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Abstract

In order to determine the effects of fluid-rock interaction on nitrogen elemental and isotopic
systematics in high-pressure metamorphic rocks, we investigated three different profiles
representing three distinct scenarios of metasomatic overprinting. A profile from the Chinese
Tianshan (ultra)high pressure — low temperature metamorphic belt represents a prograde, fluid-
induced blueschist-eclogite transformation. This profile shows a systematic decrease in N
concentrations from the host blueschist (~26 pg/g) via a blueschist-eclogite transition zone (19-23
ug/g) and an eclogitic selvage (12-16 pg/g) towards the former fluid pathway. Eclogites and
blueschists show only a small variation in 8Ny (+2.1+£0.3%o), but the systematic trend with
distance is consistent with a batch devolatilization process. A second profile from the Tianshan
represents a retrograde eclogite-blueschist transition. It shows increasing, but more scattered N
concentrations from the eclogite towards the blueschist and an unsystematic variation in 8N
values (8"°N = +1.0 to +5.4%o). A third profile from the high-P/T metamorphic basement complex
of the Southern Armorican Massif (Vendée, France) comprises a sequence from an eclogite lens via
retrogressed eclogite and amphibolite into metasedimentary country rock gneisses.
Metasedimentary gneisses have high N contents (14-52 pg/g) and positive 8'°N values (+2.9 to
+5.8%0), and N concentrations become lower away from the contact with 11-24 pg/g for the
amphibolites, 10-14 pg/g for the retrogressed eclogite, and 2.1-3.6 ug/g for the pristine eclogite,
which also has the lightest N isotopic compositions (§'°N = +2.1 to +3.6%o).

Overall, geochemical correlations demonstrate that phengitic white mica is the major host of N
in metamorphosed mafic rocks. During fluid-induced metamorphic overprint, both abundances and
isotopic composition of N are controlled by the stability and presence of white mica. Phengite
breakdown in high-P/T metamorphic rocks can liberate significant amounts of N into the fluid. Due
to the sensitivity of the N isotope system to a sedimentary signature, it can be used to trace the
extent of N transport during metasomatic processes. The Vendée profile demonstrates that this
process occurs over several tens of meters and affects both N concentrations and N isotopic

compositions.

Keywords:
Nitrogen, N isotopes, white mica, fluid-rock interaction, subduction, high-pressure metamorphic

rocks
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1. Introduction

Understanding the processes that affect both elemental concentrations as well as isotopic
signatures in subducting rocks are of fundamental importance for the assessment of subduction zone
cycling of elements (e.g., Bebout 2007, 2014; Marschall et al. 2007a; Halama et al. 2011; John et
al. 2004, 2011; Spandler and Pirard 2013; Konrad-Schmolke and Halama 2014; Bebout and
Penniston-Dorland 2016). Elemental and isotopic fractionation during subduction-zone
metamorphism and metasomatism influences the balance of input and output in subduction zones
and the geochemical signatures transported into the deep mantle beyond the arc, potentially
resurfacing via plume-related magmatism. Metamorphic rock sequences that record the successive
advance of a metamorphic/metasomatic process provide a valuable means to evaluate the
magnitude and extent of geochemical effects via fluid-rock interaction during subduction cycling.

The nitrogen (N) isotope system has a great potential as geochemical tracer for crustal and
volatile recycling due to the large isotopic differences in the various terrestrial reservoirs (Busigny
and Bebout 2013; Halama ef al. 2014; Johnson and Goldblatt 2015; Bebout ef al. 2016; Mikhail and
Howell 2016). Nitrogen is a sensitive tracer for fluid-rock interaction and metasomatic processes
(Bebout 1997; Halama et al. 2010; Li et al. 2014), in particular for sediment-derived fluids because
N is largely fixed by organic processes in sedimentary environments (Bebout 1997; Bebout et al.
2016). However, direct evidence of spatially constrained transport of N is rare, and the processes
that cause N mobilization and fractionation of N isotopes need to be better understood. It has been
established for some metasedimentary suites that N contents decrease and 8'°N values increase with
increasing metamorphic grade during subduction (Bebout and Fogel 1992; Mingram and Brauer
2001). However, other suites show relatively little change and N appears to be retained to depths
approaching those beneath arcs (Busigny et al. 2003; Pitcairn et al. 2005). Similarly,
metamorphosed mafic and ultramafic rocks appear to largely retain N to depths of at least 60-70 km
(Halama et al. 2010, 2012; Busigny et al. 2011).

In this study, we use spatially constrained profiles of metamorphosed mafic igneous rocks that
represent the frozen-in advance of fluid-induced metamorphic/metasomatic processes to investigate
the behaviour of N and N isotopes during prograde and retrograde metamorphic changes. Three
profiles were selected that represent i) a prograde transformation of blueschist into eclogite due to
fluid ingress from a major fluid conduit (Beinlich et al. 2010; John et al. 2012), ii) a retrograde
transformation of eclogite into blueschist during exhumation within a subduction channel (van der
Straaten et al. 2012), and iii) an exhumation-related interaction of an eclogite body with

surrounding felsic gneisses in a collisional context. The first two sample sequences come from the
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south-eastern Tianshan (China) high-pressure low-temperature (HP-LT) belt, whereas the third
profile is from the Variscan Belt in the Vendée (France). We find that prograde dehydration can
release large amounts of N due to the breakdown of white mica, in which N is incorporated as
ammonium (NH;"), whereas the associated isotopic changes are relatively small (< 1%o). Hence,
non-altered eclogites should largely reflect the N isotopic composition of their protoliths. In
contrast, interaction with retrograde fluids can impart the N elemental and isotopic characteristics of
the rocks with which the fluid equilibrated and hence cause significant perturbations of the N

systematics.

2. Geologic setting and sample description

2.1. Tianshan orogen, (ultra)high-pressure low-temperature ((U)HP-LT) metamorphic belt,
China

Two profiles were sampled in a (U)HP-LT belt of metamorphic rocks in the Chinese part of the
Tianshan orogen (Figure 1a). The Tianshan orogen extends morphologically over 2500 km from
north-western China in the east over Kyrgyzstan and Kazakhstan to Tajikistan and Uzbekistan in
the west along the southwestern margin of the Central Asian Orogenic Belt, also known as the
Altaid Tectonic Collage (e.g., Sengor et al. 1993). In China, the western Tianshan, which includes
the (U)HP metamorphic terrane, is situated between the Junggar plate in the north and the Tarim
plate in the south (Gao et al. 2009 and references therein). The HP-LT rocks are interpreted as relics
of the Palaeozoic South Tianshan Ocean basin and whole rock geochemical data of the mafic rocks
show oceanic basalt affinities including former seamounts and young arcs, subducted during
Silurian and Carboniferous time (Windley et al. 1990; Sengor and Natal’in 1996; Gao et al. 1998;
Gao and Klemd 2003; John et al. 2008). The (U)HP-LT metamorphic terrane comprises
predominantly metasediments, which form the host rocks of mafic metavolcanic rocks,
metavolcaniclastics, marbles, and ultramafic rocks, and is considered to represent a tectonic
mélange formed within an accretionary wedge-like setting on the southern margin of the Central
Tianshan Arc terrane during the subduction of the South Tianshan Ocean (e.g., Gao et al. 1999; van
der Straaten ef al. 2008; Klemd et al. 2011). The mafic metavolcanic rocks (mainly eclogites locally
interlayered with blueschists) occur irregularly distributed as differently sized pods, boudins, thin
layers or large massive blocks embedded in voluminous metasedimentary host rocks or less

abundant surrounded by metavolcaniclastic rocks (Gao and Klemd 2003). Blueschist occurrences
4
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include prograde and retrograde varieties (Gao and Klemd 2001; Gao et al. 2007; van der Straaten
et al. 2008, 2012; Beinlich et al. 2010). Peak-metamorphic conditions of most eclogites and
prograde blueschists are similar (both lithologies occur locally with gradual transitions or intimately
intercalated) and range between 480 and 580 °C at 1.4-2.3 GPa at a regional scale (e.g., Klemd et
al. 2002; John et al. 2008). Moreover, relics of UHP conditions (e.g. coesite inclusions in garnet) or
thermodynamic modelling suggesting UHP conditions for both metasediments and eclogites have
been reported with peak P-T conditions of 570-630 °C at 2.7-3.3 GPa for eclogite-facies mica
schists and 470-510 °C at 2.4-2.7 GPa for eclogites from several localities (Lii et al. 2008, 2009;
Wei et al. 2009; Tian and Wei 2013). The juxtaposition of UHP and HP eclogite-facies rocks
juxtaposed on a meter scale is thought to reflect mixing of eclogite-facies rock from different depths
at the plate interface in a subduction channel-like setting (van der Straaten et al. 2008; Lii et al.
2009; Klemd et al. 2011). The timing of peak metamorphic conditions was determined by garnet
growth ages of ca. 315 Ma based on multi-point Lu-Hf isochron ages for both blueschists and
eclogites from various locations within the (U)HP-LT belt (Klemd et al. 2011). High-pressure veins
crosscutting a blueschist wall-rock formed contemporaneously at 317 = 5 Ma (Rb-Sr) which is
consistent with metamorphic fluid release due to prograde transformations of blueschists to
eclogites (John et al. 2012). U-Pb SIMS ages of metamorphic zircon rims in eclogites are
indistinguishable within error at 319 + 3 Ma (Su et al. 2010). The post-peak cooling was dated by
white mica geochronology (K-Ar, Ar-Ar, Rb-Sr) and gave ages between 310 and 311 Ma (Klemd et
al. 2005).

For the profiles, drill cores with a diameter of 2.54 cm and a length of about 10-15 cm were
taken to obtain a good spatial resolution. At both sample localities, the samples occur as loose,
meter-sized blocks, which have fallen from the steep mountain slopes as rock falls. The blocks
represent a mixture of various rock types that are now found within and partly covered by
quaternary deposits.

Profile 1 (JTS sequence; Figure 2a) represents the prograde transformation of blueschist into
eclogite due to fluid infiltration. The JTS sequence was studied in detail by Beinlich ef al. (2010)
and John et al. (2012), and the following summary is based on these works. The massive blueschist
with the main mineral assemblage garnet + glaucophane + omphacite + phengite + quartz is cross-
cut by a carbonate-quartz vein, which is surrounded by an eclogitic reaction halo mainly composed
of omphacite and garnet. The vein represents a major former fluid pathway that shows fluid
infiltration from an external source and dehydration of the immediate wall rock. Important
petrographic observations of the fluid-induced eclogitization include replacement of sodic

amphibole by omphacitic clinopyroxene, increase in the modal abundances of quartz and carbonate
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and decrease in the modal abundance of white mica with decreasing distance to the vein. The
successive breakdown of white mica towards the vein is responsible for a relative depletion in
large-ion lithophile elements (LILE: K, Rb, and Cs) in the eclogitic selvage compared to the host
blueschist. Enrichments in Ca, Pb and Sr and depletions in HFSE can also be attributed to the fluid-
induced eclogitization.

Profile 2 (FTS 9-1 sequence; Figure 2b) represents a gradual retrograde transition from eclogite
to blueschist caused by fluid-rock interaction during uplift in the subduction channel (van der
Straaten et al. 2008, 2012). The following description is based on the petrologic-geochemical
investigation by van der Straaten et al. (2012) on these samples. The eclogitic parts consist of a
fine-grained omphacite matrix with accessory rutile and porphyroblasts of garnet. The fluid-induced
blueschist-facies overprint caused replacement of the eclogite-facies assemblage by newly formed
glaucophane, paragonite, chlorite, calcite and titanite. The increase in the modal amounts of
glaucophane, white mica and calcite with increasing blueschist-facies overprint lead to a nearly

complete replacement of omphacite in the glaucophane schist.

2.2. Les Essarts Unit, Variscan Belt, Vendée, France

Samples were taken along a ~100 m long profile from an approximately 1 km thick eclogite
lens via retrogressed eclogite and amphibolite into surrounding metasedimentary gneiss in the
quarry “La Gerbaudiére” of the Les Essarts Unit, 25 km south of Nantes and west of St. Philbert de
Bouaine (Figure 1b). This unit constitutes a HP metamorphic basement complex of the Southern
Armorican Massif that is part of the Variscan belt (Matte 2001). Rocks of oceanic origin (eclogites,
amphibolites derived from eclogite, meta-plagiogranites and serpentinites) form several km-long
stretched and slightly boudinaged lenses surrounded by foliated ortho- and paragneisses that are
rich in white mica (Mauler et al. 2001). The eclogites have gabbroic protoliths with a crystallization
age of 1297+60 Ma based on a zircon U-Pb upper intercept age (Peucat et al. 1982). The eclogite-
facies metamorphism was dated at 43615 Ma based on a zircon U-Pb lower intercept age (Peucat
et al. 1982). The primary HP mineral assemblage is omphacite + garnet + rutile + quartz + kyanite
+ zoisite +£ magnesio-hornblende + pyrite + chalcopyrite and peak P-T conditions are 1.6-2.0 GPa
and 650-750 °C (Godard 2009). A major deformation event occurred during the eclogite-facies
metamorphism, followed by retrogression that transformed most of the eclogites into amphibolites,
in particular affecting the margins of the eclogite lenses. Retrogression is indicated by presence of

green amphibole and plagioclase-clinopyroxene symplectite along omphacite grain boundaries
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(Mauler et al. 2001). The gneisses surrounding the eclogites with the main mineral assemblage
quartz + plagioclase + biotite + garnet + white mica are of continental origin and record two distinct
episodes of high-grade metamorphism (Godard 2009). The first event comprises intrusion of granite
and migmatisation of cordierite-bearing metapelites (T ~ 670°C, P = 0.3 GPa) within the pre-
Variscan continental crust. The second event is an eclogite-facies overprint, cofacial with the
eclogitization of the adjacent oceanic mafic rocks at peak P-T conditions of P > 1.6 GPa and T ~
700°C, which occurred during eo-Variscan subduction (Bernard-Griffiths and Cornichet 1985;
Godard 2009) with simultaneous deformation of eclogites and gneisses. Several coronitic and
pseudomorphic reactions caused the growth of high-pressure minerals (garnet, kyanite, phengite,
rutile) and the expense of the previous high-temperature parageneses (Godard 2009). The Les
Essarts Unit is interpreted as tectonic mélange of pre-Variscan oceanic and continental crusts that
were eclogitized during subduction and subsequently incorporated into the Variscan orogenic belt

(Godard 2001).

[Figure 1 near here]

[Figure 2 near here]

3. Analytical methods

3.1. Nitrogen content and nitrogen isotopic compositions

Nitrogen concentrations and isotopic compositions of bulk rock powders were analysed at
Lehigh University. Sample preparation and analytical protocol follow the methods described in
Bebout et al. (2007). In brief, about 100-250 mg of sample powder and Cu/CuOx reagent are
evacuated for 24 h before sealing, with intermittent heating to ~ 100 °C. Nitrogen is extracted at
1000 °C and transferred as N, into a Finnigan MAT 252 mass spectrometer using a Finnigan Gas
Bench II and a U-trap interface in which samples of N, are entrained in a He stream. Details
regarding the calculation of N concentrations in unknowns and reference materials analysed during
the course of this study can be found in Halama et al. (2010, 2014). The analytical uncertainties for

N concentrations are usually <5%. For 8"°N values (referenced to the isotopic composition of
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atmospheric N, “air”), uncertainties are 0.15%o (1o) for samples with > 5 pg/g N and 0.6%o (1) for

samples with 1-5 pg/g N.

3.2. Major and trace elements

Major and trace element data of the JTS and FTS traverses were published in Beinlich et al. (2010)
and van der Straaten et al. (2012), respectively, and are reproduced in the supplemental dataset.
Major and trace elements of the Vendée traverse (supplemental dataset) were analysed by X-ray
fluorescence at Universitit Heidelberg using a Siemens® SRS303 instrument equipped with a Rh-
tube. Major and minor elements were measured on fused glass discs with an accuracy of 0.5-1%.
Trace elements (Cr, Ni, Sr, Zr, Ba) were measured on pressed pellets with an accuracy of 5-10%.
Further details about the XRF methods are given in Pauly ef al. (2016). Lithium concentrations
were determined at the University of Bristol with a sample-standard bracketing technique using a
ThermoElectron“Neptune MC-ICP-MS as described in Marschall et al. (2007b). Concentrations
were determined by intensity comparison with the bracketing standard (NIST L-SVEC) and have a

precision of approximately +£10%.

4. Results

In the profile representing the prograde blueschist-eclogite transformation (JTS sequence), N
concentrations successively decrease from the host blueschist (~26 pg/g) to the blueschist-eclogite
transition zone (BETZ; 19-23 pg/g) and the eclogitic selvage (12-16 pg/g; Figure 3a). The quartz-
carbonate vein has the lowest N concentrations (9.5 pg/g) and the highest 8Ny value (+4.8%o) in
this sequence (Table 1). Nitrogen isotopic compositions of the eclogitic selvage (§'°N = +2.6 +
0.2%o) are slightly elevated compared to the BETZ (+2.0 % 0.2%o) and the host blueschists (§'"°N =
+1.8 to +2.3%0). Overall, the profile shows a systematic decrease in [N] from the host wall rock
towards the vein, which is paralleled by LILE such as Rb (Figure 3a; supplemental dataset).
Excluding the vein, the overall range in '°N in eclogites and blueschists is very limited (only about
1%o) with an average of +2.1+0.3%o (n=9).

In the profile representing the retrograde eclogite-blueschist transition (FTS sequence), there is
a broad increase in N contents from the eclogite towards the blueschist, but the trend shows
significant scatter and there is also variability between adjacent samples from the same drill core

(3.1-3A and 3.1-3B). The overall range in N contents (8-27 pg/g) is comparable to the JTS
8
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sequence, but the variability in "N is larger (§"°N = +1.0 to +5.4%o). '°N varies unsystematically
with regard to distance along the profile (Table 1).

In the eclogite-gneiss profile, the country rock gneisses have high N contents (14-52 ng/g) and
positive "N values (+2.9 to +5.8%o; Table 1). 8"°N values of both garnet amphibolites and
eclogites are within the range of the gneiss values, but [N] becomes increasingly lower towards the
eclogite with 11-24 pg/g for the amphibolites and 10-14 pg/g for the retrogressed eclogite (Figure
3b). The pristine eclogite is characterized by the lowest N concentrations (2.1-3.6 pg/g) and the
lightest N isotopic compositions (8"°N = +2.1 to +3.6%o). The elements Ba and Li show a similar
behaviour as N with successively decreasing concentrations from the gneisses to the eclogites

(Figure 3b; supplemental dataset).

[Figure 3 near here]

[Table 1 near here]

5. Discussion

5.1. Residency of nitrogen

Nitrogen occurs as ammonium (NH4") in most silicate minerals, where it substitutes for K" due
to the similarity of these ions in charge and ionic radius. NH," is thus most strongly concentrated in
micas and alkali feldspars in many crustal rocks (Honma and Itihara 1981), as reflected by
correlations of N contents with concentrations of LILE (K, Rb, Cs, Ba) in several metasedimentary
suites (Bebout et al. 1999; Busigny et al. 2003; Sievers et al. 2016, this issue). Phengite (Si-rich
potassic white mica) is the main N carrier mineral in high-P/T metamorphosed mafic and ultramafic
rocks, but NH;" may also occur in Ca-Na minerals where phengite is absent (Busingy et al., 2011;
Halama et al., 2010; 2012). The positive correlation of N with K, Ba, Rb and Cs (Figure 4) in both
Tianshan sequences points to a mineralogical control by phengite regarding the N concentrations in
the bulk rocks, because phengite is known to be the principal carrier for these elements in phengite-
bearing eclogites and high-P/T metapelites (e.g., Sorensen ef al. 1997; Zack et al. 2001).

The JTS sequence shows the most striking correlation among N abundances and LILE
concentrations, with a systematic decrease from host blueschists via the BETZ towards eclogites

and the vein (Figure 4a). The key role of phengite as N host is underlined by the decreasing modal
9
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occurrence of white mica (phengite + paragonite) towards the vein (Figure 5; Beinlich et al. 2010).
The somewhat larger scatter in the FTS sequence (Figure 4b) may be related to the generally much
smaller concentration variations compared to the JTS sequence. Moreover, paragonite (sodic white
mica) forms in response to the retrograde overprint in the FTS sequence. Although paragonite is
capable of incorporating significant amounts of N in the order of up to 100 pg/g (Busigny et al.
2011), phengite frequently contains several hundreds of pg/g (Sadofsky and Bebout 2000) and is
hence a more likely major N host. The unsystematic variations in modal abundances of these two
phases are therefore thought to contribute to the scattered trends in the FTS sequence. In the
eclogite-gneiss profile, there is a systematic, coupled increase in N and LILE as well as Li from
eclogites via retrogressed eclogites and amphibolites towards the surrounding gneisses (Figure 4c).
The low N contents in the eclogites are consistent with the lack of K-bearing phases. Any N present
is probably residing in omphacitic (Na-Ca) clinopyroxene, in agreement with observations from
natural metagabbros (Busigny et al. 2011) and experimental results that show the potential of
clinopyroxene to incorporate N at ultrahigh pressures (Watenphul ez al. 2010). Additional N present
in retrogressed eclogites and amphibolites may be incorporated into plagioclase, for which N
concentrations of 2-45 pg/g have been reported, substituting for Ca and Na (Honma and Itihara
1981), and to a lesser degree into amphibole (2-5 pg/g N, Honma and Itihara 1981). In the gneisses,
N can be incorporated into muscovite and biotite, both of which can host large amounts (>1000

ng/g) of N (Sadofsky and Bebout 2000).

[Figure 4 near here]

[Figure 5 near here]

5.2. Nitrogen elemental and isotopic characteristics

All three of the sample suites are characterized by a limited (< 5%o) variation in 8'"°N and
positive 8'°N values, which distinguishes them from fresh MORB (Figure 6). Most of the 8"°N
values of the mafic samples overlap with those of global eclogites, which were interpreted to
largely reflect the N isotope compositions of their protolith (altered oceanic crust, AOC) with or
without the effects of metamorphic dehydration (Halama et al. 2010). Metamorphic dehydration
generally causes a decrease in N concentrations and an increase in 8'°N values (Haendel et al. 1986;

Bebout and Fogel 1992), but the large compositional variability of AOC hinders the identification
10
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of dehydration effects. At each location, some of the mafic samples have elevated N contents
relative to global eclogites, in particular the Tianshan blueschists and the Vendée amphibolites,
trending towards compositions of metasediments (Figure 6). In the prograde blueschist-eclogite JTS
sequence, the blueschists represent the rocks least affected by eclogitization-causing fluid overprint,
and hence may have inherited their signature during a previous metasomatic event, e.g. during
seafloor alteration or blueschist-facies metamorphism. The trend in the JTS sequence towards
relatively N-poor compositions is unlikely to be entirely due to a decreasing modal abundance of
white mica as suitable host mineral for N because the modal abundances of white mica are similar
in the host blueschists (8-11%) and the BETZ (12-15%), with only the eclogitic selvage having
lower contents (4-11%; Beinlich et al. 2010). Hence, the trend suggests that the fluid inducing the
eclogitization was relatively poor in N and probably not of sedimentary origin. This finding is in
agreement with the Ca and Sr isotope data pointing to a dehydrating oceanic lithosphere, i.e. AOC
or serpentinized slab mantle, as potential fluid source (John et al., 2012). An estimate for the
average 8"°N of ultramafic rocks recycled into the mantle is +3+2%o (Halama ez al. 2014), but
individual serpentinized peridotite samples have even more positive 8'°N values of up to +15%o
(Philippot et al. 2007).

In contrast, the blueschists of the FTS sequence are among the samples that are most strongly
affected by retrograde metasomatism. Their elevated N contents at moderately positive d'°N are
consistent with a metasomatic overprint by a fluid that either originated from or equilibrated with
metasedimentary rocks. In the Vendée profile, the field evidence clearly demonstrates increasing
fluid-induced overprint of the eclogite lens by fluids derived from the surrounding metasedimentary
gneisses, producing the sequence fresh eclogite — retrogressed eclogite — amphibolite —
metasedimentary gneiss. This profile allows evaluation of the effects of the metasedimentary fluids
on [N] and 8"°N in the eclogite lens. Both the N concentrations and the "N values increase in the
metasomatically overprinted mafic rocks compared to the pristine eclogite. These features can be
explained by assuming that the country rock paragneisses with high N contents and an adequate N
isotopic composition were the source lithology for the metasomatic fluids, corroborating the field
evidence. Hence, both the Tianshan FTS and the Vendée profile underline the sensitivity of the N
system to sediment-derived fluids. These fluids incorporated biogenic N that was originally present
as organic matter in the sediments. Granitic rocks from the Cornubian batholith similarly show high
N contents (6-139 pg/g) and positive 8"°N (+5 to +10%o) values (Boyd et al. 1993). These features
were interpreted to reflect inheritance of N of biological origin as the granites are essentially
derived from the anatexis of NH, -bearing metasediments that originally contained organic material

(Hall 1987; Boyd et al. 1993).
11



365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

[Figure 6 near here]

5.3. Fluid-rock interaction processes

In this section, we focus on the prograde blueschist-eclogite JTS sequence because it shows a
relatively simple mineralogical control on N contents, resulting in clear correlations that can be
compared to various fluid-rock interaction processes potentially affecting the rocks. Busigny and
Bebout (2013) summarized four types of N exchange between mineral and fluid that can be

distinguished during metamorphism, and each of these will be evaluated in turn:

(1) Thermal decomposition: Thermal decomposition causes the complete breakdown of mineral
hosts due to increasing temperatures and the onset of partial melting. This leads to a decreasing
modal abundance of mica and loss of N if no other suitable host phases for N, such as K-feldspar
(incorporation of NH,") or cordierite (incorporation of N in channels of the mineral structure), are
present in the melting residue (Palya ef al. 2011). Thermal decomposition can be excluded in the
studied profiles because there is no field or petrographic evidence for partial melting and estimates

of peak temperatures are too low for partial melting of mafic rocks to occur.

(2) Cation exchange: Cation exchange of NH," and K between white mica and a fluid can release
NH," into the fluid if the rock equilibrates with a fluid rich in K', thereby replacing NH;" in white
mica by K* (Eugster and Munoz 1966; Busigny and Bebout 2013). A similar exchange may occur
between NH,;" and Rb" or Cs”. This process is expected to cause a negative correlation of NH,"
with K (and Rb", Cs"). However, all investigated profiles show a positive correlation of K and N.
This is the opposite behaviour to what would be expected if cation exchange was the dominant

fluid-rock interaction process and we hence exclude cation exchange as major process.

(3) Continuous metamorphic devolatilization reactions: Devolatilization reactions during prograde
metamorphism cause changes in mica chemistry and mica modal abundances in the rock (Bebout
and Fogel 1992; Bebout et al. 2013). During devolatilization, isotopically light N is preferentially
fractionated into the metamorphic fluid. Consequently, residual mica records an increase in §'"°N

with increasing degrees of devolatilization (Haendel ef al. 1986; Bebout and Fogel 1992; Jia et al.
12
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2006). To test the effects of metamorphic devolatilization, we calculated the composition of the
residual rock for batch devolatilization and Rayleigh distillation models (Figure 7a). In an open-
system Rayleigh distillation model, each fluid increment produced by phengite dehydration is
immediately removed from the rock. In contrast, the batch devolatilization model assumes that all
of the fluid released equilibrates with the rock and is lost in a single batch (Valley 1986).

The isotopic fractionation depends on the N speciation in the fluid (N, or NHj3). It is evident that
devolatilization models involving NH3 cannot explain the observed trend in the JTS sequence
(Figure 7a). Busigny et al. (2003) modelled phengite chemical evolution during progressive
Rayleigh distillation for LILE, and we use this approach to test the applicability of continuous
metamorphic reactions on the prograde blueschist-eclogite JTS data set (Figure 7b, c). Different
partition coefficients between fluid and phengite for K, Rb, Cs and N cause fractionation between
these elements during devolatilization (Melzer and Wunder 2000; Busigny et al. 2003). Since all
these elements predominantly resided in phengite, their ratios in phengite reflect those of the whole
rock (Zack et al. 2001). Caesium has a larger preference for the fluid than both Rb and N,
producing a relatively sharp decrease in Cs abundances and curved Rayleigh distillation trends in
bivariate diagrams (Figure 7b, c). The linear correlations of the measured data suggest that
continuous metamorphic phengite dehydration via a Rayleigh distillation process in an open system
cannot have caused the coupled decrease in Rb-Cs and N-Cs, respectively. The coupled losses of
these elements which are observed with decreasing distance to the vein do not appear to obey a Kg-
controlled Rayleigh distillation process. However, a good fit to the JTS data is obtained for a N,
batch devolatilization model, only the vein plots off the modelled trend (Figure 7a). Hence, the N

isotope data support a batch devolatilization process.

[Figure 7 near here]

(4) Fluid-induced breakdown of white mica: It has been shown that the eclogitization adjacent to
the vein structure occurred due to fluid-mediated replacement processes during which the blueschist
continuously equilibrated with an external fluid characterized by a composition that differed
strongly from that of the wall rock blueschist (Beinlich et al. 2010; John et al. 2012). Consequently,
the blueschist mineral assemblage has been successively replaced by a new eclogite assemblage
(Putnis and Austrheim 2010; Putnis and John 2010). This process can be generalised by breakdown

reactions such as:
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2 KAlLy(Si3Al0;0)(OH), + 2 H = 3 ALSiOs + 3 SiO, +2 K" +3H,0  [1]

2 KAly(Si3AlO;0)(OH), = 3 AL,SiOs + 3 SiO, + 2 K™+ 2 OH + H,0 [2]
Once liberated from phengite, N and the LILE (formerly substituting for K in phengite) enter the
fluid, which mediates diffusive or advective transport towards the nearest transport vein leading to
long-distance element removal (Zack and John 2007). This process of fluid-induced decomposition
of white mica is in agreement with the coupled bulk losses of LILE and N. The combined stripping
of LILE and N from the blueschists requires infiltration of a K-poor fluid, which drives chemical
reactions towards reduced chemical potential gradients for fluid species by destroying phengite and
releasing LILE and N into the fluids (Breeding et al. 2004; John et al. 2012). Loss of Al,O3 in both
the BETZ (~2-9%) and in the eclogitic selvage (~12%) compared to the blueschist host (Beinlich et
al. 2010) suggest release and removal of Al during phengite breakdown. The behaviour of Si is less
systematic, with some relative losses in BETZ samples but also gains in the eclogitic selvage
(Beinlich ef al. 2010), likely related to infiltration from the vein-forming fluid.
If the fluids infiltrating the rock are highly oxidising, NH4" will be partially oxidised to N,, which
will then be lost from the system in the fluid (Bebout and Fogel 1992; Svensen et al. 2008).
Oxidizing fluids are capable of destroying ammonium muscovite and forming kyanite and quartz by
the reaction (Eugster and Munoz 1966):

2 NH4AIx(Si3A1040)(OH), + 1.5 O2 = 3 Al,SiOs + 3 Si0, + N, + 6 H,O  [3]
More reducing fluids may cause breakdown of ammonium muscovite by the reaction

2 NH4AIx(Si3A1040)(OH), = 3 Al:SiOs + 3 SiO, + 2 NH;3 + 3 H,O [4]
Generally, fluid-rock interaction can be considered as an important mechanism to release large
amounts of specific elements that are hosted by a single mineral phase. Regarding the transport of
LILE and N, phengite mode and breakdown rate are the most important parameters of the rock for
storage and release, respectively, of these elements. The combined N elemental and isotope
systematics suggest a scenario of fluid-induced breakdown of white mica and batch devolatilization

of N in the system.

5.4. Transfer and sources of nitrogen

The prograde blueschist-eclogite transition of the JTS sequence, which is induced by
metasomatism, provides compelling evidence for removal of N due to phengite breakdown. Other
elements, such as Ca, Sr and Pb, were added by the fluid-induced overprint (Beinlich et al. 2010),

and consequently exhibit negative correlations with N contents (Figure 8). The degree to which N
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potentially present in the fluid would have been able to exchange with the rock and alter [N] and
8'"°N depends on the compatibility of N in the available mineral hosts and the abundance of these
host phases. In the metasomatically formed eclogites of the JTS sequence, no other mineral except
phengite is able to incorporate significant amounts of N. The 8'*Nyyiq is estimated as ~ +7%o based
on vein composition and the NH;-N, fractionation factor at 527°C from Hanschmann (1981).
Positive 8'°N that overlap the vein composition were observed in AOC from the East Pacific Rise
(Busigny et al. 2005) and in various (meta)sedimentary rocks (Figure 9a). However, the
combination of a high-8"°N fluid that introduced large amounts of externally-derived Ca and Sr, but
not LILE, is pointing towards AOC rather than (meta)sediments as the most likely fluid source.
This conclusion is consistent with Ca-Sr isotope data, which demonstrated that seawater-altered
lithospheric rocks were the dominant source for the metasomatic fluid that induced eclogitization in
the JTS sequence (John et al. 2012). In the 8'°N — Rb/N diagram (Figure 9a), where mixing
relationships appear as straight lines, an apparent mixing trend between the JTS rock with the
highest Rb/N ratio and the vein composition yields a decent fit to the data points. Our preferred
interpretation of this apparent mixing relationship is that up to ~40% of the initially present
phengite was destroyed by the fluid-induced overprint, in agreement with the observed decrease of
modal phengite abundance (Beinlich et al. 2010), causing successively decreasing Rb/N ratios
coupled to decreasing N contents. Changes in 8"°N in the overprinted eclogites compared to the
blueschists are minor and an externally-derived N isotope signature is not clearly discernible from
8'°N variability due to protolith heterogeneities + devolatilization effects.

In contrast to the JTS sequence, both of the two profiles with a retrograde overprint, the FTS
sequence and the Vendée profile, show addition of N during metasomatism. For the FTS sequence,
the addition was not pervasive and systematic, as the [N]-distance relationships are scattered,
possibly related to the availability of fluid pathways within the rock and/or small-scale
heterogeneities. The straight line correlation on the 8"°N — Rb/N diagram (Figure 9a) points to a
mixing relationship, but the position of both eclogite and blueschist at the upper end of this trend
add a complexity likely related to the co-existence of phengite and paragonite, which precludes any
further conclusions.

Retrograde alteration in the Vendée mafic rocks was accompanied by increasing K/N ratios and
8'°N values (Figure 9b). Any metasomatic fluid entering the eclogite lenses must have passed
through the surrounding paragneisses, which therefore constitute the most likely source for any
elements added to the eclogites. Retrogressed eclogites and amphibolites are enriched in N up to 10
times compared to the precursor eclogites and 8'°N has been changed by up to 4%.. Original

protolith signatures and effects of prograde metamorphism were overprinted by the retrograde
15
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metamorphism as N has been transported on length scales of at least several 10s of meters, although
the most pristine eclogites may still preserve the original signatures. The contribution by the
relatively N-rich, high-8"’N paragneisses is exemplified by mixing relationships between two
different gneisses and eclogite where the whole-rock K/N ratios are considered to approximate
those of the fluid (Figure 9b). Given the large spread in K/N ratios in the gneisses, fluid-mediated
mixing can easily explain elevated K/N in retrograde overprinted eclogites. The complete overlap in
8'°N between retrogressed eclogites/amphibolites and gneisses provides evidence for the great
sensitivity of the N isotope system to fluids that interacted with or are derived from
(meta)sediments. Amphibolites and retrogressed eclogites have isotopically almost fully
equilibrated with the gneisses, and heterogeneities, inherited from the eclogite precursor, were only
preserved in the inner parts of the eclogite lens. The fluid-mediated influx of N from the gneisses
into the eclogite lens was likely aided by transport of N via amphibole veins, which occur in the
eclogites and served as more effective transport pathway compared to the less permeable bulk rock.
The Vendée profile not only shows direct evidence for the derivation of N in a metasomatic fluid
from metasedimentary rocks, but, importantly, that this process can happen on length scales of 10s

of meters.

[Figure 8 near here]

[Figure 9 near here]

6. Conclusions

We investigated three profiles in metasomatically overprinted high-pressure metamorphic rocks
to determine the effects of fluid-rock interaction on N elemental and isotopic systematics. Positive
correlations of N with K, Ba, Rb and Cs in blueschists and eclogites demonstrate that phengitic
white mica is the major N host in metamorphic rocks with mafic precursors. During prograde
overprint of blueschists and transformation into eclogites, the observed straight line correlations
between N and LILE and near-constant ratios of N/K, N/Rb, N/Cs and Cs/Rb do not resemble
differential losses related to differing equilibrium partitioning during metamorphic devolatilization
via a Rayleigh distillation process, but instead indicate that fluid-mediated N mobilization and loss
from the rock is related to complete breakdown of white mica. Hence, N abundances are strongly

controlled by the stability and presence of white mica in HP metamorphic rocks, and external N
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contributions to the whole rock budget remain insignificant as long as no other N host forms. Fluid-
induced breakdown of phengite in HP rocks can liberate large amounts of N that is released into the
fluid (Figure 10). The N isotopic compositions show only small variations that are consistent with a
batch devolatilization process coupled to the phengite breakdown. During fluid-induced retrograde
overprint of eclogites, the N system is highly sensitive to fluids that equilibrated with
metasedimentary rocks and can be used to trace the extent of N transport from host rocks into
eclogite lenses. This transport can occur over several tens of meters and affect both N
concentrations and isotopic compositions (Figure 10), as evidenced by a profile from
metasedimentary gneisses into an eclogite lens. Elevated N contents in retrogressed mafic HP rocks

suggest that plagioclase and amphibole are capable to incorporate N derived from metasomatic

fluids.

[Figure 10 near here]
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Figure captions

Figure 1:

Locations and geological setting of the sampling areas. A) Simplified geological map of the
Chinese South Tianshan (modified after Gao et al. 1999). B) Geological map showing the Les
Essarts HP unit in the Southern Armorican Massif, France (modified after Mauler et al. 2001).

Figure 2:

Sketches and field photographs illustrating the sample profiles for A) the prograde blueschist-
eclogite transition (JTS sequence; Beinlich ef al. 2010) and B) the retrograde eclogite-blueschist
transition (FTS sequence; van der Straaten et al. 2012). C) shows a map of the La Gerbaudiere
quarry (Saint-Philbert-de Bouaine, Vendée) in 1999 with location of the sampling traverse
(modified after Mauler et al. 2001 and Godard 2001).

Figure 3:

Nitrogen elemental and isotopic variations in A) the prograde blueschist-eclogite transition (JTS
sequence, Tianshan) and B) the gneiss-eclogite traverse (Vendée). Additional trace element data for
the JTS sequence are from Beinlich ez al. (2010), with a precision of <5% RSD (John et al. 2008;
van der Straaten et al. 2012). Uncertainties for element concentrations are smaller than the symbol

size.

Figure 4:
Elemental correlations of N with other trace elements in the three profiles studied. A) JTS sequence,

Tianshan, B) FTS sequence, Tianshan, C) Gneiss-eclogite traverse, Vendée.

Figure 5:
Modal content of white mica (phengite + paragonite) in rocks of the prograde blueschist-eclogite
transition (JTS traverse, Tianshan; data from Beinlich et al. 2010) plotted versus the N

concentrations.

Figure 6:

Nitrogen elemental and isotopic systematics of the analysed rocks compared to fresh MORB

(Busigny et al. 2005), eclogites (Halama et al. 2010), metasedimentary rocks (Bebout and Fogel

1992; Mingram and Bréuer 2001; Busigny ef al. 2003) and altered oceanic crust (AOC; Busigny et
25
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al. 2005; Li et al. 2007). Colours of individual symbols are the same as in Figures 2 (JTS and FTS

traverses) and 3b (Vendée traverse).

Figure 7:

Metamorphic dehydration models. A) Batch devolatilization (solid lines) and Rayleigh distillation
(dashed lines) models of N isotopic compositions and concentrations, using the most N-rich
blueschist of the JTS sequence (JTS-A) as initial composition. Isotopic fractionation by batch
devolatilization is described by the equation 8N = §"°N; — (1-F)1000 In a, and fractionation
following Rayleigh distillation is given by the equation 8"°N;= 8"°N; + 1000(F" " — 1), where §"°N;
and 8"N; and are the initial and final isotopic compositions of the rock, a is the fluid—rock
fractionation factor and F is the N fraction that remains in the rock after devolatilization.
Fractionation factors used in the calculations are those tabulated in Haendel et al. (1986) based on
Hanschmann (1981) for 527 °C. Tick marks give the fraction of N remaining in the rock in 10%
steps. B) and C) show calculated curves of progressive phengite dehydration by Rayleigh
distillation using equations and methodology outlined in Busigny et al. (2003) and exchange
coefficients (Kp values) based on experimental conditions of 2.0 GPa and 600 °C (Melzer and
Wunder 2000), which represent a good approximation of the natural peak P-T conditions. Rayleigh
distillation is modelled by fixing the initial composition and applying Kp“™ = 0.14 and Kp™*" =

0.14. Tick marks give the fraction of remaining phengite after dehydration in 10% steps.

Figure 8:
Relationships between N, 8'°N and Pb, CaO in the prograde blueschist-eclogite JTS sequence. The
grey band indicates the average 8'°N value of the 9 samples from the profile, excluding the vein

(615Naverage =+2. 1i03)

Figure 9:

Potential mixing relationships in 8'°N—Rb/N and 8'°N-K/N space for the Tian Shan profiles (A)
and the Vendée profile (B). The field for altered oceanic crust (AOC) is based on data from the East
Pacific Rise (EPR; Busigny et al. 2005). Compositions of (meta)sedimentary rocks are average
values from five distinct locations (data from Busigny et al. 2003; Sadofsky and Bebout 2003,
2004; Li and Bebout 2005). Solid lines are calculated mixing curves with 10% tick marks.

Figure 10:
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851  Summary figure illustrating the processes observed in the metamorphosed mafic rock sequences of

852  this study.
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Table 1: Nitrogen concentration and isotope data of the three profiles investigated in this study

Sample # Rock-type N (ug/g)

Tian Shan, prograde blueschist-eclogite transformation:

JTS-A blueschist 26.2
JTS-B blueschist 26.0
JTS-C bs/ec 21.9
JTS-D bs/ec 231
JTS-E bs/ec 19.1
JTS-F bs/ec 20.8
JTS-G eclogite 12.2
JTS-D gz-carbonate vein 9.5
JTS-I eclogite 16.2
JTS-J bs/ec 22.4

"N (%o)

1.8
2.3
1.7
2.0
2.3
21
2.7
4.8
2.5
1.7

Tian Shan, retrograde eclogite-blueschist transformation (FTS 9-1 sequence)

FTS 9.1-1 blueschist 26.6
FTS 9.1-2 ec/bs 13.1
FTS9.1-3B ec/bs 19.6
FTS9.1-3A ec/bs 11.9
FTS 9.1-4 ec/bs 8.0
FTS9.1-5B ec/bs 8.4
FTS9.1-5A eclogite 10.9
Vendée, gneiss-to-eclogite profile

GO08-3-2 gneiss 14.0
GO08-3-1 biotite gneiss 46.3
GO08-3-3 garnet gneiss 52.4
G08-3-4 garnet gneiss 37.5
GO08-3-5 gneiss 19.7
GO08-3-6 garnet amphibolite 23.7
GO08-3-7 garnet amphibolite 10.8
GO08-3-8 retrogressed eclogite 14.1
G08-3-9 retrogressed eclogite 10.0
G08-3-10 eclogite 3.6
GO08-3-11 eclogite 2.1
G08-3-12 eclogite 2.3
GO08-3-12 repl. eclogite 2.1
G08-3-12 avg. eclogite 2.2

repl. = replicate analyses; avg. = average

5.38
0.96
4.93
219
2.94
4.40
4.91

5.8
29
4.6
4.4
5.1
5.0
4.7
4.5
3.7
2.2
0.9
4.5
3.6
41

Distance (m)

-1.77
-1.04
-0.70
-0.49
-0.30
-0.15
-0.03

0.06
0.1

0.05
0.10
0.10
0.15
0.20
0.20

7.7
12.2
16.0
20.5
21.5
244
27.2

34
60
78
101
101
101



Sample
Traverse
Rock type
Location

Major elements (wt.%)
Sio,

TiO,

Al,05

Fe,0;

MnO

MgO

Cao

Na,O

K,0

P,0s

Co,

H,0 = LOI-CO,
LOI

Total

Trace elements (ug/g)
Li

Rb

Sr

Y

Zr

Cs

Ba

Pb

Modal composition
Garnet

Omphacite
Glaucophane
White mica

Quartz

Carbonate

Others

JTS-A

JTS
Blueschist
Host rock

47.66
3.76
15.44
13.52
0.19
5.53
6.04
3.25
2.07
0.70
n.a.
n.a.
1.01
99.17

20.4
36.0
205
49.0
382
0.790
603
2.28

22.8
16.9
36.4
8.0
2.4
0.9
12.7

JTS-B

JTS
Blueschist
Host rock

48.71
3.55
14.4

12.99

0.2
5.31
6.83
3.01
1.93
0.67

n.a.
n.a.
1.84
99.44

18.8
33.6
278
47.7
333
0.755
574
2.75

223
17.5
28.2
11.3

2.8

5.2
12.6

JTS-C
ITS
EC/BS
BETZ

47.16
3.54
14.29
12.39
0.16
5.87
7.68
3.46
191
0.65
n.a.
n.a.
2.16
99.27

19.2
32.9
315
36.7
340
0.733
570
2.74

18.3
29.7
23.8
11.8

1.7

4.7
10.0

JTS-D
ITS
EC/BS
BETZ

49.03
3.64
14.51
13.29
0.2
4.47
8.07
3.19
1.79
0.69
n.a.
n.a.
0.29
99.17

16.3
30.7
207
47.6
311
0.685
539
1.98

24.9
34.1
6.4
13.7
7.5
0.9
12.5

JTS-E
JTS
EC/BS
BETZ

48.53
3.34
14.32
16.22
0.29
3.64
7.98
1.95
1.34
0.62
n.a.
n.a.
0.7
98.93

10.0
22.8
269
78.6
303
0.518
401
2.09

313
30.9
2.8
11.8
8.7
2.6
11.9

JTS-F
JTS
EC/BS
BETZ

41.83
3.58
14.42
16.62
0.28
4.72
9.56
1.86
1.59
0.57
n.a.
n.a.
3.96
98.99

8.21
27.2
608
55.0
301
0.635
481
3.87

23.6
26.9

1.0
15.4
11.5
121

9.5

JTS-)
JTS
EC/BS
BETZ

49.29
3.99
14.63
12.35
0.14
4.13
8.54
2.96
1.89
0.55
n.a.
n.a.
0.48
98.95

14.3
315
364
49.6
342
0.718
583
4.68

16.3
395

0.3
18.6
10.0

0.7
14.6

JTS-G
JTS
Eclogite
Selvage

45.4
3.45
11.84
12.93
0.19
4.72
13.11
3.04
0.68
0.52
n.a.
n.a.
3.67
99.55

12.8
10.7
859
37.9
290
0.261
189
7.92

16.0
50.0
0.3
43
6.0
7.3
15.9

JTS-I
JTS
Eclogite
Selvage

53.55
3.23
12.01
8.76
0.05
3.9
11.62
3.76
1.11
0.6
n.a.
n.a.
0.67
99.26

16.9
17.4
1117
37.6
279
0.409
318
11.8

10.0
50.0

11.3
11.6

1.7
15.4

JTS-D'
JTS
Vein
Vein

52.43
0.54
4.57
8.86
0.12
4.22

15.15
0.19
0.07
2.66

n.a.
n.a.
11.94
100.75

0.781
1.04
2132
27.7
36.3
0.03
20.1
13.8

24.6
5.0
15
0.6

19.0

38.0

11.3

FTS9-1.1

FTS
Blueschist
Host rock

47.23
0.65
13.26
8.23
0.11
10.29
6.66
5.56
0.28
0.01
7.34
1.68
9.02
101.30

42.3
5.70

301
13.2
26.7
0.25

102
3.16

FTS9-1.2

FTS
Blueschist
Host rock

39.43
0.75
12.77
10.84
0.35
10.30
9.86
4.10
0.31
0.01
11.76
0.47
12.23
100.95

30.2
6.25

412
38.6
28.6
0.30

120
3.85

FTS9-1.3B FTS9-1.3A

FTS FTS
EC/BS EC/BS
BETZ BETZ
36.43 42.03
0.44 0.58
9.48 12.15
9.27 8.65
0.23 0.17
12.28 11.23
11.90 8.67
4.16 4.88
0.16 0.24
0.01 0.05
n.a. 11.48
n.a. 1.34
17.61 12.82
101.97 101.47
32.0 124
3.09 4.81
496 448
15.4 13.8
16.2 22.7
0.29 0.38
65.7 92.8
4.39 4.43

FTS9-1.4 FTS9-1.5B FTS9-1.5A

FTS
EC/BS
BETZ

41.17
0.68
12.60
8.81
0.22
9.69
11.12
4.78
0.15
0.01
10.94
0.50
11.44
100.67

35.5
2.31

412
22.2
26.7
0.16
49.7
3.68

FTS
EC/BS
BETZ

43.65
0.59
11.93
9.30
0.24
9.27
11.72
5.09
0.10
0.01
8.80
0.34
9.14
101.04

33.6
1.67

316
16.0
235
0.17
34.1
2.64

FTS
Eclogite
Selvage

49.75
0.64
12.52
7.94
0.20
7.59
12.28
5.94
0.08
0.01
3.37
0.10
3.47
100.42

37.7
1.65

159
18.4
26.2
0.14
30.5
1.52



Sample
Rock type
Traverse distance (m)

Major elements (wt.%)
Sio,
Tio,
AlLO,
Fe,0;
MnO
MgO
Cao
Na,0
K,0
P,0,
LOI
Total

Trace elements (ug/g)
Li

Cr

Ni

Sr

Zr

Ba

RetEc = Retrogressed eclogite
b.d.l. = below detection limit

GO08-3-2
Gneiss
0.0

65.16
0.66
15.83
5.38
0.09
2.37
2.22
3.15
2.84
0.20
1.45
99.35

24.7
20.3
b.d.l.
240
190
540

GO08-3-1
Gneiss
7.7

73.59
0.27
13.73
1.85
0.02
0.56
1.17
3.02
4.29
0.10
0.82
99.41

311
b.d.l.
b.d.l.

142
149
784

GO08-3-3
Gneiss
12.2

60.19
1.19
15.29
8.17
0.13
3.66
3.04
1.89
341
0.19
2.23
99.38

47.2
72.2
5.0
245
241
748

GO08-3-4
Gneiss
16.0

64.84
0.91
14.65
7.80
0.12
2.23
2.70
2.84
1.67
0.11
1.41
99.28

143
35.1
10.2
258
356
427

GO08-3-5
Gneiss
20.5

62.96
0.76
15.72
6.78
0.14
2.78
3.03
3.35
1.44
0.16
1.96
99.09

23.2
30.3
31
357
244
519

G08-3-6
Amphibolite
215

63.17
0.80
15.29
6.61
0.12
2.67
2.28
3.67
2.04
0.10
2.08
98.83

30.5
42.9
2.8
355
297
661

G08-3-7
Amphibolite
24.4

54.21
0.98
16.74
8.52
0.20
5.63
7.42
2.90
1.00
0.13
1.91
99.63

21.0
169
28.7
281
188
372

G08-3-8
RetEc
27.2

52.53
0.28
21.73
4.32
0.07
5.04
10.93
2.70
0.88
0.02
1.56
100.06

15.0
52.7
b.d.l.
813
15.6
110

G08-3-9
RetEc
34.0

50.62
0.33
18.99
6.08
0.13
7.58
10.87
2.82
0.74
0.02
1.78
99.95

18.5
147
1.8
406
145
131

G08-3-10
Eclogite
60.0

48.02
1.23
1451
11.82
0.19
7.98
12.40
2.18
0.11
0.10
0.72
99.25

7.35
258
59.5
147
81.0
20.3

G08-3-11
Eclogite
78.0

48.86
1.21
14.73
11.40
0.19
8.02
11.28
3.20
0.05
0.10
0.41
99.45

7.65
202
315
126
80.9
24.2

G08-3-12
Eclogite
101.0

48.16
1.29
15.13
11.68
0.18
8.06
12.17
241
0.10
0.10
0.52
99.79

2.70
215
38.3
125
89.1
28.1



