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Abstract 

Surface engineering to control cell behaviour is of high interest across the chemical engineering, drug 

delivery and biomaterials communities. Defined chemical strategies are necessary to tailor nanoscale protein 

interactions/adsorption, enabling control of cell behaviours for development of novel therapeutic strategies. 

Nanoparticle-based therapies benefit from such strategies but particle targeting to sites of neurological injury 

remains challenging due to circulatory immune clearance. As a strategy to overcome this barrier, the use of 

stealth coatings can reduce immune clearance and prolong circulatory times, thereby enhancing therapeutic 

capacity. Polyethylene glycol (PEG) is the most widely-used stealth coating and facilitates particle 

accumulation in the brain. However, once within the brain, the mode of handling of PEGylated particles by 

the resident immune cells of the brain itself (the „microglia‟) is unknown.  This is a critical question as it is 

well established that microglia avidly sequester nanoparticles, limiting their bioavailability and posing a 

major translational barrier. If PEGylation can be proved to promote evasion of microglia, then this 

information will be of high value in developing tailored nanoparticle-based therapies for neurological 

applications. Here, we have conducted the first comparative study of uptake of PEGylated particles by all 

the major (immune and non-immune) brain cell types. We prove for the first time that PEGylated 

nanoparticles evade all the major brain cell populations – a phenomenon which will enhance extracellular 

bioavailability. We demonstrate changes in protein coronas around these particles within biological media, 

and discuss how surface chemistry presentation may affect this process and subsequent cellular interactions.  

 

Keywords: astrocytes; microglia; oligodendrocyte precursor cells; neural stem cells; targeting; corona 

 

Chemical compounds: ethylene glycol (PubChem CID: 174); dextran (PubChem CID: 4125253); magnetite 

(PubChem CID: 9816051)  
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1. Introduction 

A major emergent area of nanotechnology research is the development of diverse nanoparticle platforms for 

biomedical applications, including the treatment of neurological disease/injury [1,2]. Nanoparticle delivery 

to the central nervous system (CNS) represents a critical biological challenge in this context [3]. Direct 

nanoparticle delivery to the CNS via intracerebral, intraventricular and intrathecal routes can produce high 

doses near target sites, but involves risk of clinical complications including embolism and haemorrhage [4]. 

However, for systemically delivered nanoparticles to reach sites of neurological injury, major biological 

barriers must be overcome (shown schematically in Figure 1). The first is particle clearance by immune cells 

in the bloodstream and tissue systems/organs such as the liver, spleen and lungs (termed the mononuclear 

phagocyte system, MPS; formerly the reticuloendothelial system, RES) [5]. This necessitates use of high 

particle concentrations (with risks of associated toxicity) to achieve therapeutic benefit [6]. Second, neural 

tissue is partitioned from the bloodstream by the blood-brain barrier (BBB), which has its cellular basis in 

tight junctions between brain capillary endothelial cells, sealing off the paracellular pathway for biomolecule 

transport [7]. Transcellular transport across the BBB is also tightly regulated, utilizing a limited number of 

carrier proteins/receptors to transport essential biomolecules (e.g. insulin, leptin) into and out of the CNS 

[8]. This highly selective BBB restricts access of most therapeutic agents to the brain parenchyma [3,9]. 

Strategies to overcome these barriers have been the focus of intensive biological investigation in recent 

decades.  

Once introduced into physiological media (e.g. blood, following systemic delivery), nanoparticles rapidly 

acquire a biomolecule „corona‟ [10,11]. Cells interact with this particle-corona composite which may 

display altered physicochemical properties compared to the bare particle, influencing particle fate [12]. For 

example, opsonin adsorption increases particle clearance by MPS cells; modification of particle surface 

chemistry can overcome this limitation by reducing non-specific adsorption of biomolecules such as serum 

proteins, including opsonins, limiting MPS clearance and prolonging blood circulation time for 

nanoparticles. This chemical approach represents a key strategy to overcome the above barriers, and such 
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„stealth‟ coatings are widely used currently to facilitate drug/gene delivery [6,13,14]. In particular, 

polyethylene glycol (PEG) is a widely used polymer used to impart stealth properties. PEGylated materials 

evade the MPS, enhancing bioavailability, and possess the ability to cross the BBB, for which the exact 

mechanism is unknown but could include transcytosis or receptor-mediated endocytosis [15]. PEG-coated 

nanoparticles accumulate in brain tissue more effectively than non-PEG-coated nanoparticles, and those 

coated with high density PEG also display greater diffusion through brain parenchyma [4,16]. Of high 

relevance for clinical applications, PEG-coated nanoparticle accumulation is enhanced in pathological foci 

including gliosarcoma and Multiple Sclerosis models [17,18], possibly due to inflammation-induced BBB 

hyperpermeability – similar to enhanced nanoparticle permeability/retention (EPR effect) in brain tumors 

[19]. 

Such findings are encouraging but it should be noted here that a third, and currently poorly understood 

biological barrier exists, namely, the immune component of the CNS itself, consisting of cells called 

microglia. These highly motile cells constantly monitor their microenvironment and demonstrate high 

endocytotic/phagocytic activity [20,21] exhibiting dramatically more rapid/extensive nanoparticle uptake 

than all other neural subtypes, in vitro [22] and in vivo [23]. This constitutes a significant „extracellular 

barrier‟ to particle uptake by other neural cell types by „out-competing‟ them [22]. This differential uptake 

and competitive sequestration has profound implications for clinical nanoparticle therapies for neural 

applications. Despite this, two major knowledge gaps exist. First, it is currently unknown if the PEGylation 

strategy specifically limits microglial nanoparticle clearance. Second, there are no comparative data 

regarding the handling of such nanoparticles by the other major (non-immune) neural cell types – an issue of 

high relevance given the complex, multicellular environment of the brain where cells with distinct 

endocytotic profiles (and nanoparticle uptake features) co-exist.  
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Figure 1. Schematic diagram illustrating the major barriers that must be overcome by CNS-targeted 

nanoparticles following systemic delivery. 

 

We have addressed this issue by studying the uptake of PEGylated magnetic nanoparticles (MNPs) by five 

major cell types of the brain viz. microglia, astrocytes (the major homeostatic regulators of the CNS), 

oligodendrocyte precursor cells (OPCs; which generate oligodendrocytes and ultimately myelin, the 

insulating sheath around nerve fibres), neurons (the transmitters of electrical signals) and neural stem cells 

(NSCs; the major stem/precursor cells of the CNS). MNPs were selected for these experiments as they offer 

combined capacity for biomolecule delivery and nanoparticle imaging in sites of pathology for neurological 

applications [24,25]. The specific study aims were to: (i) assess if PEGylation reduces particle clearance by 

microglial cells; (ii) conduct a pan-cellular assessment of uptake of PEGylated nanoparticles in the major 

brain cell types; (iii) identify protein corona features that may contribute to differing particle uptake profiles.  
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2. Materials and Methods 

The care and use of animals was in accordance with the Animals (Scientific Procedures) Act of 1986 

(United Kingdom) with approval by the local ethics committee. 

2.1. Materials 

DAPI (4ʹ,6-diamidino-2-phenylindole) mounting medium was from Vector Laboratories (Peterborough, UK). 

Lectin and monoclonal anti-biotin-FITC (fluorescein isothiocyanate) secondary antibody (clone BN-34) were from 

Sigma-Aldrich (Poole, UK). All other secondary antibodies were from Jackson ImmunoResearch Laboratories Inc. 

(West Grove, PA, USA). Both carboxymethyl dextran-coated magnetic nanoparticles (nano-screenMAG-CMX; 

termed CMX-MNPs) and polyethylene glycol-coated magnetic nanoparticles (nano-screenMAG-PEG/P; termed PEG-

MNPs) were supplied by Chemicell as aqueous suspensions. They were synthesized by the same manufacturer, having 

magnetite cores with a lipophilic dye (BODIPY) layer, overcoated with either carboxymethyl dextran (CMX-MNP) or 

2 kDa diphosphate PEG (PEG-MNP). 

2.2. Particle coating characterization, FTIR 

For MNP analysis in water, FTIR was performed using a Perkin Elmer Spectrum 100 spectrometer (MA, USA) fitted 

with an attenuated total reflection sampling unit (32 scans; 650 – 4000 cm
-1

; resolution of 4 cm
-1

). 

2.3. Dynamic light scattering and zeta potential measurements 

The hydrodynamic diameter and zeta-potential of CMX- and PEG-MNPs in cellular media (without cells) 

were determined using a Zetasizer Nano ZS (Malvern, UK). All media contain carbonate buffer to maintain 

a pH of ~7.4 while incubated (37 °C, 5% CO2/95% humidified air). As pH can influence particle-media 

interactions, cell culture conditions were replicated: media were incubated for 24 h prior to particle addition 

(50 µg mL
-1

) with the 5% CO2 headspace being sealed between removal and measurement. 

2.4. Corona characterization, FTIR 
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For coronal analyses, MNPs were incubated in media (3 h; 20 µg mL

-1
), magnetically separated, washed and 

air dried onto aluminum discs. FTIR data was collected on a Bruker Alpha system fitted with a diffuse 

reflection infrared Fourier transform spectroscopy (DRIFT) accessory (512 scans being averaged at a 

resolution of 4 cm
-1

). Spectra were normalized to an average absorbance for the PEG C-O at 1085-1075 cm
-1

 

and then baseline corrected at 1700 cm
-1

. Amide I band component peak fitting was performed using 

previously defined parameters [26], and an in-house program built using Omnic Macros Basic 

(Thermofisher Scientific). Eigen Vector Solo (v7.3.1) was used for principal component analysis (PCA), 

with all data being mean centered.  

2.5. Neural stem cell (NSC) culture 

Subventricular zone-derived NSCs (CD1 mouse, postnatal day 1 – 3) were propagated as neurospheres 

based on a widely-used protocol [27]. Dissociated neurospheres were plated as monolayers [on coverslips, 

sequentially pre-coated with polyornithine then laminin; 2.4 x 10
4
 cells cm

-2
; monolayer maintenance 

medium, ML-MM; 1:1 Dulbecco‟s modified Eagle‟s medium (DMEM):F12, 1% N2 supplement, 20 ng mL
-1

 

basic fibroblast growth factor (FGF-2) and epidermal growth factor (EGF), 5 µg mL
-1

 heparin, 50 U mL
-1

 

penicillin, 50 µg mL
-1

 streptomycin; 37 °C, 5% CO2/95% humidified air]. The stem cell monolayer method 

is currently widely used in neuroscience research [28,29], and usually yields cultures >98% purity, with high 

viability. 

2.6. Astrocyte, microglial and oligodendrocyte precursor cell cultures 

Primary mixed glial cultures were prepared from dissociated cerebral cortices of Sprague−Dawley rats at 

postnatal day 1 − 3, and high purity glial populations were isolated by sequential rotary shaking procedures 

using well-established protocols [30]. This technique is widely used in neuroscience research, consistently 

providing high purity glial cell fractions (≥95%), with high viability [31–33]. Fluorescence activated cell 

sorting (FACS) techniques were considered for culture preparation, but rejected on the basis that membrane-

bound antibodies and fluorophores could be anticipated to affect cell-particle interactions, including 
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endocytotic mechanisms, potentially confounding particle uptake studies. All mixed glial and high purity 

cultures were maintained in D10-CM (D10 conditioned medium), composed of D10 medium [DMEM 

supplemented with 10% fetal bovine serum (FBS), 2 mM glutaMAX-I, 1 mM sodium pyruvate, 50 U mL
-1

 

penicillin, and 50 μg mL
-1

 streptomycin] supplemented with 20% conditioned medium from parent mixed 

glial cultures [34]. All cultures were incubated at 37 °C in 5% CO2/95% humidified air. Cells were plated (6 

x 10
4
 cells cm

-2
) on poly-D-lysine (PDL) coated coverslips in 24-well plates. 

2.7. Neuronal culture 

Cerebral cortical tissue was derived from CD1 mice (embryonic day 18) then mechanically and 

enzymatically (trypsin) dissociated. Dissociated tissue was plated on nitric acid-washed PDL-coated 

coverslips in 24-well plates (3.2 x 10
4
 cells cm

-2
). Medium (Neurobasal medium, 1% FBS, 2% B27 

supplement, 2 mM glutaMAX-I, 50 U mL
-1

 penicillin, 50 μg mL
-1

 streptomycin, 250 ng mL
-1

 amphotericin 

B; 37 °C, 5% CO2/95% humidified air) was refreshed every 2-3 d. 

2.8. MNP incubation protocols 

During pilot studies, a concentration of 2 µg mL
-1

 did not produce obvious adverse effects in any cell type, 

and permitted reliable identification of labelled/unlabeled cells, so was used in all experiments described 

here. For microglia, astrocytes and OPCs, MNPs were added in fresh medium 24 h after plating, and 

incubated with the cells for 24 h. As pilot experiments showed very limited particle uptake by NSCs and 

neurons, a magnetic field was applied, as such an approach has been shown to enhance MNP uptake [35]. 

MNPs in fresh medium were added to NSCs (24 h post-plating) and neurons (7 d post-plating), and the 

culture plate was positioned directly above an oscillating magnetic array (magnefect-nano, nanoTherics Ltd., 

Stoke-on-Trent, UK) within the incubator. These magnets match the 24-well arrangement of the culture 

plate, and can be programmed to oscillate with defined frequency and amplitude along a horizontal axis. A 

frequency of 4 Hz and amplitude of 200 µm are effective for MNP-based transfection of NSCs, so these 

settings were also used here. After 30 min, the plate was then removed from the magnetic field. At 24 h 
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post-particle addition, all cultures were washed three times with phosphate buffered saline (PBS) and fixed 

[4% paraformaldehyde; room temperature (RT); 25 min]. 

2.9. Immunocytochemistry 

Fixed cells were incubated with blocker (5% serum in PBS, with 0.3% Triton X-100 for GFAP and nestin; 

RT; 30 min), then primary antibody or lectin (1:150) in blocker (GFAP 1:500; lectin 1:150; nestin 1:200; 

NG2 1:200; 4°C; overnight). Cells were then washed (PBS), incubated with blocker (RT; 30 min), and 

incubated with the appropriate FITC-conjugated secondary antibody in blocker (1:200; RT; 2 h). Finally, 

coverslips were washed (PBS) and mounted with the nuclear stain DAPI. 

2.10. Fluorescence microscopy and MNP uptake quantification 

Immunostained samples were imaged using an Axio Scope A1 fluorescence microscope (Carl Zeiss 

MicroImaging, Germany) and counterpart micrographs merged using Photoshop CS3 (Adobe, USA). Z 

stack imaging was performed using a Nikon Eclipse 80i microscope fitted with a CA742-95 camera 

(Hamamatsu Photonics, Japan) with manual focus stepping at 0.5 µm (images manipulated using Nikon NIS 

Elements, version 3.00). A minimum of three microscopic fields and 100 nuclei per culture were assessed 

for all conditions. Cellular toxicity was assessed by morphological observations, culture purity (percentage 

of cells immunostained for relevant markers), and percentage of pyknotic nuclei (identified as small, 

intensely-stained, often fragmenting). Extent of particle uptake was quantified using an integrated density 

function (ImageJ, NIH, US). Individual MNP-labeled cells were delineated (using immunostained or phase 

micrographs), then this outline was transferred to the corresponding red channel (MNP) micrograph and the 

integrated density measured (minimum of 30 MNP-labeled cells per condition per culture, with background 

intensity subtracted for each image). 

2.11. Statistical analysis 
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Data were analyzed using Prism statistical analysis software (GraphPad, USA), and expressed as mean ± SEM. The 

number of experiments (n) refers to the number of rat mixed glial cultures from which astrocyte, microglial or OPC 

cultures were derived, or the number of mouse litters from which NSCs were derived. Each primary culture was 

established from a different litter. Amide I areas of particle coronas were compared by one-way ANOVA with 

Bonferroni‟s multiple comparison post-tests for post-hoc analysis. Unpaired two-tailed t-tests were performed for each 

cell type to compare the following in CMX-MNP versus PEG-MNP-treated cultures: (i) the percentage of MNP-

labeled cells, (ii) the mean cellular integrated density value (measurements were averaged per culture), (iii) the 

percentage of pyknotic nuclei (pyknotic divided by healthy-plus-pyknotic) and (iv) culture purity. 

 

3. Results and Discussion 

The two nanoparticle types employed in this study are compared in Figure 2. The coatings chosen were 

carboxymethyl dextran (CMX; particles termed CMX-MNP) and diphosphate PEG chains (PEG; particles 

termed PEG-MNP). The PEG polymer chosen has been shown previously to reduce protein immunogenicity 

and enhance blood circulatory time [36–38]. CMX was selected as the control coating as it is cleared more 

slowly from the circulation than unmodified dextran [39], and is commonly used as a biocompatible material 

for pharmaceutics/nanomedicines providing a negative charge similar to the PEGylated particles deployed 

here [40–43]. CMX-coated magnetic nanoparticles have received clinical approval (e.g. Resovist, 

ferumoxytol), demonstrating the clinical relevance of this coating. The commercial nanoparticles employed 

here have magnetic (magnetite) cores with a lipophilic dye (BODIPY) overcoated with either a PEG or 

CMX layer and were obtained from Chemicell GmbH (Berlin, Germany). FTIR analyses confirmed the 

chemical identity of the nanoparticle coatings (Figure 2C). Common to both particles were aliphatic C-Hstr at 

~2950 cm
-1

,
 
a sharp carboxyl band C=Ostr at ~1730 cm

-1
 and C-Ostr at ~1150 and 1000 cm

-1
 consistent with 

the CMX coating. Additional bands in the region 1250-1000 cm
-1

 indicate the presence of the phosphate 

stretches, confirming the PEGylation of the PEG-MNPs [44], as shown in Figure 2C. 
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Figure 2. Nanoparticles deployed in this study differ in their surface coatings, identified as carboxymethyl 

dextran and PEG. (A) Schematics of both MNPs employed here. ‘Control’ CMX-MNPs are coated with 

carboxymethyl dextran and ‘stealth’ PEG nanoparticles are coated with diphosphate polyethylene glycol. 

(B) FTIR analyses confirmed the presence of carboxymethyl dextran and PEG on the respective 

nanoparticles. 

 

As biomolecular coronas form around nanomaterials in biological media [45,46], it was deemed essential to 

conduct particle characterization following incubation in the neural cell specific culture media used to 

propagate the cell types studied here (termed D10-CM and ML-MM). These two media are necessary to 

support the survival of functionally specialized neural cell types [34,47,48]; it should be noted that no single 

medium is known to support the growth of the entire range of neural cell types. D10-CM contains 10% fetal 
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bovine serum and 20% conditioned medium from a mixed glial cell preparation (a complex mixture of 

molecules released by astrocytes, OPCs and microglial cells). ML-MM is a chemically-defined, serum-free 

preparation. Particle characterization measurements of bare nanoparticles are commonly conducted in 

PBS/deionized water [49,50], but cannot address alterations in particle properties that occur in complex 

biological growth media, which are of higher predictive value for the in vivo situation.  

However, to characterize the naked particles, dynamic light scattering (DLS) and zeta potential 

measurements were performed for particles in deionized water, prior to addition to media: CMX being 172 ± 

30 nm, -33.9 ± 0.8 µV; PEG being 150 ± 33 nm and -39.6 ± 0.7 µV (n = 3; ± standard error of the mean). 

For biological media, a 24 h time-point was included in the characterization as this was the total duration of 

cell exposure to particles, however endocytotic uptake of nanoparticles occurs much earlier, with particle 

internalization evident one-to-four hours post-particle addition, depending on cell type [22,51,52]. DLS 

measurements for CMX control and PEG nanoparticles within each cell-specific medium are shown in Table 

1, and indicate colloidal stability within 24 h, consistent with previous findings addressing protein 

adsorption onto nanoparticles [53]. Slightly larger aggregates were formed in the ML-MM versus D10-CM 

medium (and the biological media versus water) which is likely to be related to the formation of small 

nanoparticle aggregates (rather than protein corona-induced size increases).  
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Table 1. Hydrodynamic diameter and zeta potential for CMX- and PEG-coated nanoparticles in different 

culture media, used to propagate specific neural cell types.  

Medium 

Relevant 

Cell Type 

MNP dDLS (nm ± SEM) Zeta-potential (mV ± SEM) 

   

5 min 24 h 5 min 24 h 

D10-CM all glia CMX 471 ± 71 487 ± 40 -11.1 ± 0.4 -11.6 ± 0.4 

D10-CM all glia PEG 481 ± 106 419 ± 22 -11.1 ± 0.6 -10.6 ± 0.3 

ML-MM NSCs CMX 776 ± 64 1339 ± 43 -11.8 ± 0.4 -11.0 ± 0.4 

ML-MM NSCs PEG 717 ± 112 1000 ± 40 -9.6 ± 0.5 -11.1 ± 0.2 

See methods for composition of media; D10-CM = D10 medium containing 20% conditioned D10 medium 

from mixed glial cultures; DLS = dynamic light scattering, providing hydrodynamic diameter; ML-MM = 

monolayer maintenance medium for NSCs; MNP = magnetic nanoparticle; NSC = neural stem cell; SEM = 

standard error of the mean. n ≥ 3. 

 

Having evaluated the physicochemical properties for the two nanoparticles, detailed assessments were made 

of the particle corona composition in different culture media. DRIFT analysis of MNP-corona composites, 

and further processing of data via PCA, demonstrated clear differences between coronas associated with 

CMX- and PEG-MNPs (Figure 3A-B). Spectra showed variation in amide I band shape and size (Figure 3 

A-B) indicating differences in protein structure and amount of adsorbed protein, respectively. This 

absorption band is indicative of carbonyl stretching, with distinct changes in shape being commonly 

assigned to protein secondary structure. Semi-quantitative analyses showed differences in terms of the 

relative amide I band areas, further suggesting differences in quantities of protein bound to each type of 

MNP, for both media tested (Figure 3C). Compared to PEG nanoparticles, semi-quantitative measurements 

revealed eight-fold (ML-MM) to 20-fold (D10-CM) greater quantities of protein associated with the control 

MNPs. The smaller quantity of protein associated with PEG-MNPs is consistent with the proposed 
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molecular mechanism of action for „stealth‟ coatings which can exert a significant influence on cell-

nanoparticle interactions [54–58]. 

 

Figure 3. In cell-specific culture media, PEGylated MNPs display a quantitatively and qualitatively 

different biomolecular corona compared to control MNPs. DRIFT analysis of CMX- (A) and PEG-MNPs 

(B) in saline (PBS) and two culture media. (C) Semi-quantitative assessment of amide I region illustrating 

limited biomolecule aggregation around PEGylated nanoparticles versus control nanoparticles in two 

different culture media. One-way ANOVA with Bonferroni’s post-tests; ***p < 0.001. (D) Principal 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
component (PC) analysis reveals consistency of properties across four replicates, and distinct differences 

between PEGylated and control MNPs within each medium, as well as between media. (E) Loadings plot of 

amide I region. D10-CM = conditioned glial culture medium; ML-MM = monolayer maintenance medium; 

PBS = phosphate buffered saline. 

PCA analysis confirmed secondary structural differences with tight clustering of data sets, discriminating 

between particle types (CMX-MNPs and PEG-MNPs; PC1) and the media used (i.e. D10 CMX versus ML 

CMX, and D10 PEG versus ML PEG; PC2; Figure 3D). PC loadings suggest most variance is related to 

protein secondary structural differences. This is indicated by the α-helical and β-sheet components in the 

region 1700-1600 cm-1 (Figure 3E). Such differences in protein conformation are expected, due to 

adsorption induced structural changes [26]. However, due to the plethora of proteins likely adsorbed onto 

the nanoparticles it is only possible to make a global assessment of protein structure rather than to 

discriminate between actual protein conformation changes, i.e. protein composition is likely to also vary 

between particle/media types. Our future mass spectrometric analyses aim to dissect these differences 

further. 

For all the cellular uptake experiments, we relied exclusively on cells of primary origin. We have described 

elsewhere how cells derived from a primary source may typically be expected to provide data with greater 

biological relevance than cell lines, as the latter (i) often behave in a relatively homogenous, clonal manner, 

(ii) can mask toxicity through resistance to cell death stimuli, and (iii) can exhibit greater levels of particle 

uptake than „equivalent‟ primary cells [22]. High purity cultures were routinely derived in our experiments 

for each neural cell type, as judged by immunostaining for cell-specific markers (microglial cultures were 

>95% lectin-reactive, n = 4; astrocyte cultures were >95% GFAP
+
, n = 4; OPC cultures were >94% NG2

+
, n 

= 4; NSC cultures were >98% nestin
+
, n = 5; neuronal cultures were ca. 70% Tuj1

+
, n = 2).  

Fluorescence microscopy, including z-stack analyses, confirmed the intracellular localization of both CMX- 

and PEG-MNPs by each neural cell type (Figure 4). For each particle, the same cellular hierarchy was 
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apparent in terms of extent of uptake, consistent with our previous report [22]: microglia > astrocytes > 

OPCs > NSCs. A negligible percentage (<0.5%) of primary mouse cortical neurons exhibited uptake of 

either particle type (Figure 4I-J) placing these cells at the bottom of the cellular hierarchy. The percentage of 

cells labeled and the extent of uptake were not sufficient for a reliable statistical comparison between the 

two particle types, and were therefore excluded from further analyses. For all cells, particles were clearly 

observed within the cytoplasm, with distinctive arc-like accumulations around the nuclear perimeter (Figure 

4A-H). No nanoparticles were observed to be intranuclear, or within the fine cellular processes, in any cell 

type.  

Quantification of (i) the percentage of cells exhibiting MNP-labeling, and (ii) the extent of MNP-loading per 

cell, revealed significant differences between cell types and also between the two nanoparticles with respect 

to all cell types except neurons (Figure 5). There were no differences in the proportions of MNP-labeled 

microglia or OPCs, while for astrocytes and NSCs, a smaller proportion of cells exhibited PEG-MNP-

labeling versus CMX-MNP-labeling (Figure 5A). However, dramatic differences in extent of cellular 

accumulation of stealth nanoparticles were revealed by integrated density measurements. All cell types 

demonstrated a reduction in the extent of PEG-MNP uptake compared to CMX-MNPs (Figure 5B).  Heavily 

labeled microglia often exhibited rounded morphologies, consistent with microglial activation, exhibiting 

less-branched morphologies than those with smaller accumulations.  

No toxic effects were noted for either control or PEGylated nanoparticles across all cell types (Figure 5C-

D).  The procedures appear to be safe, as all morphological evaluations through microscopic analyses 

revealed normal-appearing, healthy and rounded nuclei with normal patterns of expression of cell-specific 

markers, and no evidence of cellular detachment from the substrate, all robust indicators of viability. 

Unaltered percentage expression of cell-specific markers suggests no short term effects on differentiation 

profiles or particle-induced aberrant marker expression. For all cells, the percentage of nuclei with pyknotic 

features (shrunken and fragmenting nuclei, indicating cell death) did not differ between particle types, and 
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these values were in accordance with previously reported values from untreated cultures [22,27,59]; typical 

nuclear and cellular morphological features were observed across all cultures (Figure 4). 
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Figure 4. Extent of particle uptake varies greatly between neural cell types, and PEGylated nanoparticles 

are less avidly taken up than CMX-coated nanoparticles. Fluorescence micrographs of high purity cultures 

following incubation with CMX- or PEG-coated fluorescent magnetic nanoparticles (24 h). Figures show 

DAPI-stained nuclei as blue, cell bodies and processes as green, and particles as red. Uptake of CMX-

MNPs was extensive in the majority of lectin-reactive microglia (A), whereas uptake of PEG-MNPs was 

more heterogeneous, and often markedly lower, in extent (B; arrows indicate low levels of uptake). For both 

particle types, astrocytes (GFAP
+
) exhibited lower levels of uptake than was observed in microglia, with 

CMX-MNPs (C) taken up more extensively than PEG-MNPs (D; arrow indicates unlabeled astrocyte. For 

OPCs (NG2
+
), CMX-MNP treatment (E) resulted in a greater percentage of labeled cells, and greater 

average extent of uptake, compared with PEG-MNP treatment (F); arrows indicate unlabeled OPCs. 

Uptake by NSCs (nestin
+
) was confirmed using z stack analyses (G, H; note perinuclear accumulation of 

nanoparticles), and for both particle types NSCs exhibited lower levels of uptake than all other cell types. 

Consistent with the other cell types, PEG-MNPs were taken up less extensively (H, inset) than CMX-MNPs 

(G, inset); arrows indicate labeled NSCs. For both nanoparticles, a negligible percentage of neurons 

(Tuj1
+
) exhibited any uptake (I, J), with these MNP-labelled neurons (arrows) displaying a limited extent of 

uptake. Yellow arrowheads indicate extracellular MNPs. 
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Figure 5. Uptake of PEGylated MNPs is significantly reduced compared to control nanoparticles for 

various neural cell types. 24 h post-particle addition to high purity cultures of each cell type. Bar graphs 

indicating (a) the percentage of positively-identified cells with MNP-labeling, (b) the average extent of 

MNP-loading per cell, assessed by integrated density measurements, (c) culture purity as judged by cell-

specific marker expression and (d) percentage of pyknotic nuclei. Paired t tests; CMX-MNP versus PEG-

MNP; *p < 0.05, **p < 0.01. Micro = lectin-reactive cells in microglial cultures, n = 4; Astro = GFAP
+
 

cells in astrocyte cultures, n = 4; OPC = NG2
+
 cells in OPC cultures, n = 4; NSC = nestin

+
 cells in NSC 

cultures, n = 5. 
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Corona-resistant PEGylated nanoparticles are realizing therapeutic potential for many applications including 

treatment of neurological injury, although it remains unclear at present how these nanoparticles are handled 

within the neural milieu. Our results demonstrate for the first time that diphosphate PEGylation is an 

effective approach to reduce particle clearance by the specialist neural immune cells – the microglia – 

consistent with the broad intended evasive function of „stealth‟ coatings. The overwhelming majority of 

MNP-based delivery strategies to the CNS rely on delivery of particles to the extracellular space, 

requiring that MNPs efficiently cross the BBB and persist extracellularly within the parenchyma [1]. This 

strategy has been employed for dalargin, an enkephalin analog that acts on membrane receptors [60,61]. 

Clearly this approach would be limited by rapid and avid microglial clearance, limiting therapeutic benefit. 

This is especially pertinent in sites of neurological injury, where inflammatory mechanisms typically result 

in high densities of activated microglia in neural pathology sites. There is therefore a critical need to 

enhance and prolong delivery of therapeutic agents to these sites for clinical efficacy. Our observations 

highlight the high utility of PEGylation strategies to reduce microglial clearance, thereby promoting particle 

retention and bioavailability within the extracellular space, enhancing therapeutic efficacy overall. 

Accordingly we suggest that our findings are of high relevance to neuronanotherapeutics in aiding the 

development of novel nanosystems for direct and systemic biomolecule delivery to neurological pathology 

sites Although we propose that the CMX-MNPs employed here can be considered representative of a single 

widely-used class of nanomedicines, it is to be anticipated that the protein corona will vary qualitatively and 

quantitatively between different particle formulations. Therefore, future advances will need to be informed 

by the screening of a range of commonly-used particle coatings, expanding on the single „control‟ particle 

tested here, to inform robust particle design for the future. 

To our knowledge, we are also the first to demonstrate that PEGylation limits particle uptake by all major 

neural cell types. These data indicate that the non-specific cellular evasion afforded by PEGylation could 

further prolong bioavailability within the CNS parenchyma, of added benefit for drug delivery. Supporting 

our findings, one study has reported a similar phenomenon for tumor cells, suggesting that PEGylation-

induced steric hindrance may limit uptake by other non-immune cells [62]. PEGylated materials benefit 
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from enhanced bioavailability due to their increased stability within aqueous media, protection from 

proteolytic degradation, reduced renal clearance, reduced immunogenicity, and increased circulation time 

within biological fluids due to colloidal stability, whilst limiting concerns related to safety and tolerance 

[38,63,64]. Our characterization of the MNP-associated biomolecular coronas generated in culture media 

revealed marked differences in the protein coat formed around each of the nanoparticle types, which could 

account for the reduced uptake of PEGylated MNPs by all neural cells. High density PEGylation forms 

a hydrophilic and steric barrier due to the „brush-like‟ surface conformation of PEG chains [54]. Reduction 

of sites interacting with plasma proteins (e.g. lipoproteins and opsonins), limits immune clearance 

and increases circulatory half-life/bioavailability [65,66]. Further, changes in protein coronas around 

nanoparticles, including even subtle differences in size, charge and exposure of specific proteins, can alter 

particle agglomeration or impact biological interactions ultimately affecting uptake of nanoparticles into 

cells [67,68]. Clearly therefore, the physicochemical characteristics of nanomaterials need to be taken into 

account in terms of uptake, biological trafficking and toxicological effects, particularly with respect to 

advanced nanoparticle strategies being translated into the clinic.  

It should be noted that some therapies depend on nanoparticle delivery to specific target cell populations, for 

example gene delivery to neurons [69]. Several potential strategies could be considered in such situations to 

overcome the uptake limitations imposed by PEGylation. Firstly, increasing the administered MNP dose is a 

common strategy, but this is a non-specific approach and doses required for efficacious uptake within the 

CNS can be predicted to carry a toxicity risk. The second strategy involves adding targeting ligands to the 

outer tip of PEG molecules at the particle surface (for example targeted to transferrin and insulin receptors, 

which are abundant at the BBB, and can facilitate transfer of appropriately-tagged molecules/particles into 

the CNS parenchyma [70]). However, transferrin receptors are also abundant in the liver – a major MPS 

component – so targets should be sought with greater BBB specificity. Once across the BBB, ligands to 

receptors abundant in or exclusive to the target neural cell type are required; it should be noted that there is a 

serious lack of available neural cell targeting molecules currently, limiting this approach. Targeting could 

also be achieved through manipulation of the specific protein constituents of the corona (by designing the 
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particle surface to specifically bind and expose certain biomolecules). Lastly, other types of stealth coatings 

require investigation. For example, nanoparticles with zwitterionic coatings reduce the rate of non-specific 

binding for proteins and lipids [71]. Based on peptides with an overall zero charge, zwitterionic coatings are 

biocompatible and would be suitable for evading immune components. Other coatings, such as derivatives 

of poly(carboxybetaine), poly(sulfobetaine) and poly(acrylic acid; PAA), have also been used as stealth 

coatings for nanoparticles but all of the above are untested in neural cells. Using our approach to perform a 

systematic wide-scale screen of MNPs with diverse stealth coatings versus PEGylated MNPs could yield 

important results in this context. However, if the reduced protein corona and related alterations in the 

physicochemical properties of such „stealth‟ MNPs is the only mechanism by which these MNPs evade 

immune components, then it can be assumed that novel „stealth‟ coatings will continue to evade non-

immune neural cell types. Indeed the similarity in observations of PEGylated MNP evasion across cell types 

suggests the operation of a ubiquitous nanoparticle internalization mechanism such as micropinocytosis, 

mediating uptake of the nanoparticles used here. However, we suggest based on our findings that the pan-

cellular evasion induced by PEGylation of nanoparticles could be readily exploited for drug delivery to the 

brain. Future studies will need to incorporate experiments using in vivo preclinical injury and disease 

models, to evaluate the handling of PEGylated particles in the multicellular and complex environments of 

neurological pathology.   
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