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Abstract

Following earlier work on the neuroevolution of deliberative
behaviour to solve increasingly challenging tasks in a two-
dimensional dynamic world, this paper presents the results
of extending the original system to a three-dimensional rigid
body simulation. The 3D physically based setting requires
that a successful agent continually and deliberately adjust its
gait, turning and other motor control over the many stages
and sub-stages of these tasks, within its individual evaluation.
Achieving such complex interplay between motor control and
deliberative control, within a neuroevolutionary framework,
is the focus of this work. To this end, a novel neural architec-
ture is presented and an incremental evolutionary approach
used to bootstrap the locomotive behaviour of the agents.
Agent morphology is fixed as a quadruped with three de-
grees of freedom per limb. Agent populations have no ini-
tial knowledge of the problem domain, and evolve to move
around and then solve progressively more difficult challenges
in the environment using a tournament-based co-evolutionary
algorithm. The results demonstrate not only success at the
tasks but also a variety of intricate lifelike behaviours being
used, separately and in combination, to achieve this success.
Given the problem-agnostic controller architecture, these re-
sults indicate a potential for discovering yet more advanced
behaviours in yet more complex environments.

Introduction
Living systems exhibit a large variety of coordinated activi-
ties at many different scales. We find homeostasis, locomo-
tion, learning, group and social behaviours throughout the
natural world. Since the earliest days of Artificial Life, a
defining ambition has been to understand how to engineer
systems that exhibit some of these complex behaviours, ei-
ther to solve problems or to understand the underlying prin-
ciples that gave rise to them in nature (Langton, 1989).

The specification of a model requires assumptions to be
made concerning the degree to which its most basic units
and the rules governing their behaviour are able to act as
reliable proxies for their natural analogues. The granularity
of a system has a direct impact on both its speed and its
potential to accurately mimic nature, and on the strength of
conclusions about the natural world based on phenomena
observed to emerge from interactions within it.

The Dimensionality of Virtual Environments

Simulations of living systems have covered a broad range
of abstraction but typically aim to exhibit behaviours at the
level above that specified in the model’s design. When build-
ing animat simulations that focus on interactions recognis-
able at the human scale, such as moving around, fighting
and environmental manipulation, one of the key distinctions
between designs is the physicality in which agents operate,
specifically the choice between 2D and 3D environments.
A two-dimensional world abstracts simulations away from
the natural physical domain. Agents in these flat environ-
ments generally do not have to solve any complex physi-
cal control problems (Channon and Damper, 1998), as con-
trollers are able simply to signal directions in which to move
or turn the agent. Such models can encourage early emer-
gence of more complex composite behaviours but preclude
the development of novel motor control which may later al-
low for a richer interaction between agents and their envi-
ronments. Two-dimensional simulations have not tended to-
ward clearly displaying the prodigal physical interaction ob-
served in nature, whether or not complex (simulated) non-
physical interactions have evolved. This can be attributed,
at least in part, to the fundamental rigidity and paucity of
physical actions in such environments.

By contrast, having three-dimensional articulated bodies
in a 3D world provides for much greater intricacy in how
agents can interact with their environment and each other.
Agents must begin to construct a coordinated motor pat-
tern that results in basic directional motion before richer be-
haviours can develop as composites of these lower-level pat-
terns. The specific characteristics of the environment are im-
plicitly included in the performance of these motor patterns,
and this couples agents to their environment. This coupling
is crucial, together with the coupling of brain and body, to
two key principals of embodied cognition: “first that cog-
nition depends upon the kinds of experience that come from
having a body with various sensorimotor capacities, and sec-
ond, that these individual sensorimotor capacities are them-
selves embedded in a more encompassing biological, psy-
chological and cultural context” (Rosch et al., 1991). Re-



cent trends reinforce this point of view, highlighting the im-
portance of morphology and soft materials in the embodied
loop (Pfeifer et al., 2014).

In terms of the ongoing ambition to evolve advanced
life-like behaviour, both 2D and 3D approaches have been
fruitful. For example, using 2D non-articulated agent bod-
ies, early work by Yaeger showed (in a 3D environment)
the emergence of complex collective behaviour (Yaeger,
1993); Channon demonstrated the first candidate synthetic
open-ended evolutionary system using an agent-based (2D)
world (Channon and Damper, 1998); and Robinson et al.
(2007) evolved agents capable of reactive and deliberative
behaviours in novel and dynamic environments.

In 3D the inherent complexities of articulated 3D phys-
ical form refocused work on the problems of motor con-
trol and locomotion: difficulties that had been largely ab-
stracted away in 2D models. The seminal work by Sims
(1994) remains an exemplar to the present day. Subsequent
research has made incremental steps from this point, in-
cluding demonstrating realistic co-adapted behaviours us-
ing just general purpose neurons (Miconi and Channon,
2006), making use of a human-specified syllabus of reac-
tive locomotion-based tasks (Lessin et al., 2013) and us-
ing Novely Search (Lehman and Stanley, 2008) to evolve
a range of gaits for a fixed morphology robot (Cully and
Mouret, 2015), but continues to focus primarily on locomo-
tion alone, leaving more complex behaviours aside.

General Approach of this Work
This work constitutes a first attempt to combine the in-
cremental neuroevolution of reactive and deliberative be-
haviours with the neuroevolution of a 3D agent’s motor con-
trol. Our overarching aim is the incremental evolution of
sophisticated behaviours, for the population to overcome in-
creasingly complex challenges in the agents’ environment
over evolutionary time.

The challenge is difficult because deliberative behaviour
will be limited by necessary performance in motor con-
trol. An incremental approach can take this subtask-
interdependency into account and prevent loss or lack of
evolutionary gradient early in evolution. However, Stanton
and Channon (2013) found that care is required when de-
signing such incremental steps, as changing selection pres-
sures too rapidly or too slowly can, respectively, cause evo-
lution to lose gradient or over-fit to the current challenge.
That work also demonstrated that it is necessary to revisit
earlier incremental steps in order to prevent the loss of
evolved abilities and therefore to find general solutions.

There is then a question of how to implement deliberative
processing alongside physical control in a single controller.
Deliberative planning systems learn a state-based action pol-
icy in order to select the best next state given a set of avail-
able actions. In contrast, flexible control of 3D motion re-
quires a continuous-time closed-loop control system to keep

physical variables within operational parameters. Also, for
locomotive behaviours, a self-generating oscillation within
the controller or body–controller action loop is necessary to
achieve a reliable gait.

The requirements of each of these control systems is fun-
damentally different; it is difficult to design an architec-
ture that can effectively learn the two different problems.
The choice is between either an architecture that is general
enough to be capable of both episodic categorisation and
time-based close-coupled motor control, or a combination
of the two architectures each tailored to a specific part of the
problem and integrated elsewhere. In this work we opt for
the latter, as a pragmatic step toward a more general archi-
tecture.

Hypothesis
The present work examines the following hypothesis: that
it is possible to produce reactive, deliberative behaviours in
three-dimensional virtual creatures using a general evolu-
tionary paradigm to optimise an implementation of the hy-
brid neural architecture detailed below. The “River Cross-
ing” (RC) task devised by Robinson et al. (2007) is used
as the baseline reactive–deliberative problem. This task is
adapted by the addition of a requirement of physical mo-
tor control in 3D, and the complete problem against which
agents are tested is hereafter referred to as the 3D River
Crossing or 3D RC task.

The remainder of this paper presents details of the 3D RC
task, the agent and its hybrid neural architecture, and the
evolutionary system, before reporting qualitative and quan-
titative results and our conclusions. It provides an existence
proof that demonstrates the sufficiency and overall success
of the design.

Experimental Design
The main contribution of this paper is the novel fusion of
multiple neural architectures, each addressing different as-
pects of the 3D RC task, in order to enable the incremen-
tal evolution of agents that achieve the full task. This sec-
tion of the paper introduces the environment and physical
model and then describes the hybrid neurocontroller in de-
tail, making reference to the inputs and outputs defined by
the agent–environment relationship. Finally, the evolution-
ary algorithm is described in terms of the parameters of the
neural architecture, and the experimental set-up is outlined.

Environment and Physical Model
The environment for the evolutionary problem is a modified
version of the RC task first used in Robinson et al. (2007). In
this task, agents exist and move around in a discrete, 20×20
bounded grid world. Each grid cell has attributes which
can affect the agent: traps kill it, as does water (drown-
ing); grass is neutral and stones can be picked up and put
down. Stones can be placed on water, enabling bridges to



be built. The final attribute, resource, is the agent’s goal.
The RC task is an incrementally difficult challenge, with
a staged introduction of difficulties. By collecting the re-
source, agents progress through more complicated environ-
ments, eventually arriving at a 20×n-cell river, where n is
the increasing width of the river and thus the difficulty of
the bridge-building task.

Figure 1: Agent morphology and environment, showing re-
source in yellow, river in blue, traps in red and stones in grey.

The 3D RC environment used in this work extends the
2D RC environment. Agents have a symmetrical quadruped
body plan (figure 1) comprised of a torso (dimensions
1.0×1.0×0.2 cell-widths), four upper limbs (0.5×0.2×0.2),
four lower limbs (0.5×0.2×0.2) and four small sensors
(0.05×0.05×0.05). The upper limbs are attached to the torso
at each lower corner with a 2-axis constraint. The constraint
limits the range of motion of the upper limb relative to the
torso, to π

2 radians around the vertical axis, and π radians
around the line lying tangent to the agent’s torso in the plane
of the torso. Lower limbs are connected to upper limbs via
a knee constraint which limits the range of motion between
the two parts to π

2 radians around the y-axis. The sensors are
attached with fixed constraints to the centre of each of the
four faces of the agent’s torso perpendicular to the ground
plane. The physical simulator used was Open Dynamics
Engine (ODE) version 0.13.1, with friction pyramid approx-
imation for contact response (µ = 10.0) between agent and
the ground plane, universal ERP of 0.2 and CFM of 5×10−5.

In order to bootstrap the evolution of locomotive be-
haviour, two additional levels were added at the start of
the incremental RC task. The first level distributes “food”
around the RC world. This confers additional fitness on
agents once collected. The second level (“dash”) has only
one occupied cell, containing the resource. These levels to-
gether promote locomotive behaviour, and ultimately opti-
mise the behaviour for speed of movement.

The difficulty of the RC environment is increased incre-
mentally across six progressively more challenging levels.
An agent’s fitness is incremented from zero by 100 each
time it successfully finds the resource, a requirement to pro-
gresses to the next level.

• Level 1: Food. The RC environment contains only cells
with the resource (one cell) and food (probability 1/20 per

cell). Interaction with a food cell removes the food from
the environment and increments the agent’s fitness by 1.

• Level 2: Dash. This level contains only a single resource
cell which agents must discover.

• Level 3: Stones and Traps. This level contains eight traps
and twenty stones, as well as the target resource.

• Level 4: Easy bridge. This level is as level three but with
a river of width 1 crossing the terrain.

• Level 5: Medium bridge. As level four, but width 2.

• Level 6: Hard bridge. As level five, but width 4.

On completion of level 6, agents are returned to level 1 and
can continue to accumulate fitness until the time limit of 10
simulated minutes is reached, when evaluation is terminated.

Neural Architecture

A neural architecture capable of solving the 2D RC task was
a major contribution of Robinson et al. (2007) and is ex-
tended in the present work. In the 3D RC task, an agent’s
neurocontroller transforms sensory inputs into torque values
for motor control, which gives rise to behaviour in the phys-
ically simulated environment. The control system must pro-
duce directed locomotive behaviour in the quadruped, and
change locomotive behaviour over the stages and sub-stages
of the RC task, according to external (sensory) and internal
(neural) state.

The hybrid neural architecture (figure 2) integrates the
outputs of the RC world decision network (DN) and the dif-
fusive shunting model (SM) with the inputs of the physi-
cal network (PN), and then use this information to pilot the
agent through the world by affecting the operation of the
agents’ pattern generator (PG) neurons.

The Decision Network. The DN architecture follows the
design laid out in Robinson et al. (2007). The DN is a stan-
dard feedforward neural network which takes inputs repre-
senting the attributes of the agent’s current location in the
RC world, and an input indicating whether or not the agent
is currently carrying a stone. The hidden layer contains four
neurons which sum over the inputs and apply a hyperbolic
tangent activation function. The output layer sums over the
hidden layer, applies a hyperbolic tangent activation func-
tion and tests at the thresholds -0.3 and 0.3; output neurons
have three possible values: -1, 0 or 1, and determine the
iota values used in the SM. These iota values indicate the
saliency of the attributes in the environment, so the DN out-
puts iota values for each attribute (resource, stone, water and
trap) except grass (which has an iota value of zero).



Figure 2: Neural architecture. Attributes at the agent’s
position (g=grass, r=resource, s=stone, w=water, t=trap,
c=carrying flag) determine inputs to the Decision Network
[1]. The Shunting Model constructs a landscape using iota
values output by the DN [2] (P=pickup action, R=resource,
S=stone, W=water, T=trap) and the locations of objects [3].
The SM activity landscape is interpolated [4] at the posi-
tions of the animat’s four sensors [5], and these values fed
to the Physical Network [6]. PN outputs are fed to the Pat-
tern Generator Network [7], which outputs to neuromotor
controllers. Links in red are genetically specified.

The Shunting Model. The SM was first used as a novel
approach to motion planning by Meng and Yang (1998).
The approach uses the homomorphism between the vary-
ing external environment and the intrinsic dynamics of the

architecture to achieve route generation (planning) without
explicitly searching over possible paths. It is a generalisa-
tion of the potential field approach of Glasius et al. (1995),
historically an evolution of the model of neural connectiv-
ity first proposed in Hodgkin and Huxley (1952). The SM
uses a locally-connected, topologically-organised network
of neurons to propagate desirable states across the entire net-
work of transitions in the space. This produces an activity
landscape with peaks at target states and valleys at config-
urations to avoid. One of the most common implementa-
tions of the SM is the additive model (Grossberg, 1988),
which sacrifices gain control (and thus, stability) for sim-
plicity. This model defines the following differential equa-
tion to model the diffusion of input values across the state
landscape:

dxi
dt

= −Axi +
∑
j∈Ni

wij [xj ]
+ + Ii (1)

where each neuron in the SM corresponds to one discrete
cell in the environment; xi is the activation of neuron i,
taken to be zero outside of the environment; A is a passive
decay rate; Ni is the receptive field of i; wij is the connec-
tion strength or weight from neuron j to neuron i, specified
to be set by a monotonically decreasing function of the Eu-
clidean distance between cells i and j (zero outside of the
neighbourhood); the function [x]+ is max(0, x); and Ii is
the external input to neuron i.

This technique was used in Robinson et al. (2007) to
model the state space of the RC problem by directly rep-
resenting the discrete RC world in the configuration of the
SM, with each cell’s receptive field set to be the eight cells
in its Moore neighbourhood, within which all wij = w, and
external input Ii determined by the attributes present in cell i
and the saliency (iota value) for those attributes as computed
by the DN. Neural activations propagate from external in-
put I according to the local connectivity of the neurons, and
the entire network can be considered a diffusive model that
produces landscapes in which following positive gradients
leads to target states. With well-chosen constant multipliers,
this method exhibits no undesirable dynamics and has been
found to be considerably versatile in a variety of subsequent
works, including those of Borg et al. (2011) and Luo et al.
(2014).

In this work, we simplify and clarify the setting of of de-
cay rate and scales for distance (or weights) and iota values.
A stable solution (xnewi = xi for all i) to equation 2 is a sta-
ble solution (ẋ = 0) to equation 1. We absorb the constantA
into the scales for iota values and distances, and set and limit
weights and activation according to neighbourhood size (8)
and maximum iota value (maxI=15), resulting in equation
3.



xnewi =
1

A

∑
j∈Ni

wij [xj ]
+ + Ii

 (2)

Following the computation of external inputs I by the
DN, we zero SM activations and then iterate equation 3 fifty
times to allow activity to propagate and stabilise across the
20×20 array of SM neurons.

xnewi = min

1

8

∑
j∈Ni

[xj ]
+ + Ii, maxI

 (3)

The Physical Network. The PN controls the agent’s be-
haviour in the world. It receives as inputs the SM activations
(interpolated) at the positions of the four sensors located on
the four sides of the agent’s torso. Since the SM represents
a neural quantisation of the continuous landscape in which
the sensors move, a single value is calculated for each sensor
using a bilinear interpolation of the SM’s activity values at
the four points around the relevant sensor:

a(x, y) = f [bxc , byc](1− {x})(1− {y}) + (4)
f [dxe , byc] {x} (1− {y}) +
f [bxc , dye](1− {x}) {y}+
f [dxe , dye] {x} {y}

where a(x, y) is the interpolated activity at (x, y) ∈ R2,
f [i, j] is the SM activation at the discrete point (i, j) ∈ Z2

and {x} denotes the fractional part of x.
These four sensor values are normalised (divided by

maxI) and then fed into the PN, together with four val-
ues that indicate which sensor has the maximum value. The
PN operates as a standard feedforward neural network where
hidden nodes receive a weighted sum of the inputs. The hid-
den layer uses a hyperbolic tangent activation function in
order to maintain negative values. The output layer uses a
sigmoid activation function.

The Pattern Generator Network. The PG is a set of pre-
evolved oscillatory neural circuits which are modelled on
the networks of leaky integrators presented in Beer and Gal-
lagher (1992) and used for locomotor pattern generation
in many subsequent works, including Reil and Husbands
(2002) and Stanton and Channon (2013). The circuits them-
selves are three-neuron motifs evolved to produce 1Hz sinu-
soidal oscillations from an output node in the presence of an
input signal, and to be quiescent otherwise. Each complete
PG network has a set of five identical motifs, initially iso-
lated, which receive input from the PN via a set of weights
and send their outputs to the final stage of the agent’s con-
troller. The neurons comprising these motifs are simple

continuous-time leaky integrators, with behaviour governed
by the following equations:

τi
dAi
dt

= −Ai +
n∑
j=0

wijOj (5)

Oi = tanh(
αi −Ai

2
) (6)

where Ai is the activation of a neuron i, Oi is the output of
neuron i, wij is the weight from neuron j to neuron i, αi
is the bias of neuron i and τi is the time-constant of neuron
i. At each iteration of the update algorithm (dt = 0.01s),
equation 5 computes the change in the activity of the ith neu-
ron for all neurons, and then equation 6 computes the output
value for all neurons. It is this output value that is used by
the neuromotor controllers.

To generate the original motif, a population of 1000 ran-
domly initialised three-neuron networks was created with
weights, time-constants and biases defined by a real-valued
genotype. These networks were evaluated against a fitness
function which measured the match between the desired fre-
quency and the output response by summation of the unde-
sirable (non-target) frequencies found in the frequency do-
main after application of Fourier transform. Networks were
simulated for 10 seconds, twice. Once with a high input
and a target frequency of 1Hz, and once with no input and
a target quiescent state. Through three-genome tournament
selection, strong candidates were used to generate new, mu-
tated members of the population using the same evolutionary
parameters as the general system described below.

Neuromotor Controllers. In the final stage, 12 motor
controllers (one for each degree of freedom in the agent’s
morphology) receive the outputs of the PG network via a
weighted sum and sigmoid activation function. These motor
controllers implement a proportional-derivative (PD) con-
troller, as used by Reil and Husbands (2002), which takes
network outputs to be target angles within each joint’s range
of motion and applies a torque to the joint according to the
following formula:

T = ks(θd − θ)− kdθ̇ (7)

where T is the torque applied to the joint, ks is the spring
constant, kd is the damping constant, θd is the target angle
and θ is the current angle. In this work, ks = 0.25 and kd =
0.175 were found to produce stable action at joints. This
method has the advantage of relieving the neurocontroller of
the problem of balancing an agent’s weight against the force
of gravity.

Evolutionary System
A steady-state evolutionary algorithm was used, in which a
population of 150 agents are evaluated in groups of three and
the least-fit individual replaced by a mutated single-point
crossover of the fitter two.



Figure 4: Bridge building in action. In (a) the agent has
already started to build a bridge and is returning to collect
another stone. In (b) the agent has just dropped a stone and
is beginning to turn around. In (c) the agent is carrying a
stone to drop on the water. In (d) the agent has completed
the bridge and is about to reach the resource. The figure also
illustrates the SM activity landscape superimposed on the
3D RC world and shows the changes to this landscape due
to the updated iota values that occur as the agent’s state, and
thus DN inputs, vary.

Genetic Representation. Individuals’ neurocontrollers
are represented as an array of floating-point values. The sec-
tions are laid out as arrays of weights for each network stage
as outlined above: the DN input–hidden and hidden–output
weights, the PN input–hidden and hidden–output weights,
the PG interneuron weights and the PG–motor weights.

Results
Twenty runs were carried out, each for 106 tournaments.

Qualitative Results. In those runs scoring highly on the fi-
nal level of the task, intricate and diverse behaviours can be
observed as the agents progress through their environmental
challenges. In any single species, several different locomo-
tive strategies can be observed depending on whether the
agent is near or far from its target, and whether there are ob-
stacles in the way. In the case of a “clear run”, agents often
gallop (figure 3) toward the target, whereas if more care-
ful movement is required agents will progress more slowly,
making time to avoid unexpected sensory conditions (i.e.
traps and water). In both cases, directed control is observed
as agents update their heading whilst engaging in locomo-

tion to remain aligned with the target. Agents also often dis-
play a distinct “turning” behaviour which will engage if the
agent is beyond some angular threshold away from facing
its target. Figure 4 shows an example evolved agent solving
3D RC task.

One of the most lifelike behaviours to be observed is
avoidance: due to the non-spreading negative values in
the activity landscape agents can unexpectedly encounter
a highly negative region. In this case, agents will often
crouch and spring back from the hazard, minimising the
chance of falling on it due to imprecise control or previ-
ous momentum. Finally, in the case where no activation
is present on the landscape around the agent, i.e. all di-
rections are of equal saliency, agents engage in a form of
random walk reminiscent of similar exploratory behaviour
that can be seen in many simple animals. The tempta-
tion to interpret these actions in a human or animal con-
text is ever present–agents can seem to exhibit surprise on
encountering an unexpected danger, confusion if trapped
in a mediocre part of the landscape and even happiness
as they gallop toward the resource. The reader is encour-
aged to view example behaviours by watching the video at
http://eprints.keele.ac.uk/rt4eprints/file/2093/.

Quantitative Results. The fitness scores of the three
agents in each tournament were collected. Figure 5 shows
the progress of the population from a typical run, in solving
each level of the 3D RC task. Table 1 shows an overview of
the performance of the entire system by aggregating and ex-
amining the results of the final 1000 tournaments from each
run. From this table, it can be seen that every run was able to
complete levels one and two in at least 80% of the final 1000
tournaments, and 95% of runs were able to complete level
three to this standard too. Performance fell sharply against
the bridge-building challenges, although 10% of runs were
still able to complete level four in at least 80% of evalua-
tions. At the hardest level of the task, 65% of runs achieved
at least 1 evaluation which was able to complete level 6, and
20% of runs achieved at least 20% evaluations able to com-
plete level 6. Figure 6 shows this aggregate data for all runs
and levels and makes clear the spread of success across the
whole problem in the experiment; a clear divide can be seen
between the first half and latter half of the problem.

When examining the progression of the evolutionary algo-
rithm in individual runs, it can be seen that the first level of
the problem is solved early on in the search–typically after
only 10000 tournaments. Success at level two soon follows
as the problems are similar. Success at the third level (traps
and stones, but no river) also occurs early on, in most runs.
Levels four, five and six cause a longer delay in the search,
and solutions do not appear at all in some runs even though
the earlier levels have been solved in similar time to other,
successful runs. When solutions do occur, there is often a
delay between the solution for level four and later levels.

http://eprints.keele.ac.uk/rt4eprints/file/2093/


Figure 3: Example of a “galloping” locomotive behaviour. Time axis is left to right, top to bottom.

Figure 5: Progress of a typical run over one million tourna-
ments. The graph shows the percentage of evaluations suc-
cessful at completing each level of the 3D RC task, averaged
over 1000 tournaments.

Level
Cover

>0% 20% 40% 60% 80%

1 (Food) 100% 100% 100% 100% 100%
2 (Dash) 100% 100% 100% 100% 100%
3 (Traps) 100% 100% 100% 100% 95%

4 (River 1) 85% 85% 85% 30% 10%
5 (River 2) 85% 65% 50% 20% -
6 (River 4) 65% 20% - - -

Table 1: Proportion of runs with >0%/20%/40%/60%/80%
of their final 1000 tournaments successful at level
1/2/3/4/5/6 of the 3D RC task.

Figure 6: Success rates of all runs. The graph shows the per-
formance of each 1000000-tournament run, evaluated from
the final 1000 tournaments (3000 evaluations) of each run as
the number of these evaluations that successfully completed
each level of the 3D RC task. Runs are sorted in descending
order for each level of the task.

Conclusions and Future Work

This work demonstrates that a standard evolutionary algo-
rithm is sufficient to find parameters for a hybrid neural
architecture comprised of loosely-coupled continuous-time
and discrete-time neurons to produce reactive and delibera-
tive behaviour in 3D, rigid-body virtual creatures requiring
motion control.

By covering the range of task complexity over evolu-
tionary time, species experience an evolutionary pressure



(no loss of gradient) whilst still being able to consolidate
progress already made. This incremental approach allows
species to first develop a locomotive behaviour, and then to
use and adapt this ability to explore the space of solutions to
the bridge-building river-crossing task.

This work has also shown that a hybrid approach to neuro-
controller design that includes a generalised oscillatory com-
ponent (in this case, an evolved network of leaky integrators)
is sufficient to produce agents that exhibit task-dependent
behaviours including locomotion, turning and avoidance.
The architecture is also able to optimise the strategy for
long-term deliberative planning in the 3D RC world at the
same time.

The integration of a deliberative decision network and
a mechanism to generate reactive behaviour in 3D virtual
creatures, via a shunting landscape model, was successful
and shows promise for future, more complex work in this
area. The limitations of the model are due to the simplicity
of the decomposition of the world into the agents’ phenom-
enal space–there is no reason this relationship could not be
integrated.

In order to generalise the applicability of this work to
a broad range of tasks, it will be necessary to remove the
problem-specific aspects of the neural architecture’s design.
A first step could be to make the distinction between the DN,
SM and PN less explicit. Ultimately a single neural type and
architecture, with genetically specified parameters, would be
the most general design.

Other possibilities for increasing the coherence in the sen-
sorimotor loop include finer-grained distinctions in the envi-
ronment, for example iota values for boundary conditions,
and the addition of noise to smooth behavioural transitions.

Associated Content
A video showing an agent completing a full run of tests is
available at: http://eprints.keele.ac.uk/rt4eprints/file/2093/
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