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Abstract 

The enzyme N-myristoyltransferase (NMT) catalyses the essential fatty acylation of 

substrate proteins with myristic acid in eukaryotes and is a validated drug target in the 

parasite Trypanosoma brucei, the causative agent of African trypanosomiasis (sleeping 

sickness). N-Myristoylation typically mediates membrane localisation of proteins and is 

essential to the function of many. However, only a handful of proteins are experimentally 

validated as N-myristoylated in T. brucei. Here, we perform metabolic labelling with an 

alkyne-tagged myristic acid analogue, enabling the capture of lipidated proteins in insect and 
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host life stages of T. brucei. We further compare this with a longer chain palmitate analogue 

to explore the chain length-specific incorporation of fatty acids into proteins. Finally, we 

combine the alkynyl-myristate analogue with NMT inhibitors and quantitative chemical 

proteomics to globally define N-myristoylated proteins in the clinically relevant bloodstream 

form parasites. This analysis reveals five ARF family small GTPases, calpain-like proteins, 

phosphatases and many uncharacterized proteins as substrates of NMT in the parasite, 

providing a global view of the scope of this important protein modification and further 

evidence for the crucial and pleiotropic role of NMT in the cell.  

 

Keywords: Human African trypanosomiasis, N-myristoylation, chemical proteomics, click 

chemistry, protein lipidation, target validation 

Introduction 

Human African Trypanosomiasis (HAT), or African Sleeping Sickness, is a usually fatal 

tropical disease caused by unicellular eukaryotic parasites of the genus Trypanosoma brucei 

and transmitted by an insect vector. Although the number of reported cases has dropped in 

recent years,1 an estimated 21 million people are at high to moderate risk of the disease.2 In 

addition, the analogous livestock disease, Nagana, causes an estimated 3 million cattle 

deaths per year with significant economic impact.3 T. brucei gambiense, responsible for 

>98% HAT cases, causes a chronic infection in which the early stage, lasting several 

months or years, is relatively asymptomatic; later in infection, parasites cross the blood-brain 

barrier and invade the central nervous system, ultimately leading to coma and death. There 

are few treatments currently available to treat late stage HAT and all suffer from high toxicity, 

high expense or problematic delivery.4 T. brucei is transmitted primarily by the bite of an 

infected tsetse fly, which injects the metacyclic trypomastigote form of the parasite into the 

mammalian host, although mother to foetus transmission can also occur. The parasite then 

transforms into the bloodstream form (BSF) which remains extracellular in the blood stream 
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and lymph. When a tsetse fly takes a blood meal from the infected host, parasites are taken 

up and transform into procyclic forms (PCF) that multiply in the insect gut prior to 

transformation into epimastigotes, which travel to the insect salivary gland.5 The BSF is 

therefore of most interest for treatment of infection and progression of the disease, whereas 

the PCF is important for replication in the insect vector. The adaptive differences between 

BSF and PCF, and the process of differentiation, are important for druggability of BSF 

trypanosomes in the mammalian host. 

The enzyme myristoyl-CoA:protein N-myristoyltransferase (NMT) is an essential eukaryotic 

enzyme that catalyses attachment of the C14:0 fatty acid myristate from myristoyl-CoA to the 

N-terminal glycine residue of a subset of cellular proteins,6 N-Myristoylation mediates 

membrane localisation, modulates stability, or regulates protein-protein interactions, and 

NMT has been investigated as a potential drug target in HAT,7 fungal infections,8 

leishmaniases,9 malaria,10 nematodes11 and cancer.12 Structure-based design and high-

throughput screening have yielded multiple NMT inhibitor series, some with species 

selectivity.7, 13 In T. brucei, RNAi knockdown of NMT results in abnormal morphology and 

defects in endocytic trafficking.14 Trafficking defects may in part be related to loss of 

myristoylation of members of the ADP-ribosylation factor (ARF) family of small GTPases 

involved in vesicular trafficking in eukaryotes. RNAi depletion of two N-myristoylated T. 

brucei ARFs showed that the proteins are essential for viability of BSF parasites and 

revealed defects in subcellular structures such as the flagellar pocket (the site of almost all 

endo- and exocytosis), vesicles and the Golgi apparatus.15 In 2010, Frearson et al. reported 

a series of NMT inhibitors with high potency against the T. brucei enzyme, with the ability to 

cure trypanosomiasis in mice.7, 13a, 13b The phenotype of inhibitor treatment was distinct from 

RNAi knockdown of NMT but the parasite did exhibit an enlarged flagellar pocket.7 Given the 

co-translational nature of N-myristoylation, NMT inhibitors would be expected to impact 

viability of both BSF and PCF parasites, since both forms replicate; in terms of clinical 

treatment, however, targeting BSF parasites is of most interest. 

Page 10 of 38

ACS Paragon Plus Environment

ACS Infectious Diseases

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

Bioinformatic analyses suggest that more than 60 proteins may be N-myristoylated in T. 

brucei, resulting in the prediction that NMT inhibition will have pleiotropic effects on the 

parasite.16 There is some experimental evidence for N-myristoylation of a few parasite 

proteins: three ARFs,15a, 15b, 17 cytoskeleton-associated protein CAP5.5,18 Calflagin,19 

phosphatase PPEF,16 flagellar-calcium binding protein FCaBP (in the related parasite T. 

cruzi)20 and virulence-associated metacaspase 4 (MCA4).21 However, global 

characterisation of N-myristoylation by standard biochemical methods such as radiolabelling 

is hampered by low sensitivity, the need for specific antibodies for target proteins and the 

frequent requirement for artificial overexpression to achieve detection. We and others have 

recently made use of bioorthogonally tagged fatty acids which are metabolically incorporated 

into proteins to globally profile myristoylation and other protein lipidations in diverse 

organisms,22 including the trypanosomatid parasite Leishmania donovani, which causes 

leishmaniasis.23 Here we apply this technology to study lipidation in T. brucei, comparing 

acylated proteins in the insect (PCF) and host (BSF) life stages using a tagged analogue of 

myristate, and analysing acylation patterns with a tagged palmitate analogue. Finally, we 

quantify changes in acylation levels in the presence of NMT inhibitors, and demonstrate 

selective target engagement across the proteome through quantitative chemical proteomic 

analyses. Taken together, these data globally define NMT substrates in the key life stages of 

the parasite, and provide insight into the mechanism of action of NMT inhibitors in T. brucei. 

Results and Discussion 

Fatty acids bearing terminal alkyne or azide modifications are known to be tolerated by the 

cellular machinery in diverse systems and incorporated into acylated proteins.22a Our 

approach uses myristic acid analogue YnMyr (Fig. 1a), the coenzyme-A analogue of which is 

accepted as a substrate by NMTs, and which we have previously shown is incorporated into 

N-myristoylated proteins in Plasmodium falciparum,10 Leishmania donovani,23 human cancer 

cells,12 virus infected cells24 and zebrafish embryos.25 After cell lysis, alkyne-tagged proteins 
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are captured by a click reaction, the copper-catalysed cycloaddition of an alkyne and azide 

(CuAAC), appending a variety of groups such as a fluorophore for visualisation and/or biotin 

for affinity pull-down.26 Enriched proteins are then subject to tryptic digest and shotgun LC-

MS/MS analysis for proteomic identification (Fig. 1a). 

YnMyr labels proteins in Trypanosoma brucei 

To investigate whether YnMyr can be used to label proteins in T. brucei, cultures of PCF 

parasites were incubated for 18 hours with 100 µM YnMyr or myristic acid (Myr) control. 

Following cell lysis, tagged proteins were ligated to biotin and TAMRA functionalised reagent 

AzTB (Supp. Fig. S1) via CuAAC and visualised by in-gel fluorescence following separation 

by SDS-PAGE. In addition to multiple discrete bands, two diffuse bands were observed 

between 20 and 40 kDa (Fig. 1b), which could be removed by chloroform-methanol 

precipitation or base treatment of proteins after CuAAC. Trypanosomatid parasites are 

abundant in complex glycolipids, and PCF T. brucei possess a family of surface proteins, the 

procyclins, which bear a glycan elaborated glycosylphosphatidylinositol (GPI)-anchor near 

their C-terminus and in some cases N-glycosylation in the N-terminal domain27. When 

separated by SDS-PAGE, procyclins migrate as two polydisperse bands at ~30 and 40 kDa, 

and can be radiolabelled with 3H-myristate.28 Treatment of YnMyr-labelled PCF samples with 

pronase shifted a proportion of the diffuse bands to lower molecular weight and completely 

removed the majority of labelling (Fig. 1c), consistent with the discrete bands corresponding 

to proteins and the diffuse bands corresponding to the partially protease-resistant procyclins. 

Alternatively, the bands may correspond to other glycolipid components, such as free poly-

N-glycosylated GPIs that are also present on the surface of T. brucei PCF.28a 

Having established that YnMyr could label proteins in the procyclic insect stage-form of T. 

brucei, we focused on host stage parasites. Cultured BSF cells were incubated with 100 µM 

YnMyr or Myr for 4, 8 or 18 hours and lysates processed as described above. Labelling 

intensity increased from 4 to 8 hours but decreased again at 18 hours, at which time point 

YnMyr-related toxicity was also observed (Figs. 2a & 2b; Supp. Fig. S3); parasites exhibited 
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the so-called “Big Eye” phenotype, which is characterised by an enlarged flagellar pocket. 

This phenotype is the result of a block in receptor-mediated endocytosis, and has previously 

been described following RNAi knockdown of clathrin heavy chain29 and the small GTPase 

ARF1.15b Consistent with our results, YnMyr was previously shown to be moderately toxic to 

T. brucei in a study seeking to identify inhibitors of VSG (Variant Surface Glycoprotein) GPI 

myristoylation.30 The VSG coats the surface of BSF T. brucei and is unusual in incorporating 

specifically diacyl-myristate into its GPI-anchor31. This feature is unique to T. brucei BSF, 

and multiple cellular pathways have evolved to ensure that myristate alone is incorporated. 

We hypothesise that the observed YnMyr toxicity is related to disruption of the VSG 

myristate pathway, and an 8 hour tagging step was therefore used in subsequent 

experiments to circumvent YnMyr-related toxicity, and focus analysis on N-myristoylated 

proteins. 

A prominent band between 50 and 75 kDa showed sensitivity to treatment with strong base 

(NaOH; Fig. 2c, Supp. Fig. S4), indicating ester-linked YnMyr and consistent with 

incorporation of the probe into the GPI-anchor of the VSG, as expected. We have previously 

observed significant incorporation of tagged fatty acids into GPI-anchored proteins in the 

malaria parasite Plasmodium falciparum.10 The majority of other bands were insensitive to 

base-treatment, implying amide-linked YnMyr. Azido-myristate mimetic AzMyr gave very 

similar labelling to YnMyr, as expected, whereas longer chain palmitate analogue YnPal 

gave a distinct pattern (Figs. 2d and 2e). These data are consistent with incorporation of 

tagged fatty acids into proteins by chain-length specific acyltransferases such as NMT and 

palmitoylacyltransferases (PATs). 

Proteomic identification of YnMyr labelled proteins in T. brucei 

We have previously shown that YnMyr is incorporated into putative N-myristoylated protein 

ARL6 via labelling of this protein after immunoprecipitation (IP).17 However, the IP method 

relies on the availability of an antibody to the protein of interest and has very low throughput. 

To carry out global identification of the proteins labelled in BSF and PCF parasites, tagged 
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proteins were ligated to AzTB and enriched by pull-down onto NeutrAvidin-coated resin 

through the biotin affinity label (Supp. Fig. S5). Bead-bound proteins were subject to tryptic 

digest and peptides analysed by LC-MS/MS. Each sample set consisted of a YnMyr sample 

and Myr control, prepared in parallel. Raw data were searched using MaxQuant32 and a 

database of the T. brucei TREU 927 reference strain (TriTrypDB33). In-gel fluorescence 

analysis suggested that VSG was also labelled with YnMyr and the VSG variant is strain-

specific. Initial BSF experimental data were therefore also searched against the T. brucei 

Lister strain 427, identifying VSG variant Tb427.BES40.22; this protein sequence was 

appended to the TREU 927 FASTA file for all subsequent searches. Data were analysed 

using label-free quantification (LFQ), a technique that normalises intensity measurements to 

enable comparison between different LC-MS/MS runs, in MaxQuant (“MaxLFQ”).34 After 

Log2 transformation of intensities, data were filtered to retain only proteins present in several 

replicates, missing values were imputed from a normal distribution to mimic values at the 

limit of detection, and permutation-corrected two-sample t-tests used to assess proteins 

significantly enriched in YnMyr samples over Myr controls (see Methods). A caveat to this 

analytical workflow is that proteins detected in multiple YnMyr samples but with low intensity 

will be assigned as non-significant even if they are absent from Myr controls because their 

intensity is too close to background; many of these proteins could be genuine hits but of low 

abundance. 

In BSF experiments, proteins were filtered to retain only those present in at least 3 out of 4 

replicates and in biological duplicate, resulting in 101 significantly enriched proteins in YnMyr 

samples (Fig. 3a, Supp. Table S1). Of these, 46 (46%) are likely to carry an N-terminal 

glycine implied by an MG motif at the N-terminus, which is thought to be a requirement for 

NMT-dependent myristoylation.35 In PCF experiments, proteins were filtered to retain only 

those present in at least 4 out of the 6 technical replicates and in biological duplicate, 

identifying 91 proteins as significantly enriched in YnMyr samples (Fig. 3b, Supp. Table S2); 

again, roughly half of these proteins have an N-terminal MG motif. 
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Non-MG proteins highly enriched in YnMyr samples include glycosylphosphatidylinositol-

specific phospholipase C (GPI-PLC), a protein that is S-myristoylated,36 in BSF samples, 

and MSP-B (a homologue of GPI-anchored Leishmania GP63 surface protease), procyclic 

form surface phosphoprotein (PSSA-2) and p-glycoprotein-A in PCF parasites. The GPI-

anchored VSG was also detected in BSF samples and was enriched in YnMyr experiments 

compared to controls. Proteins previously shown to be N-myristoylated in T. brucei or related 

species included flagellar calcium binding protein (FCaBP, shown to be N-myristoylated in T. 

cruzi),20 cytoskeleton-associated protein CAP5.5,18 the proteasome regulatory ATPase 

subunit 2 (RPT2), which is known to be N-myristoylated in many eukaryotes,37 a 

phosphatase of the PPEF family,16 and a GRASP homologue (acylated in other protozoan 

parasites38). Metacaspase 4 (MCA4), previously shown to be palmitoylated at a cysteine 

residue proximal to a likely N-myristoylation site, was also identified, principally in BSF 

samples; this pseudopeptidase is an important virulence factor in Tb infection.21 Several 

ARF/ARLs, a well-studied family of N-myristoylated small GTPases, were also identified 

across the datasets: these included Tb927.7.6230, now called ARF3 (GeneDB) but 

previously known as ARL1, and shown to be both N-myristoylated and essential to survival 

of BSF T. brucei.15a, 15c ARL6 (Tb927.8.5060), which we showed previously to be tagged with 

YnMyr in T. brucei using immunoprecipitation with an ARL6 specific antibody,17 was a 

significant hit identified in both BSF and PCF parasites. 

In initial analyses using AzTB as capture reagent, no YnMyr-modified peptides were 

identified; this is unsurprising since the biotinylated peptide should remain partly anchored to 

the resin and the large TAMRA-containing label hinders detection by LC-MS/MS. We 

recently reported a series of related reagents incorporating a trypsin cleavage site between 

the TAMRA/biotin moieties and the azide capture group (Fig. 3b);25 these reagents enabled 

identification of YnMyr-tagged peptides in the malaria parasite P. falciparum,10 human 

cancer cells,12 zebrafish25 and Leishmania parasites.23 In the current study we used AzRTB 

and AzRB (Supp. Fig. S1), which both incorporate an arginine trypsin cleavage site and 
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biotin, with AzRTB also featuring a TAMRA fluorophore. Searches were carried out with the 

additional mass fragment as a variable modification on any amino acid at a peptide N-

terminus and data filtered to retain only those identifications meeting a stringent score 

threshold, as established in our previous studies25 (see Methods). Sixty five identified 

modification sites across BSF and PCF samples were matched to 56 discrete proteins; 

peptides differently modified by methionine oxidation or with different lengths due to missed 

cleavages can derive from the same protein sequence (Supp. Table S3; see Supp. Fig. S6 

for examples of assigned modified peptide spectra and Supp. Data file for all spectra). Out of 

these 65 peptides only three lacked an N-terminal glycine, and corresponded to proteins for 

which no other peptides were identified; therefore these are likely to be false positive 

identifications. When AzRTB was used to capture and enrich tagged proteins, 18 YnMyr-

modified peptides (17 proteins) were detected in T. brucei PCF samples. AzRB, however, 

resulted in more identifications, with 30 modified N-terminal glycines detected in PCF and 26 

in BSF samples. Sixteen YnMyr modified N-terminal glycines were detected independently 

with both AzRTB and AzRB; these reagents result in remnants on the modified peptide that 

are slightly different in mass (by one methylene unit), providing orthogonal evidence for 

modification of these peptides. 

BSF and PCF parasites are adapted to very different environments, and the identification of 

stage-specific proteins expressed specifically in the insect vector or the host is an ongoing 

area of research.39 Comparison of YnMyr LFQ intensities of hits (defined as proteins 

identified as significantly enriched over Myr controls in one or both life stages) by t-test 

revealed that a subset of non-MG and MG proteins were differentially detected in one life 

stage over the other (Fig. 4; Supp. Table S4). The data are in good agreement with existing 

studies. The ratio of BSF/PCF YnMyr intensities for hits was plotted against the ratio from a 

published dataset where SILAC (stable isotope labelling by amino acids in cell culture) 

quantitative proteomics was used to compare the two life stages (Butter et al.39): pleasingly, 

for the 59 proteins quantified by both studies (roughly half of the LFQ hits in our 
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comparison), the correlation was high (Pearson 0.87; Fig. 4b). Our data are also in similarly 

good agreement with an earlier SILAC-based study (Urbaniak et al.40) (Pearson correlation 

0.83; Supp. Fig. S7). These high correlations also show that, in most cases, YnMyr labelling 

tracks protein abundance. 

As expected, specific cell surface proteins such as GPI-PLC and VSG were prominent in 

BSF samples, whereas MSP-B and PSSA-2 were found in PCF samples, consistent with the 

large changes that occur to the parasite’s surface coat. Functional analysis of stage-

enriched MG motif proteins revealed several hits in the calpain family of cysteine peptidases, 

two protein phosphatases with different stage-specificities, and proteins involved in 

intracellular transport: phosphoinositide-specific phospholipase C and receptor adenylate 

cyclase (GRESAG4)41 in PCF parasites and ARL1B enriched in BSF parasites (Fig. 4c). 

Calpains are calcium-dependent cysteine peptidases and T. brucei possesses an expanded 

family of calpain-like proteins, some of which have apparently no proteolytic activity but are 

targeted lipidation or other signals to different subcellular locations.42 Although the functions 

of these proteins are largely unknown, they have been hypothesised to play regulatory roles, 

for example in cytoskeletal remodelling in the case of CAP5.5,18 or in virulence in the 

mammalian host in the case of MCA4.21 Given the widespread differential phosphorylation of 

BSF and PCF T. brucei,43 the identified stage-enriched lipidated phosphatases could also be 

particularly interesting for future studies; for example, a recent analysis of two N-

myristoylated phosphatases demonstrated their importance at specific stages of 

development in the malaria parasite.44 Thirteen MG proteins currently of unknown function 

were also enriched in one of the two stages. Interestingly, 12 lipidated proteins significantly 

enriched in our PCF dataset were found to be upregulated early in differentiation from BSF 

to PCF parasites in a recent proteomic study by Dejung et al. (Supp. Fig. S7).45 Other 

interesting hits are ARF protein ARLB, and calpain-like protein Tb927.1.2230, both enriched 

in our BSF data and identified as transiently upregulated during differentiation by Dejung et 

al., suggestive of roles in the differentiation process. Overall, our data show that lipidated 
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proteins involved in carbohydrate metabolism, phosphorylation processes, small molecule, 

ion and protein transport, and signal transduction vary between BSF and PCF parasites 

(Supp. Fig. S8), consistent with the significant changes to cell structure and metabolism that 

accompany adaptation of the cell to its different host environments. 

Proteomic identification of YnPal labelled proteins in T. brucei 

As discussed above, GPI-anchored proteins and glycoconjugates are prevalent in T. brucei 

and these are known to incorporate fatty acyl chains of varying lengths. In addition, fatty 

acids can be incorporated into proteins on cysteine side chains; S-acylation with the 16-

carbon fatty acid palmitate is a common modification across eukaryotes, including protozoan 

parasites.46 In contrast to the high specificity of NMT for myristoylation,6  S-acylation 

enzymes and pathways have been shown to be promiscuous in accepting fatty acid 

analogues with a variety of chain lengths – in mammalian cells at least.47 In an additional 

layer of complexity, some proteins are dually acylated, being N-myristoylated at the N-

terminal glycine and S-acylated with palmitate on a nearby cysteine residue.46 Furthermore, 

T. brucei is known to metabolize long chain fatty acids to meet its needs in different life 

stages and culture conditions,48 although whether alkyne-tagged analogues would also be 

substrates for these metabolic enzymes is not known. 

To provide additional insight into whether YnMyr was also incorporated into S-palmitoylation 

sites and to establish a broader picture of lipidation in T. brucei, longer chain palmitate 

analogue YnPal (Fig. 2d) was incubated with BSF parasites at 100 µM for 4, 8 or 18 hours 

and samples processed as before. In-gel fluorescence analysis revealed a distinct band 

pattern for the two analogues (Fig. 5a). Interestingly, in contrast to YnMyr, YnPal was not 

visibly toxic to parasites and labelling intensity continued to increase slightly up to 18 hours 

(Supp. Fig. S4). Similar to YnMyr, YnPal was also incorporated into a base-sensitive band at 

~60 kDa, although to a much lesser extent (Fig. 5a). YnPal proteins were enriched and 

analysed by LC-MS/MS as described above, and palmitic acid (Pal) controls were run in 

parallel. Results were filtered to retain only those in at least two of the three replicates and 
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data analysed by LFQ (Supp. Fig. S9). This YnPal dataset was compared to the YnMyr BSF 

dataset and also cross-compared with a dataset of potential palmitoylated proteins identified 

by Emmer et al.49 in T. brucei PCF using acyl-biotin exchange chemistry (ABE) (Supp. Table 

S5). ABE is an approach complementary to click chemistry for palmitoyl-protein discovery, 

and identifies proteins that bear hydroxylamine-labile linkages at cysteine residues. Protein 

hits were then categorised in the following way: 1. N-terminal glycine (MG) motif plus 

detection in the experiments of Emmer et al.; 2. Detection by Emmer et al. but no MG motif; 

3. MG proteins found in YnMyr datasets only; 4. Other MG motif proteins; 5. Others (Fig. 5b). 

YnMyr and YnPal intensities of hits, defined as proteins significant in one or both datasets 

and/or with direct detection of the N-terminal YnMyr modified peptide, were compared by t-

test (Fig. 5b). A high degree of overlap was observed between YnMyr and YnPal datasets: 

out of 134 protein hits, only 3 were exclusive to YnPal samples and 15 to YnMyr samples. 

Most MG hits were identified in either YnMyr alone (15 proteins), or in both datasets (32 

proteins), whereas non-MG hits also identified by Emmer et al. were mostly enriched in 

YnPal samples compared to YnMyr, as expected (Fig. 5b). MG proteins detected as S-

acylated by Emmer et al. also identified in the current study include FCaBP, PPEF and two 

calpain-like proteins with homology to Leishmania small myristoylated protein 1 (SMP-1), 

Tb927.1.2230 and Tb927.1.2260; there is published evidence for the S-acylation of these 

proteins on cysteines proximal to the N-terminal myristoylation site.16, 20, 50 LFQ analyses also 

revealed enrichment of known S-palmitoylated protein MCA4.21 Interestingly, other members 

of this family (MCA3 & MCA1) were also YnPal-enriched hits, suggesting that these 

interesting pseudoproteases may be S-acylated. Around 70 proteins lacking an MG motif 

and identified as YnPal hits here were not found by Emmer et al., likely due to stage-specific 

differences in the proteome (insect stage PCF parasites in Emmer et al., and human stage 

BSF cultures in the present study), and may also reflect the complementarity of ABE and 

CuAAC-based chemical proteomics for palmitoylated proteome analysis.  
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Proteins in the ARF/ARL family are not generally dually acylated, and the large majority were 

indeed identified only in YnMyr analyses. An interesting exception is the ARF protein 

Tb927.9.13650 (and Tb927.9.13680, differing by just one amino acid), which was detected in 

YnPal analyses, and contains a cysteine strongly predicted to be palmitoylated (CSS-Palm; 

Supp. Table S5).51 Consistent with gel-based results (Fig. 5a), the VSG was also enriched in 

YnPal samples (Supp. Table S5), albeit to a lesser extent than with YnMyr. Although 

previous data indicate that  myristate is specifically incorporated into the final GPI-anchor of 

this protein, intermediates in the GPI-anchor remodelling process contain longer chain fatty 

acids, including potentially stearate (C18:0)31, 52 Alternatively, there are other examples of 

variable lipid labelling in T. brucei, with evidence for promiscuous incorporation and 

metabolism prior to incorporation of lipids. For example, the S-acylated protein 

glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC), which is responsible for 

processing the GPI anchor of VSG and other substrates, can be radiolabelled with myristate, 

palmitate or stearate;36  consistent with this, GPI-PLC was detected with almost equal 

enrichment in our YnMyr and YnPal analyses. In addition, labelling with either [3H]-myristate 

or [3H]-palmitate results in both myristate and palmitate being present on GPI-PLC, 

suggesting that trypanosomes can interconvert these fatty acids. Indeed, at least in some 

culture conditions, myristate is readily chain elongated in T. brucei to palmitate and 

stearate.53 It is conceivable that YnMyr and YnPal are processed by chain 

elongation/reduction by the trypanosome fatty acid biosynthetic machinery and incorporated 

into the VSG and other proteins; since processing occurs at the carboxyl end of the lipid, this 

would be expected to conserve the alkyne tag. Further work will be required to explore this 

possibility. 

In summary, approximately 100 YnPal tagged targets have been identified here, including 

both S-acylated and GPI-anchored proteins. 
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Chemical knockdown of NMT 

NMT has been validated pre-clinically as a drug target in T. brucei BSF via RNAi knockdown 

and chemical inhibition of the enzyme, and target engagement of inhibitor with NMT inside 

parasites was demonstrated through the reduction of protein radiolabelling with [3H]-myristic 

acid following treatment with a T. brucei NMT inhibitor (NMTi).7 Azido-myristate has also 

been used to demonstrate that NMTi reduces tagging in the related organism Trypanosoma 

cruzi in a dose-dependent manner at the level of in-gel fluorescence,54 although tagged 

proteins were not identified. Following a strategy similar to our recent reports in human 

cells12 and Leishmania donovani,23 we aimed to use quantitative proteomics in combination 

with YnMyr and a TbNMT inhibitor to provide orthogonal evidence for the identify of NMT 

substrates, whilst simultaneously defining a set of NMT substrates that may mediate the 

phenotypes observed on inhibition. 

TbNMT inhibitor 17 (Fig. 6a) was co-incubated with YnMyr in BSF parasites at 

concentrations ranging from 5 to 100 nM a dose-dependent drop in labelling of most bands 

was observed, with the notable exception of the VSG, consistent with target engagement in 

the parasite (Fig. 6b). Inhibitor 1 is reported to have an EC50 of 2 nM on BSF parasites and 

sub-nM IC50 against TbNMT, and is effective in eliminating parasites in a mouse model of 

trypanosomiasis.7 A small panel of analogues of 1,13a, 55 with varying potency against TbNMT 

(compounds 2-4, Fig. 6a), was analysed using YnMyr tagging. In all cases the same trend 

towards decreased labelling was observed, with the VSG band remaining largely unaffected 

by NMT inhibition (Supp Fig S10). Following base treatment, quantification of the decrease 

in fluorescence intensity suggested intracellular inhibition of N-myristoylation with TC50 

(concentration of compound resulting in a 50% decrease in tagging) in the low nM range for 

1, 3 and 4, and in the low µM range for 2, in line with the measured enzyme potencies for 

these compounds (Fig. 6a,c). These data are consistent with the on-target action of these 

inhibitors in parasites, and provides further evidence that the majority of base treatment-

insensitive YnMyr labelling in Tb BSF is NMT-dependent. 
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In order to identify proteins for which acylation levels were selectively affected by NMT 

inhibition, YnMyr tagged BSF parasites were treated with 1 at 5, 10 or 100 nM, or 2 at 1, 5 or 

20 µM, concentrations designed to probe the range of tagging reduction observed in gels for 

more and less potent examples of TbNMT inhibitors. The resulting samples (16 total, 

including replicates) were subject to CuAAC, base-treatment to remove GPI-anchored 

proteins, enrichment and LC-MS/MS analysis; Myr controls were processed in parallel 

(Supp. Fig. S11). Data were analysed by MaxLFQ34 and proteins quantified in both no-

inhibitor replicates were selected for analysis of enrichment levels over background 

(YnMyr/Myr) and response to inhibitor (Supp. Table S6). A subset of MG proteins, including 

almost all proteins identified as having a YnMyr-modified N-terminus, were enriched over 

Myr controls, and this enrichment reduced in response to the highest concentrations of 

inhibitor (100 nM 1 and 20 µM 2) (Fig. 7a). Examination of enrichment ratios (enrichment 

over Myr controls, normalised to samples with no inhibitor; see Methods for detailed 

description of data processing and analysis) revealed 54 proteins that responded robustly to 

the highest concentrations of both inhibitors 1 & 2. Of this subset, only one did not contain 

an N-terminal glycine. Hierarchical clustering was performed on the 54 putative hits and four 

clusters of response were defined (Supp. Fig. S12); protein responses were further 

examined by plotting enrichment relative to concentration of inhibitor (Table 1, Fig. 7b and 

Supp. Fig. S13). The sole non-MG protein (Tb927.8.2250, annotated as a putative tRNA 

ligase) only responded to the highest concentration of NMT inhibitor (Fig. 7c) and may be a 

downstream or low affinity off-target of the inhibitor. Interestingly, this protein was identified 

by Emmer et al. as S-acylated in PCF parasites.49 The remaining 53 hits, classed as ‘high 

confidence’, showed a variety of robust dose-responses; a range of substrate sensitivity 

towards NMT inhibition was also observed in human cells and Leishmania parasites.12, 23 

In addition to the 53 high confidence hits, a further 10 proteins showed a weaker dose-

response to NMT inhibitors, but this group included 7 proteins in which the YnMyr-modified 

peptide was identified on the N-terminal glycine. The 10 proteins were thus assigned as 
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‘medium confidence’ hits, and include FCaBP (previously identified as N-myristoylated)20 

and putative N-myristoylated protein MCA4.21 The remaining MG proteins, which neither 

responded in a dose-responsive manner to NMT inhibitors nor had an identified N-terminal 

modified glycine, were classed as non-substrates, and included ribosomal proteins and 

others not expected to be myristoylated. Notably, two widely used bioinformatics tools35, 56 

for prediction of whether a protein is a likely NMT substrate disagreed for 18 of the high 

confidence hits identified here and predicted no myristoylation for an additional 7 (Supp. Fig. 

S14; Table S7). This is not necessarily surprising given that these tools were trained on 

datasets from other organisms, and highlights the value of experimentally identifying NMT 

substrates. 

Proteins for which the level of YnMyr tagging responded in a dose-dependent manner to 

both NMT inhibitors are highly likely to be NMT substrates (i.e. high confidence hits). These 

included Golgi reassembly stacking protein (GRASP), proteasome regulatory ATPase 

subunit 2 (RPT2), five members of the ADP-ribosylation factor (ARF) family of GTPases, 

four proteins involved in fatty acyl CoA synthesis, four phosphatases (including PPEF), 

calpain-like proteins and many proteins of unknown function. Fifty percent of high confidence 

NMT substrate proteins identified here are associated with a loss of fitness in RNAi 

knockdown experiments in different life stages or conditions (Supp. Table S6; Alsford et al.57; 

and data extracted from TriTrypDB33), and merit further investigation as substrates with the 

potential to mediate the antiparasitic effects of TbNMT inhibitors. 

Conclusions 

Here we have used chemical proteomics and a suite of chemical tools – bioorthogonally 

tagged fatty acid analogues, CuAAC capture reagents with cleavable moieties for 

myristoylation site identification, and N-myristoyltransferase inhibitors – to explore protein 

lipidation in the protozoan pathogen T. brucei. We identify lipidated proteins in bloodstream 

and procyclic form parasites, and report the first comparative quantitative analysis of stage-
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enriched lipidated proteins. We also show that alkyne palmitate analogue YnPal can be used 

to tag S-acylated proteins in T. brucei; this analogue should prove a useful tool for further 

exploring palmitoylacyltransferase enzymes as potential drug targets. Furthermore, as we 

have previously shown in other organisms,12, 23 quantitative chemical proteomics combined 

with well-characterised enzyme inhibitors proved to be a powerful combination for clearly 

defining NMT substrates amid the complexity of metabolic tagging. The N-myristoylated 

proteins identified here are involved in many important cellular processes, and our datasets 

provide a rich resource for future investigation of the complex and pleiotropic impact of NMT 

inhibition in T. brucei. Data are available via ProteomeXchange with identifier PXD004053. 

Finally, tagging of proteins by other mechanisms, for example incorporation of YnMyr into 

the GPI-anchor of the VSG as shown here, suggests that such analogues may also be 

useful tools for probing the GPI-anchor and lipid metabolism pathways in trypanosomes. 

Methods 

Chemical tools 

The following chemical tools were synthesized as described previously: YnMyr, YnPal and 

AzTB;58 AzMyr and YnTB;26 inhibitors 1 and 2;12 AzRB and AzRTB.25 Myristic and palmitic 

acids, and all other chemicals were purchased. 

Parasite culture 

The T. brucei brucei BSF strain Lister 427 was maintained in vitro at 37 °C with 5% CO2 in 

HMI-9 medium containing 2 µg/mL Geneticin (Invitrogen).59 The Lister 427 strain is 

monomorphic and has lost the ability to differentiate from long-slender trypomastigotes into 

the short-stumpy form. Cells were routinely maintained at a density less than 1 x 106/mL. 

The T. brucei brucei procyclic strain 449 was maintained in vitro at 26 °C in SDM-79 medium 

containing 25 µg/mL phleomycin.59 Cells were routinely maintained at a density less than 1.5 
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x 107/mL. All culture media contained 10% tetracycline-free fetal bovine serum (Autogen 

Bioclear). 

Metabolic tagging experiments 

Parasites were metabolically labelled by the addition of 100 µM myristic acid or 

YnMyr to T. brucei BSF (set up at 2.5×105/mL in HMI-9 medium the previous day) or PCF 

(5 x 106/ml in SDM-79). Cells were then grown for 8 h at 37 °C with 5% CO2 (BSF) or for 18 

h at 26 °C (PCF) before harvesting. Parasites were lysed in ice-cold RIPA buffer (50 mM Tris 

pH 7.4, 1% NP-40, 1% sodium deoxycholate, 150 mM NaCl, 0.5% SDS and 1× Complete 

EDTA-free protease inhibitor cocktail (Roche)), sonicated 3× 10 sec at amplitude 45 with 1 

min intervals on ice), then centrifuged at 16,000 g for 30 min at 4 °C. For inhibition 

experiments, parasites were pre-treated for 1 h with inhibitors 1-4 at indicated concentrations 

and then Myr or YnMyr probe added for the remaining labelling time (8 h for BSF, 18 h for 

PCF). 

CuAAC labelling, pull-down and gel-based analysis 

CuAAC chemistry, pull-down and gel-based analysis was performed as described 

previously.23 In brief, proteins were precipitated, resuspended, and CuAAC performed as 

described.26 Proteins were enriched on Streptavidin or Neutravidin-coated beads. 

Visualisation was carried out using an Ettan™ DIGE Imager (Amersham Biosciences) - Cy3 

channel to detect TAMRA-labelled proteins. 

Proteomic sample preparation and analysis 

Sample preparation for proteomics analysis and LC-MS/MS was carried out as described 

previously (also detailed in Supporting Information).12 

Data processing: general comments 

The data were processed with MaxQuant version 1.5.3.8, and the peptides were identified 

from the MS/MS spectra searched against TriTrypDB-25 T. brucei TREU927 database using 
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the Andromeda search engine. The VSG protein for the 427 strain was not present in this 

database and so initial experiments B1 and B2 (see below) were searched against the T. 

brucei Lister strain 427. The TriTrypDB sequence for the identified VSG variant 

Tb427.BES40.22 was appended to the FASTA file. Cysteine carbamidomethylation was 

used as a fixed modification, and methionine oxidation and N-terminal acetylation as variable 

modifications. The false discovery rate was set to 0.01 for peptides, proteins and sites. Other 

parameters were used as pre-set in the software. “Unique and razor peptides” mode was 

selected to allow for protein grouping; this calculates ratios from unique and razor peptides 

(razor peptides are uniquely assigned to protein groups and not to individual proteins). LFQ 

experiments in MaxQuant were performed using the built-in label-free quantification 

algorithm (MaxLFQ).34 Data were elaborated using Perseus version 1.5.0.31, Excel and 

Graphpad Prism. The data have been deposited to the ProteomeXchange with identifier 

PXD004053. 

Data analysis 

Enrichment-LC-MS/MS experimental design for YnMyr samples (for each experiment, both 

Myr and YnMyr samples were processed): 

Expt Biological 
sample 

Reagent  Expt Biological 
sample 

Reagent 

B1 BSF1 AzTB  P1 PCF1 AzTB 

B2 BSF2 AzTB  P2 PCF2 AzTB 

B3 BSF2 AzTB  P3 PCF1 AzTB 

B4 BSF2 AzRB  P4 PCF2 AzTB 

    P5 PCF2 AzRTB 

    P6 PCF1 AzRB 

 

BSF analysis. Dataset: experiments B1-4. For the search, “Match between runs” was 

enabled within parameter groups but not between them (parameter groups: Myr, YnMyr). 

Replicates were grouped together (groups: Myr, YnMyr). The YnMyr protein group was 

filtered to require three valid values across the four replicates and then filtered to retain only 

those proteins present in biological duplicate (present in both experiments B1 and B2/3/4). 

Label free intensities were logarithmized (base 2) and empty values were imputed with 
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random numbers from a normal distribution, whose mean and standard deviation were 

chosen to simulate low abundance values close to noise level (impute criteria: width 0.1 and 

down shift 1.8; imputation for each sample individually). A modified t-test with permutation 

based FDR statistics was applied (250 permutations; FDR 0.001; s0 1) to compare Myr and 

YnMyr groups. 

PCF analysis. Dataset: experiments P1-6. For the search, “Match between runs” was 

enabled within parameter groups but not between them (parameter groups: Myr, YnMyr). 

Replicates were grouped together (groups: Myr, YnMyr). The YnMyr protein group was 

filtered to require three valid values across the four replicates and then filtered to retain only 

those proteins present in biological duplicate (present in both experiments P1/3/6 and 

P2/4/5). Label free intensities were logarithmized (base 2) and empty values were imputed 

with random numbers from a normal distribution (impute criteria: width 0.1 and down shift 

1.8; imputation for each sample individually). A modified two-sample two-sided t-test with 

permutation based FDR statistics was applied (250 permutations; FDR 0.001; s0 1) to 

compare Myr and YnMyr groups. 

BSF and PCF comparisons. Dataset: experiments B1-4 and P1-6. Datasets were searched 

together with MaxLFQ. Data were filtered for at least three valid values in at least one group 

(groups: BSF_Myr, BSF_YnMyr, PCF_Myr, PCF_YnMyr). The total dataset was filtered to 

require 3 BSF_YnMyr or 4 PCF_YnMyr valid values, then cross-referenced with individual 

analyses (described above) to retain hits only. Missing values were imputed (impute criteria: 

width 0.1 and down shift 1.8) and two-sample t-tests used to compare YnMyr intensities 

across BSF and PCF (250 permutations; FDR 0.01, s0 2). Data were elaborated in Excel 

and compared to literature datasets.39-40, 45 

Modified peptide analyses. Datasets: experiments B4, P5, P6. MaxQuant searches were 

carried out as above with the following modifications: the minimum peptide length was 

reduced to 5. This is because the N-terminus of NMT substrates often contains a lysine 

residue,35 resulting in short N-terminal tryptic peptides. Modification with YnMyr and the 
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expected portion of AzRB or AzRTB was specified as a variable modification. YnMyr-

modified peptide matches were filtered to retain only those with a score (the Andromeda 

score for the best identified among the MS/MS spectra) >40 and delta score (the score 

difference to the second best peptide identification) >20. 

YnPal and YnMyr comparisons (BSF). Dataset: YnMyr experiments B2-4; YnPal: three 

technical repeats (A-C, processing from the lysate stage) of one biological sample (YnPal 

and Pal samples). Data were searched together by MaxLFQ. Data were filtered for at least 

two valid values in at least one group (groups: Myr, YnMyr, Pal, YnPal). Label free intensities 

were logarithmized (base 2). YnMyr and YnPal datasets were then analysed separately: 

filtered (at least 2 valid values in either Myr or YnMyr; at least 2 valid values in either Pal or 

YnPal), missing values were imputed (impute criteria: width 0.1 and down shift 1.8) and two-

sample t-tests used to define potential hits in each case (250 permutations; FDR 0.05, s0 1). 

The total dataset was then cross-referenced with individual analyses to retain hits only (t-test 

significant proteins and those where modified peptide was identified). Missing values were 

imputed (impute criteria: width 0.1 and down shift 1.8, across total dataset) and two-sample 

t-tests used to compare YnMyr and YnPal intensities (250 permutations; FDR 0.05, s0 1). 

Data were elaborated in Excel and compared to a literature dataset.49 

YnMyr tagging in the presence of NMT inhibitors (BSF). Groups (conditions): YnMyr, 

Myr, 5 nM 1, 10 nM 1, 100 nM 1, 1 µM 2, 5 µM 2, 20 µM 2. All samples were prepared and 

processed in duplicate (technical replicates A and B from the lysate stage). The ‘Match 

between runs’ option (time window 0.7 minutes, alignment time window 20 min) in Maxquant 

was enabled during the searches. Data were grouped and filtered to retain only those 

proteins present in both YnMyr replicates. The mean of the technical replicates was 

calculated and then missing values were imputed from a normal distribution (width 0.1, 

downshift 1.8; separately for each dataset). Response ratios (YnMyr/(YnMyr + inhibitor)) and 

enrichment ratios ((YnMyr + inhibitor)/Myr) were calculated and enrichment ratios 

subsequently normalised to YnMyr only (no inhibitor) to compare between proteins and 
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across conditions. Proteins with -Log2((YnMyr + inhibitor)/Myr)>2 (response ratio>2) for 100 

nM 1 and 20 µM 2 were selected as potential hits. These hits were further analysed by 

plotting the dose-response curves (normalized enrichment ratios). 

Supporting information 

Additional Figures S1-14; additional Tables S1-7; Supporting Data File (modified peptide 

spectra); detailed experimental protocols for CuAAC, pull-down, gel-based analysis, 

preparation and measurement of proteomic samples, and bioinformatics analysis. This 

information is available free of charge via the Internet at http://pubs.acs.org/. 

The  mass  spectrometry  proteomics  data  have  been  deposited  to  the 

ProteomeXchange Consortium  (http://proteomecentral.proteomexchange.org) via the 

PRIDE partner repository60 with the dataset identifier PXD004053. 
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Table 1. List of high and medium confidence N-myristoylated protein hits. Proteins were 

identified by quantitative proteomics with YnMyr in combination with NMT inhibitors. Mean 

normalised enrichment ratios (YnMyr/Myr) given and cells are colour coded based on value 

(blue=0, red=1, yellow=50 percentile). Proteins for which the YnMyr-modified N-terminus 

was detected (Mod. Pept.) and those identified as hits in PCF samples are indicated Some 

protein groups contained multiple proteins (“&others”). See also Supp. Table S6.   

 Normalised enrichment ratios     

  Inhib.1 (nM) Inhib. 2 (µM)     

Protein IDs 0 5 10 100 1 5 20 MG 
Mod. 
Pept. PCF Protein description 

High confidence hits 

Tb927.10.4930 1.00 0.76 0.77 -0.07 0.80 0.38 0.14 + +  protein phosphatase 2C 

Tb927.10.12940 1.00 0.93 0.89 0.56 1.00 0.64 0.18 + + + predicted zinc finger protein 

Tb927.11.760 1.00 0.94 0.81 0.39 1.00 0.68 0.37 + + + protein phosphatase 2C 

Tb927.7.5340 1.00 0.92 0.85 0.39 0.95 0.62 0.50 + + + uncharacterised 

Tb927.9.11870 1.00 0.46 0.24 0.12 0.54 0.17 0.23 + +  zinc finger protein 

Tb927.6.1800 1.00 0.95 0.83 0.42 0.98 0.57 0.35 + + + protein phosphatase 2C 

Tb927.6.2090 1.00 1.00 0.97 0.64 1.03 1.05 0.53 + + + pdz domain containing protein 

Tb927.9.8350 1.00 0.93 0.91 0.45 1.02 0.65 0.27 + + + uncharacterised 

Tb927.8.2280&others 1.00 0.86 0.86 0.67 0.92 0.75 0.08 + + + POMP39B,D,C 

Tb927.7.6230 1.00 0.74 0.68 -0.02 0.85 0.51 0.15 + + + ADP-ribosylation factor (ARF3) 

Tb927.9.6530 1.00 0.79 0.74 0.44 0.81 0.61 0.31 + +  uncharacterised 

Tb927.9.6170;Tb927.9.6230 1.00 0.73 0.53 0.18 0.82 0.39 -0.07 + + + uncharacterised 

Tb927.7.510;Tb11.v5.0890 1.00 0.97 0.92 0.55 0.97 0.82 0.62 + + + uncharacterised 

Tb927.7.1630 1.00 0.30 0.15 0.14 0.44 0.08 0.14 + + + uncharacterised 

Tb927.10.3260;Tb11.v5.0825 1.00 0.77 0.70 0.44 0.83 0.43 0.28 + + + Long-chain-fatty-acid--CoA ligase 5 

Tb927.1.2230 1.00 0.98 0.95 0.71 0.98 0.86 0.76 + + + calpain-like protein fragment 

Tb927.4.4360 1.00 0.85 0.78 0.63 0.86 0.77 0.60 + + + monoglyceride lipase 

Tb927.8.2070 1.00 0.87 0.77 0.61 0.88 0.70 0.46 + +  unknown (POMP39A) 

Tb927.9.13740&others 1.00 0.90 0.77 0.41 0.93 0.69 0.45 + + + ADP-ribosylation factor 

Tb927.9.4230 1.00 0.81 0.70 0.02 0.97 0.69 0.21 + + + fatty acyl CoA synthetase 4 (ACS4) 

Tb927.8.2450 1.00 0.88 0.73 0.02 0.86 0.57 0.08 + +  SNF1-related protein kinase/AMPKB 

Tb927.9.8180 1.00 0.83 0.70 0.14 0.92 0.59 0.25 + + + uncharacterised 

Tb927.9.4210;Tb11.v5.0561 1.00 0.88 0.80 0.50 0.91 0.46 0.41 + + + fatty acyl CoA synthetase 3 (ACS3) 

Tb927.1.2260 1.00 0.84 0.67 0.11 0.84 0.54 0.47 + + + calpain-like protein fragment 

Tb927.3.4590 1.00 0.62 0.52 0.31 0.74 0.46 0.20 + + uncharacterised 

Tb927.4.4570 1.00 0.84 0.74 -0.01 0.99 0.64 0.18 +  uncharacterised 

Tb927.11.3740 1.00 0.91 0.87 0.46 0.98 0.61 0.44 + 
 

+ proteasome regulatory ATPase subunit 2 (RPT2) 

Tb927.1.1500 1.00 0.96 0.92 0.62 0.98 0.75 0.58 +  uncharacterised 

Tb927.2.4280 1.00 0.89 0.91 0.38 0.93 0.75 0.05 +  kinetoplastid-specific dual specificity phosphatase 

Tb927.8.3970 1.00 0.97 0.90 0.42 1.01 0.69 0.47 + + Oxidoreductase 

Tb927.7.7240 1.00 0.92 0.99 0.49 1.00 0.85 0.60 + 
 

 leucine-rich repeat protein (LRRP) 

Tb927.10.7760 1.00 0.75 0.54 0.04 0.81 0.39 0.22 +  Uncharacterised 

Tb927.8.5060 1.00 0.56 0.45 -0.02 0.71 0.30 0.15 + + ADP-ribosylation factor 

Tb927.10.12630 1.00 0.67 0.50 0.15 0.66 0.22 0.16 + + Uncharacterised 

Tb927.11.9190 1.00 0.82 0.83 0.21 0.93 0.62 0.30 + 

 

 protein kinase 

Tb927.7.5600 1.00 0.66 0.68 -0.02 0.85 0.62 0.19 +  leucine-rich repeat protein (LRRP) 

Tb927.1.4050 1.00 0.90 0.87 0.58 0.96 0.78 0.67 + + PPEF 

Tb927.8.4570 1.00 0.95 0.83 0.47 0.97 0.77 0.15 +  Zinc finger 

Tb927.1.1420 1.00 0.86 0.86 0.10 1.08 0.32 0.21 + 
 

+ uncharacterised 

Tb927.1.5030 1.00 0.88 0.75 0.50 1.00 0.55 0.49 +  leucine-rich repeat protein (LRRP) 

Tb927.4.4580 1.00 0.90 0.92 0.50 0.99 0.84 0.61 +  uncharacterised 

Tb927.4.4550 1.00 0.83 0.79 -0.02 1.07 0.72 0.19 +  uncharacterised 

Tb927.8.7780 1.00 1.01 0.95 0.44 1.11 0.93 0.23 + 
 

 uncharacterised 

Tb927.8.4940 1.00 0.66 0.64 0.49 0.67 0.56 0.41 + + uncharacterised 

Tb927.8.7760 1.00 0.88 0.86 0.32 0.91 0.73 0.24 +  uncharacterised 

Tb927.10.6820 1.00 0.71 0.60 0.04 0.82 0.59 0.09 + + uncharacterised 

Tb927.7.550 1.00 0.91 0.81 0.41 0.94 0.69 0.24 + 

 

 WD domain, G-beta repeat 

Tb927.1.2120 1.00 0.88 0.82 0.53 0.93 0.54 0.43 + + Calpain-like protein CALP1.3 

Tb927.8.5050 1.00 0.76 0.74 0.36 0.86 0.61 0.23 +  OTU-like cysteine protease 

Tb927.11.2660 1.00 0.30 0.06 0.12 0.41 -0.01 0.26 + + Golgi reassembly stacking protein 

Tb927.9.7230 1.00 0.89 0.81 0.43 0.92 0.71 0.34 + 
 

 ADP-ribosylation factor-like protein (ARL1B) 

Tb927.9.4190 1.00 0.87 0.85 0.46 0.98 0.75 0.43 + + fatty acyl CoA syntetase 1 (ACS1) 

Tb927.9.7650 1.00 0.87 0.71 0.08 0.89 0.55 0.14 + + ADP-ribosylation factor 

Medium confidence hits            

Tb927.10.2440 1.00 1.11 1.04 0.79 1.11 1.13 0.83 + +  Metacaspase-4 (MCA4) 

Tb927.10.4770 1.00 0.83 0.68 0.62 0.77 0.83 0.19 + + + phosphatidylinositol-4-phosphate 5-kinase 

Tb927.8.8330;Tb927.4.3950 1.00 0.95 0.92 0.73 1.04 0.89 0.67 + + + CAP5.5/calpain 

Tb927.7.5250 1.00 0.75 0.84 0.78 0.88 0.68 0.66 + +  uncharacterised 

Tb927.11.2400 1.00 1.09 0.99 0.92 1.14 1.06 0.94 + +  uncharacterised 

Tb927.8.5460&others 1.00 1.11 0.98 0.78 1.22 1.01 0.74 + + + Flagellar calcium-binding protein/calflagin 

Tb927.9.2670 1.00 0.85 0.73 0.56 0.94 0.78 0.70 + + + engulfment and cell motility domain 2 (POMP3) 

Tb927.8.8020 1.00 0.85 0.82 0.76 0.82 0.84 0.75 + + monoglyceride lipase 

Tb927.10.2930 1.00 0.90 0.84 0.76 1.05 0.80 0.70 +  uncharacterised 

Tb927.11.9260 1.00 1.00 0.82 0.10 0.94 0.77 0.40 +  uncharacterised 
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Figure legends 

Figure 1: YnMyr labels proteins in T. brucei PCF parasites. a. Overview of tagging strategy. 

YnMyr or myristic acid (Myr) were added to T. brucei parasite cultures and incorporated 

metabolically into lipidated proteins. The alkyne tag was reacted by CuAAC with fluorophore 

and/or biotin functionalised azide capture reagents (Supp. Fig. S1) to allow downstream 

enrichment and analysis by proteomics and SDS-PAGE. b. Labelling with YnMyr or Myr (-) 

in PCF parasites. After 18 hr incubation with probes at 100 µM, parasites were lysed, 

proteins reacted with AzTB and separated by gel for fluorescence scanning. Samples were 

treated with NaOH or precipitated with chloroform/methanol (C/M) as indicated. c. Some 

PCF labelling is resistant to treatment with pronase. Coomassie gels are shown in Supp. Fig. 

S2. 

Figure 2: YnMyr labels proteins in T. brucei BSF parasites. a. Time-dependent metabolic 

incorporation of 100 µM YnMyr or Myr (-) in BSF parasites. b. Phenotype of YnMyr treatment 

at 18 hours in BSF. Scale bar: 10 µm. See also Supp. Fig. S3. c. NaOH treatment of lysates 

from BSF parasites incubated with YnMyr reveal labelling of a base-sensitive at ~60 kDa. d. 

Chemical structures of myristate analogues YnMyr and AzMyr, and palmitate analogue 

YnPal. e. Comparative labelling with different fatty acid analogues at 100 µM in BSF. 

Coomassie gels are shown in Supp. Fig. S2. Additional data is shown in Supp. Fig. S4. 

Figure 3: Identification of YnMyr tagged proteins in (a) BSF and (b) PCF T. brucei. Volcano 

plots showing proteins significantly enriched over background. Parasites were treated with 

Myr or YnMyr, lysates labelled by CuAAC, proteins enriched by biotin-streptavidin interaction 

and digested by trypsin for LC-MS/MS. Proteins from four (BSF) or six (PCF) replicates 

(independent sample processing from the lysate stage; includes a biological replicate in 

each case) were quantified by label-free quantification (MaxLFQ). After filtering to retain only 

those proteins present in biological duplicate and in 3/4 (BSF) or 4/6 (PCF) samples, missing 

intensities were imputed from a normal distribution chosen to mimic noise level and a 

modified t-test with permutation based FDR statistics was applied (250 permutations) to 
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compare Myr and YnMyr groups. BSF & PCF: FDR = 0.001; s0 = 1. Proteins containing an 

N-terminal glycine (MG) and those for which the YnMyr-modified peptide was identified using 

reagents AzRB or AzRTB in the respective lifestage are indicated. See also Supp. Tables 

S1&2; Table S3 for modified peptide data. 

Figure 4: Comparison of acylated proteins in two life stages of T. brucei. a. Volcano plot 

comparing YnMyr intensities of hits (defined as proteins significantly enriched over Myr 

controls in one or both life stage) by a two-sided two-sample permutation-corrected t-test 

(250 permutations; FDR 0.01, s0 2). Those proteins only identified in one life stage 

(BSF/PCF only) and N-terminal glycine-containing proteins (MG) are indicated. b. 

Comparison of relative abundance of protein hits in BSF and PCF parasites in the current 

study (LFQ quantification; ratio of YnMyr intensities is plotted) with the study of Butter et al. 

(quantification via SILAC).39 Comparison with another previously reported dataset is shown 

in Supp. Fig. S7. See also Supp. Table S4. c. Heatmap and functional classification of MG 

proteins found/enriched in one of the two stages. YnMyr intensities shown and colour-coded 

within each row. The total dataset is shown in Supp. Fig. S8. 

Figure 5: Comparison of myristate and palmitate tagging in T. brucei BSF. a. BSF parasites 

were incubated with YnMyr or YnPal (Fig. 2d) probes for 8 h and tagged proteins visualised 

by in-gel fluorescence after CuAAC. The gel was subject to treatment with NaOH and 

reimaged to identify base labile bands. b. Volcano plot comparing YnMyr and YnPal intensity 

for protein hits (significantly enriched over Myr or Pal controls). Two-sided two-sample 

permutation-corrected t-test (250 permutations; FDR 0.05, s0 1). Proteins are categorised 

and colour coded to indicate if they were identified as palmitoylated by Emmer et al. (Tb PCF 

palmitoylome), or contain an N-terminal glycine (MG). See also Supp. Fig. S9 and Supp. 

Table S5. 

Figure 6: TbNMT inhibitors dose-dependently knockdown YnMyr labelling. a. Structures of 

previously reported TbNMT inhibitors 1-4, their IC50 against TbNMT and tagging-IC50 

(concentration of compound required for 50% inhibition of tagging, TC50) calculated based 
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on fluorescent gels. b. In-gel fluorescence analysis of samples from parasites treated with 

indicated concentrations of 1 during YnMyr tagging. c. Quantification of in-gel fluorescence 

signal from NaOH-treated gels (n=2-3) of samples from parasites co-incubated with 

inhibitors 1-4 and YnMyr. See Supp. Fig. S10 for example gels.  

Figure 7: Chemical proteomic analysis of YnMyr tagging in the presence of NMT inhibitors. 

BSF parasites were labelled with YnMyr in the presence of inhibitors 1 (5, 10, 100 nM) and 2 

(1, 5, 20 µM). Proteins were subject to CuAAC, base treatment, enrichment and on-bead 

digest in technical duplicate and analysed by LC-MS/MS with quantification by LFQ. a. 

Global data visualisation of data after filtering to retain only those proteins quantified in both 

YnMyr replicates and imputation of missing values (see Methods for details). Left: response 

to 100 nM inhibitor 1 plotted against enrichment over myristic acid (Myr) controls. Right: 

response to inhibitors 1 (100 nM) vs 2 (20 µM). Proteins containing an N-terminal glycine 

(MG) and those for which the YnMyr-modified peptide was identified using reagents AzRB or 

AzRTB are indicated. b. Dose-response plots (treatment with 1) for protein hits. Curves are 

colour-coded based on clustering (degree of response; see Supp. Fig. S12). c. Dose-

response plots (treatment with 1) for other MG proteins not assigned as hits (grey) and for 

outlier non-MG protein (Tb927.8.2250, black) that decreases only at high concentrations of 

inhibitors. See also Supp. Table S6 and Supp. Fig. S13 (dose-response curves for treatment 

with 2 and for ‘medium confidence’ hits). 
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T b 9 2 7 .1 0 .1 2 9 4 0

T b 9 2 7 .1 .4 0 5 0

T b 9 2 7 .8 .2 0 7 0

T b 9 2 7 .1 .1 5 0 0

T b 9 2 7 .4 .4 3 6 0

T b 9 2 7 .6 .2 0 9 0

T b 9 2 7 .8 .2 2 8 0

T b 9 2 7 .1 .2 2 3 0

0 .1 1 1 0 1 0 0

0 .0

0 .4

0 .8

1 .2

C o n c e n tra tio n 1  (nM )

R
e
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m
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t

T b 9 2 7 .8 .2 2 5 0

T b 9 2 7 .1 0 .5 3 0

T b 9 2 7 .8 .8 0 2 0

T b 1 1 .v 5 .0 1 9 1

T b 9 2 7 .1 0 .2 9 3 0

T b 9 2 7 .1 0 .1 3 2 9 0

NMT substrates Non-substrates
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