from biological parts, which links back to its Model. A genetic construct is then produced

in the laboratory via an assembly protocol, and this biological sample is represented by a Build (Implementation).

Once constructed, the Build is then characterized in the laboratory using an automated measurement protocol

on a Tecan plate reader, thus generating Test data (represented by an ExperimentalData). Finally, a new Model is

derived from these data using a fitting algorithm implemented in the Python programming language. The final

Modelmay not match the beginning Model, as the observed behavior may not match the prediction.

Section A Complementary Standards Page 59 of 81

Section A.1 Adding Provenance with PROV-O

Plan

Agent

identity: <email:jschmoe@sbols.org>
name: "J. Schmoe"
description: "Research Fellow"

Attachment

source: [optimize.py]
format: [Python 2.7]

Plan

description:
"SBML to SBOL conversion"

Attachment

source: [file:protocol.mdx]

Association

hadRole: [learn]

Association

hadRole: [test]

Association

hadRole: [build]

Association

hadRole: [design]

Agent

name: "iBioSim"
description: "software tool"

prov:Activity

rdf:type : [design]

Usage

hadRole: [learn]

Model

Agent

description: "Tecan plate reader"

Agent

identity: <email:jdoe@sbols.org>
name: "J. Doe"
description: "lab technician"

Usage

hadRole: [design]

Usage

hadRole: [build]

Usage

hadRole: [test]

Plan

name: "Gibson assembly"
description: "DNA assembly"

prov:Activity

rdf:type : [build]

Component

Model

prov:Activity

rdf:type : [learn]

Plan
prov:Activity

rdf:type : [test]

Experimental
Data

Implementation

 entity

 entity

 entity

hasAttachment

hasAttachment

 hadPlan
 entity

 agent

 wasGeneratedBy

 wasDerivedFrom

 agent

 agent

 agent

 hadPlan

 wasGeneratedBy

 wasDerivedFrom

 hadPlan

 wasDerivedFrom

 wasDerivedFrom

 wasGeneratedBy

 wasGeneratedBy

 hadPlan

Figure 28: An example data structure representing an idealized workflow for model-based design.

Section A Complementary Standards Page 60 of 81

Section A.2 Adding Measures/Parameters with OM

Example - Combinatorial Derivation

As specified in the description of CombinatorialDerivation, provenance can be used to link each generated

Component (or Collection thereof) back to the source form which it was derived. In particular, each derived

design links with prov:wasDerivedFrom to the CombinatorialDerivation that it was derived from. Also, each

SubComponent has a prov:wasDerivedFrom linking it to the SubComponentwithin the template that it is derived

from. The advantage of these provenance links is that they provide sufficient information to validate that this

derived design has been properly derived from the specified CombinatorialDerivations.

A.2 Adding Measures/Parameters with OM

There are at least two well-established cases for including measures/parameters and their associated units in

SBOL design specifications. These use cases are the specification of genetic circuit designs and their associated

parameters (such as rates of transcription) and the specification of environmental conditions for biological system

designs (such as growth media concentrations and temperatures). In the first use case, parameters are necessary to

enable the generation of quantitative models of circuit behavior from circuit design specifications. In the second

use case, measures are necessary to define experimental conditions and enable the analysis of system behavior or

characterization with respect to environmental context.

The Ontology of Units of Measure (OM) (http://www.ontology-of-units-of-measure.org/resource/om-2)

already defines a data model for representing measures and their associated units. Here, a subset of OM is adopted

by SBOL to describe these concepts for biological design specifications, by assigning PROV-O classes to SBOL

Identified or TopLevel types per Section Section 6.11. As shown in Figure 29, SBOL leverages three of the base

classes defined by the OM: om:Measure, om:Unit and om:Prefix. A om:Measure links a numerical value to a

om:Unit, which may or may not have a om:Prefix (e.g. centi, milli, micro, etc.). As these classes are adopted by

SBOL, om:Measure is treated as a subclass of Identified, while om:Unit and om:Prefix are treated as subclasses of

TopLevel. In addition, SBOL adopts the following OM om:Unit subclasses: om:SingularUnit, om:CompoundUnit,

om:UnitMultiplication, om:UnitDivision, om:UnitExponentiation, and om:PrefixedUnit. Lastly, SBOL

adopts the following om:Prefix subclasses from OM: om:SIPrefix and om:BinaryPrefix.

OM also provides a large number of predefined om:Unit instances, so in most cases there is no need to create

anything other than om:Measure objects that refer to pre-existing instances. This can simplify the comparison

and interpretation of units, so for this reason, a pre-existing om:Unit instance SHOULD be used whenever one is

applicable. If a unit does not already exist in the ontology, however, then the om:Unit subclasses MAY be used to

create new units.

SBOL-compliant tools are allowed to read, write, and modify data belonging to OM classes other than those

described here, but this specification does not provide any guidance for the interpretation or use of these data in

the context of SBOL.

A.2.1 om:Measure

The purpose of the om:Measure class is to link a numerical value to a om:Unit.

The om:hasNumericalValue property

The om:hasNumericalValue property is REQUIRED and MUST contain a single xsd:float.

The om:hasUnit property

The om:hasUnit property is REQUIRED and MUST contain a IRI that refers to a om:Unit. The OM provides IRIs

for many existing instances of the om:Unit class for reference (for example,

http://www.ontology-of-units-of-measure.org/resource/om-2/gramPerLitre).

Section A Complementary Standards Page 61 of 81

Section A.2 Adding Measures/Parameters with OM

om:Measure

-om:hasNumericalValue[1] : xsd:float
-type[0..*] : IRI

om:SIPrefix

om:CompoundUnit

om:BinaryPrefix

om:SingularUnit
-om:hasFactor[0..1] : xsd:float

om:Prefix
-om:symbol[1] : String
-om:alternativeSymbol[0..*] : String
-rdfs:label[1] : String
-om:alternativeLabel[0..*] : String
-rdfs:comment[0..1] : String
-om:longcomment[0..1] : String
-om:hasFactor[1] : xsd:float

om:PrefixedUnit

om:UnitDivision
-om:hasNumerator[1] : om:Unit
-om:hasDenominator[1] : om:Unit

om:UnitExponentiation
-om:hasBase[1] : om:Unit
-om:hasExponent[1] : xsd:integer

om:UnitMult ipl icat ion
-om:hasTerm1[1] : om:Unit
-om:hasTerm2[1] : om:Unit

om:Unit
-om:symbol[1] : String
-om:alternativeSymbols[0..*] : String
-om:label[1] : String
-om:alternativeLabels[0..*] : String
-om:comment[0..1] : String
-om:longcomment[0..1] : String

TopLevel

Ident i f ied

 om:hasUnit
 1 om:hasUnit

 0..1

om:hasPrefix
1

om:hasUnit
1

Figure 29: OM classes adopted by SBOL and their subclass relationships to Identified and TopLevel

The type property

A om:Measure MAY have one or more type properties, each is of type IRI. It is RECOMMENDED that one of

these IRIs identify a term from the Systems Description Parameter branch of the Systems Biology Ontology (SBO)

(http://www.ebi.ac.uk/sbo/main/). This type property of the om:Measure class is not specified in the OM and

is added by SBOL to describe different types of parameters (for example, rate of reaction is identified by the SBO

term http://identifiers.org/SBO:0000612).

A.2.2 om:Unit

As adopted by SBOL, om:Unit is an abstract class that is extended by other classes to describe units of measure

using a shared set of properties.

The om:symbol property

The om:symbol property is REQUIRED and MUST contain a String. This String is commonly used to abbreviate

the unit of measure’s name. For example, the unit of measure named “gram per liter” is commonly abbreviated

using the String “g/l”.

The om:alternativeSymbols property

The om:alternativeSymbols property is OPTIONAL and MAY contain a set of Strings. This property can be used

to specify alternative abbreviations other than that specified using the om:symbol property.

The om:label property

The om:label property is REQUIRED and MUST contain a String. This String is a common name for the unit of

measure and SHOULD be identical to any String contained by the name property inherited from Identified.

Section A Complementary Standards Page 62 of 81

Section A.2 Adding Measures/Parameters with OM

The om:alternativeLabels property

The om:alternativeLabels property is OPTIONAL and MAY contain a set of Strings. This property can be used

to specify alternative common names other than that specified using the om:label property.

The om:comment property

The om:comment property is OPTIONAL and MAY contain a String. This String is a description of the unit

of measure and SHOULD be identical to any String contained by the description property inherited from

Identified.

The om:longcomment property

The om:longcomment property is OPTIONAL and MAY contain a String. This String is a long description of the

unit of measure and SHOULD be longer than any String contained by the om:comment property.

A.2.3 om:SingularUnit

The purpose of the om:SingularUnit class is to describe a unit of measure that is not explicitly represented as a

combination of multiple units, but could be equivalent to such a representation. For example, a joule is considered

to be a om:SingularUnit, but it is equivalent to the multiplication of a newton and a meter.

The om:hasUnit property

The om:hasUnit is OPTIONAL and MAY contain a IRI. This IRIMUST refer to another om:Unit. The om:hasUnit

propery can be used in conjunction with the om:hasFactor property to specify whether a om:SingularUnit is

equivalent to another om:Unitmultiplied by a factor. For example, an angstrom is equivalent to 10−10 meters.

The om:hasFactor property

The om:hasFactor property is OPTIONAL and MAY contain a xsd:float. If the om:hasFactor property of a

om:SingularUnit is non-empty, then its om:hasUnit property SHOULD also be non-empty.

A.2.4 om:CompoundUnit

As adopted by SBOL, om:CompoundUnit is an abstract class that is extended by other classes to describe units of

measure that can be represented as combinations of multiple other units of measure.

A.2.5 om:UnitMultiplication

The purpose of the om:UnitMultiplication class is to describe a unit of measure that is the multiplication of two

other units of measure.

The om:hasTerm1 property

The om:hasTerm1 property is REQUIRED and MUST contain a IRI that refers to another om:Unit. This om:Unit is

the first multiplication term.

The om:hasTerm2 property

The om:hasTerm2 property is REQUIRED and MUST contain a IRI that refers to another om:Unit. This om:Unit is

the second multiplication term. It is okay if the om:Unit referred to by om:hasTerm1 is the same as that referred to

by om:hasTerm2.

Section A Complementary Standards Page 63 of 81

Section A.2 Adding Measures/Parameters with OM

A.2.6 om:UnitDivision

The purpose of the om:UnitDivision class is to describe a unit of measure that is the division of one unit of measure

by another.

The om:hasNumerator property

The om:hasNumerator property is REQUIRED and MUST contain a IRI that refers to another om:Unit.

The om:hasDenominator property

The om:hasDenominator property is REQUIRED and MUST contain a IRI that refers to another om:Unit.

A.2.7 om:UnitExponentiation

The purpose of the om:UnitExponentiation class is to describe a unit of measure that is raised to an integer power.

The om:hasBase property

The om:hasBase property is REQUIRED and MUST contain a IRI that refers to another om:Unit.

The om:hasExponent property

The om:hasExponent property is REQUIRED and MUST contain an xsd:integer.

A.2.8 om:PrefixedUnit

The purpose of the om:PrefixedUnit class is to describe a unit of measure that is the multiplication of another unit

of measure and a factor represented by a standard prefix such as “milli,” “centi,” “kilo,” etc.

The om:hasUnit property

The om:hasUnit property is REQUIRED and MUST contain a IRI that refers to another om:Unit.

The om:hasPrefix property

The om:hasPrefix property is REQUIRED and MUST contain a IRI that refers to a om:Prefix.

A.2.9 om:Prefix

As adopted by SBOL, om:Prefix is an abstract class that is extended by other classes to describe factors that are

commonly represented by standard unit prefixes. For example, the factor 10−3 is represented by the standard unit

prefix “milli.”

The om:symbol property

The om:symbol property is REQUIRED and MUST contain a String. This String is commonly used to abbreviate

the name of the unit prefix. For example, the String “m” is commonly used to abbreviate the name “milli.”

The om:alternativeSymbols property

The om:alternativeSymbols property is OPTIONAL and MAY contain a set of Strings. This property can be used

to specify alternative abbreviations other than that specified using the om:symbol property.

The om:label property

The om:label property is REQUIRED and MUST contain a String. This String is a common name for the unit

prefix and SHOULD be identical to any String contained by the name property inherited from Identified.

Section A Complementary Standards Page 64 of 81

Section A.2 Adding Measures/Parameters with OM

The om:alternativeLabels property

The om:alternativeLabels property is OPTIONAL and MAY contain a set of Strings. This property can be used

to specify alternative common names other than that specified using the om:label property.

The om:comment property

The om:comment property is OPTIONAL and MAY contain a String. This String is a description of the unit prefix

and SHOULD be identical to any String contained by the description property inherited from Identified.

The om:longcomment property

The om:longcomment property is OPTIONAL and MAY contain a String. This String is a long description of the

unit of measure and SHOULD be longer than any String contained by the om:comment property.

The om:hasFactor property

The om:hasFactor property is REQUIRED and MUST contain an xsd:float.

A.2.10 om:SIPrefix

The purpose of the om:SIPrefix class is to describe standard SI prefixes such as “milli,” “centi,” “kilo,” etc.

A.2.11 om:BinaryPrefix

The purpose of the om:BinaryPrefix class is to describe standard binary prefixes such as “kibi,” “mebi,” “gibi,” etc.

These prefixes commonly precede units of information such as “bit” and “byte.”

Measure
-hasNum.Value : 0.4
-hasUnit : om:gramPerGram
-type : [sbo:SBO:0000470]
...

Measure
-hasNum.Value : 0.2
-hasUnit : om:gramPerGram
-type : [sbol:SBO:0000470]
...

Measure
-hasNum.Value : 0.1
-hasUnit : om:millimolar
-type : [sbo:SBO:0000196]
...

Measure
-hasNum.Value : 2
-hasUnit : om:millimolar
-type : [sbo:SBO:0000196]
...

Measure
-hasNum.Value : 0.34
-hasUnit : om:gramPerLitre
-type : [sbo:SBO:0000226]
...

Measure
-hasNum.Value : 11.28
-hasUnit : om:gramPerLitre
-type : [sbo:SBO:0000226]
...

Component
-name : "M9 Glucose CAA"
-role : [obo:NCIT_C85504]
...

ExternallyDefined
-name : "Teknova M1902"
-role : [obo:NCIT_C85504]
...

ExternallyDefined
-name : "CaCl2"
-definition : [chebi:CHEBI:3312]
...

ExternallyDefined
-name : "MgSO4"
-definition : [chebi:CHEBI:32599]
...

ExternallyDefined
-name : "Casamino Acids"
-definition : [chebi:CHEBI:33709]
...

ExternallyDefined
-name : "Dextrose (D-Glucose)"
-definition : [chebi:CHEBI:17634]
...

ExternallyDefined
-name : "Thiamine Hydrochloride"
-definition : [chebi:CHEBI:49105]
...

hasMeasure

hasMeasure
hasMeasure hasMeasure

hasMeasure
hasMeasure

Figure 30: Growth media recipe represented using instances of the om:Measure and om:Unit classes from the OM.

Section A Complementary Standards Page 65 of 81

B Validation Rules

This section summarizes all the conditions that either MUST be or are RECOMMENDED to be true of an SBOL

Version 3.0 document. There are different degrees of rule strictness. Rules of the former kind are strict SBOL

validation rules—data encoded in SBOL MUST conform to all of them in order to be considered valid. Rules of

the latter kind are consistency rules that SBOL data are RECOMMENDED to adhere to as a best practice. To help

highlight these differences, we use the following symbols next to the rule numbers:

�X A checked box indicates a strong REQUIRED condition for SBOL conformance. If a SBOL document does not

follow this rule, it does not conform to the SBOL specification.

� A circle indicates a weak REQUIRED condition for SBOL conformance. While this rule MUST be followed,

there are conditions under which it can only be partially checked by a machine (e.g., due to references to data

that is not accessible or data with an ambiguous format). Rules of this type SHOULD be checked insofar as is

possible given the information available in a SBOL document.

F A star indicates a RECOMMENDED condition for following best practices. This rule is not strictly a matter of

SBOL conformance, but its recommendation comes from logical reasoning. If an SBOL document does not

follow this rule, it is still valid SBOL, but it might have degraded functionality in some tools.

We also include a fourth type of rule that represents a required condition for SBOL-compliance that cannot be

checked by a machine. Therefore, violations of these rules are not expected to be reported as errors by any of the

software libraries implementing SBOL 3.0. It is the user’s responsibility to make sure that these validation rules are

followed.

s A triangle indicates a weak REQUIRED condition for SBOL conformance. While this rule MUST be followed, it

is not possible in practice for a machine to automatically check whether the rule has been followed.

The validation rules listed in the following subsections are all believed to be stated or implied in the rest of this

specification document. They are enumerated here for convenience and to provide a “master checklist” for SBOL

validation. In case of a conflict between this section and other portions of the specification (though there are

believed to be none), this section is considered authoritative for the purpose of determining the validity of an SBOL

document.

Not all classes have validation rules specific to that class. For classes whose validation is covered by the rules for all+

SBOL objects, the type is not explicitly listed below. A range in the validation rules numbers, however, has been

reserved in case of future need.

Rules for SBOL Objects

sbol3-10101 � The IRI of an Identified object MUST be globally unique.

Reference: Section 5.1 on page 12

sbol3-10102 �X A TopLevel URL MUST use the following pattern: [namespace]/[local]/[displayId],

where namespace and displayId are required fragments, and the local fragment is an op-

tional relative path.

Reference: Section 5.1 on page 12

sbol3-10103 �X A TopLevel object’s URL MUST NOT be included as prefix for any other TopLevel object.

Reference: Section 5.1 on page 12

sbol3-10104 �X The URL of any child or nested object MUST use the following pattern:[parent]/[displayId],

where parent is the URL of its parent object. Multiple layers of child objects are allowed, using

the same [parent]/[displayId] pattern recursively.

Reference: Section 5.1 on page 12

Section B Validation Rules Page 66 of 81

Section

sbol3-10105 �X The SBOL namespace MUST NOT be used for any entities or properties not defined in this

specification.

Reference: Section 5.2 on page 12

sbol3-10106 �X An object MUST NOT have rdfType properties in the “http://sbols.org/v3#” namespace

that refer to disjoint classes.

Reference: Section 5.4 on page 13

sbol3-10107 F An object SHOULD have no more than one rdfTypeproperty in the “http://sbols.org/v3#”

namespace.

Reference: Section 5.4 on page 13

sbol3-10108 F If an object has a property in the “http://sbols.org/v3#” namespace (e.g., sbol:displayId,

then it SHOULD also have an rdfType property in that namespace.

Reference: Section 5.4 on page 13

sbol3-10109 �X An object MUST NOT have properties in the “http://sbols.org/v3#” namespace other than

those listed for its type or parent types in Table 22.

Reference: Section 5.2 on page 12

sbol3-10110 �X An object MUST have a number of instances of a property that matches the cardinality restric-

tions listed for that object type and property in Table 23.

Reference: Section 4.2 on page 10

sbol3-10111 �X An object’s property values MUST have the type listed for the object type and property in

Table 23.

Reference: Section 5.3 on page 12

sbol3-10112 �X Each property of type IRI that is listed with a reference type in Table 23 MUST refer to an

object of the type listed (child objects).

Reference: Section 5.3 on page 12

sbol3-10113 � Each property of type IRI that is listed with a reference type in Table 23 MUST refer to an

object of the type listed.

Reference: Section 5.3 on page 12

sbol3-10114 F Each property of type IRI that is listed with a TopLevel reference type in Table 23 SHOULD

be able to be dereferenced to obtain an SBOL object.

Reference: Section 5.3 on page 12

Table 22: Allowed object properties in the “http://sbols.org/v3#” namespace.

Class Parent SBOL Properties Reference
Attachment TopLevel source, format, size, hash, hashAlgorithm Section 6.10 on page 39
Collection TopLevel member Section 6.9 on page 38
CombinatorialDerivation TopLevel template, strategy, hasVariableFeature Section 6.5 on page 33
ComponentReference Feature inChildOf, refersTo Section 6.4.1.2 on page 24
Component TopLevel type, role, hasSequence, hasFeature, hasInteraction, hasConstraint,

hasModel, hasInterface
Section 6.4 on page 18

Constraint Identified subject, object, restriction Section 6.4.3 on page 27
Cut Location at Section 6.4.2.2 on page 27
EntireSequence Location Section 6.4.2.3 on page 27
ExperimentalData TopLevel Section 6.7 on page 37
Experiment Collection Section 6.9.1 on page 39
ExternallyDefined Feature type, definition Section 6.4.1.4 on page 25
Feature Identified role, orientation Section 6.4.1 on page 22
Identified none displayId, name, description, hasMeasure Section 6.1 on page 15
Implementation TopLevel built Section 6.6 on page 36
Interaction Identified type, hasParticipation Section 6.4.4 on page 28
Interface Identified input, output, nondirectional Section 6.4.5 on page 32

Continued on next page

Section B Validation Rules Page 67 of 81

Section

Table 22 – Continued from previous page
Class Parent SBOL Properties Reference
LocalSubComponent Feature type, hasLocation Section 6.4.1.3 on page 25
Location Identified orientation, order, hasSequence Section 6.4.2 on page 26
Model TopLevel source, language, framework Section 6.8 on page 37
Participation Identified role, participant, higherOrderParticipant Section 6.4.4.1 on page 31
Range Location start, end Section 6.4.2.1 on page 27
SequenceFeature Feature hasLocation Section 6.4.1.5 on page 25
Sequence TopLevel elements, encoding Section 6.3 on page 16
SubComponent Feature roleIntegration, instanceOf, sourceLocation, hasLocation Section 6.4.1.1 on page 23
TopLevel Identified hasNamespace, hasAttachment Section 6.2 on page 16
VariableFeature Identified cardinality, variable, variant, variantCollection, variantDerivation,

variantMeasure

Section 6.5.1 on page 34

prov:Activity TopLevel type Section A.1.1 on page 57
prov:Agent TopLevel Section A.1.5 on page 59
prov:Association Identified Section A.1.3 on page 58
prov:Plan TopLevel Section A.1.4 on page 59
prov:Usage Identified Section A.1.2 on page 58
om:BinaryPrefix om:Prefix Section A.2.11 on page 65
om:CompoundUnit om:Unit Section A.2.4 on page 63
om:Measure Identified type Section A.2.1 on page 61
om:PrefixedUnit om:Unit Section A.2.8 on page 64
om:Prefix TopLevel Section A.2.9 on page 64
om:SIPrefix om:Prefix Section A.2.10 on page 65
om:SingularUnit om:Unit Section A.2.3 on page 63
om:UnitDivision om:CompoundUnit Section A.2.6 on page 64
om:UnitExponentiation om:CompoundUnit Section A.2.7 on page 64
om:UnitMultiplication om:CompoundUnit Section A.2.5 on page 63
om:Unit TopLevel Section A.2.2 on page 62

Table 23: Cardinality constraints on object properties, their types, and types of referred objects.

Class Property Cardinality Type Referred Type Reference
Attachment source EXACTLY ONE IRI — Section 6.10 on page 39
Attachment format ZERO OR ONE IRI — Section 6.10 on page 39
Attachment hashAlgorithm ZERO OR ONE String — Section 6.10 on page 39
Attachment hash ZERO OR ONE String — Section 6.10 on page 39
Attachment size ZERO OR ONE Long — Section 6.10 on page 39
Collection member ZERO OR MORE IRI TopLevel Section 6.9 on page 38
CombinatorialDerivation hasVariableFeature ZERO OR MORE IRI VariableFeature Section 6.5 on page 33
CombinatorialDerivation strategy ZERO OR ONE IRI — Section 6.5 on page 33
CombinatorialDerivation template EXACTLY ONE IRI Component Section 6.5 on page 33
ComponentReference refersTo EXACTLY ONE IRI Feature Section 6.4.1.2 on page 24
ComponentReference inChildOf EXACTLY ONE IRI SubComponent Section 6.4.1.2 on page 24
Component hasSequence ZERO OR MORE IRI Sequence Section 6.4 on page 18
Component role ZERO OR MORE IRI — Section 6.4 on page 18
Component type ONE OR MORE IRI — Section 6.4 on page 18
Component hasConstraint ZERO OR MORE IRI Constraint Section 6.4 on page 18
Component hasFeature ZERO OR MORE IRI Feature Section 6.4 on page 18
Component hasInteraction ZERO OR MORE IRI Interaction Section 6.4 on page 18
Component hasInterface ZERO OR MORE IRI Interface Section 6.4 on page 18
Component hasModel ZERO OR MORE IRI Model Section 6.4 on page 18
Constraint object EXACTLY ONE IRI Feature Section 6.4.3 on page 27
Constraint restriction EXACTLY ONE IRI — Section 6.4.3 on page 27
Constraint subject EXACTLY ONE IRI Feature Section 6.4.3 on page 27
Cut at EXACTLY ONE Integer — Section 6.4.2.2 on page 27
Experiment member ZERO OR MORE IRI ExperimentalData Section 6.9 on page 38
ExternallyDefined definition EXACTLY ONE IRI — Section 6.4.1.4 on page 25
ExternallyDefined type ONE OR MORE IRI — Section 6.4.1.4 on page 25
Feature orientation ZERO OR ONE IRI — Section 6.4.1 on page 22
Feature role ZERO OR MORE IRI — Section 6.4.1 on page 22
Identified prov:wasDerivedFrom ZERO OR MORE IRI — Section 6.1 on page 15
Identified prov:wasGeneratedBy ZERO OR MORE IRI prov:Activity Section 6.1 on page 15
Identified description ZERO OR ONE String — Section 6.1 on page 15
Identified displayId ZERO OR ONE String — Section 6.1 on page 15
Identified hasMeasure ZERO OR MORE IRI om:Measure Section 6.1 on page 15
Identified name ZERO OR ONE String — Section 6.1 on page 15
Implementation built ZERO OR ONE IRI Component Section 6.6 on page 36
Interaction type ONE OR MORE IRI — Section 6.4.4 on page 28
Interaction hasParticipation ZERO OR MORE IRI Participation Section 6.4.4 on page 28
Interface input ZERO OR MORE IRI Feature Section 6.4.5 on page 32
Interface nondirectional ZERO OR MORE IRI Feature Section 6.4.5 on page 32
Interface output ZERO OR MORE IRI Feature Section 6.4.5 on page 32
LocalSubComponent hasLocation ZERO OR MORE IRI Location Section 6.4.1.3 on page 25
LocalSubComponent type ONE OR MORE IRI — Section 6.4.1.3 on page 25

Continued on next page

Section B Validation Rules Page 68 of 81

Section

Table 23 – Continued from previous page
Class Property Cardinality Type Referred Type Reference
Location orientation ZERO OR ONE IRI — Section 6.4.2 on page 26
Location order ZERO OR ONE Integer — Section 6.4.2 on page 26
Location hasSequence EXACTLY ONE IRI Sequence Section 6.4.2 on page 26
Model source EXACTLY ONE IRI — Section 6.8 on page 37
Model framework EXACTLY ONE IRI — Section 6.8 on page 37
Model language EXACTLY ONE IRI — Section 6.8 on page 37
Participation participant ZERO OR ONE IRI Feature Section 6.4.4.1 on page 31
Participation higherOrderParticipant ZERO OR ONE IRI Interaction Section 6.4.4.1 on page 31
Participation role ONE OR MORE IRI — Section 6.4.4.1 on page 31
Range end EXACTLY ONE Integer — Section 6.4.2.1 on page 27
Range start EXACTLY ONE Integer — Section 6.4.2.1 on page 27
SequenceFeature hasLocation ONE OR MORE IRI Location Section 6.4.1.5 on page 25
Sequence elements ZERO OR ONE String — Section 6.3 on page 16
Sequence encoding ZERO OR ONE IRI — Section 6.3 on page 16
SubComponent instanceOf EXACTLY ONE IRI Component Section 6.4.1.1 on page 23
SubComponent roleIntegration ZERO OR ONE IRI — Section 6.4.1.1 on page 23
SubComponent sourceLocation ZERO OR MORE IRI Location Section 6.4.1.1 on page 23
SubComponent hasLocation ZERO OR MORE IRI Location Section 6.4.1.1 on page 23
TopLevel hasAttachment ZERO OR MORE IRI Attachment Section 6.2 on page 16
TopLevel hasNamespace EXACTLY ONE URL — Section 6.2 on page 16
VariableFeature cardinality EXACTLY ONE IRI — Section 6.5.1 on page 34
VariableFeature variable EXACTLY ONE IRI Feature Section 6.5.1 on page 34
VariableFeature variantCollection ZERO OR MORE IRI Collection Section 6.5.1 on page 34
VariableFeature variantDerivation ZERO OR MORE IRI CombinatorialDerivation Section 6.5.1 on page 34
VariableFeature variantMeasure ZERO OR MORE IRI om:Measure Section 6.5.1 on page 34
VariableFeature variant ZERO OR MORE IRI Component Section 6.5.1 on page 34
prov:Activity prov:endedAtTime ZERO OR ONE DateTime — Section A.1.1 on page 57
prov:Activity prov:qualifiedUsage ZERO OR MORE IRI prov:Usage Section A.1.1 on page 57
prov:Activity prov:startedAtTime ZERO OR ONE DateTime — Section A.1.1 on page 57
prov:Activity prov:wasInformedBy ZERO OR MORE IRI prov:Activity Section A.1.1 on page 57
prov:Activity type ZERO OR MORE IRI — Section A.1.1 on page 57
prov:Activity prov:qualifiedAssociation ZERO OR MORE IRI prov:Association Section A.1.1 on page 57
prov:Association prov:agent EXACTLY ONE IRI prov:Agent Section A.1.3 on page 58
prov:Association prov:hadRole ZERO OR MORE IRI — Section A.1.3 on page 58
prov:Association prov:hadPlan ZERO OR ONE IRI prov:Plan Section A.1.3 on page 58
prov:Usage prov:entity EXACTLY ONE IRI — Section A.1.2 on page 58
prov:Usage prov:hadRole ZERO OR MORE IRI — Section A.1.2 on page 58
om:Measure type ZERO OR MORE IRI — Section A.2.1 on page 61
om:Measure om:hasUnit EXACTLY ONE IRI om:Unit Section A.2.1 on page 61
om:Measure om:hasNumericalValue EXACTLY ONE xsd:float — Section A.2.1 on page 61
om:PrefixedUnit om:hasUnit EXACTLY ONE IRI om:Unit Section A.2.8 on page 64
om:PrefixedUnit om:hasPrefix EXACTLY ONE IRI om:Prefix Section A.2.8 on page 64
om:Prefix om:alternativeLabels ZERO OR MORE String — Section A.2.9 on page 64
om:Prefix om:comment ZERO OR ONE String — Section A.2.9 on page 64
om:Prefix om:hasFactor EXACTLY ONE xsd:float — Section A.2.9 on page 64
om:Prefix om:label EXACTLY ONE String — Section A.2.9 on page 64
om:Prefix om:longcomment ZERO OR ONE String — Section A.2.9 on page 64
om:Prefix om:alternativeSymbol ZERO OR MORE String — Section A.2.9 on page 64
om:Prefix om:symbol EXACTLY ONE String — Section A.2.9 on page 64
om:SingularUnit om:hasUnit ZERO OR ONE IRI om:Unit Section A.2.3 on page 63
om:SingularUnit om:hasFactor ZERO OR ONE xsd:float — Section A.2.3 on page 63
om:UnitDivision om:hasDenominator EXACTLY ONE IRI om:Unit Section A.2.6 on page 64
om:UnitDivision om:hasNumerator EXACTLY ONE IRI om:Unit Section A.2.6 on page 64
om:UnitExponentiation om:hasBase EXACTLY ONE IRI om:Unit Section A.2.7 on page 64
om:UnitExponentiation om:hasExponent EXACTLY ONE xsd:integer — Section A.2.7 on page 64
om:UnitMultiplication om:hasTerm1 EXACTLY ONE IRI om:Unit Section A.2.5 on page 63
om:UnitMultiplication om:hasTerm2 EXACTLY ONE IRI om:Unit Section A.2.5 on page 63
om:Unit om:alternativeLabels ZERO OR MORE String — Section A.2.2 on page 62
om:Unit om:label EXACTLY ONE String — Section A.2.2 on page 62
om:Unit om:longcomment ZERO OR ONE String — Section A.2.2 on page 62
om:Unit om:symbol EXACTLY ONE String — Section A.2.2 on page 62
om:Unit om:alternativeSymbols ZERO OR MORE String — Section A.2.2 on page 62
om:Unit om:comment ZERO OR ONE String — Section A.2.2 on page 62

Rules for the Identified class

sbol3-10201 �X The displayId property, if specified, MUST be composed of only alphanumeric or underscore

characters and MUST NOT begin with a digit.

Reference: Section 6.1 on page 15

sbol3-10202 �X An Identified object MUST NOT refer to itself via its own prov:wasDerivedFrom property.

Section B Validation Rules Page 69 of 81

Section

Reference: Section 6.1 on page 15

sbol3-10203 � An Identified object MUST NOT form a cyclical chain of references via its prov:wasDerivedFrom

property and those of other Identified objects.

Reference: Section 6.1 on page 15

sbol3-10204 � Provenance history formed by prov:wasGeneratedBy properties of Identified objects and

prov:entity references in prov:Usage objects MUST NOT form circular reference chains.

Reference: Section 6.1 on page 15

sbol3-10205 F An Identified object with a prov:wasGeneratedBy property referring to an prov:Activity

with a child prov:Association that has a prov:hadRole property with a value from Table 20

should be of the corresponding type in Table 21.

Reference: Section A.1 on page 55

Rules for the TopLevel class

sbol3-10301 �X If the IRI for the TopLevel object is a URL, then the URL of the hasNamespace property MUST

prefix match that URL.

Reference: Section 6.2 on page 16

Rules for the Sequence class

sbol3-10501 �X If the elements property is set, then the encoding property of SequenceMUST be provided.

Reference: Section 6.3 on page 16

sbol3-10502 s The encoding property of a Sequence MUST indicate how the elements property of the

Sequence is to be formed and interpreted.

Reference: Section 6.3 on page 16

sbol3-10503 � The elements property of a SequenceMUST be consistent with its encoding property.

Reference: Section 6.3 on page 16

sbol3-10504 s The encoding property of a SequenceMUST contain a URL from Table 1 if it is well-described

by this URL.

Reference: Section 6.3 on page 16

sbol3-10505 F The encoding property of a Sequence SHOULD contain a URL from the textual format (https:

//identifiers.org/edam:format_2330) branch of the EDAM ontology

Reference: Section 6.3 on page 16

Rules for the Component class

sbol3-10601 �X The set of type properties of a ComponentMUST NOT have more than one URL from Table 2.

Reference: Section 6.4 on page 18

sbol3-10602 s Each type property of a ComponentMUST refer to an ontology term that describes the category

of biochemical or physical entity that is represented by the Component.

Reference: Section 6.4 on page 18

sbol3-10603 s A ComponentMUST have a type property from Table 2 if it is well-described by this URL.

Reference: Section 6.4 on page 18

sbol3-10604 F A Component SHOULD have a type property that uses the physical entity representation

branch of the Systems Biology Ontology.

Reference: Section 6.4 on page 18

Section B Validation Rules Page 70 of 81

Section

sbol3-10605 s All type properties of a ComponentMUST refer to non-conflicting ontology terms.

Reference: Section 6.4 on page 18

sbol3-10606 s If the type property of a Component contains the DNA or RNA type URL listed in Table 2, then

its type property MUST contain a URL that refers to a term from the topology attribute branch

of the SO, if the topology is known.

Reference: Section 6.4 on page 18

sbol3-10607 F If the type property of a Component contains the DNA or RNA type URL listed in Table 2, then

its type property SHOULD also contain at most one URL that refers to a term from the topology

attribute branch of the SO.

Reference: Section 6.4 on page 18

sbol3-10608 F A Component SHOULD NOT have a type property that refers to a term from the topology

attribute or strand attribute branches of the SO unless it also has a type property with the

DNA or RNA type URL listed in Table 2. Reference: Section 6.4 on page 18

sbol3-10609 s Each role property of a ComponentMUST refer to an ontology term that is consistent with its

type property.

Reference: Section 6.4 on page 18

sbol3-10610 s Each role property of a ComponentMUST refer to an ontology term that clarifies the potential

function of the Component in a biochemical or physical context.

Reference: Section 6.4 on page 18

sbol3-10611 s A role property of a ComponentMUST contain a URL from Table 4 if it is well-described by

this URL.

Reference: Section 6.4 on page 18

sbol3-10612 F A role property of a Component SHOULD NOT contain a URL that refers to a term from the

sequence feature branch of the SO unless its type property contains the DNA or RNA type URL

listed in Table 2.

Reference: Section 6.4 on page 18

sbol3-10613 F If a type property of a Component contains the DNA or RNA type URL, then its role property

SHOULD contain exactly one URL that refers to a term from the sequence feature branch of

the SO.

Reference: Section 6.4 on page 18

sbol3-10614 s The Sequence objects referred to by the hasSequence properties of a ComponentMUST be

consistent with each other, such that well-defined mappings exist between their elements

properties in accordance with their encoding properties.

Reference: Section 6.4 on page 18

sbol3-10615 s A hasSequenceproperty of a ComponentMUST NOT refer to Sequence objects with conflicting

encoding properties.

Reference: Section 6.4 on page 18

sbol3-10616 � If a hasSequence property of a Component refers to a Sequence object, and one of the type

properties of this Component comes from Table 2, then one of the Sequence objects MUST

have the encoding that is cross-listed with this type in Table 1.

Reference: Section 6.4 on page 18

sbol3-10617 F If a Component has more than one hasSequence property that refer to Sequence objects

with the same encoding, then the elements of these Sequence objects SHOULD have equal

lengths.

Reference: Section 6.4 on page 18

Section B Validation Rules Page 71 of 81

Section

Rules for the Feature class

sbol3-10701 s Each role property of a FeatureMUST refer to a resource that clarifies the intended function

of the Feature.

Reference: Section 6.4.1 on page 22

sbol3-10702 �X If a Feature has an orientation property, its URLMUST be drawn from Table 5 or Table 6.

Reference: Section 6.4.1 on page 22

Rules for the SubComponent class

sbol3-10801 �X If a SubComponent has an roleIntegration property, its URLMUST be drawn from Table 7.

Reference: Section 6.4.1.1 on page 23

sbol3-10802 �X The roleIntegration property of a SubComponent is REQUIRED if the SubComponent has

one or more role properties.

Reference: Section 6.4.1.1 on page 23

sbol3-10803 �X The instanceOf property of a SubComponentMUST NOT refer to the same Component as the

one that contains the SubComponent.

Reference: Section 6.4.1.1 on page 23

sbol3-10804 � SubComponent objects MUST NOT form circular reference chains via their instanceOf prop-

erties and the Component objects that contain them.

Reference: Section 6.4.1.1 on page 23

sbol3-10805 �X The set of Location objects referred to by the hasLocationproperties of a single SubComponent

MUST NOT specify overlapping regions.

Reference: Section 6.4.1.1 on page 23

sbol3-10806 �X If a SubComponent object has at least one hasLocation and sourceLocation properties, then

the sum of the lengths of the Location objects referred to by the hasLocation properties

MUST equal the sum of the lengths of the Location objects referred to by the sourceLocation

properties.

Reference: Section 6.4.1.1 on page 23

sbol3-10807 � If a SubComponent object has at least one hasLocation and zero sourceLocation properties,

and the Component linked by its instanceOf has precisely one hasSequence property whose

Sequence has a value for its elements property, then the sum of the lengths of the Location

objects referred to by the hasLocation properties MUST equal the length of the elements

value of the Sequence.

Reference: Section 6.4.1.1 on page 23

Rules for the ComponentReference class

sbol3-10901 �X If a ComponentReference object is a child of a Component, then its inChildOf property MUST

be a SubComponent of its parent.

Reference: Section 6.4.1.2 on page 24

sbol3-10902 �X If a ComponentReference object is a child of another ComponentReference, via the refersTo

property, then its inChildOf property MUST be a SubComponent of the Component referred

to by the instanceOf property of the SubComponent referred to by the parent’s inChildOf

property.

Reference: Section 6.4.1.2 on page 24

sbol3-10903 �X If the refersTo property of a ComponentReference refers to another ComponentReference,

then the second ComponentReferenceMUST be either a child of the first ComponentReference

Section B Validation Rules Page 72 of 81

Section

or a child of the Component referred to by the instanceOf property of the SubComponent re-

ferred to by the inChildOf property of the first ComponentReference.

Reference: Section 6.4.1.2 on page 24

sbol3-10904 �X If the refersTo property of a ComponentReference refers to a Feature of any other type

besides ComponentReference, then that FeatureMUST be a child of the Component referred

to by the instanceOf property of the SubComponent referred to by the inChildOf property of

the first ComponentReference.

Reference: Section 6.4.1.2 on page 24

Rules for the LocalSubComponent class

sbol3-11001 �X A LocalSubComponentMUST NOT have more than one URL from Table 2.

Reference: Section 6.4.1.3 on page 25

sbol3-11002 s Each type property of a LocalSubComponentMUST refer to an ontology term that describes

the category of biochemical or physical entity that is represented by the LocalSubComponent.

Reference: Section 6.4.1.3 on page 25

sbol3-11003 s A LocalSubComponentMUST have a type property from Table 2 if it is well-described by this

URL.

Reference: Section 6.4.1.3 on page 25

sbol3-11004 F A LocalSubComponent SHOULD have a type property from Table 2.

Reference: Section 6.4.1.3 on page 25

sbol3-11005 s All type properties of a LocalSubComponentMUST refer to non-conflicting ontology terms.

Reference: Section 6.4.1.3 on page 25

sbol3-11006 s If the type property of a LocalSubComponent contains the DNA or RNA type URL listed in

Table 2, then its type property MUST contain a URL that refers to a term from the topology

attribute branch of the SO, if the topology is known.

Reference: Section 6.4.1.3 on page 25

sbol3-11007 F If the type property of a LocalSubComponent contains the DNA or RNA type URL listed in

Table 2, then its type property SHOULD also contain at most one URL that refers to a term

from the topology attribute branch of the SO.

Reference: Section 6.4.1.3 on page 25

sbol3-11008 F A LocalSubComponent SHOULD NOT have a type property that refers to a term from the

topology attribute or strand attribute branches of the SO unless it also has a type property

with the DNA or RNA type URL listed in Table 2. Reference: Section 6.4.1.3 on page 25

sbol3-11009 s Each role property of a LocalSubComponentMUST refer to an ontology term that is consis-

tent with its type property.

Reference: Section 6.4 on page 18

sbol3-11010 s A role property of a LocalSubComponent MUST contain a URL from Table 4 if it is well-

described by this URL.

Reference: Section 6.4 on page 18

sbol3-11011 F A role property of a LocalSubComponent SHOULD NOT contain a URL that refers to a term

from the sequence feature branch of the SO unless its type property contains the DNA or RNA

type URL listed in Table 2.

Reference: Section 6.4 on page 18

Section B Validation Rules Page 73 of 81

Section

sbol3-11012 F If a type property of a LocalSubComponent contains the DNA or RNA type URL, then its role

property SHOULD contain exactly one URL that refers to a term from the sequence feature

branch of the SO.

Reference: Section 6.4 on page 18

sbol3-11013 �X The set of Location objects referred to by the hasLocationproperties of a single LocalSubComponent

MUST NOT specify overlapping regions.

Reference: Section 6.4.1.3 on page 25

Rules for the ExternallyDefined class

sbol3-11101 �X A ExternallyDefinedMUST NOT have more than one URL from Table 2.

Reference: Section 6.4.1.4 on page 25

sbol3-11102 s Each type property of a ExternallyDefinedMUST refer to an ontology term that describes

the category of biochemical or physical entity that is represented by the Component.

Reference: Section 6.4.1.4 on page 25

sbol3-11103 s A ExternallyDefinedMUST have a type property from Table 2 if it is well-described by this

URL.

Reference: Section 6.4.1.4 on page 25

sbol3-11104 F A ExternallyDefined SHOULD have a type property from Table 2.

Reference: Section 6.4.1.4 on page 25

sbol3-11105 s All type properties of a ExternallyDefinedMUST refer to non-conflicting ontology terms.

Reference: Section 6.4.1.4 on page 25

sbol3-11106 s If the type property of a ExternallyDefined contains the DNA or RNA type URL listed in

Table 2, then its type property MUST contain a URL that refers to a term from the topology

attribute branch of the SO, if the topology is known.

Reference: Section 6.4.1.4 on page 25

sbol3-11107 F If the type property of a ExternallyDefined contains the DNA or RNA type URL listed in

Table 2, then its type property SHOULD also contain at most one URL that refers to a term

from the topology attribute branch of the SO.

Reference: Section 6.4.1.4 on page 25

sbol3-11108 F A ExternallyDefined SHOULD NOT have a type property that refers to a term from the

topology attribute or strand attribute branches of the SO unless it also has a type property

with the DNA or RNA type URL listed in Table 2. Reference: Section 6.4.1.4 on page 25

sbol3-11109 s The URL contained by the definition property of a ExternallyDefined SHOULD refer to an

external resource in Section Section 7.6 when the object is defined in one of these resources.

Reference: Section 6.4.1.4 on page 25

Rules for the SequenceFeature class

sbol3-11201 �X The set of Location objects referred to by the hasLocationproperties of a single SequenceFeature

MUST NOT specify overlapping regions.

Reference: Section 6.4.1.5 on page 25

Rules for the Location class

sbol3-11301 �X If a Location has an orientation property, its URLMUST be drawn from Table 5 or Table 6.

Reference: Section 6.4.2 on page 26

Section B Validation Rules Page 74 of 81

Section

sbol3-11302 �X For every Location that is not an EntireSequence and that is the value of a hasLocation

property of a Feature, the value of its hasSequence property MUST also either be a value of

the hasSequence property of the parent Component or else be the value of some hasSequence

property of an EntireSequence that is also a child of the same Component.

Reference: Section 6.4.2 on page 26

sbol3-11303 � For every Location that is not an EntireSequence and that is the value of a sourceLocation

property of a SubComponent, the value of its hasSequence property MUST also either be

a value of the hasSequence property of the Component linked by its parent’s instanceOf

property or else be the value of some hasSequence property of an EntireSequence that is

also a child of the same Component linked by instanceOf.

Reference: Section 6.4.2 on page 26

Rules for the Range class

sbol3-11401 �X The value of the start property of a RangeMUST be greater than zero and less than or equal

to the length of the elements value of the Sequence referred to by its hasSequence property.

Reference: Section 6.4.2.1 on page 27

sbol3-11402 �X The value of the end property of a RangeMUST be greater than zero and less than or equal to

the length of the elements value of theSequence referred to by its hasSequence property.

Reference: Section 6.4.2.1 on page 27

sbol3-11403 �X The value of the end property of a RangeMUST be greater than or equal to the value of its

start property.

Reference: Section 6.4.2.1 on page 27

Rules for the Cut class

sbol3-11501 �X The value of the at property of a CutMUST be greater than or equal to zero and less than

or equal to the length of the elements value of the Sequence referred to by its hasSequence

property.

Reference: Section 6.4.2.2 on page 27

Rules for the Constraint class

sbol3-11701 �X The Feature referenced by the subject property of a ConstraintMUST be contained by the

Component that contains the Constraint.

Reference: Section 6.4.3 on page 27

sbol3-11702 �X The Feature referenced by the object property of a ConstraintMUST be contained by the

Component that contains the Constraint.

Reference: Section 6.4.3 on page 27

sbol3-11703 �X The object property of a Constraint MUST NOT refer to the same SubComponent as the

subject property of the Constraint.

Reference: Section 6.4.3 on page 27

sbol3-11704 F The value of the restriction property of a Constraint SHOULD be drawn from Table 8,

Table 9, or Table 10.

Reference: Section 6.4.3 on page 27

sbol3-11705 � If the restriction property of a Constraint is drawn from Table 8, then the Feature objects

referred to by the subject and object properties MUST comply with the relation specified in

Table 8.

Section B Validation Rules Page 75 of 81

Section

sbol3-11706 � If the restriction property of a Constraint is drawn from Table 10 and if the Feature

objects referred to by the subject and object properties both have hasLocation properties

with Location objects whose hasSequence property refers to the same Sequence, then the

positions of the referred Location objects MUST comply with the relation specified in Table 10.

Rules for the Interaction class

sbol3-11801 s Each type property of an InteractionMUST refer to an ontology term that describes the

behavior represented by the Interaction.

Reference: Section 6.4.4 on page 28

sbol3-11802 s All type properties of an InteractionMUST refer to non-conflicting ontology terms.

Reference: Section 6.4.4 on page 28

sbol3-11803 F Exactly one type property of an Interaction SHOULD refer to a term from the occurring

entity relationship branch of the SBO.

Reference: Section 6.4.4 on page 28

sbol3-11804 F If the hasParticipation properties of an Interaction refer to one or more Participation

objects, and one of the type properties of this Interaction comes from Table 11, then the

Participation objects SHOULD have a role from the set of role properties that is cross-

listed with this type in Table 12.

Reference: Section 6.4.4 on page 28

Rules for the Participation class

sbol3-11901 �X A ParticipationMUST contain precisely one participant or higherOrderParticipant

property.

Reference: Section 6.4.4.1 on page 31

sbol3-11902 �X The Feature referenced by the participant property of a Participation MUST be con-

tained by the Component that contains the Interaction that contains the Participation.

Reference: Section 6.4.4.1 on page 31

sbol3-11903 �X The Interaction referenced by the higherOrderParticipant property of a Participation

MUST be contained by the Component that contains the Interaction that contains the

Participation.

Reference: Section 6.4.4.1 on page 31

sbol3-11904 s Each role property of a ParticipationMUST refer to an ontology term that describes the

behavior represented by the Participation.

Reference: Section 6.4.4.1 on page 31

sbol3-11905 s All role properties of a ParticipationMUST refer to non-conflicting ontology terms.

Reference: Section 6.4.4.1 on page 31

sbol3-11906 F Exactly one role in the set of role properties SHOULD be a URL from the participant role

branch of the SBO (see Table 12).

Reference: Section 6.4.4.1 on page 31

Rules for the Interface class

sbol3-12001 �X The Feature referenced by the input property of an InterfaceMUST be contained by the

Component that contains the Interface.

Reference: Section 6.4.5 on page 32

Section B Validation Rules Page 76 of 81

Section

sbol3-12002 �X The Feature referenced by the output property of an InterfaceMUST be contained by the

Component that contains the Interface.

Reference: Section 6.4.5 on page 32

sbol3-12003 �X The Feature referenced by the nondirectional property of an Interface MUST be con-

tained by the Component that contains the Interface.

Reference: Section 6.4.5 on page 32

Rules for the CombinatorialDerivation class

sbol3-12101 �X The strategy property of a CombinatorialDerivation, if specified, MUST contain a URL

from Table 13.

Reference: Section 6.5 on page 33

sbol3-12102 �X If the strategy property of a CombinatorialDerivation contains the URL http://sbols.

org/v3#enumerate, then its hasVariableFeature property MUST NOT contain a

VariableFeaturewith an cardinality property that contains the URL http://sbols.org/

v3#zeroOrMore or the URL http://sbols.org/v3#oneOrMore.

Reference: Section 6.5 on page 33

sbol3-12103 �X A CombinatorialDerivationMUST NOT contain two or more hasVariableFeature prop-

erties that refer to VariableFeature objects with a variable property that contain the same

IRI.

Reference: Section 6.5 on page 33

sbol3-12104 F A CombinatorialDerivation’s template Component SHOULD contain one or more hasFeature

properties.

Reference: Section 6.5 on page 33

sbol3-12105 F If the prov:wasDerivedFrom property of a Component refers to a CombinatorialDerivation,

then the prov:wasDerivedFrom properties of each child Feature of the Component should

refer to a Feature in the template Component of the CombinatorialDerivation

Reference: Section 6.5 on page 33

sbol3-12106 F If the prov:wasDerivedFromproperty of a Collection refers to a CombinatorialDerivation,

then the prov:wasDerivedFrom properties of the objects that are referred to by its member

properties SHOULD also refer to the CombinatorialDerivation.

Reference: Section 6.5 on page 33

sbol3-12107 F If the prov:wasDerivedFrom property of a Component refers to a CombinatorialDerivation,

then the type properties of this Component SHOULD contain all IRIs contained by the type

properties of the template Component of the CombinatorialDerivation.

Reference: Section 6.5 on page 33

sbol3-12108 F If the prov:wasDerivedFrom property of a Component refers to a CombinatorialDerivation,

then the role properties of this Component SHOULD contain all IRIs contained by the role

properties of the template Component of the CombinatorialDerivation.

Reference: Section 6.5 on page 33

sbol3-12109 � If the prov:wasDerivedFrom property of a Component refers to a CombinatorialDerivation,

then for any Feature in the Component with a prov:wasDerivedFrom property referring to

a static Feature in the template Component of the CombinatorialDerivation, that derived

FeatureMUST have properties identical to those of the static Feature.

Reference: Section 6.5 on page 33

Section B Validation Rules Page 77 of 81

Section

sbol3-12110 F If the prov:wasDerivedFrom property of a Component refers to a CombinatorialDerivation,

then each static Feature in the template Component SHOULD be referred to by a

prov:wasDerivedFrom property from exactly one Feature in the derived Component.

Reference: Section 6.5 on page 33

sbol3-12111 F If the prov:wasDerivedFrom property of a Component refers to a CombinatorialDerivation,

then each variable Feature in the template Component SHOULD be referred to by a

prov:wasDerivedFrom property from a number of Feature objects in the derived Component

that is compatible with the cardinality property of the corresponding VariableFeature.

Reference: Section 6.5 on page 33

sbol3-12112 � If the prov:wasDerivedFrom property of a Component refers to a CombinatorialDerivation,

then for any SubComponent in the Component with a prov:wasDerivedFrom property refer-

ring to a variable Feature in the template Component of the CombinatorialDerivation, that

derived SubComponentMUST have an instanceOf property that refers to a Component speci-

fied by the corresponding VariableFeature. In particular, that Componentmust be a value

of the variant property, a member or recursive member of a Collection that is a value of the

variantCollection property, or a Component with a prov:wasDerivedFrom property that

refers to a CombinatorialDerivation specified by a variantDerivation property of the

VariableFeature.

Reference: Section 6.5 on page 33

sbol3-12113 � If the prov:wasDerivedFrom property of a Component refers to a CombinatorialDerivation

and the template Component of the CombinatorialDerivation contains Constraint objects,

then for any Feature contained by the Component that has a prov:wasDerivedFrom property

that refers to the subject or object Feature of any of the template Constraint objects, that

feature MUST adhere to the restriction properties of the template Constraint objects.

Reference: Section 6.5 on page 33

sbol3-12114 F If the prov:wasDerivedFrom property of a Component refers to a CombinatorialDerivation,

then for any Feature in the Component with a prov:wasDerivedFrom property referring to

a variable Feature in the template Component of the CombinatorialDerivation, then the

role properties of that Feature SHOULD contain all IRIs contained by the role properties

of the template Feature.

Reference: Section 6.5 on page 33

sbol3-12115 F Let the type-determining referent of a Feature be the Feature itself for a LocalSubComponent

or ExternallyDefined, the Component referred by the instanceOfproperty of a SubComponent

and the type-determining referent of the Feature referred to be a ComponentReference.

If the prov:wasDerivedFrom property of a Component refers to a CombinatorialDerivation,

then for any Feature in the Component with a prov:wasDerivedFrom property referring to

a variable Feature in the template Component of the CombinatorialDerivation, then the

type properties of the Feature’s type-determining referent SHOULD contain all IRIs con-

tained by the type properties of the template Feature’s type-determining referent.

Reference: Section 6.5 on page 33

Rules for the VariableFeature class

sbol3-12201 �X The IRI contained by the cardinality property of a VariableFeatureMUST come from

Table 14.

Reference: Section 6.5.1 on page 34

sbol3-12202 � The Feature referenced by the variable property of a VariableFeatureMUST be contained

by the template Component of the CombinatorialDerivation that contains the VariableFeature.

Reference: Section 6.5.1 on page 34

Section B Validation Rules Page 78 of 81

Section

sbol3-12203 � The memberproperties of a Collection that is referred to by the variantCollectionproperty

of a VariableFeatureMUST refer only to Component objects or to Collection objects that

themselves contain only Component or Collection objects, recursively.

Reference: Section 6.5.1 on page 34

sbol3-12204 � VariableFeature objects MUST NOT form circular reference chains via their variantDerivation

properties and parent CombinatorialDerivation objects.

Reference: Section 6.5.1 on page 34

Rules for the Implementation class

sbol3-12301 s Each prov:wasDerivedFrom property of an Implementation MUST refer to a Component

that contains a description of the intended nature of the actual object indicated by the

Implementation.

Reference: Section 6.6 on page 36

sbol3-12302 s All prov:wasDerivedFrom properties of an ImplementationMUST refer to non-conflicting

Component descriptions.

Reference: Section 6.6 on page 36

sbol3-12303 s If the built property of an Implementation is set, then the Component it refers to MUST be a

faithful description of the actual object indicated by the Implementation.

Reference: Section 6.6 on page 36

Rules for the Model class

sbol3-12501 s The IRI contained by the source property of a ModelMUST specify the location of the model’s

source file.

Reference: Section 6.8 on page 37

sbol3-12502 s The IRI contained by the language property of a ModelMUST specify the language in which

the model is encoded.

Reference: Section 6.8 on page 37

sbol3-12503 s The language property of a ModelMUST contain a URL from Table 15 if it is well-described by

this URL.

Reference: Section 6.8 on page 37

sbol3-12504 F The language property of a Model SHOULD contain a URL that refers to a term from the EDAM

ontology.

Reference: Section 6.8 on page 37

sbol3-12505 s The IRI contained by the framework property of a ModelMUST specify the modeling frame-

work of the model.

Reference: Section 6.8 on page 37

sbol3-12506 s The framework property of a ModelMUST contain a URL from Table 16 if it is well-described

by this URL.

Reference: Section 6.8 on page 37

sbol3-12507 F The framework property SHOULD contain a URL that refers to a term from the modeling

framework branch of the SBO.

Reference: Section 6.8 on page 37

Section B Validation Rules Page 79 of 81

Section

Rules for the Attachment class

sbol3-12801 s The source property of an AttachmentMUST specify the location of the model’s source file.

Reference: Section 6.10 on page 39

sbol3-12802 s The IRI contained by the format property of an AttachmentMUST specify the file type of the

attachment.

Reference: Section 6.10 on page 39

sbol3-12803 F The format property of an Attachment SHOULD contain a URL that refers to a term from the

EDAM ontology.

Reference: Section 6.10 on page 39

sbol3-12804 s The size property, if specified, MUST indicate file size in bytes.

Reference: Section 6.10 on page 39

sbol3-12805 s The hash property, if specified, MUST be a hash value for the file contents represented as a

hexadecimal digest.

Reference: Section 6.10 on page 39

sbol3-12806 s The hashAlgorithm, if specified, MUST be the name of a hash algorithm used to generate the

value of the hash property.

Reference: Section 6.10 on page 39

sbol3-12807 F The hashAlgorithm property of an Attachment SHOULD be a hash name String from the

IANA Named Information Hash Algorithm Registry, of which sha3-256 is currently RECOM-

MENDED.

Reference: Section 6.10 on page 39

sbol3-12808 �X If the hash property is set, then the hashAlgorithmMUST be set as well.

Reference: Section 6.10 on page 39

Rules for the prov:Activity class

sbol3-12901 F An prov:Activitywith a type from Table 20 SHOULD NOT have child prov:Usage objects

that have prov:hadRole properties from Table 20 other than the same URL or the URL of the

preceding stage given in Table 21.

Reference: Section A.1.1 on page 57

sbol3-12902 F If an prov:Activityhas a typeproperty with a value from Table 20, then every child prov:Association

SHOULD have a prov:hadRole property with the same value.

Reference: Section A.1.1 on page 57

Rules for the prov:Usage class

sbol3-13001 F If a prov:Usagehas a prov:hadRoleproperty with a value from Table 20, then its prov:entity

property SHOULD refer to an object of the corresponding type in Table 21.

Reference: Section A.1.2 on page 58

Rules for the om:Measure class

sbol3-13401 F If a om:Measure includes a type property, then exactly one of the IRIs that this property

contains SHOULD refer to a term from the systems description parameter branch of the SBO.

Reference: Section A.2.1 on page 61

Section B Validation Rules Page 80 of 81

Section

Rules for the om:Unit class

sbol3-13501 F If both of the name property and om:label properties of a om:Unit are non-empty, then they

SHOULD contain identical Strings.

Reference: Section A.2.2 on page 62

sbol3-13502 F If both of the description property and om:comment properties of a om:Unit are non-empty,

then they SHOULD contain identical Strings.

Reference: Section A.2.2 on page 62

Rules for the om:Prefix class

sbol3-14201 F If both of the name property and om:label properties of a om:Prefix are non-empty, then

they SHOULD contain identical Strings.

Reference: Section A.2.9 on page 64

sbol3-14202 F If both of the description property and om:comment properties of a om:Prefix are non-

empty, then they SHOULD contain identical Strings.

Reference: Section A.2.9 on page 64

Section B Validation Rules Page 81 of 81

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1000
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.10000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (ISO Coated v2 \(ECI\))
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 8.503940
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

