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Abstract  

 

Understanding the intra- and extracellular proteins involved in the development of the 

corticospinal tract (CST) may offer insights into how the pathway could be regenerated 

following traumatic spinal cord injury.   Currently, however, little is known about the proteome 

of the developing corticospinal system.  The present study, therefore, has used quantitative 

proteomics and bioinformatics to detail the protein profile of the rat CST during its formation in 

the spinal cord.  This analysis identified increased expression of 65 proteins during the early 

ingrowth of corticospinal axons into the spinal cord, and 36 proteins at the period of heightened 

CST growth.  A majority of these proteins were involved in cellular assembly and organisation, 

with annotations being most highly associated with cytoskeletal organisation, microtubule 

dynamics, neurite outgrowth, and the formation, polymerisation and quantity of microtubules.  In 

addition, 22 proteins were more highly expressed within the developing CST in comparison to 

other developing white matter tracts of the spinal cord of age-matched animals.  Of these 

differentially expressed proteins, only one, stathmin 1 (a protein known to be involved in 

microtubule dynamics), was both highly enriched in the developing CST and relatively sparse in 

other developing descending and ascending spinal tracts.  Immunohistochemical analyses of the 

developing rat spinal cord and fetal human brain stem confirmed the enriched pattern of stathmin 

expression along the developing CST, and in vitro growth assays of rat corticospinal neurons 

showed a reduced length of neurite processes in response to pharmacological perturbation of 

stathmin activity.  Combined, these findings suggest that stathmin activity may modulate axonal 

growth during development of the corticospinal projection, and reinforces the notion that 

microtubule dynamics could play an important role in the generation and regeneration of the 

CST. 
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Abbreviations:  

 

CNS – central nervous system 

CST – corticospinal tract 

CRL – crown-rump length  

FA – formic acid 

FDR - false discovery rate 

IPA – ingenuity pathway analysis 

iTRAQ – isobaric tag for relative and absolute quantitation 

MeCN - acetonitrile 

P – postnatal day 

PBS - phosphate buffered saline  

PFA – paraformaldehyde   

RT – room temperature 

SCI – spinal cord injury 

TBS - Tris- buffered saline  

TEAB - tetraethylammonium bromide  

wg – weeks of gestation 
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1. Introduction 

 

The mammalian corticospinal tract (CST) is the longest efferent axonal projection in the 

central nervous system (Stanfield, 1992; Sakai and Kaprielian, 2012).  Apart from the substantial 

distance that CST axons must grow, upper motor neurons from layer V of the (mostly primary  

motor, supplementary motor, premotor and somatosensory, but also widespread regions of the 

parietal and frontal) cortex extend axons that must navigate a complex route to reach their targets 

in the anterior horns of the spinal cord.  From the cortex, CST axons must first course caudally 

through the corona radiata and capsula interna to reach the brain stem, where a majority of these 

axons decussate in the medullary pyramids (Donkelaar et al., 2004).  Thick bundles of 

fasciculated corticospinal axons must then continue a contralateral projection within well defined 

white matter tracts of the spinal cord until they reach a target segment of the cord, where, after a 

delay, they mostly synapse with an appropriate interneuron in the ventral grey matter that then 

synapses with a lower motor neuron. 

At the protein level, formation of the CST is achieved via the intracellular responses of 

growing axons to signals in the extracellular environment.  Though the proteins involved in the 

precise growth of corticospinal axons from the cortex to targets in the spinal cord are not fully 

understood, it is generally thought that a process of chemoattractive / chemorepulsive signalling 

(via extracellular proteins) and catastrophe / rescue responses (via intracellular proteins) all play 

a role.  Initially, extracellular expression of semaphorins appear to have both chemoattractive 

and chemorepulsive properties that facilitate the exiting of corticospinal fibers from the cortex 

(Bagnard et al., 1998).  From here, the expression of netrins may provide an attractive signal in 

the extracellular environment to facilitate the caudal growth of CST axons into the diencephalon 

(Richards et al., 1997; Metin et al., 1997).  At the medullary pyramids, the absence of inhibitory 

proteins (or an inhibitory glial barrier), as well as the presence of netrin related proteins, are both 

thought to allow / facilitate CST axons to cross the midline (Joosten and Gribnau, 1989; Finger 

et al., 2002).   From this point, however, much less is known about how CST neurons navigate 

their course down the spinal cord itself. 

In contrast to human corticospinal neurons (which mostly traverses the lateral CST), the 

development of a vast majority (~95%) of rat CST axons proceeds caudally through the spinal 



5 

cord along the ventral wedge of the dorsal columns.  Anatomically, the first axons of the rat CST 

to enter the spinal cord appear in the upper cervical region at the day of birth.  These axons 

subsequently extend into upper thoracic regions by postnatal day (P) 3, and reach the most distal 

sacral regions by P9 (Donatelle 1977; Schrayer and Jones, 1982).  At the molecular level, the 

extracellular expression of the protein L1/CAM appears crucial for maintaining the fasciculation 

of CST fibers as they grow, and to the eventual functioning of the CST.   However, L1/CAM is 

not thought to be involved in stimulating pathfinding of the tract caudally (Dobson et al., 2001).  

Similarly, the presence of ephrin B3 or B4 ligand-receptor complexes along the spinal cord 

midline are considered important for maintaining the bilateral segregation of corticospinal axons 

along the length of the spinal cord (Yokoyama et al., 2001).  However, these proteins appear 

more important for maintaining the laterality of CST axons, rather than actual CST formation 

(Harel and Strittmatter, 2006). 

Little, in fact, is known about the intracellular and extracellular proteins that are 

important to the growth of corticospinal neurons caudally down the spinal cord.  This is 

unfortunate due to the fact that regeneration of the CST within the spinal cord is of great 

therapeutic importance.  Each year, there are an estimated 6,500 cases of spinal cord injury (SCI) 

in Western Europe, and between 100,000-200,000 incidences worldwide (Lee et al., 2014).  One 

hope is that by identifying key intracellular and extracellular proteins involved in the 

development of the corticospinal system, the regeneration of the mature CST might be enhanced 

by manipulating these developmental constituents. 

The aim of this study, therefore, was to conduct a comprehensive quantitative proteomics 

analysis of the rat CST during its formation.  By conducting both a spatial and temporal 

comparison of the developing CST with the more mature CST and other white matter tracts of 

the developing spinal cord, we show that stathmin 1 - a major intracellular regulator of 

microtubule dynamics -is highly enriched in the developing CST .  Also, we have shown that 

manipulating stathmin activity in vitro significantly reduces neurite growth from embryonic rat 

cortical neurons.  Such findings suggest that stathmin may have an important role in the growth 

of corticospinal neurons during development, and that future work clarifying the function of 

developmentally regulated proteins in the CST may provide insights into how axonal growth 

along the spinal cord may be facilitated.   
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2. Materials and methods 

 

All in vivo procedures were approved by the Animal Welfare & Ethical Review Body 

(AWERB) at Keele University, and were carried out under the licensed authority of the UK 

Home Office. All adult Sprague Dawley rats were housed in a 12-12 h light–dark environment, 

and given free access to food and water throughout the study. 

 

2.1 Tissue extraction for mass spectrometry and western blot analysis 

 

Animals were given an overdose of pentobarbitone anaesthetic (via i.p. injection) and 

transcardially perfused with ice-cold sterile 0.9% sodium chloride (saline). The spinal cord was 

quickly removed and placed in a small Petri dish filled with fresh ice-cold saline. To identify 

differences in the protein profile of the CST temporally (i.e., to see what proteins are highly 

expressed in the developing vs more mature CST), tissue was collected from the CST in the 

cervical spinal cord of rats at P 0, 3, 14 and 28 (Fig. 1A).  To identify differences between the 

protein profile of the developing CST and other developing  tracts of the spinal cord, tissue was 

separately collected from the CST  and two other white matter tracts of the spinal cord  from P3-

aged animals (a period of heightened corticospinal development) (Fig. 1B). 

For a temporal analysis, dissected tissue from each animal (8 animals per time point) was 

homogenised individually in 4 volumes (w/v) of 6M urea, 2M thiourea, 2% 3-((3-

cholamidopropyl)dimethylammonio)-1-propanesulfonic acid (CHAPS)  and 0.5% sodium 

dodecyl sulphate (SDS)  using a pellet pestle (30 strokes with the pestle, left on ice for 10 

minutes, followed by another 30 strokes with the pestle).  The extracts were sonicated briefly and 

left on ice for 10 minutes, followed by centrifugation at 13,000 g for 10 minutes at 4°C to pellet 

any insoluble material.  For mass spectrometry analysis, aliquots of extracted proteins from each 

sample group were pooled and precipitated in 6 volumes of ice-cold acetone overnight at -20°C.  

The remaining extracts were stored un-pooled at -80°C for western blotting.  The acetone 

precipitates were pelleted by centrifugation at 13,000 x g for 10 minutes at 4°C and the 

supernatant was carefully removed and discarded.  The pellets were resuspended in 500mM 
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triethylammonium bicarbonate (TEAB).  The protein concentration in each sample was 

determined using a Bradford protein assay. 

For a spatial analysis, tissues dissected from the corticospinal, lateral, and ventral white 

matter tracts at P3 were relatively small.  To minimise sample loss during extraction, tissue from 

each region (8 animals per region) was pooled prior to extraction. The pooled tissue was then 

extracted, prepared and stored, as described above for the temporal analysis. 

 

 

2.2 Sample preparation for mass spectrometry analysis 

 

Reduction, alkylation, and digestion steps were performed using the reagents and 

recommendations detailed in the isobaric tags for relative and absolute quantitation (iTRAQ) 

labelling kit.  The extracts were digested with trypsin overnight at 37°C, followed by iTRAQ 

labelling by incubating each tag with 85 μg of total protein from one of the samples (as per 

manufacturer’s instructions; ABSciex, Foster City, CA, USA). 

 

 

2.3 Cation exchange fractionation 

 

The combined 4-plex iTRAQ labelled peptides were concentrated (vacuum concentrator, 

ThermoSavant, ThermoFisher Scientific, Waltham, MA, USA) and resuspended in 0.6 mL load 

buffer Ascx (10 mM KH2PO4, 20% acetonitrile (MeCN), pH 3.0) and sonicated.  The pH was 

measured and adjusted, where necessary, to 3.0 with 0.5 M H3PO4.  The peptides were then 

separated by strong cation exchange chromatography on a PolySulfoethyl A column (200 mm x 

2.1 mm, 5 µm, 200 nm pore size, PolyLC, Columbia, MD, USA).  The column was washed with 

100% buffer Ascx at 1ml min-1 for 22 min to allow the optical density (OD) on the ultraviolet 

(UV) chromatogram to return to baseline.  A gradient of 0-50% Bscx (10 mM KH2PO4, 20% 

MeCN, 500 mM KCl, pH 3.0) was applied for 20 min, 50-100% Bscx for 3 min, followed by 

100% Bscx for a further 3 min to wash the column, before re-equilibration in 100% Ascx for 

another 11 min.  Fractions (0.5 mL) were collected every 30 sec.  The UV chromatogram was 

inspected and fractions pooled to give 7 fractions (temporal comparison) and 11 fractions (spatial 
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comparison) of similar peptide concentration across the elution profile. The pooled fractions 

were then concentrated in a vacuum concentrator and resuspended in 0.1% FA.  They were then 

desalted on C18 spin columns (PepClean C18 spin columns, ThermoFisher Scientific, Waltham, 

MA, USA) using the manufacturer’s instructions, eluting in 20 µl 70% MeCN. The elution 

solvent was removed by vacuum concentration and the fractions resuspended in 20 µl 0.1% 

formic acid (FA) prior to mass spectrometric analysis.  

 

 

2.4 Mass spectrometry analysis  

 

Each fraction (10 µl) was then analysed by nanoflowLC-ESI-MSMS.  The peptides were 

separated using a nanoLC Ultra 2D plus loading pump and nanoLC AS-2 autosampler 

chromatography system (Eksigent, Redwood City, CA, USA), using a PepMap RSLC column 

(75 µm x 15 cm) and an Acclaim PepMap100 trap (100 µm x 2 cm) (ThermoFisher Scientific, 

Waltham, MA, USA).  After washing the peptides on the trap column for 20 min at 5 µL min-1, 

the trap was switched in line with the column and the peptides eluted with a gradient of 

increasing MeCN from 95% buffer A (98% H2O, 2% MeCN, 0.1% FA), 5% buffer B (2% H2O, 

98% MeCN, 0.1% FA) to 65% buffer A, 35% buffer B over 60 min, then to 50% buffer A, 50% 

buffer B over a further 20 min, before increasing the concentration of buffer B to 95% over a 

further 10 min.  The column was then washed with 95% buffer B before re-equilibration in 95% 

buffer A.  A flow rate of 300 nL min-1 was employed.  The eluent was sprayed into a TripleTOF 

5600 tandem mass spectrometer (ABSciex, Foster City, CA, USA ), using a NANOSpray III 

source, and analysed in Information Dependent Acquisition (IDA) mode, performing 250 ms of 

MS followed by 100 ms MSMS analyses on the 20 most intense peaks with a charge state of +2 

to +5.  Parent (MS) ions were accepted with a mass tolerance of 50 mDa and MSMS was 

conducted with a rolling collision energy (CE) inclusive of preset iTRAQ CE adjustments.  

Analysed parent ions were then excluded from analysis for 13 seconds after 3 occurrences.  The 

raw data file generated was subsequently analysed using ProteinPilot 4.5 software with the 

ParagonTM and ProGroupTM algorithms (ABSciex) against the Swiss-Prot database (accessed 1st 

July 2013 and 1st Dec 2013 for the temporal and spatial experiments, respectively).  Searches 

were performed using the preset iTRAQ settings in ProteinPilot with trypsin as the cleavage 
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enzyme and MMTS modification of cysteines, ‘Bias’ and ‘Background’ corrections selected, and 

with a ‘Thorough ID’ search effort.  The database search was restricted to a rat only search 

(containing 15686 proteins on the July 2013 search and 15662 on the Dec 2013 search).  Finally, 

detected proteins were reported with a Protein Threshold (Unused ProtScore (conf)) > 0.05, 

using those peptides autoselected by ProteinPilot. In each case the accession number for the 

protein designated the ‘representative winner protein’ by the ProGroup algorithm is given.  

Accession numbers for all proteins that were combined into a group are available in the 

ProteinPilot raw data files, and these will be made available, via ftp access, upon request.  A 

False Discovery Rate (FDR) analysis was also performed using ProteinPilot software. 

 

 

2.5 SDS-polyacrylamide gel electrophoresis and western blotting  

  

Protein extracts were prepared by boiling in SDS loading buffer (2% SDS, 5% 2-

mercaptoethanol, 62.5 mM Tris-HCl, pH 6.8), for 2 min.  Proteins were subjected to SDS-PAGE 

using 15% polyacrylamide gels and transferred to nitrocellulose membranes by western blotting.  

After blocking non-specific sites with 4% powdered milk solution, membranes were incubated 

with a rabbit anti-stathmin primary antibody (Proteintech Europe, Manchester, UK, 

catNo:11157-1-ap):  diluted to 1:1000 in phosphate buffered saline (PBS) containing 1% fetal 

bovine serum, 1% horse serum and 0.1% bovine serume albumin (BSA).  Antibody reacting 

bands were visualised by development with peroxidase-labeled swine anti-rabbit IgG (1 µg/mL 

in dilution buffer) and a chemiluminescent detection system (West Pico, Pierce Biotechnology, 

Rockford, IL, USA). In control experiments the secondary swine anti-rabbit IgG antibody did not 

show any reactivity against corticospinal tract extracts (data not shown). 

 

 

2.6 Stathmin immunohistochemistry in the developing rat spinal cord 

 

To characterise the expression of stathmin in the spinal cord throughout the period of 

CST development, rats at P0, P3, P5, P7, P10, and P14 stages of development were given an 

overdose of pentobarbitone anaesthetic (via i.p. injection) and transcardially perfused with ice-
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cold 4% PFA.  The cervical spinal cord was quickly removed and placed in fresh ice-cold PFA 

overnight. Specimens were subsequently transferred to a 30% sucrose solution in tris-buffered 

saline (TBS), and allowed to fully sink in the solution at RT.  The specimens were placed on a 

sliding, freezing microtome, and 40 µm cross sections cut through full length of the cervical 

enlargement of the spinal cord.  Sections were stored in 24-well plates containing TBS with 

sodium azide. 

For immunohistochemistry, sections were first subjected to antigen retrieval by 

incubation in sodium citrate buffer (10 mM sodium citrate, 0.05% Tween 20, pH 6.0) at 95°C for 

30 minutes. Sections were then rinsed 3 times in TBS, and incubated in a blocking solution 

containing 3% goat serum / TBS for 1 hour at RT.  The blocking solution was subsequently 

replaced with a rabbit anti-stathmin primary antibody, diluted to 1:100 (Proteintech Europe, 

Manchester, UK, catNo:11157-1-ap) in TBS containing 1% goat serum, and left to incubate 

overnight at RT.  The following day, sections were rinsed 3 times in TBS followed by a 2 hour 

incubation in a 1:200 dilution of anti-rabbit 596 fluorescent secondary antibody (Molecular 

Probes, Eugene, OR, USA).  Subsequently, sections were rinsed 3 times in TBS, mounted onto 

slides, and coverslipped using Vectashield Hardmount mounting media (Vector Laboratories 

Inc., Burlingame, CA, USA).  Fluorescent images were acquired using a Hamamatsu digital 

CCD camera attached to a Nikon Eclipse 80i microscope (Nikon Corporation, Tokyo, Japan). 

Confocal images were acquired using a Leica SP5 confocal microscope with a 63x oil immersion 

objective. 

 

 

2.7 Stathmin immunohistochemistry in the human fetal brain 

  

The postmortem brain specimens used here are part of the large and versatile Zagreb 

Collection (Judaš et al., 2011; Krušlin et al., 2014).  Brain specimens were obtained either from 

medically indicated or spontaneous abortions, or subsequent to the death of prematurely born 

infants at several clinical and pathological departments of the University of Zagreb, School of 

Medicine.  The procedure for the human autopsy and collection of postmortem brain samples has 

been approved by the Institutional Review Board and the parental consent for postmortem 

examination was obtained in all cases.  The fetal age was estimated on the basis of crown-rump 
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length (CRL, in mm) and pregnancy records, and expressed as weeks of gestation (wg). In 

addition, the correlation of maturational parameters (CRL, body mass, pregnancy records, and 

sonographic examination) revealed no evidence of growth retardation or malformations. 

Specimens in which subsequent postmortem analysis revealed macroscopical or microscopical 

pathological changes were excluded from the study. 

The entire brains were fixed by immersion in 4% paraformaldehyde (PFA) in 0.1 M PBS 

(pH 7.4). Subsequently, tissue blocks were embedded in paraffin wax (Histowax, Jung, 

Nussloch, Germany) and serially cut in 15 µm thick sections.  After deparaffinization in xylene, 

the section were collected in 70% ethanol, put in 50% and then in 5% ethanol, then put in 

distilled water, and finally in a staining solution which consisted of 1 part 0.5% cresyl-violet in 

distilled water mixed with 4 parts of distilled water (Nissl stain).  Upon achieving adequate 

staining, the section were placed in distilled water, then passed through a graded alcohol series 

and finally in ether-ethanol solution (2 parts of ether and 1 part of 100% ethanol), rinsed with 

xylene, and mounted.  While Nissl staining was used to delineate cytoarchitectonic boundaries 

and cellular compartments, adjacent histological sections were processed with an indirect 

immunohistochemical method using a rabbit anti-stathmin polyclonal (Proteintech Europe, 

Manchester, UK, catNo:11157-1-ap) in final dilution 1:1600 and biotinylated secondary anti-

rabbit antibody from Vectastain ABC kit (Vector Laboratories Inc., Burlingame, CA, USA).  

After dewaxing in alcohol, rehydration in PBS and microwave-retrieval, the sections were pre-

treated for 20 minutes in 0.3% hydrogen peroxide in the 3:1 mixture of methanol and redistilled 

water, washed for 10 minutes in the PBS, and immersed for 2 hours in the blocking solution 

(PBS containing 3% BSA and 0.5% Triton X-100, both from Sigma, St. Louis, MO, USA) at RT 

to prevent non-specific background staining. Sections were then incubated with anti-stathmin for 

18 hours at 4oC, washed again, and further incubated with secondary anti-rabbit antibodies 

diluted in blocking solution (1:200) for 1 hour at RT (Vectastain ABC kit, Vector Laboratories, 

Burlingame, CA, USA).  Subsequently, sections were incubated in Vectastain ABC reagent 

(streptavidin-peroxidase complex) for 1 hour at RT, rinsed in PBS for 10 minutes, while the 

peroxidase activity was visualized with Ni-DAB (nickel-enhanced 3,3-diaminobenzidine kit; 

Sigma, St. Louis, MO, USA).  Sections were dehydrated in a graded series of alcohol, cleared in 

xylene and cover-slipped with Histomount (National Diagnostic, Atlanta, GA, USA). Negative 

controls were included in all immunohistochemical experiments either by replacing it with an 
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inappropriate secondary antibody or by omitting the secondary antibody.  No immunolabeling 

was detected in control sections (data not shown). 

For the analysis of STATHMIN expression we used previously published microarray 

database (Kang et al., 2011) available from the Gene Expression Omnibus (GEO accession GSE 

25219, Human Exon 1.0 ST Array). The dataset is composed of 1340 brain tissue samples 

encompassing the entire human lifespan (age range 5 PCW – 82 years) and covering 16 brain 

regions (for details see Kang et al., 2011). Partek Genomic Suite 6.6 (Partek Inc., St. Louis, MO, 

USA) was used to normalize data and summarize probe set and transcript clusters. Affymetrix 

CEL files were imported into Partek Genomic Suite using default Partek settings. Analysis was 

done on the probe sets designated as ‘core’ and ‘extended’ using Partek Genomic Suite 6.6 and R 

Statistical Software Package (http://www.r-project.org). The median of all probesets within one 

gene was used as the estimate of gene expression. A gene was considered to be expressed if the 

log2-transformed expression value in the analyzed sample was ≥ 5.5. 

 

 

2.8 Primary cortical neuron culture and drug-treatment 

 

Embryonic day 17 (E17) time-mated rats (day of plugging = E0) were given an overdose 

of pentobarbitone anaesthetic via i.p. injection.   Whole E17 brains were dissection in ice cold 

Hanks Balanced Salt Solution (HBSS), and the approximate area of the emerging motor cortex 

(Miller, 1987;  Schreyer and Jones, 1988) dissected free and the meninges were carefully 

removed.  The cortical tissue was placed in ice cold Dulbeco’s Modified Eagle’s medium 

(DMEM)-based culture media containing 10% fetal calf serum, 1% B27, and 1% penicillin-

streptomyacin with fungizone, and mechanically dissociated.  Cells were resuspended in fresh 

media to a concentration of 3.7 million cells / mL, and drop cultures formed by placing a 10 µL 

sample of the cell suspension (~37,000 cells) onto glass coverslips coated with poly-D-lysine in a 

24 well culture plate.  Cells were left to settle for 10 minutes, and then the culture wells were 

filled with 0.5 mL of culture media containing either 1, 4, 16, or 32 µM of the p38α / p38β MAP 

kinase inhibitor, SB203580 (InvivoGen), dissolved in dimethyl sulfoxide (DMSO), or culture 

media with DMSO added as a vehicle control. This particular inhibitor was chosen because it has 

been shown to affect the microtubule destabilization activity of stathmin in PC12 cells by 



13 

attenuating its phosphorylation (Mizumura et al., 2006).  Three coverslips were prepared for each 

culture condition, and the cells grown in an incubator set at 37°C, 5% CO2 and 95% humidity for 

72 hours.  Subsequently, the culture media was aspirated off and the cells fixed in an acetone: 

methanol (1:1) solution. After 10 minutes this solution was aspirated off and the wells allowed to 

dry for a further 10 minutes.  The cells were then rinsed 3 times in TBS, and incubated in a 

1:1000 dilution of mouse anti-βIII tubulin (Covance; to visualize the morphology of neurons), 

and 1:200 dilution of rabbit anti-stathmin 1 (Proteintech) in TBS for 2 hours.  The coverslips 

were then rinsed 3 times in TBS, followed by a 1 hour incubation in a 1:200 dilution of goat anti-

mouse 488, and goat anti-rabbit 594 secondary antibodies.  Cell nuclei were counterstained with 

4',6-diamidino-2-phenylindole (DAPI) for 15 minutes just before finally rinsing the cells 3 times 

in TBS and mounting onto slides with hydromount media (National Diagnostics). 

To quantify outgrowth of neuronal processes, an image was taken through a 10x magnification 

lens of the centre of each drop culture.  All freely growing βIII tubulin processes in the field of 

view were measured from the cell soma outward using the Nikon NIS elements software 

program (Nikon).  Measures of neurite length were exported to Microsoft Excel, and one-way 

analysis of variance (ANOVA) performed (to assess for any differences within the groups) 

followed by a Tukey’s post hoc analysis (to identify significant differences).  

 

 

3. Results 

 

 

3.1 Proteins associated with cellular assembly and organisation are enriched during 

development of the rat CST  

 

To identify temporal expression patterns, tissue was collected from the CST (i.e., the 

ventral most portion of the dorsal funiculus; Fig. 1A) of rats at P 0, 3, 14 and 28.   These 

represented early (P0) and mid (P3) developmental stages, as well as fully-developed stages (i.e., 

P14 and P28) where the tract has fully extended the length of the spinal cord.  The adult (P28) 

tissue contained particularly high levels of insoluble material (most likely to be myelin), making 

total protein extraction unreliable for quantitative mass spectrometry analysis from this group.  
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However, the use of tissue from P14 - when the CST has projected the length of the rat spinal 

cord (Nagashima, 1994) - allowed for a comparison against proteins expressed during axonal 

growth of the CST from P0 through P3 with those found in the fully extended CST.  The 

precision of the dissection was examined by western blotting with an antibody against the 

nuclear pore protein, nucleoporin 160 (NUP160).   NUP160 was undetectable in the CST 

extracts at P0 and P3; thus suggesting that contamination of the CST extract with cellular 

material from surrounding grey matter was negligible at these time points (Supplementary file, 

Fig. 1). The faint detection of NUP160 at P14 and stronger detection at P21 correlates well with 

the known increase in myelination at this time and suggests that oligodendrocytes were present 

in material that was dissected from the fully-grown CST, as expected. 

To identify and compare relative expression levels of proteins found in these tissues, we 

conducted a 3-plex iTRAQ mass spectrometry experiment (see methods).  This approach 

detected 1,545 proteins, with a 5% local FDR threshold. The full protein and peptide summaries 

are presented as separate tabs in Supplementary Table 1. After discarding any proteins that were 

identified with less than three peptides, a 1.25 fold change cut-off filter was applied to the 

remaining proteins. Using these criteria, the iTRAQ analysis identified the increased expression 

of 65 proteins in early (P0) and 36 proteins in mid stages (P3) of CST formation, in comparison 

to the fully-grown CST (P14) (Supplementary Table 2).  It was assumed that a number of 

proteins with increased expression at P14, compared to P0 and P3, may to be related to the 

presence of oligodendrocytes and so we chose to focus analysis only on those that were 

increased in expression at P0 and P3 (compared to P14). 

In order to gain some understanding of the molecular and cellular functions that the 

proteins with increased expression in the CST at P0 and P3 are involved in, bioinformatics 

analysis was undertaken using Ingenuity Pathway Analysis software (IPA; Qiagen, Redwood 

City, CA, USA, www.qiagen.com/ingenuity).  Functional annotations that were assigned a p-

value >0.05 were removed from the list.  The highest-ranking category that was associated with 

the up-regulated proteins at both P0 and P3 was “cellular assembly and organisation”, and the 

highest ranking annotations within this category were related to cytoskeletal organisation, 

microtubule dynamics and neurite outgrowth, in both cases (Table 1). Canonical pathway 

analysis revealed that semaphorin signalling in neurons was the most enriched pathway at both 

P0 and P3, compared to P14 (Table 2). This finding supports previous observations that 
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semaphorin signalling is important for growth and pathfinding of corticospinal fibres as they exit 

the cortex (Bagnard et al., 1998). 
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Up at P0 vs P14      

       

Name    p-value  Number of proteins 

 

Cellular Assembly and Organization 

 

Top 5 annotations in this category: 

neuritogenesis 

microtubule dynamics 

quantity of microtubules 

organization of cytoskeleton 

formation of cellular protrusions 

 

 

8.23E-09 - 3.01E-02 

 

32 

Cellular Function and Maintenance  8.23E-09 - 3.01E-02 29 

RNA Post-Transcription Modification 1.90E-08 - 1.14E-02 11 

Cell Death and Survival  3.09E-08 - 2.93E-02 38 

Molecular Transport  1.16E-07 - 3.01E-02 21 

       

Up at P3 vs P14      

       

Name    p-value  Number of proteins 

 

Cellular Assembly and Organization 

 

Top 5 annotions in this category: 

Growth of neurites 

Outgrowth of neurite 

microtubule dynamics 

organization of cytoskeleton 

formation of cellular protrusions 

 

 

9.23E-09 - 3.16E-02 

 

25 

Cell morphology   2.36E-08 - 3.64E-02 19 

Cellular Function and Maintenance 3.67E-07 - 3.40E-02 22 

Cell Death and Survival  8.54E-06 - 3.40E-02 27 

Cell Development   2.04E-05 - 3.40E-02 19 

 
 

Table 1: Molecular and cellular functions of proteins that were increased in 

expression during development of the CST. Ingenuity Pathway Analysis software (IPA) 

was used to assign molecular and cellular functional annotations to the proteins that were 

increased in expression at P0 and P3 compared to P14.   The top five, significant (i.e. p-

value <0.05), annotations are shown for each comparison. 
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Up at P0 vs P14      

       

Name    p-value  Ratio 

Semaphorin Signalling in Neurons 1.58E-06 
 

5/54 (0.093) 

EIF2 Signalling 
 

7.65E-05 
 

6/201 (0.03) 
 

14-3-3-mediated Signalling 
 

1.11E-03 
 

4/121 (0.033) 

Protein Ubiquitination Pathway  
 

3.09E-03 5/270 (0.019) 

Germ Cell-Sertoli Cell Junction Signalling  3.19E-03 4/169 (0.024) 
 

       

Up at P3 vs P14      

       

Name    p-value  Ratio 

Semaphorin Signalling in Neurons 8.08E-06 4/54 (0.074) 
  

Axonal Guidance Signalling 
 

  4.24E-03 
 

5/483 (0.01) 
 

Acute Phase Response Signalling  
 

8.64E-03 
 

3/181 (0.017) 
 

Angiopoietin Signalling  
 

 1.19E-02 
 

2/75 (0.027) 
 

Ephrin B Signalling 
 

  1.51E-02 2/82 (0.024) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Canonical pathways that were enriched in the up-regulated proteins 

during  development of the CST: Ingenuity Pathway Analysis software (IPA) was 

used to determine the canonical pathways of proteins that were increased in 

expression at P0 and P3 compared to P14.  The top five, significant (i.e. p-value 

<0.05), annotations are shown for each comparison. Ratio refers to the number of 

differentially expressed proteins that map to each pathway divided by the total number 

of proteins in the particular pathway.   
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Figure 1:  Diagram illustrating regions of the spinal cord used to identify temporally 

and spatially specific protein expression in the developing spinal cord.  (A) An unstained, 

bright field image of a cross section through the adult rat spinal cord illustrating the position 

(arrows) of the corticospinal tract (CST) in rats.  (B) To detail protein expression in the CST 

as it develops, protein was extracted from the CST (red shaded area) at P0, P3, P14 and adult 

rats and analysed using iTRAQ.  Note that, unlike the human corticospinal projection, the 

CST fibers in rats predominantly traverse the ventral segment of the dorsal column of the 

spinal cord.  To compare spatial difference in protein expression in developing white matter 

tracts of the spinal cord, protein was extracted from the CST (red shaded area) of P3 rats, and 

compared to the proteins expressed in the lateral (green shaded area) and ventral (blue shaded 

area) white matter tracts of the same animals. 

 

3.2 Stathmin is highly enriched in the developing rat CST compared to other developing 

descending and ascending spinal tracts  

 

To identify protein expression that is enriched in the developing CST compared to other 

developing descending and ascending spinal tracts, tissue from the lateral and ventral white 

matter regions of the spinal cord were extracted from age matched animals (all at P3) for 

comparison with tissue extracted from the CST 

itself (Fig. 1).  This spatial study took 

advantage of the ongoing development of the 

upper (i.e., cervical - thoracic) portion of the 

CST at postnatal day 3 to identify proteins that 

are specifically associated with development of 

the CST and no other spinal cord tracts.  The 

presence of a nuclear pore protein, NUP160, 

was undetectable in these extracts by western 

blotting; suggesting that contamination of these 

extracts with cellular material from the 

surrounding grey matter and/or 

oligodendrocytes was negligible 

(Supplementary Fig. 1).  This approach, under 

the same conditions used for the temporal 

study, detected 2,585 proteins, with a 5% local 

FDR threshold. The full protein and peptide 
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Figure 2: Western blot analysis verifies the differential expression of stathmin during 

development of the rat corticospinal tract. Protein extracts were subjected to SDS-PAGE, 

transferred to nitrocellulose by electroblotting and probed with antibody against stathmin. 

After visualization using a chemiluminescent system, the integrated density of the bands was 

measured using ImageJ software (public domain program, National Institutes of Health, 

Bethesda, MD, USA, rsb.info.nih.gov/ij/). In order to overcome possible variability in density 

due to sample loading, stathmin/total protein ratios were calculated by integrated density 

measurement of the stathmin-immunoreactive bands on the blot and a horizontal slice of the 

gel (prior to western blotting), that was stained with Coomassie Blue  (i.e. P0 = 0.94 (S.D. 

0.35, P3 = 0.78 (S.D. 0.22), P14 = 0.10 (S.D. 0.04) and adult = 0.06 (S.D. 0.02). Statistical 

significance of the differential expression was calculated using one-way analysis of variance 

(ANOVA) after logarithmic transformation of the data.** = p-value 0.001 to <0.01. Error 

bars represent standard deviation (S.D.). 

 summaries are given as separate tabs in Supplementary Table 1. 

As with the temporal analysis, a cut off was applied to proteins that were detected in the 

three regions of the developing P3 spinal cord;  i.e., those that were identified using less than 

three peptides, or  having less than a 1.25 fold change were excluded from further analyses.  

Using these criteria, the iTRAQ analysis identified 22 proteins that were more highly expressed 

within the CST, compared to the other developing white matter tracts of the spinal cord that were 

analysed (Supplementary Table 2).  Bioinformatics analysis of these proteins, using IPA 

software, revealed that “cellular assembly and organization” was again the highest-ranking 

association of this dataset to biological functions. The highest-ranking annotations within this 

category were related to the 

formation, polymerisation and 

quantity of microtubules. 

Of the 22 proteins that 

were enriched in the CST 

compared to other white matter 

tracts, only one, stathmin 1 - a 

protein known to be involved 

in microtubule dynamics - also 

had a highly enriched pattern of 

expression during CST 

development in the temporal 

analysis.  A multiple sequence 
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Figure 3:  Immunohistochemical staining of the postnatal rat cervical spinal cord reveals 

high levels of stathmin expression in the corticospinal tract (CST) during the 

developmental period.  At P0 stathmin staining initially appears in a very limited region 

(potentially representing the emerging CST) of the cervical cord, in the most ventral wedge of 

the dorsal columns (arrows).  At P3 and P5 intense stathmin immunoreactivity appears 

restricted to the CST (arrows) with relatively low levels appearing in the surrounding grey 

matter or other white matter tracts .  By P7 and P10 stathmin staining appears less intense in the 

CST than earlier developmental time points, though its expression was still only notable in the 

CST (arrows).  By P14, stathmin staining was greatly reduced in the CST of the cervical cord, 

(arrow), and appeared to match that seen in all regions of the surrounding cord. Scale = 100µm. 

alignment with rat stathmin isoforms 1, 2, 3 and 4a confirmed that the sequence of the detected 

peptides were unique to the stathmin 1 isoform (Supplementary file, Fig. 2).  This differential 

temporal expression of stathmin in the CST at P0 and P3, compared to P14 and adult tissue, was 

verified by western blot analysis (Fig. 2). 

The spatial and 

temporal expression of 

stathmin in the developing 

spinal cord was further 

examined by 

immunohistochemical 

analysis of cross sections 

from the cervical region of 

the rat spinal cord 

throughout the first two 

weeks of development (Fig. 

3).  This revealed a high 

level of stathmin expression 

during ongoing 

development, from P3 to 

P10, which was almost 

exclusively restricted to the 

dorsal CST (Fig. 3).  In 
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Figure 4: Immunohistochemical staining of the fetal human brain reveals high levels of 

stathmin expression in the developing corticospinal system of humans. (A) Cross section 

through the ventral portion of the human midbrain and brain stem, at 12th gestational week 

(gw). Fine stathmin staining of the perpendicularly cut fibers passing through the medullary 

pyramidal tracts (arrows in A) are visible. (B) Similarly to A, a cross section through the fetal 

brain stem (at the level of pons and midbrain tegmentum) at 16th gw reveals fibrillary stathmin 

expression within the transpontine corticospinal (arrows) and other corticofugal fiber tracts.  

(C and D) Paramediosagittal section through the brain stem of the human telencephalon at 

18th gw showing clear, heavy fibrillary staining of stathmin in the cerebral peduncules as well 

as the transpontine cortico-fugal tract (arrows in C and D) down to the level of the medullary 

pyramids. 

agreement with iTRAQ and western blot analysis (Fig. 2), stathmin expression in the fully 

developed CST at P14 was no longer detectable (Fig. 3).  

 

 

3.3 Stathmin expression is enriched along the corticospinal projection through the developing 

human brain  

 

A restricted pattern of 

stathmin expression was also 

detected in transverse and 

sagittal sections of the fetal 

human brain stem (Fig. 4).  

Cross sections through the 

brain stem at 12 gw revealed 

intense staining for stathmin in 

the CST at the level of the 

cerebral peduncles (Fig. 4A).  

At 16 and 18 gw (Figs. 4 B-D) 

relatively high levels of 

stathmin expression could be 

seen in the CST portion of the 

cerebral peduncles and 
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transpontine-corticofugal system, in comparison to light or no staining in surrounding brain stem 

regions (e.g., the reticular formation and pons, respectively). Notwithstanding this restricted 

pattern of stathmin expression in the brain stem, the STMN1 gene is widely expressed in regions 

of the developing cerebellum, and diencephalon and telencephalon between 16 gw and birth 

(Supplementary Fig 3).  

 

 

3.4 Reduction of neurite length following pharmacological perturbation of stathmin activity in 

vitro 

 

In order to determine the importance of stathmin activity for neurite outgrowth, immature 

neurons from an approximate area of the developing rat motor cortex at E17 were grown in the 

presence of several concentrations of the p38α / p38β MAP kinase inhibitor, SB203580 (Han et 

al., 1994; Lee et al., 1994), alongside a vehicle control.  While there was no significant 

difference in the length of neurite processes established by corticospinal neurons grown in 

vehicle control containing media compared to those grown in either 1µM  or 4µM of SB203580, 

there were significantly sorter neurites established by neurons treated with either 16µM or 32µM  

(Fig. 5).  Interestingly, while cells grown in vehicle control containing media grew long smooth 

neuritic process that had few large branching points (arrows in Fig. 5A), cells grown in high 

concentrations of SB203580 had thick extensions of the cell membranes, with neurites 

containing many fine poorly formed beta-tubulin III positive extensions (arrow heads Fig. 5A). 

 

 

4. Discussion 

 

Through the use of quantitative proteomics, western blot analysis, and immunohistochemical 

characterizations, we have demonstrated that the expression of stathmin 1 (a phosphoprotein 

known to coordinate the assembly / disassembly of microtubules) is enriched in the CST during 

development of both the postnatal rat spinal cord and fetal human brain stem.  Additionally, this 

study has shown that perturbation of stathmin activity significantly affects process outgrowth 
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Figure 5:  Stathmin perturbation significantly affects neurite growth from embryonic 

rat cortical neurons grown in vitro.  (A) Immunohistochemical staining for beta III tubulin 

(green), stathmin (red) and DAPI (blue) of E17 rat cortical neurons grown in vehicle control 

containing media or 16 µM of SB203580.  While a number of long beta III tubulin+ processes 

were established by cells grown in vehicle control media, cells grown in the presence of high 

concentrations (16uM) of SB203580 showed short or no neurite growth.  Stathmin 

immunoreactivity appeared relatively similar in both conditions, with obvious staining in the 

cell soma and finer staining in most neurites. Viewed at a higher magnification (shown on 

right), cells grown in control media appeared to establish long smooth neurite processes 

(arrows), while those established by cells grown in the presence of SB203580 appeared 

jagged, with many fine projections protruding off principle processes (arrowheads) (B) 

Counts of the average neurite length (in µm) established by cells grown in control media, or 

in 1µM, 4µM, 16µM or 32µM of SB203580 (i.e. vehicle control = 37µm (S.E. 2.77), 1µM = 

43.81µm (S.E. 3.83), 4µM = 35.38µm (S.E. 3.15), 16µM = 8.21µm (S.E. 1.47) and 32µM = 

3.62µm (S.E. 1.23).  ANOVA analysis revealed significant difference within the groups, and 

a post hoc Tukey’s analysis indicated that cells treated with 16µM and 32µM SB203580 grew 

significantly shorter processes than cells in the control condition (** p< 0.01).  There was no 

statistical difference in the neurite length of cells grown in control conditions in comparison 

to cells treated with either 1µM or 4µM of the drug. Error bars represent standard error (S.E.). 
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from rat corticospinal neurons grown in culture.  Taken together, these findings suggest that 

stathmin activity is an important modulator of axonal growth during development of the 

corticospinal projection. 

 Stathmin has long been associated with various forms and the invasiveness of cancer 

(Roos et al., 1993; Schubart et al., 1996; Marklund et al, 1996; Bacquero et al., 2012) as well as 

the response of neurons to growth-related proteins (Doye et al., 1990).  While initial stathmin 

knockout studies in mice seemed to indicate that the protein had no notable effects on either 

neuronal development or tumor formation (Schubart et al., 1996), more detailed analysis 

indicated that stathmin deficient mice develop axonopathies in the spinal cord, primarily in 

motor tracts (Liedtke et al., 2002).  In addition, a stathmin-knockout Drosophila model revealed 

major peripheral motor dysfunction, and deficiencies in maintaining long distance peripheral 

projections (Duncan et al., 2013).   However, what effect stathmin activity might have on the 

development of the CST is yet not clear. 

 At present, it is known that stathmin coordinates the assembly and disassembly of 

microtubules in cells at various stages of maturation (Gavet et al., 2002), and that it may play a 

particularly crucial role in maintaining the microtubules of neurons during axonal growth 

(Duncan et al., 2013; Tortoriello et al., 2014).    The importance of microtubule dynamics in the 

formation of the CST is highlighted in the bioinformatics analysis conducted here on proteins 

found to be enriched in expression during development of the rat spinal cord at P0 and P3.   

Ingenuity Pathway Analysis (IPA) of these proteins showed that “cellular assembly and 

organisation” is the most enriched function assigned to all proteins differentially expressed in the 

developing CST, and that the highest ranking annotations within this category is cytoskeletal 

organisation, microtubule dynamics, neurite outgrowth, and the formation, polymerisation and 

quantity of microtubules.  However, some previous studies have also suggested that stathmin 

activity can negatively affect axonal growth.  Studies of the protein DOCK 7 (which is involved 

in establishing the polarity of neurons, and is exclusive to the formation of the axonal process of 

developing neurons) showed that it negatively affects stathmin activity and (through this 

mechanism) enhances the elongation of axons (Watabe-Uchida et al., 2006).  This work 

postulated that stathmin may be heavily involved in depolymerizing microtubules in axons, and 

that altering its activity may increase the sprouting of superfluous axonal branches.  The latter 

concept is supported by work showing that mice rendered deficient in pituitary adenylate 
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cyclase-activating polypeptide displayed high levels of stathmin production and an abnormal 

level of axonal projections in the dentate gyrus (Yamada et al., 2010).  The potential for stathmin 

activity to have a negative effect on the growth of neurites is reinforced by our culture study.  

Cells treated with 16 uM or 32 uM of the p38α / p38β MAP kinase inhibitor SB203580 (which 

affects the phosphorylation status of stathmin, but not the expression of the protein itself), 

displayed a significant reduction in neurite growth in comparison to cells grown in media 

containing vehicle control or 1uM or 4uM of the drug. 

 However, the view that stathmin activity only negatively effects the growth of axonal 

projections may be overly simplistic, and begs the question of why stathmin expression is so 

enriched in a long distant axonal projection like the CST during development.  Our 

immunohistochemical analysis of the developing spinal cord of the rat, shows that stathmin 

expression is particularly enriched in the CST during the principle period of its formation (i.e., 

P0-P10).  Similarly, stathmin staining of the fetal human brain at 12, 16 and 18 gw shows that 

stathmin is highly expressed, relative to surrounding areas), in the CST region of the upper and 

lower brain stem during a period of development. This period corresponds to the time when CST 

neurons project through these structures just before reaching the spinal cord (Donkelaar et al., 

2004). 

 One answer might be that a coordinated process of stabilisation and destabilisation, and 

not stabilisation alone, of microtubules may be essential for appropriate axonal development 

(Kurup et al., 2013).  The potentially complex role of stathmin activity in axonal growth has 

been highlighted in Drosophila, which shows that the STAI gene (the STMN equivalent in flies) 

encodes a protein that sequesters dimers of microtubules very near polymerizing microtubules 

(Duncan et al., 2013).  This position of the protein (between depolymerised and stabilized 

microtubules) suggests that it may be important for sequestering free microtubules for neurites to 

polymerise for growth (“axon rescue”), but may also be placed there to destabilize microtubules 

in aberrant or unwanted processes (“axon catastrophe”; Gardner et al., 2013; Chuckowree and 

Vickers, 2003) to recycle microtubules.  In this respect, it is interesting to note that neurites 

established by cells treated with high concentrations of SB203580 appear to have superfluous 

branches along with shorter neurites (Fig. 5).  An interesting possibility is that stathmin could 

perhaps be (both) destabilising microtubules too rapidly for long processes to be established 

while creating a greater pool of microtubules for neurites to form.  Previous work showing that 
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there is a relationship between increased expression of stathmin and schizophrenia, purportedly 

due to increased plasticity among neurons in the brain (Watabe-Uchida et al., 2006), would 

support such an explanation. 

 In the future, it will be important to fully understand the level of expression and function  

of stathmin in the adult central nervous system to determine its potential to play a positive or 

negative role during regenerative events , and if its manipulation may be an avenue to explore for 

increasing the regeneration of the CST after spinal cord injuries.  Recent studies in both 

Drosophila and mice have shown that microtubule destabilisation may be an essential part of the 

regrowth of axons after injury (Stone et al., 2012; Cho and Cavalli, 2012).   Though a great deal 

of effort has been placed on understanding the extracellular milieu surrounding injured spinal 

cord axons (e.g., Nogo, and L1; Cohen et al., 1998; Stein and Tessier-Lavigne, 2001; Wiencken-

Barger et al., 2004), the intrinsic growth potential of injured CST axons should also be assessed 

to determine if the intra-cellular mechanisms necessary to bring about appropriate axonal growth 

responses are in place for regeneration to happen (Harel and Strittmatter, 2006).  In this regard, 

the proteomic profiles identified in this study provide a useful resource for comparison against 

injury / regeneration models.  If the expression of intra-cellular proteins (such as stathmin) is 

significantly altered (relatively to that seen during development) after a spinal cord injury, then it 

seems plausible that severed corticospinal axons may not be able to coordinate microtubule 

dynamics - making a positive growth response either unlikely or aberrant, regardless of the 

extracellular milieu.   
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Figure legends 

 

Figure 1:  Diagram illustrating regions of the spinal cord used to identify temporally and 

spatially specific protein expression in the developing spinal cord.   

(A) An unstained, bright field image of a cross section through the adult rat spinal cord 

illustrating the position (arrows) of the corticospinal tract (CST) in rats.  (B) To detail protein 

expression in the CST as it develops, protein was extracted from the CST (red shaded area) at 

P0, P3, P14 and adult rats and analysed using iTRAQ.  Note that, unlike the human corticospinal 

projection, the CST fibers in rats predominantly traverse the ventral segment of the dorsal 

column of the spinal cord.  To compare spatial difference in protein expression in developing 

white matter tracts of the spinal cord, protein was extracted from the CST (red shaded area) of P3 

rats, and compared to the proteins expressed in the lateral (green shaded area) and ventral (blue 

shaded area) white matter tracts of the same animals. 

 

Figure 2: Western blot analysis verifies the differential expression of stathmin during 

development of the rat corticospinal tract. 

Protein extracts were subjected to SDS-PAGE, transferred to nitrocellulose by electroblotting 

and probed with antibody against stathmin. After visualization using a chemiluminescent system, 

the integrated density of the bands was measured using ImageJ software (public domain 

program, National Institutes of Health, Bethesda, MD, USA, rsb.info.nih.gov/ij/). In order to 

overcome possible variability in density due to sample loading, stathmin/total protein ratios were 

calculated by integrated density measurement of the stathmin-immunoreactive bands on the blot 

and a horizontal slice of the gel (prior to western blotting), that was stained with Coomassie Blue 

(i.e. P0 = 0.94 (S.D. 0.35, P3 = 0.78 (S.D. 0.22), P14 = 0.10 (S.D. 0.04) and adult = 0.06 (S.D. 

0.02).. Statistical significance of the differential expression was calculated using one-way 

analysis of variance (ANOVA) after logarithmic transformation of the data.** = p-value 0.001 to 

<0.01. Error bars represent standard deviation (S.D.). 

 

Figure 3:  Immunohistochemical staining of the postnatal rat cervical spinal cord reveals 

high levels of stathmin expression in the corticospinal tract (CST) during the 

developmental period.   

At P0 stathmin staining initially appears in a very limited region (potentially representing the 

emerging CST) of the cervical cord, in the most ventral wedge of the dorsal columns (arrows).  

At P3 and P5 intense stathmin immunoreactivity appears restricted to the CST (arrows) with 

relatively low levels appearing in the surrounding grey matter or other white matter tracts.  By 

P7 and P10 stathmin staining appears less intense in the CST than earlier developmental time 

points, though its expression was still only notable in the CST (arrows).  By P14, stathmin 

staining was greatly reduced in the CST of the cervical cord, (arrow), and appeared to match that 

seen in all regions of the surrounding cord. Scale = 100µm. 
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Figure 4: Immunohistochemical staining of the fetal human brain reveals high levels of 

stathmin expression in the developing corticospinal system of humans.  

(A) Cross section through the ventral portion of the human midbrain and brain stem, at 12th 

gestational week (gw). Fine stathmin staining of the perpendicularly cut fibers passing through 

the medullary pyramidal tracts (arrows in A) are visible. (B) Similarly to A, a cross section 

through the fetal brain stem (at the level of pons and midbrain tegmentum) at 16th gw reveals 

fibrillary stathmin expression within the transpontine corticospinal (arrows) and other 

corticofugal fiber tracts.  (C and D) Paramediosagittal section through the brain stem of the 

human telencephalon at 18th gw showing clear, heavy fibrillary staining of stathmin in the 

cerebral peduncules as well as the transpontine cortico-fugal tract (arrows in C and D) down to 

the level of the medullary pyramids.  

 

Figure 5:  Stathmin perturbation significantly affects neurite growth from embryonic rat 

cortical neurons grown in vitro.   

(A) Immunohistochemical staining for beta III tubulin (green), stathmin (red) and DAPI (blue) of 

E17 rat cortical neurons grown in vehicle control containing media or 16 µM of SB203580.  

While a number of long beta III tubulin+ processes were established by cells grown in vehicle 

control media, cells grown in the presence of high concentrations (16uM) of SB203580 showed 

short or no neurite growth.  Stathmin immunoreactivity appeared relatively similar in both 

conditions, with obvious staining in the cell soma and finer staining in most neurites. Viewed at a 

higher magnification (shown on right), cells grown in control media appeared to establish long 

smooth neurite processes (arrows), while those established by cells grown in the presence of 

SB203580 appeared jagged, with many fine projections protruding off principle processes 

(arrowheads) (B) Counts of the average neurite length (in µm) established by cells grown in 

control media, or in 1µM, 4µM, 16µM or 32µM of SB203580 (i.e. vehicle control = 37µm (S.E. 

2.77), 1µM = 43.81µm (S.E. 3.83), 4µM = 35.38µm (S.E. 3.15), 16µM = 8.21µm (S.E. 1.47) and 

32µM = 3.62µm (S.E. 1.23).    ANOVA analysis revealed significant difference within the 

groups, and a post hoc Tukey’s analysis indicated that cells treated with 16µM and 32µM 

SB203580 grew significantly shorter processes than cells in the control condition (** p< 0.01).  

There was no statistical difference in the neurite length of cells grown in control conditions in 

comparison to cells treated with either 1µM or 4µM of the drug. Error bars represent standard 

error (S.E.). 

 

 

Table Legends 

 

Table 1: Molecular and cellular functions of proteins that were increased in expression 

during development of the CST.  

Ingenuity Pathway Analysis software (IPA) was used to assign molecular and cellular functional 

annotations to the proteins that were increased in expression at P0 and P3 compared to P14.   The 

top five, significant (i.e. p-value <0.05), annotations are shown for each comparison. 
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Table 2: Canonical pathways that were enriched in the up-regulated proteins during  

development of the CST: Ingenuity Pathway Analysis software (IPA) was used to determine 

the canonical pathways of proteins that were increased in expression at P0 and P3 compared to 

P14.  The top five, significant (i.e. p-value <0.05), annotations are shown for each comparison. 

Ratio refers to the number of differentially expressed proteins that map to each pathway divided 

by the total number of proteins in the particular pathway.   

 

 


