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Abstract The temporal relationship between the ac-

tivities of neurons in biological neural systems is criti-

cally important for the correct delivery of the function-

ality of these systems. Fine measurement of temporal

relationships of neural activities using micro-electrodes

is possible but this approach is very limited due to spa-

tial constraints in the context of physiologically valid

settings of neural systems. Optical imaging with voltage-

sensitive dyes or calcium dyes can provide data about

the activity patterns of many neurons in physiologically

valid settings, but the data is relatively noisy. Here we

propose a numerical methodology for the analysis of op-

tical neuro-imaging data that allows robust analysis of

the dynamics of temporal relationships of neural activ-

ities. We provide a detailed description of the method-

ology and we also assess its robustness. The proposed
methodology is applied to analyse the relationship be-

tween the activity patterns of PY neurons in the crab

stomatogastric ganglion. We show for the first time in

a physiologically valid setting that as expected on the

basis of earlier results of single neuron recordings expo-

sure to dopamine de-synchronises the activity of these

neurons. We also discuss the wider implications and ap-

plication of the proposed methodology.
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1 Introduction

The dynamics of the temporal relationship of the ac-

tivities of neurons forming neural circuits is critically

important for the flexible and adaptive delivery of the

functionality of these circuits (note: in this paper we use

the term neural activity to mean the variation of the

membrane potential of a neuron, including spikes, sub-

threshold membrane potential changes, and any other

membrane potential changes; this term is not used to

mean spike count or some other kind of statistical sum-

mary metric of the activity of a neuron) (Harris-Warrick

et al, 1992; Fdez Galán et al, 2004; Hill et al, 2012;

Bruno et al, 2015). For example, switching between syn-

chronised and de-synchronised patterns of activity of

neurons forming functional circuits in the hippocampus

plays a fundamental role in memory formation, mainte-

nance and recall in vertebrate brains (Axmacher et al,

2006; Robbe et al, 2006). In the case of epilepsy a switch

to excessive synchronisation of neural activities breaks

down the functionality of many neural circuits and neu-

ral systems formed by them (Feldt Muldoon et al, 2013;

Engel et al, 2013). Recently, it has been shown that the

fine timing of inputs to different parts of the dendritic

tree of neurons in the visual cortex of mammals deter-

mines the spatio-temporal preferences of these parts of

the neuron (Chen et al, 2013). The combination of the

preferences determines the actual receptive field of the

neuron. In general, both relatively simple and complex

changes in the temporal relationship of neural activities

can play a critical role in the delivery of the function-

ality of neural circuits.

Until relatively recently the recording of many synap-

tically connected neurons at individual neuron resolu-

tion, i.e. at neuron-scale, was not possible in the con-

text of physiologically realistic conditions e.g. the use



2 Jannetta S. Steyn, Peter Andras

of individual micro-electrodes implies significant spa-

tial constraints limiting the number of recordable neu-

rons (Miller, 1987). While multi-electrode arrays al-

low recording of many individual neurons in artificially

created cell culture (Potter and DeMarse, 2001; Spira

and Hai, 2013), the activity of neurons in such con-

text is not truly comparable to the activity of neurons

in real physiological conditions. In other settings when

multi-electrode array or multiple multi-electrodes (e.g.

tetrodes) are used to record many neurons form brains

or brain slices in physiological conditions the connectiv-

ity between the recorded neurons is usually not known

(Guitchounts et al, 2013; Scholvin et al, 2015; Santos

et al, 2012). Multi-electrode arrays (Meyer et al, 2016)

or high-resolution surface EEG (Ohl et al, 2001) may

be also applied to in-vivo recording from the surface

of an intact brain. However, these methods record lo-

cal field potentials from the surface of the brain which

are a mixture of signals originating from many neurons,

making it very difficult and often impossible to read out

the activity of identifiable individual neurons. The im-

pact of this is that a large part of the work on neuron

resolution dynamics of neural circuits remained mostly

theoretical (Schneidman et al, 2006; Shlens et al, 2006;

Paninski et al, 2010).

Currently used techniques of optical recording of

neural activity using voltage-sensitive dyes and calcium

dyes allow high spatio-temporal resolution recording of

the activity of many neurons, making possible the study

of the dynamics of temporal relationships of neural ac-

tivities in biological neural circuits (Canepari and Zece-

vic, 2010). While many applications of these techniques

are used to record many neurons that are not nec-

essarily directly coupled synaptically (Mukamel et al,

2009; Rothschild et al, 2010), it has been shown that

these methods can also be applied successfully to a

range of biological neural systems to record the activity

of many synaptically coupled neurons simultaneously.

These techniques have been applied to analyse the func-

tionality of neurons in leech ganglia (Briggman et al,

2010), to study the dynamical assignment of functional

roles to neurons in snail ganglia (Hill et al, 2012; Bruno

et al, 2015), to record almost simultaneously the activ-

ity of all neurons in the brain of the zebra fish embryo

(Ahrens et al, 2012), to analyse the activity of neurons

in intestinal neural ganglia in guinea pigs (Obaid et al,

1999), and to study the activity of synaptically coupled

neurons in the stomatogastric ganglion of crabs (Stein

et al, 2011; Städele et al, 2012). However, it should be

noted that usually the recorded data is quite noisy, po-

tentially making its analysis difficult.

Here we address the issue of analysis of such opti-

cal imaging data for the purpose of understanding the

dynamics of temporal relationship of the activities of

individual neurons. Our method relies on the identifi-

cation of a few key features of the activity patterns of

individual neurons, which can be estimated sufficiently

robustly from the recorded noisy data. For example,

consider the case of neurons which spike during de-

polarisation plateaus and the recording of the neuron

starting before a such depolarisation plateau and end-

ing after the plateau. The numerically calculated local

maximum upward slope point of the recorded activity

approximates the start of the depolarisation plateau.

The calculated minimum downward slope point of the

recorded activity approximates the end of the depo-

larisation plateau. Having the timings of the identified

key features of the neural activity patterns we can use

these to estimate the changes in the temporal relation-

ships of neural activities and thus the dynamics of the

temporal relationships between neural activities. The

method that we describe applies in particular to bursts

of spikes and the estimation of temporal dynamics of

burst periods of multiple neurons. The method is most

applicable to invertebrate neurons with high depolari-

sation plateaus, but we also indicate how to adapt it to

vertebrate neurons with lower depolarisation plateaus

as well.

We apply the proposed data analysis method to neu-

rons recorded in the crab stomatogastric ganglion. Ac-

cording to earlier results about the impact of dopamine

on individual pyloric constrictor (PY) neurons it can

be expected that dopamine exposure causes the de-syn-

chronisation of the activity of these neurons (Johnson

et al, 1993, 1994; Ayali et al, 1998). We analysed and

quantified the impact of dopamine on the temporal re-

lationship between the activity patterns of PY neurons.

Our results show that as expected there is a statistically

significantly measurable de-synchronisation effect in the

case of the considered PY neurons in general. We note

that this is the first report of this effect in physiologi-

cally valid conditions, as earlier results were obtained by

recording single neurons following application of neuro-

toxic substances to achieve pharmacological isolation of

them.

The rest of the paper is structured as follows. First

we review the relevant background. Then we describe

the proposed methodology in detail. Next we describe

the application of the methodology to voltage-sensitive

dye recording of the activity of PY neurons in the crab

stomatogastric ganglion. Finally we discuss the impli-

cations of the presented work and draw the conclusions.
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2 Background

2.1 Neuron-scale temporal dynamics

Synchronisation of the activity of neurons is a com-

mon pattern across biological neural systems and plays

a critical role in the functionality of many neural cir-

cuits (Axmacher et al, 2006; Robbe et al, 2006; Feldt

Muldoon et al, 2013). The transition from the non-

synchronised to the synchronised state of a number of

individual neurons is thus perhaps the most commonly

found dynamical behaviour of the relative activities of

individual neurons. For example, in the hippocampus

the formation of new memories is supported by the

temporary synchronisation of the activity of blocks of

neurons (Robbe et al, 2006). Such temporarily synchro-

nised activity of hippocampal neurons also plays a key

role in the maintenance and recall of memories (Ax-

macher et al, 2006). The role of temporary synchroni-

sation of neural activities has been investigated exten-

sively in theoretical neuroscience (e.g. synfire chains)

(Abeles et al, 2004). In many theoretical models of neu-

ral circuits temporary synchronisation of neural activ-

ities is at the core of the functionality of the model

circuit (Abeles et al, 2004; Ikegaya et al, 2004; Burkitt

and Clark, 1999).

De-synchronisation of neural activities is at least as

important for normal functioning of neural circuits as

synchronisation of neural activities (Engel et al, 2013;

Feldt Muldoon et al, 2013). Lack of de-synchronisa-

tion and excessive synchronisation of neural activities is

the underlying mechanism of epileptic seizures in verte-

brates (Feldt Muldoon et al, 2013). Following the syn-

chronisation of neurons in the hippocampus their de-

synchronisation is required in order to support the for-

mation of new memories. De-synchronisation of neural

activities following brief synchronous activity also hap-

pens in many areas of the mammalian cortex where

synchronisation of neurons may represent temporary

binding of features of animal actions and perceptions

and de-synchronisation makes the neural circuits ready

to process new information related to new perceptions

and actions of the animal (Raffone and Wolters, 2001;

Finger and König, 2013).

The fine temporal patterning of inputs to neurons

plays a major role in the functioning of single neurons

and of neural circuits made of these neurons (Gutierrez

et al, 2013; Marder, 2012). For example,in the cerebel-

lum the Purkinje cells may receive thousands of inputs

in appropriate temporal ordering making them able to

compute their activity required for the fine tuning con-

trol of the musculature of the animal (Feldman, 2012;

Kawamura et al, 2013). Recently it has been shown that

the fine temporal pattern of inputs differently tunes the

activity of parts of the dendritic trees of pyramidal neu-

rons in the visual cortex and the combination of these

activities determines the actual receptive field features

of the neuron (Chen et al, 2013). Thus, fine changes in

the temporal relationships in the activities of neurons

that provide inputs to such neurons may change the re-

ceptive field properties, of the neurons that receive this

patterned input, considerably.

In the context of several biological neural systems

it has been shown that neurons may change their func-

tional role within some range and such changes are indi-

cated by dynamics of the temporal relationships of neu-

ral activities (Hill et al, 2012; Marder, 2012; Gutierrez

et al, 2013). In the case of hippocampal place cells, the

same neuron may represent different parts of the spatial

environment of the animal depending on the changes of

the environment (Hartley et al, 2014). Thus the same

neuron may be active in different functional circuits de-

pending on changes to of the spatial environment of the

animal. Similarly, it has been shown that some neurons

in the swim controlling central pattern generators in

the dorsal cerebral ganglia of Tritonia diomedea can

switch their role by participating in the control of dif-

ferent phases of the swim cycles (Hill et al, 2012). These

role changes of neurons are achieved through dynamic

re-arrangement of the temporal relationships between

the activities of the involved neurons.

2.2 Neuron-scale recording of multi-neuron activity

Neuron-scale recording of the activity of a number of

neurons is possible using micro-electrodes (Harris-Warrick

et al, 1992; Spira and Hai, 2013), however the number

of simultaneously recorded neurons is limited by the

physical size of electrode manipulators. For example, in

the case of invertebrate ganglia with large neurons it is

possible to record 4 - 5 neurons simultaneously (Miller,

1987). A larger number of neurons can be recorded

simultaneously using micro-electrode arrays combined

with neuronal cell cultures (Spira and Hai, 2013; Pot-

ter and DeMarse, 2001). However in this latter case the

neurons are not in any physiologically valid setting and

the interpretation of the recordings cannot be easily re-

lated to the functionality of biological neural circuits.

Since the late 1980s it has been demonstrated that

optical imaging using voltage-sensitive dyes and cal-

cium dyes allows the recording of the activity of many

neurons simultaneously in biological neural systems in

their physiological settings (Canepari and Zecevic, 2010).

These techniques have been applied to snail ganglia

(Hill et al, 2012; Bruno et al, 2015), leech ganglia(Briggman

et al, 2010), and guinea pig intestinal ganglia (Obaid



4 Jannetta S. Steyn, Peter Andras

et al, 1999) to study the activity of individual neu-

rons in the context of the neural circuits in which they

participate. More recently voltage-sensitive dye imag-

ing has been used to record and analyse the activity of

neurons with known synaptic connections in the stom-

atogastric ganglion of crabs (Stein et al, 2011; Städele

et al, 2012), to analyse the role switching behaviour of

neurons in snail ganglia (Hill et al, 2012), and to estab-

lish the functional role of individual neurons in leech

ganglia (Briggman et al, 2010).

A recent variant of the calcium imaging technique

allows the individual recording of most neurons in the

brain of zebrafish embryos using light-sheet microscopy

and mutant zebrafish that express fluorescent calcium

indicator molecules in their neurons (Ahrens et al, 2012).

Although the temporal resolution of this method is in-

sufficient for very fine analysis of the temporal relation-

ships of neural activities (the imaging happens at 0.8

Hz) the data is sufficiently good to analyse larger scale

changes in the organisation of neural activity patterns

in various parts of the zebrafish brain (Ahrens et al,

2012).

Another recent approach uses laser scanning mi-

croscopy combined with rapid changes of the three-

dimensional position where the laser beam points within

the neural tissue allowing the rapid recording of many

individual neurons at various positions in the three-

dimensional arrangement of the neural tissue (Fernández-

Alfonso et al, 2014). This method makes possible the

recording of up to a couple of hundred of individual

neurons at high temporal resolution. However, the ap-

plications of this methodology have been so far in the

context of higher neural systems (e.g. parts of the cor-

tex of mammals), where there are very many neurons

and the connectivity of the neurons is not known in

advance, making the functional interpretation of the

recordings somewhat complicated.

3 Proposed Methodology

The activity of neurons participating in biological neu-

ral circuits follows various patterns. Some neurons are

silent most of the time balancing around their resting

potential and fire rarely single spikes or a few spikes, for

example some cortical neurons in mammals behave in

this way (Brumberg et al, 2000). Other neurons gen-

erate bursts of activity periodically, for example in-

vertebrate neurons that form central pattern genera-

tors(Harris-Warrick et al, 1992). One relatively com-

mon feature of the various neural activities is that gen-

erally the spiking of neurons (especially multiple spikes)

happens on the top of a depolarization plateau mea-

sured in the soma (see figure 1). In some cases the

Fig. 1 Intracellular recording of a neuron from the crab
stomatogastric ganglion. The spiking of the neurons hap-
pen during the depolarisation plateaus. The horizontal axis
is time, the vertical axis is voltage in arbitrary units.

amplitude of membrane potential difference deviations

during the spikes is larger (possibly much larger) than

the amplitude of depolarization for the plateau (Brum-

berg et al, 2000), in other cases the depolarization am-

plitude of the plateau can be of comparable size or even

larger than the amplitude of membrane potential differ-

ence changes during spikes (Harris-Warrick et al, 1992).

In general the change in the relative temporal ordering

of the activity of multiple neurons is represented by

changes in the relative timing of individual spikes or

bursts of spikes generated by these neurons. Thus, con-

sidering that spikes and bursts of spikes happen usu-

ally on the top of an depolarization activity plateau,

the temporal dynamics of relative activities of neurons

must be also reflected by the dynamics of the relative

timing of such activity plateaus of these neurons.

In the case of micro-electrode intra-cellular record-

ing of neurons individual spikes, even as part of bursts

of spikes, can be distinguished easily. In the case of op-

tical imaging recording of neural activities this is often

not the case due to the inherent noise of imaging data

acquisition. This means that relying on the determi-

nation of spike and burst times of individual neurons

is relatively difficult with optical imaging data. Con-

sequently, in the case of optical imaging data, these

neural activity markers are relatively unreliable for the

estimation of the temporal relationships dynamics of

neural activities.

Here we propose to use the timing of the activity

plateaus of neurons for the estimation of the dynam-

ics of the temporal relationship of their activities. The

heuristic analysis that we propose works off-line, fol-

lowing the recording of the activity of the neurons. In

order to use activity plateaus for this purpose we need

to define a set of salient features of the neural activ-

ity patterns that can be determined robustly using the

noisy optical imaging data. Given that in general the

activity plateaus are preceded by a ramp-up phase and

are followed by a ramp-down phase of the membrane

potential in the soma of the neuron, the salient features

of neural activity profile that we chose are indicators of

the timing of the ramp-up, ramp-down and the begin-
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Fig. 2 Typical activity profile of a neuron. The spiking hap-
pens during the activity plateau, which is preceded by the
ramp-up phase and followed by the ramp-down phase. The
vertical axis shows the membrane potential of the neuron.

ning and ending of the plateau itself (see Figure 2 for

an illustration).

To find the timing of the ramp-up phase we numer-

ically determine the time point for which the upward

slope of the neural activity profile is maximal during an

appropriately chosen time interval that lasts for around

the usual duration of the measured ramp-up phases.

This point is expected to be around the mid-point of

the ramp-up phase. To find the maximum upward slope

point (or maximum slope point, given that the upward

slope is a positive slope) we calculate for each time step

the slope of the best linear approximation of the data

points representing the neuron’s activity profile for an

appropriately chosen time window centred on the time

of the given time step. First the raw values of the mea-

sured imaging data are smoothed appropriately to re-

duce the impact of random noise in the data. Assuming

that xt are the smoothed measured values of the neu-

ral activity at recording time step t t, this means that

we consider time intervals of 2τ + 1 measurement time

units and calculate the local slope approximation mt

such that

(mt, bt) = arg min
m,b

t+τ∑
u=t−τ

(xt −m · (u− t+ τ)− b)2 (1)

where m are slope values and b are bias values in linear

approximations of xt.

The maximum slope point for a time interval [T1, T2],

measured in units of recording time steps, is the point

on the activity profile of the neuron corresponding to

the time point t∗ for which

mt∗ = max
t∈[T1,T2]

mt (2)

If the time interval [T1, T2] is chosen such that T2−
T1 is approximately the usual time length of the ramp

up phase (measured in units of recording time steps)

and τ is chosen appropriately (e.g. τ = (T2 − T1)/2 or

slightly less), then it can be expected that the above cal-

culation will find the maximum slope point of the neu-

ral activity profile corresponding to the time interval

[T1, T2]. If the chosen time interval is such that during

this time interval the neuron’s activity profile follows a

ramp-up phase, the maximum slope point that we find

is likely to indicate the midpoint of the ramp-up phase.

If the chosen interval is such that the activity profile of

the neuron for this interval does not match a ramp-up

phase the maximum slope point that we find will not

indicate the mid-point of a ramp-up phase, and we call

these spurious maximum slope points. To distinguish

between maximum slope points which indicate valid

mid-points of ramp-up phases and those which do not,

we have to consider the value ranges of the calculated

maximum slope values for many considered time in-

tervals. If the membrane potential variation associated

with the ramp-up phase is larger than the membrane

potential variation associated with spikes measured in

the neuron soma, the slope values for valid maximum

slope points will be much larger than the slope val-

ues calculated for spurious maximum slope points. In

general spurious maximum slope points calculated for

periods of relative silence of neural activity will have

small maximum slope values associated to them (possi-

bly very close to zero). If the soma membrane potential

variations associated with spikes are larger than the

soma membrane potential variation during the ramp-

up phase, some spurious maximum slope points may

have larger slope values associated with them than the

slope values calculated for valid maximum slope points.

In such cases we have to rely on setting the appropriate

and sufficiently narrow value interval for valid maxi-

mum slope values based on the analysis of the exper-

imental data. Figure 3 presents synthetic examples of

these two cases demonstrating the determination of the

maximum slope points.

For the timing of the ramp-down phase we deter-

mine the time point with the maximal downward slope

of the neural activity profile. We proceed in a similar

manner as in the case of the determination of the max-

imum slope point. In the case of the ramp-down phase

the general expectation is that the minimum slope (equiv-

alent of the maximum downward slope) point is around

the middle of the ramp-down phase. To find the mini-

mum slope point we use again the calculation for each

time step of the slope of the best linear approximation

of the data points representing the neuron’s activity

profile for an appropriate time window centred on the
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Fig. 3 A) Maximum slope points (in red) calculated for sim-
ulated neural activity having plateau potential difference that
is much larger than the potential difference corresponding to
spiking activity; B) The calculated local slope values for the
data shown in A); C) Maximum slope points (in red) calcu-
lated for simulated neural activity having plateau potential
difference that is much smaller than the potential difference
corresponding to spiking activity; D) The calculated local
slope values for the data shown in C). The horizontal lines in
D) indicate the range of local slope values that are considered
for maximum slope point identification. The horizontal axis
is always time, the vertical axis represents the voltage in A)
and C) in arbitrary units and the local slope value in B) and
D).

given time step (see equation 1). The minimum slope

point for a time interval [T1, T2] measured in units of

recording time steps is the point on the activity profile

of the neuron corresponding to the time point t∗∗ for

which

mt∗∗ = min
t∈[T1,T2]

mt (3)

As stated previously, for appropriately chosen T2 −
T1 and τ it can be expected that equation 3 finds the

minimum slope point of the neural activity profile cor-

responding to the time interval [T1, T2]. If the chosen

interval is such that the activity profile of the neuron

for this interval does not match a ramp-down phase

the minimum slope point that we find will not indi-

cate the mid-point of a ramp-down phase, and we call

these a spurious minimum slope points similarly to spu-

rious maximum slope points. As in the case of maximum

slope points, if the membrane potential change associ-

ated with the ramp-down phase is considerably larger

than the soma membrane potential change associated

with spikes, the valid minimum slope points will be

significantly smaller than the spurious minimum slope

points, which are expected to have values close to zero.

If the membrane potential changes in the soma associ-

ated with spikes are larger than the membrane poten-

tial change of the ramp-down phase, the determination

of the valid minimum slope points relies on the experi-

mental determination of the acceptability range of valid

minimum slope values and those minimum slope points

are considered valid for which the associated slope value

is in this acceptability range.

In the case of neurons with large change of mem-

brane potential difference during ramp-up and ramp-

down phases and relatively small changes of the mem-

brane potential difference during the spikes the calcu-

lation of local slope approximation also allows the es-

timation of the beginning and the end of the activity

plateau. This cannot be done reliably for neurons where

the membrane potential difference changes in the soma

during spiking are much larger than the changes dur-

ing the ramp-up and ramp-down phases (see Fig 3C

and D).

To find the estimated points for the beginning and

the end of the activity plateau we consider the local for-

ward and backward slopes of the neural activity. The

local forward slope at a time point is the slope of the

best linear approximation of the neural activity starting

from that time point and for some time period forward.

It is expected that the local forward slope gets close to

zero around the start of activity plateau, given that the

soma membrane potential difference variations related

to spikes are relatively small, and that the local forward

slope is considerably positive for time points before the

start of the activity plateau. Similarly, the local back-

ward slope at a time point is the slope of the best linear

approximation of the neural activity over some time pe-

riod ending at this time point. In general, it can be ex-

pected that the local backward slope is close to zero for

time points on the activity plateau and becomes con-

siderably negative as the activity of the neurons goes

into the ramp-down phase. So, the end of the activity

plateau is indicated by the last time point where the

local backward slope is close to zero. We calculate the

estimated local forward and backward slope, mf
t and

mb
t , respectively, as follows

(mf
t , b

f
t ) =

argmin

m, b

t+2τ∑
u=t

(xt −m · (u− t+ τ)− b)2 (4)

(mb
t , b

b
t) =

argmin

m, b

t∑
u=t−2τ

(xt−m · (u− t+ τ)− b)2 (5)

We look for points on the activity profile of the neu-

ron for which the calculated local forward and backward
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slope values are close to zero. The acceptable range

of close to zero values may be determined on a case-

by-case basis examining the calculated slope values or

in principle we may choose the acceptability range as

[−ε ·mmax, ε ·mmax], where mmax is the maximal abso-

lute value of the calculated slope values associated with

maximum and minimum slope points and ε is a small

number, for example ε = 0.1. We call this range of

values the zero value range and denote it as [−z∗, z∗].
Following the finding of all points with forward and

backward slope values within the zero value range we

determine the first of these that follows a maximum

slope point and the last that precedes the minimum

slope point, these two points will be the estimates of

the beginning and the end, respectively, of the activity

plateau of the neuron. In formal terms we determine

T z,f = {t|mf
t ∈ [−z∗, z∗]} (6)

T z,b = {t|mb
t ∈ [−z∗, z∗]} (7)

then t0b and t0e are determined such that:

t0b > t∗, t0b ∈ T z,f , t0b ≤ t, ∀t ∈ T z,f , t > t∗ (8)

t0e < t∗∗, t0e ∈ T z,b, t0e ≥ t, ∀t ∈ T z,b, t < t∗∗ (9)

The beginning and end of the activity plateau will

be the points corresponding to the time steps t0b and

t0e, respectively. In general, we expect to be able to de-

termine an activity plateau for each consecutive pair

of maximal and minimal slope points. Figure 4 exem-

plifies the determination of maximum and minimum

slope points and the beginning and end points of ac-

tivity plateaus using synthetic data for a neuron with

large membrane potential difference changes associated

with the ramp-up and ramp-down phases and relatively

small such changes in the soma associated with spikes.

We note that the reliability of estimation of the max-

imal and minimal slope points is better than the esti-

mation of the beginning and end points of the activity

plateau, because the latter depend on the choice of the

acceptability range of close to zero values. However, es-

timating all four above defined salient features of the

neural activity profile, if possible, provides more infor-

mation for the analysis of the dynamics of the temporal

relationships of the activity multiple neurons.

Following the determination of maximum and mini-

mum slope points and possibly of the beginning and end

points of activity plateaus for multiple neurons recorded

Fig. 4 (A) Simulated activity of a neuron. The calculated
maximum slopes are shown as red dots and the calculated
minimum slopes are shown as green dots. The beginning
and end points of activity plateaus are shown with yellow and
purple dots respectively; (B) The thin green lines indicate the
value band that is considered to correspond to the activity
plateau following the maximum slope point. The horizontal
axis is time in both cases, while the vertical axis represents
voltage in (A) in arbitrary units and the calculated local slope
value in (B).

simultaneously we can use the timing of these points to

analyse the changes in the temporal relationship of the

activities of the recorded neurons. Depending on the

number of the kinds of salient points that we can de-

termine we get multiple estimates about the observable

temporal features of the joint activity of the consid-

ered neurons. For example, the average time difference

between maximum slope points of two rhythmically ac-

tive neurons indicates the temporal difference between

the activation of these neurons, while the average time

difference between minimum slope points of the same

neurons indicates the temporal difference between the

inactivation of these neurons. Phase locking between

the neurons is indicated by small standard deviation of

the calculated temporal differences between matching

maximum slope or minimum slope points of the neu-

rons and the relaxation of phase locking is implied by

an increase of the standard deviation for example fol-

lowing of exposure to a neuromodulator.
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To assess the robustness of the above proposed cal-

culations let us consider that xt = x̃t + zt, where x̃t
is the true value of the membrane potential difference

and zt is an additive normal noise with zero mean and

σ standard deviation. Considering the formula in equa-

tion 1 for the local slope (a similar approach applies for

the local forward and backward slope as well), following

algebraic manipulation we find that

mt =
3

τ(τ + 1)(2τ + 1)
·
t+τ∑

u=t−τ
(u− t) · xu (10)

Considering the composition of xt leads to:

mt = m̃t + µt (11)

where m̃t is the correct local slope value and µt is

an additive noise in the estimate of the by mt. For µt
we get that:

µt =
3

τ(τ + 1)(2τ + 1)
·

τ∑
u=−τ

u · zu+t (12)

σ2
µt

=
9

(τ(τ + 1)(2τ + 1))2
·

τ∑
u=−τ

u2·σ2 =
3σ2

τ(τ + 1)(2τ + 2)

(13)

and

µ̄t = 0 (14)

where σµt is the standard deviation and µ̄t is the mean

value of µt.

Thus the additive noise in the estimates of the local

slope follows a normal distribution with zero mean and

standard deviation equal to
√

3
τ(τ+1)(2τ+2) · σ.

In comparison, if we aim to detect the presence of

spikes in the recorded neural activity data a simple way

is to compare the value of the recording to the local av-

erage value of the recordings, and conclude the presence

of the spike if the difference between the compared val-

ues is sufficiently large. In this case the comparison is

based on the local average activity value

x̄t =
1

2τ + 1
·
t+τ∑

u=t−τ
xu (15)

for which the contained additive noise has zero mean

and a standard deviation equal to
√

1
(2τ+1) · σ. Conse-

quently, the likely errors affecting this approach will

Fig. 5 Typical arrangement of neurons in the crab STG. The
neuropil is on the left side of the image, the neurons (circular
shaped surrounds) are arranged in a semi-circle on the right.
The scale bar is 100 microns.

be larger than the estimation errors affecting our pro-

posed methodology since
√

3
τ(τ+1)(2τ+1) ·σ <

√
1

(2τ+1) ·
for τ > 1.

4 Application

The crustacean stomatogastric ganglion (STG) is one

of the most researched neural systems, which is rela-

tively isolated and is responsible for the relatively au-

tonomous delivery of a set of motor functionalities (Harris-

Warrick et al, 1992). In the case of brown crabs (Can-

cer pagurus) the STG has 26 neurons organised mainly

into two central pattern generator circuits that gener-

ate the motor control of the gastric mill and of the

pylorus within the foregut of the crab gastric system

(Harris-Warrick et al, 1992). The neurons of the crab

STG have been studied in detail, their anatomical con-

nectivity, neurotransmitters, response to neuromodula-

tors and other anatomical and functional features are

known (Harris-Warrick et al, 1992). A particular fea-

ture of the crab STG is that the neuron cell bodies are

arranged in a crescent around the neuropil which con-

tains the dendrites and axons of STG neurons and of

other neurons as well from higher ganglia that control

the STG directly and through neuromodulation. Figure

5 shows a typical arrangement of a crab STG.

Here we worked on the pyloric circuit within the

crab STG. This includes the AB (anterior burster) and

two PD (pyloric dilator) neurons, which form the au-

tonomous core oscillator of the network; the LP (lateral

pyloric), VD (ventricular dilator), and IC (inferior car-

diac) neurons and four or five PY (pyloric constrictor)

neurons, which are inhibited by the PD neurons and

the AB neuron; the LP neuron inhibits the VD, PD

and PY neurons; the PY neurons inhibit the LP and
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Fig. 6 An example of the pyloric rhythm recorded on the lvn.
Horizontal axis is time, vertical axis in voltage in arbitrary
units.

IC neurons; the VD neuron inhibits the LP, IC and PY

neurons; and the IC neuron inhibits the VD neuron.

There are also electric couplings between the two PD

neurons, the PY neurons, the LP and PY, the PD and

VD, and the AB and VD neurons - with the exception of

PD - PD coupling the others are rectifying electric cou-

plings (Harris-Warrick et al, 1992). The PY neurons fire

during the pyloric rhythm normally after the LP neuron

and before the PD neurons constituting the PY phase of

the rhythm - see Figure 6. There may be some overlap

of PY firing activity with the firing of LP and also PD

neurons. The spiking activity of PY neurons is usually

tightly synchronised such that the activities of distinct

PY neurons may not be easily identifiable in the extra-

cellular recordings from nerves (e.g. lateral ventricular

nerve (lvn)). There is some variability in the activity

pattern of PY neurons, some having a steep rise while

others have a less steep rise of the membrane potential

to the level of the activity plateau where the spiking

of these neurons happens. Some classify the PY neu-

rons on this basis early and late PYs (EPY and LPY)

(Harris-Warrick et al, 1995), while others suggest that

this behaviour of PY neurons is gradual and there is no

particular distinction between quickly and slowly rising

PYs.

Our hypothesis is that under the impact of dopamine

PY neurons are de-synchronised (Johnson et al, 1993,

1994; Ayali et al, 1998). This is expected due to the

changes of the strengths of the synapses through which

they receive inputs from other neurons (LP and PD)

and the reduction of the conductance of the gap junc-

tion connections between the PY neurons, which are

assumed to contribute to their synchronised activity.

The planar arrangement of the cell bodies of STG

neurons makes this neural system particularly well suited

for the recording of multiple neurons using voltage-

sensitive dye imaging. Following the usual preparation

of the crab STG (Gutierrez and Grashow, 2009) we ei-

ther filled with dye identified PY neurons (Stein et al,

2011) or applied the voltage-sensitive dye as a bath so-

lution to the whole de-sheathed ganglion (Städele et al,

2012). PY neurons were identified in both cases on the

basis of the analysis of their activity pattern relative to

the pyloric rhythm to which these neurons contribute.

In the case of dye-filled neurons we used the intracel-

lular electrode recordings of neurons and the record-

ings from the lvn to identify PY cells, which were filled

consequently with dye. In the case of the bath appli-

cation of the dye we used event-triggered averaging of

the recordings to identify the PY neurons. To calcu-

late the event-triggered averaged data we determined

manually the beginning of the LP phase of the pyloric

rhythm cycles (these are the trigger events) and aver-

aged the imaging data corresponding to identified neu-

rons over all considered consecutive triplets of pyloric

rhythm cycles. We applied the same averaging to the

data recorded from the lvn as well. The event-triggered

averaged imaging data allows robust identification of

PY neurons in the case of bath application of the dye.

In all experiments we identified three PY neurons in

the STGs. Following the dye loading the STG was im-

aged using a SciMedia MiCAM 02 imaging system (Sci-

Media, Tokyo, Japan). The imaging data was collected

with 1.5ms temporal resolution (i.e. 666 images per

second) and each neuron was covered by at least 10

pixels in the imaging data. The raw imaging data was

smoothed using a 10 time step sliding window by aver-

aging the raw recordings within the time window. First

we imaged the STG in normal saline. For the purpose of

dopamine exposure the STG was perfused with saline

containing dopamine. We used saline containing 10−4

molar concentration dopamine and exposed the STG to

this for 20 minutes. The imaging of the dopamine in-

duce state was done after this exposure while still main-

taining the perfusion with dopamine containing saline.

The raw imaging data was smoothed using a 10 time

step sliding window by averaging the raw recordings

within the time window.

Here we demonstrate the proposed methodology by

analysing data recorded from dyed PY neurons in a

crab STG. For each PY cell the recordings contained

between 50 to 80 full activity patterns, each correspond-

ing to a pyloric rhythm cycle. Figure 7 shows a sample

of the recordings including the identified maximum and

minimum slope points and beginning and end points

of activity plateaus for the recorded PY neurons. To

quantify the effect of dopamine on the synchronisation

of the PY neurons we measured the temporal delays

between corresponding maximum and minimum slope

points and beginning and end points of activity plateaus
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Table 1 Neuron pair comparisons. In total 11 pairs of PY neurons from four STG preparations were considered. Two
experiments used dye filling and two were bath applications. For each experiment the neurons were compared under control
and DA conditions. Using the F-test a p-value was obtained for each of the four features, thus giving the 44 values as in table
2.

Experiment Comparison 1 Comparison 2 Comparison 3
1 (dye filling) PY1 with PY2 - PY2 with PY3
2 (dye filling) PY1 with PY2 PY1 with PY3 PY2 with PY3
3 (bath application) PY1 with PY2 PY1 with PY3 PY2 with PY3
4 (bath application) PY1 with PY2 PY1 with PY3 PY2 with PY3

Fig. 7 A) VSD recording of a PY neuron together with the
minimum (green) and maximum slope (red) points and begin-
ning (yellow) and end (purple) points of the activity plateau
determined from the data; B) The calculated local slope val-
ues, the green horizontal lines indicate the band of values
considered to correspond to the activity plateau following the
maximum local slope point. The horizontal axis is time in
both cases and the vertical axis is voltage in arbitrary units
in A) and the local slope value in B).

of pairs of PY neurons. In total we considered 11 pairs of

PY neurons from four STG preps (two using dye filling

and two using bath application of the dye, see table 1).

We calculated the mean values and standard deviations

of the temporal delays. We found that the standard de-

viation of the temporal delays did change significantly

in half of the cases (according to the F-test with sig-

nificance level p=0.05) following the application of the

dopamine containing saline. Fig 8 shows the complete

workflow of the analysis. Results are shown in table

2 and figure 9. In 22 cases out of 44 comparisons of

standard deviations we found that the standard devia-

tions are significantly larger following the effect of the

dopamine on the neurons. In one case we found that the

calculated standard deviation was significantly lower

following the dopamine exposure, and in the remaining

21 cases the difference between the standard deviations

was not statistically significant. This means that the ex-

posure to dopamine increased the standard deviation of

temporal differences between the corresponding maxi-

mum and minimum slope points and beginning and end

points of activity plateaus of pairs of PY neurons. The

increase of the standard deviation of the temporal dif-

ferences implies reduction of the temporal locking of the

PY neurons, or in other words the de-synchronisation

of PY neurons.

Considering a p=0.05 significance level, we would

expect 95% of the comparison cases to lead to a non-

significant result, and only 5% of the cases to show

a significant change in the variance values (i.e. 2.5%

would have significantly lower and 2.5% would have sig-

nificantly higher variances). For our comparisons that

would mean that 42 of the 44 comparisons would show

no significant difference, one case would show the the

post-DA variance is significantly larger and one case

would show that the post-DA variance is significantly

lower than the pre-DA variance. In contrast, our results

showed 22 cases presenting significantly larger post-DA

variances, 21 cases showing no significant change and

one case showing a significantly lower post-DA variance.

To put this more formally, assuming independence of

the comparisons, we can calculate the overall p-value

of the combined results of the experiments, which is

4.85 × 10−5, indicating that the our result about the

increase in the variances is indeed statistically signifi-

cant. The results thus confirm our hypothesis about the

de-synchronisation effect of dopamine exposure on PY

neurons.

Our approach offers a way to quantify the extent of

de-synchronisation of PY neurons in response to expo-

sure to dopamine. The presented analysis of PY neurons

demonstrates that the methodology that we proposed



Analysis of the dynamics of temporal relationships of neural activities using optical imaging data 11

Table 2 Results of the DA experiments. p-values of the F-test comparisons of the temporal delay standard deviations.
Significant values are shown in red.

Maximum Minimum Plateau Plateau
Slope Points Slope Points Begin Points End Points
0.657721015 0.936337338 0.417005168 0.986805014
0.010577057 0.064029034 0.097578139 0.317799703
0.000196868 0.303675632 0.066103149 0.019539292
2.66550x10−19 4.10299x10−06 2.01957x10−15 0.000686408
7.86896x10−19 9.69148x10−05 2.93382x10−15 0.001116038
2.92339x10−26 8.04271x10−09 8.07804x10−27 3.30665x10−15

0.729215365 0.637028887 0.841677533 0.687908256
0.734146578 0.411370955 0.302637642 0.819808126
6.67436x10−05 0.263113108 0.006803160 0.000531943
0.665538015 0.024729645 0.976871651 0.131110278
0.018054682 0.002703960 0.285120361 0.004076710

can be applied successfully to analyse the dynamics of

temporal relationships of neural activities using optical

imaging data.

5 Discussion and conclusions

It is of vital importance that neural circuits are adap-

tive and flexible in the delivery of their functionality.

Such flexibility relies on the dynamics of the temporal

relationship between the neurons forming those neural

circuits. The recording of many synaptically connected

neurons, at individual neuron resolution, has not been

possible under physiologically realistic conditions un-

til relatively recently. However, current optical record-

ing techniques using voltage sensitive dyes and calcium

dyes allow high spatio-temporal resolution recordings

to be made of many neurons. Such techniques enable

us to study the dynamics of temporal relationships of

neural activities in biological neural circuits.

We propose here a method for the analysis of such

optical data for understanding the dynamics of the tem-

poral relationship of the activities of individual neurons.

The proposed method relies on the robust identifica-

tion of salient points of the activity patterns of indi-

vidual neurons, such as the minimum and maximum

slope points and the beginning and end points of depo-

larisation plateaus (the latter two only in appropriate

cases). The method is very important because it allows

robust analysis of optical neuro-imaging data to deter-

mine activity phases of neurons and on the basis of this

allows the quantification and analysis of the dynamics

of activity patterns of multiple neurons. As we have

shown in Section 3, other methods based on the cal-

culation of average measurements are less robust than

the method proposed by us. This kind of analysis is key

for the understanding of the emergent functionality of

neural systems. Consequently the method that we pro-

pose here improves the reliability of the use of optical

imaging data for this kind of analysis.

We applied the proposed method of analysis to neu-

rons recorded in the crab STG and it was shown that,

as expected, there is a statistically significant, measur-

able desynchronisation effect of DA on the considered

PY neurons. This is the first time to show this effect in

a physiologically realistic setting of the STG, i.e. pre-

vious measurements implying this result were made in

the presence of neurotoxic substances to achieve phar-

macological isolation of neurons.

As we noted above the method that we described

is expected to work at best in the case of neurons for

which the depolarisation plateau means a larger change

in the recorded membrane potential than the spikes

themselves. However, we also expect that the method

should work well even for neurons where this is not the

case (e.g. neurons of the mammalian cortex). In the

case of these neurons the determination of minimum

and maximum slope points is feasible and these allow

the robust measurement of the dynamics of the tempo-

ral relationships of the activity patterns of these neu-

rons using optical imaging data. Sufficiently fast tem-

poral resolution and sufficiently fine spatial resolution

should allow the proposed method to be applied to VSD

imaging data from cortical slices or from in-vivo neu-

ral resolution VSD imaging of neural activity inside of

the brain. The proposed approach is likely to provide a

better understanding of the fine temporal dynamics of

the activity of multiple neurons than for example Cal-

cium imaging data, which is less noisy but operates on

a longer time scale.

The method that we propose works off-line as we

indicated above. However, it is possible at least in prin-

ciple to extend it to on-line application, if the pro-

posed analysis method is integrated with the record-

ing of the data. Having sufficiently fast processors this

should not represent a major technical challenge. If the

method is applied on-line its application is only lim-
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Fig. 8 The complete workflow of the data analysis presented
in Section 4.

ited by the time window required for the calculations

(consider in particular the case of forward slope calcu-

lation), however even this constraint can be mitigated

by considering a predictive application of the method-

ology (e.g. predicting the timing of salient points on

the basis of previously determined salient points and

correcting the predictions when the required data be-

comes available). This kind of on-line application of the

methodology would allow setting of additional stimula-

tion of selected neurons depending on the activity pat-

tern phase of measured neurons. This would make the

design of more elaborated experiments, involving mea-

surement and experimental modulation of the activity

of multiple neurons, possible.

The method that we described in this paper is also

applicable to other kinds of noisy biological record-

ings where robust quantification of key transitions and

the measurement of relative transition dynamics across

multiple processes is required. As we have shown, the

calculation of local slope values is more robust than the

calculation of usual averages and this difference in ro-

bustness of calculations may be critically important in

the context of estimation of activity pattern features

from noisy recordings. For example, such cases may in-

clude other neural systems (e.g. phase determination of

swim pattern generators in leeches or snails) or record-

ings from muscles (e.g. heart muscles or muscles in-

volved in rhythmic movement or swimming).

The Delphi code used for the analysis in this paper

has been made available for download in BitBucket at

https://bitbucket.org/jannetta/temporal-dynamics.
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