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ABSTRACT

Context. Wide binaries are a potential pathway for the formation of hot Jupiters. The binary fraction among host stars is an important discrim-
inator between competing formation theories, but has not been well characterised. Additionally, contaminating light from unresolved stars can
significantly affect the accuracy of photometric and spectroscopic measurements in studies of transiting exoplanets.
Aims. We observed 101 transiting exoplanet host systems in the Southern hemisphere in order to create a homogeneous catalogue of both bound
companion stars and contaminating background stars, in an area of the sky where transiting exoplanetary systems have not been systematically
searched for stellar companions. We investigate the binary fraction among the host stars in order to test theories for the formation of hot Jupiters.
Methods. Lucky imaging observations from the Two Colour Instrument on the Danish 1.54 m telescope at La Silla were used to search for previ-
ously unresolved stars at small angular separations. The separations and relative magnitudes of all detected stars were measured. For 12 candidate
companions to 10 host stars, previous astrometric measurements were used to evaluate how likely the companions are to be physically associated.
Results. We provide measurements of 499 candidate companions within 20 arcsec of our sample of 101 planet host stars. 51 candidates are
located within 5 arcsec of a host star, and we provide the first published measurements for 27 of these. Calibrations for the plate scale and colour
performance of the Two Colour Instrument are presented.
Conclusions. We find that the overall multiplicity rate of the host stars is 38+17

−13%, consistent with the rate among solar-type stars in our sensitivity
range, suggesting that planet formation does not preferentially occur in long period binaries compared to a random sample of field stars. Long
period stellar companions (P > 10 yr) appear to occur independently of short period companions, and so the population of close-in stellar
companions is unconstrained by our study.

Key words. planets and satellites: dynamical evolution and stability – planets and satellites: formation – techniques: high angular resolution –
binaries: visual

1. Introduction

The discovery and observation of exoplanets has posed many
questions about how planets are formed. One group of planets in
particular, the hot Jupiters, has been the subject of intense study
– these planets are gas giants with masses similar to Jupiter, but
are found orbiting their host stars at fractions of an au, much
closer than the gas giants in our own solar system. Their orbits
do not fit in with planet formation distances predicted by the core
accretion model, which states that gas giants should form in the
outer regions of a protoplanetary disc, with frozen volatiles being
vital to their formation (Pollack et al. 1996). The inner limit for
the condensation of ices in the disc is 4–5 au for solar-type stars
(Boss 1995), whereas in-situ formation of hot Jupiters would in-
volve disc temperatures over 1500 K (Lin et al. 1996), too hot
for almost any solid material to exist.

? Based on data collected by the MiNDSTEp consortium using the
Danish 1.54 m telescope at the ESO La Silla observatory.
?? Full Tables 1, 4, and 8 are only available at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A58

It is now widely believed that hot Jupiters initially formed far
from their host stars, as predicted by the core accretion model,
and have since migrated inwards – see the recent reviews on
planet-disc interactions by Baruteau et al. (2014), and on long
term dynamical processes by Davies et al. (2014). Initial work
focused on interactions with the protoplanetary disc, causing
the planet to lose angular momentum and spiral inwards to-
wards the star. This migration would then be stopped by the
planet reaching the inner edge of the disc, or alternatively by
tidal interactions between the planet and its host star. This pro-
cess would result in a well-circularised orbit with a period of
only a few days (Lin et al. 1996). However, the simple disc mi-
gration theory fails to explain the number of hot Jupiters in ec-
centric orbits (Wu & Murray 2003), or those with orbits that are
retrograde or misaligned compared to the rotation of their host
stars (Wu & Murray 2003; Fabrycky & Tremaine 2007). Whilst
misaligned protoplanetary discs provide a possible pathway for
this (e.g. Bate et al. 2010), observational studies have found
that discs are generally well aligned to their host stars, as are
the planets within the discs (Watson et al. 2011; Greaves et al.
2014).
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Gravitational interactions with a third body can also cause
changes in a planet’s orbit. Outer planets can cause planet-planet
scattering events (Rasio & Ford 1996; Chatterjee et al. 2008),
whilst inclined planetary or stellar companions can force the in-
ner planet to undergo Kozai-Lidov oscillations, in which it is
forced through alternating phases of high eccentricity and high
inclination (Wu & Murray 2003; Fabrycky & Tremaine 2007;
Naoz et al. 2011). These pathways are able to explain eccentric
and misaligned hot Jupiters, but require a population of outer
companions. Hot Jupiters rarely have nearby planetary com-
panions (Steffen et al. 2012), and so if gravitational interactions
are the main origin of such planets, many systems would have
to be wide stellar binaries. The host stars are generally Sun-
like FGK dwarfs, which have a multiplicity rate of 44 ± 2%
(Raghavan et al. 2010), but the binary distribution among known
hot Jupiter host stars is very likely to be different. Close bi-
naries are selected against in planet-hunting surveys, due to
the difficulty of detecting and characterising a planet in such a
system. Additionally, there is evidence that close binaries in-
hibit planet formation (Fragner et al. 2011; Roell et al. 2012;
Wang et al. 2014). However, if gravitational interactions with a
distant binary companion are a common migration pathway it
would be expected that the binary fraction would be significantly
enhanced.

To date, several studies have attempted to estimate the multi-
plicity rate among exoplanet host stars, but the results have been
wildly disparate. At the low end, Roell et al. (2012) reported that
as few as 12% of hot Jupiters may be in multiple systems; in con-
trast, Ngo et al. (2015) estimate a binary rate of 51% from direct
imaging alone, which is raised even higher when combined with
radial velocity results from Knutson et al. (2014). However, it is
difficult to compare direct imaging surveys, due to differences in
sensitivity to companions and the area of the sky searched – it
would therefore be advantageous to survey or re-analyse a large
number of systems in a homogeneous manner, in order to create
a large sample of systems from which patterns and trends can be
easily identified.

Transit searches suffer from a high rate of astrophysical false
positives (Brown 2003), and eclipsing binary (EB) systems have
proved to be a troublesome source of transit-like events, with pe-
riods and eclipse durations similar to those of hot Jupiters. The
depths of the eclipses in these systems are generally much larger
than would be expected by a planetary transit, but the observed
depth is often reduced due to blends with nearby stars – if an
eclipsing binary is blended with another star of equal brightness,
the eclipse depths will appear halved. A chance alignment of a
bright foreground star and a dim background EB can cause the
observed eclipses to be almost impossible to distinguish from
real planetary transits, a problem that has plagued many sur-
veys. Blending is especially problematic for surveys looking in
the crowded galactic plane, such as the Lupus (Bayliss et al.
2009) and OGLE (Torres et al. 2004) collaborations, but the
problem still exists in more sparsely populated fields, with the
WASP-South survey finding that for every 14 candidates sent for
follow-up, 13 are astrophysical mimics or blends (Hellier et al.
2011). The large number of planet candidates provided by the
Kepler mission has resulted in several systematic searches for
contaminating stars using various forms high resolution imag-
ing, which were compared to one another by Lillo-Box et al.
(2014).

If a planet does indeed exist, blended light can still
cause problems, due to diluted transits leading to incorrect
determinations of planetary properties. An extreme case is
that of Kepler-14b, where both photometric and spectroscopic

measurements were affected by a companion star at 0.3′′ separa-
tion, causing the planetary mass and radius to be underestimated
by 10% and 60% respectively if the companion was not taken
into account (Buchhave et al. 2011). A similar analysis was per-
formed by Daemgen et al. (2009) for the WASP-2, TrES-2 and
TrES-4 systems, with the planetary parameters changing by up
to 2σ when contaminating light from nearby stars was taken into
account.

In this paper, we present high resolution observations of
101 southern hemisphere systems containing transiting hot
Jupiters. These were used to search for nearby stars, either those
physically associated with the systems, or background objects
that contribute contaminating light. We also present follow-up
observations of several previously discovered binary candidates,
including analyses of the common proper motion of the can-
didates where sufficient data are available. The distribution of
stars detected in our survey are compared to a statistical model
in order to estimate the multiplicity rate among our targets, and
this is compared to the rate among solar-type stars, and previous
estimations of the multiplicity rate among planet host stars.

2. Observations

The observations were carried out between April and Septem-
ber 2014 using the Two Colour Instrument (TCI) at the Dan-
ish 1.54 m telescope, La Silla, Chile. The TCI is a lucky im-
ager designed for simultaneous two-colour photometry, using
Electron Multiplying CCD (EMCCD) detectors. We give a brief
summary of the instrument, with a more detailed description
available in Skottfelt et al. (2015b). The light arriving at the in-
strument is split between the two cameras using a dichroic with
a cut-off wavelength of 655 nm. A second dichroic sends blue
light shortward of 466 nm towards a focus system. The TCI is
not equipped with filters, and so the light received by each cam-
era is determined solely by the dichroics. The “visual” camera
receives light between 466 nm and 655 nm, and the “red” camera
receives all light redward of 655 nm, with the EMCCD detectors
able to detect light out to approximately 1050 nm. We denote
the two passbands vTCI and r TCI for the visual and red cameras
respectively. As shown in Fig. 1, r TCI is comparable to the com-
bination of the SDSS i′ and z′ filters, or a Cousins I filter with
a wider passband, whilst vTCI has a similar central wavelength
to the Johnson V filter but with a significantly different response
curve. For both cameras, the detector consists of a 512×512 pixel
array with a pixel scale of ∼0.09 arcsec/pixel, giving a 45′′×45′′
field of view.

All target stars were observed using the red camera on the
TCI. When possible, targets were also observed simultaneously
with the visual camera, which was undergoing commissioning
during the 2014 season. The two detectors were operated at a
frame rate of 10 Hz for all observations. The use of a higher
frame rate of 30 Hz was investigated, but this resulted in a poorer
seeing correction. This was likely caused by the lower signal-to-
noise ratio (S/N) for the shorter exposures, which resulted in the
reduction pipeline being less able to select good quality frames.

Our targets were taken from the TEPCat1 database of well-
studied transiting extrasolar planets (TEPs) as of April 2014.
All TEP systems observable from La Silla between April and
September 2014 with brightnesses in the range 9 ≤ V ≤ 15
were selected – at the time of observing, this brightness range
included all published HAT, HAT-South and WASP systems in

1 http://www.astro.keele.ac.uk/jkt/tepcat/
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Fig. 1. Top panel: the theoretical response curves of the two TCI cameras, based on the properties of the dichroics, the quantum efficiencies of the
cameras, and an assumed telescope transmission efficiency of 65%. Bottom panel: for comparison, the normalised response curves of the standard
Johnson-Cousins UBVRI, and the measured sensitivity of the SDSS u′g′r′i′z′ cameras. Atmospheric effects are not included. This figure is adapted
from Fig. 4 of Skottfelt et al. (2015b), with the permission of the author. The SDSS curves are based on a sensitivity determination made by
J. Gunn in June 2001, available at http://www.sdss3.org/instruments/camera.php

the Southern hemisphere. We did not specifically include or ex-
clude any systems based on the existence, or lack of, previously
known companions.

For most targets, the default electron multiplication gain
of 300 e−/photon was used but targets brighter than V = 10.5
required a lower gain of 100 e−/photon, with no changes in gain
being made during the observing season for a given star. A typ-
ical planetary transit results in a flux change of 1%, which can
only be mimicked by a blended eclipsing binary less than 5 mag
fainter than the foreground star – a system fainter than this can-
not produce an overall flux change of 1%, even if it is completely
eclipsed. To allow for such contaminating binaries to be reliably
detected, the total exposure time for each target was chosen to
give an S/N of 500 for a star 5 mag fainter than the target in
the V band, assuming that no contaminating light was diluting
the signal from this star (i.e. the fainter star was well separated
brighter star). The high target S/N included allowances for the re-
jection of a high fraction of frames in the lucky imaging process,
and for shallower transit depths. In a few cases it was necessary
to adjust the exposure time after an initial observation to reach
the required sensitivity, with the observations being repeated –
however, the initial shorter exposures were still used in our data
analysis. Variations in the total exposure time also occurred due
to the automatic rejection of bad frames by the TCI pipeline. A
summary of observations is given in Table 1, available electron-
ically at the CDS.

3. Data reduction and analysis

3.1. TCI pipeline

Raw lucky imaging data from the TCI are reduced automatically
by the Odin pipeline, which is described fully in Skottfelt et al.
(2015b). The reduction pipeline performs the standard steps of
bias frame removal and flat field correction, and identifies and
corrects for cosmic rays. The individual exposures are then re-
centred to remove shifts in the target on the detector, and ranked

Table 1. Summary of the observations of transiting exoplanet host stars
carried out.

Target Obs. date (BJDTDB) Exposure time (s)
red Vis.

CoRoT-1 2 456 768.9897 600
CoRoT-2 2 456 772.4179 440
CoRoT-2 2 456 783.4108 440
CoRoT-3 2 456 787.4274 890

...
CoRoT-18 2 456 924.4054 900 899
CoRoT-19 2 456 927.3924 900 899
CoRoT-20 2 456 924.3918 900 900
CoRoT-20 2 456 927.4096 898 899

...

Notes. Where no exposure time is given in the “Vis.” column, the obser-
vation was carried out with in the red band only. Variations in exposure
times are mainly due to the rejection of bad frames by the TCI pipeline.
This table is available in full at the CDS.

by quality, determined by the intensity of the central pixel rel-
ative to those surrounding it. Ten cuts in quality are made, and
the exposures in each cut are stacked together and output as a
ten-layer FITS cube. This allows a user to select only the best
exposures for a high quality image, or instead to use more ex-
posures and hence increase the effective exposure time. The cuts
are concentrated towards the extremes of quality, and the per-
centage boundaries between them are: 1, 2, 5, 10, 20, 50, 90,
98, 99, 100. Therefore, the first cut contains the top 1% of im-
ages ranked by quality, the second cut contains the next 1% of
images, and so on.
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3.2. Smearing

In images taken with the TCI, bright stars show an apparent
smearing along the image rows in the opposite direction to the
EMCCD readout. It is thought that this is caused by charge trans-
fer inefficiency (Skottfelt et al. 2015b), in which a small number
of electrons can become trapped at the edges of the EMCCD
chip during the electron multiplication phase (Bush et al. 2014).
These electrons are released during the readout of later pixels
in the same row, artificially increasing the signal in those pix-
els. Despite the smears being only a small fraction (1%) of the
total signal of their origin pixel, they are still bright enough to
wash out dim stars. To correct for this effect, we assume that the
smear-corrected signal Ix, y at column x and row y is related from
the measured intensity I′x, y as:

Ix, y = I′x, y − k
y−1∑
i=1

Ix, i (1)

where k is the fraction of the charge that is trapped from one
pixel and later released into another pixel. It is therefore as-
sumed that the fraction of charge that becomes trapped per pixel
is fixed, and that this charge is released at a constant rate as each
subsequent pixel is read out. We also do not attempt to reassign
the trapped signal back to its origin pixel, as this would have
no effect on the relative brightness of stars if the same fraction
of charge is lost per pixel. As the north/south diffraction spikes
from the Danish telescope’s secondary mirror supports are par-
allel to the detector readout direction, the north diffraction spike
is significantly brighter than the south spike due to smearing.
k was determined by assuming the north/south diffraction spikes
visible on the TCI images should be of equal intensity after cor-
rection, and this constraint was best satisfied by k = 0.0000177.

3.3. Detection method

Faint stars located close to the target star run the risk of being
lost in the wings of the bright target star’s point spread func-
tion (PSF). Previous high resolution imaging surveys have of-
ten used some variation on PSF fitting to detect such stars (e.g.
Daemgen et al. 2009; Ngo et al. 2015), but this was not effec-
tive when applied to the TCI data. The Danish 1.54 m Telescope
suffers from triangular coma below 1′′, resulting in an asym-
metric PSF that is not well matched by analytical models, and
the changing observing conditions and stochastic nature of the
speckles caused by seeing result in significant variations between
the PSFs of stars observed even on the same night. Algorithms
such as Starfinder (Diolaiti et al. 2000), which derive an empiri-
cal PSF for the image, have been successfully applied to analyse
TCI observations of crowded fields without requiring an input
PSF model (Skottfelt et al. 2013, 2015a). However, many of our
observations have only a single bright star visible, and so there
is a potential degeneracy between the case of a bright PSF with a
nearby dim PSF, and a single bright PSF with a small aberration.

Ginski et al. (2012) suggested a method involving the convo-
lution of each image with a Gaussian of a width larger than the
FWHM and then subtracting the “blurred” image from the orig-
inal image. This is similar to the Difference of Gaussians (DoG)
technique, in which an image is convolved with two Gaussians
of differing widths that are then subtracted from one another,
this technique having been used for purposes such as high-
pass filtering and edge detection (Gonzalez & Woods 2002).
To implement this, the astronomical images were treated as an
ideal image of a set of point-like stars that has already been

convolved with a Gaussian, due to effects such as seeing and
diffraction. As the product of two Gaussians is another Gaussian,
the second convolved image can be generated from the first
seeing-convolved image.

For each image cube from the TCI’s red camera, the
first 7 quality cuts were loaded as separate images, meaning that
the best 90% of exposures were used. The 6th and 7th cuts con-
tain the largest number of exposures, 30% and 40% respectively,
allowing the detection of very faint stars despite the lower im-
age quality. The final 3 cuts cover the worst 10% of images, and
have neither high resolutions nor long exposure times, and so
these cuts were not used.

Each of the seven images was convolved with a Gaussian
of standard deviation 4 pixels (FWHM 11.7 pixels) which was
then subtracted from the original image, giving a set of differ-
ence images. In order to remove the signal from the target star,
the images were divided into a series of annuli with a width of
0.5 pixels, centred on the target star – the sub-pixel width was
required to handle the steep gradient in signal around the tar-
get. Within each annulus, the mean and standard deviation of
the counts per pixel were calculated. A sigma clipping algo-
rithm was used to iteratively discount pixels with counts more
than 3σ from the mean, to avoid the mean and standard devi-
ation becoming biased when a bright star was present. Finally,
any pixels with a signal more than 1.7σ from the annulus mean
were flagged as candidate detections, with all candidates from
each of the 7 cuts being compiled into a single detection list. The
cut-off value of 1.7σ was found to be the best compromise be-
tween reducing the number of real stars (as determined by eye)
that were incorrectly rejected, and the increasing rate of false
positives with lower cut-offs.

The combined detections for each observation were checked
by eye, mainly to exclude spurious detections caused by the non-
circular shape of the PSF. The results from each of our observa-
tions of a target were combined, creating a single verified list
of candidate companions for each object. Measurements of the
properties of the stars were done using a single stacked image
using the 7 best quality cuts. Magnitudes relative to the target
star were calculated using aperture photometry.

The separations and position angles for each candidate were
measured by selecting a 9 × 9 pixel array centred on the both
the target star and the companion stars, which were then super-
sampled by a factor of 10. To calculate the position of a star’s
centre along one axis, the super-sampled image was summed
parallel to the other axis, and the peak was chosen as the centre
of the star. The accuracy of the position determination was tested
using simulated stars, with no improvement being found beyond
a super-sampling factor of 10, and was found to be accurate to
within 0.5 pixels (0.044′′) for S/Ns as low as 5.

For 11 candidate companions, accurate aperture photome-
try was not possible due to their small separation from the target
star, usually combined with bad seeing conditions. Luckily, these
cases all occurred on images with other well-separated stars suit-
able for use as PSF references, and the positions and magni-
tudes were measured using the PSF-fitting DAOPHOT routines
in IRAF. It was assumed that the PSF shape was constant across
the image, as the field of view was small enough to minimise
atmospheric effects, and no variation in PSF shape was visible
when images were inspected by eye.

3.4. Astrometric calibration

The pixel scale and detector rotation of the red camera were cal-
ibrated using observations of eight globular clusters. Using the

A58, page 4 of 20



D. F. Evans et al.: High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). I.

stellar positions published in the USNO NOMAD-1 catalogue,
an automatic fit to the detector scale and rotation was performed
using the Starlink AST package and the GAIA image analysis
tool2. The uncertainties in the NOMAD-1 catalogue varied de-
pending on the brightness of the cluster and sources used for the
data, typically being in the range of 60 to 200 mas for each star –
however, as several dozen stars were used in each fit, the effects
of random errors were reduced. Our uncertainties were derived
from the scatter between the different fits generated. In order to
check for any variations in scale or rotation with sky position or
date, the images used for calibration were chosen to cover vir-
tually the entire range of sky positions, and covered a range of
dates from 2014-05-07 to 2014-09-21. Additionally, an earlier
image from the 2013 season was used as a further check for long
term consistency.

The +y axis was found to be rotated from North by 1.1±0.2◦
with a scale of 88.7±0.4 mas/pixel, and the −x axis rotated from
East by 1.1 ± 0.3◦ at a scale of 88.9 ± 0.5 mas/pixel. From these
results, it was assumed that any difference in scale and rotation
between the two directions was negligible, and the values were
combined to give a rotation of 1.1 ± 0.2◦ at a scale of 88.8 ±
0.3 mas/pixel. This was not found to vary with the pointing of
the telescope, and no evidence of variation with time was found.

Astrometric calibration was not performed for the visual
camera, as the detector was being commissioned during the
summer 2014 observing season (Skottfelt et al. 2015b). This re-
sulted in the orientation of the camera changing several times.
In general, the visual camera images were rotated by approxi-
mately +2◦ compared to the red camera, and were offset slightly
towards the south west.

3.5. Colour calibration

In September 2014, we observed the seven spectrophotometric
standard stars listed in Table 2 taken from the ESO Optical and
UV Spectrophotometric Standard Stars catalogue3 in order to
test the colour response of the TCI. Theoretical predictions of the
TCI’s colour response curves were presented in Skottfelt et al.
(2015b), which were combined with the spectra of the standard
stars to give an estimated Vis-red colour index, abbreviated as
(v − r) TCI. The fluxes were measured using aperture photometry,
and a (v − r) TCI colour index was generated for each observation.

We modelled atmospheric extinction using a linear relation-
ship, with the corrected colour (v − r) TCI being related to the
measured colour (v − r)′TCI as follows:

(v − r) TCI = (v − r)′TCI − kZ (2)

where Z is the airmass and k is a coefficient fitted to the data,
with a value of +0.08 ± 0.03 mag/airmass being chosen as the
best-fit value. However, there was significant scatter in the data,
and improved observations would be useful in verifying and fur-
ther constraining this value and its dependence on stellar colour.
This agrees fairly well with the measurements of Tüg (1977)
at the La Silla site, which predicts that the relative extinction
coefficient of filters centred at 560 nm and 860 nm would be
approximately +0.1 mag/airmass.

The spectrum used for the standard star G158-100 in Oke
(1990) is cut off redwards of 920 nm, causing the flux in the

2 Starlink is available at http://starlink.eao.hawaii.edu/
starlink/
3 Available at http://www.eso.org/sci/observing/tools/
standards.html

Table 2. List of spectrophotometric stars observed.

Target SpT V magnitude Ref.
CD-34 241 F 11.2 1
Feige-110 DO 11.8 2
G158-100 dG 14.9 3
LTT 7987 DA 12.2 2
LTT 9239 F 12.1 1
LTT 9491 DB 14.1 1
NGC 7293 DA 13.5 3

References. (1) Hamuy et al. (1992, 1994); (2) Moehler et al. (2014);
(3) Oke (1990).
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Fig. 2. The spectra of G158-100. The top green line is the measured
spectrum (Oke 1990), the bottom blue line the model, and the central
red line the combined spectrum. All curves are scaled to a peak flux
of 1.0, and are offset for clarity.

red filter to be underestimated. The star is a G-type subd-
warf, with Teff = 4981 K, log g = 4.16, and [Fe/H] = −2.52
(Boesgaard et al. 2005). To extend the data from 900 nm on-
wards, we used a PHOENIXmodel spectrum (Husser et al. 2013),
with Teff = 5300 K, log g= 4.00, and [Fe/H] = −3.0, the tem-
perature being varied to best fit the measured spectrum. The
result is shown in Fig. 2.

A similar problem with cut-off spectra occurred in the cases
of NGC 7293 and LTT 9491. Due to their high temperatures and
relatively featureless spectra, both were fitted as black bodies.
NGC 7293 was extended from 900 nm onwards with a black
body temperature of 110 000 K, and LTT 9491 was extended
from 970nm onwards with a temperature of 12 500 K.

Upon analysis of the extinction-corrected colour indices,
it became apparent that all stars were systematically offset
by −0.46 in the (v − r) TCI colour index compared to the pre-
dicted values, indicating that the stars appear significantly bluer
than expected. This is much larger than the atmospheric extinc-
tion correction, and it is not currently clear what the cause of the
offset is. There is some evidence that the colour offset is temper-
ature related, with cooler stars generally showing a lower offset,
as shown in Fig. 3.

3.6. Stellar colour indices

It is possible to measure the colour of objects by using the flux
in the visual and red cameras of the TCI, and hence to estimate
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Fig. 3. The offsets between measured and predicted (v − r) TCI colour
index for the observed standard stars, after correction for atmospheric
extinction. Error bars are derived from the scatter in the measurements.

the effective temperature of the object. This can then be used to
compare the photometric parallaxes of the target and candidate
companions – a background star will have a larger photometric
parallax than the target star, hence showing that the two are not
physically bound. The passbands of the two TCI cameras differ
significantly from any photometric system, and no set of colour
indices for standard filters matches the system well. We therefore
calculated a set of theoretical colour indices for main sequence
dwarf stars of solar metallicity for the EMCCD instrument, using
PHOENIX model spectra (Husser et al. 2013) and the passband
data published in Skottfelt et al. (2015b).

As the PHOENIX models are given in flux per unit surface
area, they do not provide any information on the relative lumi-
nosity of different stellar types – therefore, information on stellar
radii was required, in order to allow relative photometric paral-
laxes to be determined. Stellar radii can be taken from theoretical
stellar models, but these have been found to underestimate the
radius of low mass stars when compared to direct observational
data (e.g. Boyajian et al. 2012a,b; Mann et al. 2015). Instead, it
was decided to derive an empirical relation between stellar mass
and effective temperature, in order to allow the colour indices to
be expressed in terms of mass.
DEBCat4 is a catalogue of the physical properties of detached

eclipsing binaries. The catalogue only includes systems in which
the two stars are well separated, ensuring that their evolution
has not been affected by mass transfer. The stars in the cata-
logue therefore provide a set of measurements that are repre-
sentative of non-binary stars (Southworth 2015). However, at
higher masses, the catalogue is biased to include a significant
proportion of stars that have evolved off the main sequence, due
to these being both brighter and more likely to eclipse than un-
evolved stars (Andersen 1991). Therefore, similar cuts to those
used in Southworth (2009) were chosen, with only stars be-
low 1.5 M� included in the fit. Additionally, for systems where
both components are above 1.0 M�, only the secondary stars
from systems with q = MB

MA
< 0.9 were used. Assuming that

both stars in a binary system are co-evolutionary, a higher mass
primary star will evolve off the main sequence first. By choosing
only secondary stars that were significantly less massive than
the primary stars, the difference in the two components’ main

4 http://www.astro.keele.ac.uk/jkt/debcat/
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Fig. 4. The empirical relationship between stellar radius and effective
temperature, derived from the sample of detached eclipsing binaries.
The dashed lines indicate the rms scatter.

sequence lifetimes ensured that even if the primary had begun to
evolve, the secondary would still be on the main sequence. For
systems where both components were below 1.0 M�, the main
sequence lifetimes of both components were assumed to be long
enough that neither star was likely to have evolved significantly.
The V1174 Ori system was manually excluded despite match-
ing these criteria, as it comprises two pre-main sequence stars
(Stassun et al. 2004), which have much larger radii than main
sequence stars.

Rather than fitting directly to the effective temperature of the
star, Teff , we define the variable X = log(Teff) − 3.6, to increase
the numerical accuracy of our fits. The linear fit between X and
log (R /R�) is shown in Fig. 4, and the cubic fit between X and
log (M /M�) in Fig. 5. The scatter in the data points is larger
than would be expected from the error bars alone, and can be
attributed to physical differences between the stars in the dataset,
caused by properties such as metallicity or stellar activity which
were not considered in this fit. Because of this, the fit was not
improved significantly by the inclusion of measurement errors.
Instead, we quote the rms scatter.

The radius-temperature relation derived is,

log (R/R�) = 1.639 · X − 0.240 (3)

with R being the stellar radius, and an rms scatter of 0.07 around
the fit. The mass-temperature relation is,

log (M/M�) = 27.296 · X3 − 7.273 · X2 + 1.529 · X − 0.198 (4)

with M being the stellar mass, the data having an rms scatter
of 0.08 around the fit.

The derived colour indices are presented in Table 3. The
values of surface gravity used for the model atmospheres are
listed in the table, and were chosen based on the values given
in Gray (1976). Note that these indices are not corrected for the
systematic colour offset discussed in Sect. 3.5.

3.7. Host star distances

To convert between the physical and projected separations of two
stars, their distance must be known. A number of different meth-
ods have been used in the literature to calculate the distances to
TEP host stars, and it is not always clear which method was used.
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Fig. 5. The empirical relationship between stellar mass and effective
temperature, derived from the sample of detached eclipsing binaries.
The dashed lines indicate the rms scatter.

We therefore decided to derive a homogeneous set of distances
to the targeted host stars using the K-band surface brightness-
effective temperature relation presented in Kervella et al. (2004).

The stellar radius and effective temperature were taken from
the TEPCat database of physical properties of transiting exo-
planet systems (Southworth 2011), using the data available as of
2015-10-015, with the K band magnitudes derived from 2MASS
Ks magnitudes (Skrutskie et al. 2006). Stars separated by less
than 5′′ were not consistently detected as two separate stars by
the 2MASS data reduction pipeline, and so the K band magni-
tudes suffer from contaminating light. However, in all cases we
find that the candidate companions are faint enough that they
contribute only a few percent of the total flux, and are often suffi-
ciently separated for contaminating light to be at a relatively low
level. K band extinction was assumed to be negligible for the
entire sample. Our derived distances are listed in Table 4, avail-
able electronically from the CDS, and are generally within 2σ
of the previously reported values. Notably different distances are
those for WASP-66 and WASP-67, for which we find 520±30 pc
and 184 ± 6 pc respectively, compared to 380±100 and 255±45
given by Hellier et al. (2012); WASP-90, which we find to be
at 211 ± 10 compared to 340 ± 60 by West et al. (2016); and
OGLE-TR-113, which we place at 358±19 pc, much closer than
the previously reported distances of 600 pc by Konacki et al.
(2004) and 553 pc by Santos et al. (2006).

4. Results

We report 25 new candidate companions within 5 arcsec of
18 planet host stars. We also present new observations of
14 companions within 5 arcsec of 11 planet host stars. Candidate
companions to CoRoT stars are presented in Table 5, HAT, HAT-
South and WASP stars in Table 6, and OGLE stars in Table 7.

In the sections below we discuss close candidate compan-
ions within 5′′ where data has allowed us to make further con-
clusions, including twelve systems where either previous astro-
metric measurements have allowed us to study the candidate’s

5 TEPCat is archived monthly, and the version used in this work
can be found at: http://www.astro.keele.ac.uk/jkt/tepcat/
2015oct/allplanets-noerr.html

Table 3. Theoretical colour indices and relative magnitudes for the EM-
CCD instrument.

Teff (K) M (M�) log g (v − r) TCI ∆r TCI ∆vTCI
12 000 4.0 −0.50
11 600 4.0 −0.50
11 200 4.0 −0.49
10 800 4.0 −0.48
10 400 4.0 −0.47
10 000 4.0 −0.45
9600 4.0 −0.44
9200 4.0 −0.42
8800 4.5 −0.38
8400 4.5 −0.34
8000 4.5 −0.29
7600 4.5 −0.23
7200 4.5 −0.16
7000 1.38 4.5 −0.13 0.0 0.0
6800 1.28 4.5 −0.09 0.2 0.3
6600 1.19 4.5 −0.06 0.4 0.5
6400 1.11 4.5 −0.02 0.7 0.8
6200 1.05 4.5 0.02 0.9 1.0
6000 0.99 4.5 0.06 1.1 1.3
5800 0.95 4.5 0.10 1.4 1.6
5600 0.91 4.5 0.15 1.6 1.9
5400 0.87 4.5 0.20 1.9 2.2
5200 0.84 4.5 0.25 2.2 2.6
5000 0.81 4.5 0.32 2.5 3.0
4900 0.79 4.5 0.35 2.7 3.1
4800 0.78 4.5 0.39 2.8 3.4
4700 0.77 4.5 0.43 3.0 3.6
4600 0.75 4.5 0.48 3.2 3.8
4500 0.74 4.5 0.53 3.4 4.0
4400 0.72 4.5 0.58 3.6 4.3
4300 0.70 4.5 0.65 3.8 4.6
4200 0.68 4.5 0.71 4.0 4.8
4100 0.66 4.5 0.79 4.2 5.1
4000 0.64 4.5 0.86 4.4 5.4
3900 0.61 5.0 0.94 4.6 5.7
3800 0.59 5.0 1.03 4.8 6.0
3700 0.56 5.0 1.13 5.1 6.3
3600 0.52 5.0 1.24 5.3 6.7
3500 0.49 5.0 1.36 5.6 7.1
3400 0.45 5.0 1.49 5.9 7.5
3300 0.41 5.0 1.63 6.2 7.9
3200 0.37 5.0 1.80 6.5 8.4
3100 0.33 5.0 1.99 6.8 8.9
3000 0.28 5.0 2.21 7.1 9.5
2900 0.24 5.0 2.47 7.5 9.7
2800 0.20 5.0 2.77 7.9 10.8
2700 0.16 5.0 3.11 8.3 11.6
2600 0.12 5.0 3.39 8.8 12.3
2500 0.09 5.0 3.57 9.2 12.9
2400 0.07 5.0 3.51 9.5 13.1
2300 0.05 5.0 3.48 9.9 13.5

Notes. log g is the logarithm of the stellar surface gravity, in cgs units.
∆r TCI is the difference in r TCI magnitude compared to a star with
Teff = 7000 K, and ∆vTCI is the same for the vTCI magnitude.

relative proper motion, and four systems where two colour imag-
ing with the TCI has permitted us to compare the photometric
distances to the two stars.
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Table 4. Distances derived for planet host stars using the K-band sur-
face brightness-effective temperature relation.

System Distance (pc)
CoRoT-1 783 ± 36
CoRoT-2 226 ± 6
CoRoT-3 800 ± 50

...

Notes. This table is available in full at the CDS.

A full list of all stars found within 20′′ of a TEP host star,
along with their measured positions and relative brightnesses for
each observation, can be found in Table 8, available electroni-
cally from the CDS.

4.1. Common proper motion analysis

If two stars are gravitationally bound to one another, it is ex-
pected that they will display common proper motion. There-
fore, the separation and position angle of the companion rela-
tive to the planet host star should not change significantly with
time, assuming that orbital motion is negligible over the observa-
tional baseline. An alternative scenario is that in which the can-
didate companion is a distant background star, showing negligi-
ble proper motion compared to the foreground target star. In this
case, it is expected that the foreground star will move past the
background star over time. Additionally, the apparent separation
and angle between the two stars will vary over the Earth’s orbit
due to parallax, with the foreground star having a significantly
larger parallactic motion.

For proper motions, the UCAC4 catalogue (Zacharias et al.
2013) was chosen as the source for all targets. We compared
the data in UCAC4 with that in the NOMAD (Zacharias et al.
2004) and PPMXL (Roeser et al. 2010) catalogues. We generally
found that all three catalogues agreed on the proper motions to
within the errors, although differences were found for CoRoT-3,
CoRoT-11, and HAT-P-41 – it is likely that these discrepancies
are caused by contamination from the stars detected in this sur-
vey, combined with low proper motions. We also investigated
the proper motions available in the recently published URAT1
catalogue (Zacharias et al. 2015). We found that the values were
often significantly different to the other three catalogues for our
targets, even those with high proper motions, and therefore de-
cided not to use the URAT1 data.

We generated a model describing the relative motion of the
two objects assuming that the candidate companion was a dis-
tant background star. The expected motion was then calculated
using the position of the companion, which was allowed to vary
to fit the data, and the UCAC4 proper motion of the target and
the parallax expected from the distances derived in Sect. 3.7. We
also created a second model in which the two stars showed no
relative motion, and again fitted the initial position of the com-
panion to give the best fit. The two models were compared using
the χ2 goodness of fit, from which the more probable model was
identified, and the significance with which it was preferred. The
fit comparisons are shown in Table 9. Figures 6 and 7 show the
measured separations and position measurements of twelve can-
didate companions for which other observations are available, as
well as the best fits from the proper motion models.

4.2. CoRoT-2

A star located 4′′ from CoRoT-2 was discovered by Alonso et al.
(2008), with infrared photometry indicating that the companion
was consistent with being a physically associated K/M dwarf.
Schröter et al. (2011) obtained separate spectra of the two stars
in 2010, with the companion’s spectral type determined to be
K9V, and measurements of the radial velocities of the two ob-
jects were consistent with a bound orbit. Further lucky imaging
observations have since been published, which support the com-
panion being in the late K/early M regime (Faedi et al. 2013;
Wöllert et al. 2015; Wöllert & Brandner 2015). We present two
new observations of the companion shown in Fig. 6, but are
unable to distinguish between the common proper motion and
background star hypotheses.

4.3. CoRoT-3

Two nearby bright stars to CoRoT-3 were reported in
Deleuil et al. (2008), both at a separation of approximately 5′′.
The stars have become known as the “South” companion,
2.9 mag fainter and denoted “1” in our work, and the “East”
companion, 4.9 mag fainter and denoted “2”. Observations of
both stars were presented in Wöllert et al. (2015), and compan-
ion 1 has been observed a further two times (Faedi et al. 2013;
Wöllert & Brandner 2015). Whilst companion “1” is slightly
beyond 5′′, we include it in this section due to its brightness.

We report one new observation of both previously reported
companions. We note that the UCAC4, PPMXL, and NOMAD
catalogues give significantly different values for the proper mo-
tion of CoRoT-3, and it was decided to test the motion of both
companions against each of the three sets of data. We find that
for the values from the UCAC4 catalogue, companion 1 is com-
patible with both the common proper motion and background
star hypotheses. However, common proper motion is preferred
when using data from the PPMXL catalogue (2.3σ) and the NO-
MAD catalogue (4.3σ). The situation for companion 2 is cur-
rently inconclusive for all sets of proper motion values. The po-
sition measurements for both of these companions are illustrated
in Fig. 6.

We also announce three new nearby stars. Star 3 is 2.5′′
to the southeast, 6.3 mag fainter than CoRoT-3. Stars 4 and 5
are both around 8 mag fainter, at separations of 3.9′′ and 4.5′′
respectively.

4.4. CoRoT-7

Léger et al. (2009) presented observations of 3 faint, red stars
near to CoRoT-7, the nearest being located at 4.9′′ and all be-
ing ∼8.2 mag fainter in the J band. We observed all three stars
again, with the two stars at larger separation being beyond the 5′′
limit and so excluded from Table 5. All three stars are 9 mag
fainter in r TCI. In both J and r TCI, the stars are too faint to be
bound main sequence stars.

4.5. CoRoT-8

Of the three detected candidate companions, only companion 3
was bright enough to be detected in vTCI. From its estimated ef-
fective temperature of 3420 ± 130 K, we conclude that it is four
mags too faint to be bound.
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Table 5. Our measurements of candidate companions to CoRoT planet host stars.

Target MJD N Separation (′′) Pos. angle (◦) ∆r TCI ∆vTCI Bound? References
CoRoT-2 56 778 2 4.061 ± 0.012 208.40 ± 0.15 2.901 ± 0.002 – – 1, 5, 6, 7, 8
CoRoT-3 (1) 56 787 1 5.19 ± 0.02 174.7 ± 0.2 2.589 ± 0.004 – Yes (M) 2, 6, 7, 8
CoRoT-3 (2) 56 787 1 4.96 ± 0.02 91.6 ± 0.2 4.8 ± 0.3 – – 2, 7
CoRoT-3 (3) 56 787 1 2.501 ± 0.013 135.8 ± 0.2 6.295 ± 0.019 – – –
CoRoT-3 (4) 56 787 1 3.90 ± 0.03 240.7 ± 0.3 8.0 ± 0.6 – – –
CoRoT-3 (5) 56 787 1 4.51 ± 0.19 130.3 ± 0.2 7.6 ± 0.4 – – –
CoRoT-4 (1) 56 769 1 2.935 ± 0.014 336.8 ± 0.2 5.231 ± 0.014 – – –
CoRoT-4 (2) 56 769 1 4.187 ± 0.018 203.2 ± 0.2 6.9 ± 0.3 – – –
CoRoT-6 56 785 2 4.620 ± 0.013 262.53 ± 0.15 6.63 ± 0.19 – – –
CoRoT-7 56 769 1 4.98 ± 0.02 160.4 ± 0.2 8.9 ± 0.4 – No (B) 3
CoRoT-8 (1) 56 840 4 2.468 ± 0.009 39.53 ± 0.12 7.174 ± 0.024 Undetected – –
CoRoT-8 (2) 56 840 4 3.163 ± 0.007 342.44 ± 0.11 6.468 ± 0.019 Undetected – –
CoRoT-8 (3) 56 840 4 4.290 ± 0.009 23.78 ± 0.11 6.236 ± 0.011 7.0 ± 0.6 No (C) –
CoRoT-9 (1) 56 783 1 4.44 ± 0.02 271.2 ± 0.2 7.10 ± 0.05 – – –
CoRoT-9 (2) 56 783 1 4.618 ± 0.019 258.4 ± 0.2 5.185 ± 0.013 – – –
CoRoT-11 (1) 56 778 2 2.537 ± 0.009 307.01 ± 0.15 1.994 ± 0.002 – – 4, 7, 8
CoRoT-11 (2) 56 778 2 3.043 ± 0.011 162.95 ± 0.15 7.228 ± 0.028 – – –
CoRoT-11 (3) 56 778 2 4.006 ± 0.014 222.27 ± 0.17 6.81 ± 0.18 – – –

Notes. “N” indicates the number of observations used for each star. Where more than one observation was used, the MJD quoted is in the middle
of the range of observing dates. The “Bound?” column indicates cases where our analyses determined that the companion is bound or unbound,
and the method with which this was confirmed (Proper Motion M, Relative Brightness B, or Stellar Colours C) – no entry is given if our analyses
were inconclusive. The references column lists previous analyses (if any) of the candidates.

References. (1) Alonso et al. (2008); (2) Deleuil et al. (2008); (3) Léger et al. (2009); (4) Gandolfi et al. (2010); (5) Schröter et al. (2011);
(6) Faedi et al. (2013); (7) Wöllert et al. (2015); (8) Wöllert & Brandner (2015).

Table 6. Our measurements of candidate companions to HAT, HATS, and WASP planet host stars.

Target MJD Nobs Separation (′′) Pos. angle (◦) ∆r TCI ∆vTCI Bound? References
HAT-P-30 56 770 1 3.856 ± 0.016 3.9 ± 0.2 4.333 ± 0.017 – Yes (M) 4 9 10 12
HAT-P-35 56 769 1 1.016 ± 0.011 149.4 ± 0.2 3.81 ± 0.13 – – 14
HAT-P-41 (1) 56 768 1 3.599 ± 0.016 183.7 ± 0.2 3.425 ± 0.004 – – 6 13 14
HAT-P-41 (2) 56 768 1 0.987 ± 0.011 189.8 ± 0.2 4.42 ± 0.09 – – –
HATS-2 56 779 4 1.022 ± 0.005 42.76 ± 0.09 3.93 ± 0.03 – – –
HATS-3 56 768 1 3.671 ± 0.016 108.7 ± 0.21 7.59 ± 0.15 – – –
WASP-2 56 772 1 0.709 ± 0.010 103.4 ± 0.2 4.95 ± 0.15 – Yes (M) 1 2 8 9 12 13
WASP-7 56 779 3 4.414 ± 0.011 228.73 ± 0.12 9.38 ± 0.02 – – –
WASP-8 56 883 7 4.495 ± 0.007 170.93 ± 0.08 3.534 ± 0.002 4.486 ± 0.006 Yes (M) 3 12
WASP-36 56 770 1 4.872 ± 0.019 66.5 ± 0.2 4.579 ± 0.018 – – 5, 14
WASP-45 56 847 1 4.364 ± 0.018 317.7 ± 0.2 6.381 ± 0.011 – – –
WASP-49 56 769 1 2.239 ± 0.013 178.2 ± 0.2 4.979 ± 0.018 – – –
WASP-55 56 783 3 4.345 ± 0.010 163.62 ± 0.12 5.210 ± 0.018 – – –
WASP-64 56 769 2 4.55 ± 0.02 324.1 ± 0.2 8.3 ± 0.4 – – –
WASP-67 56 768 1 4.422 ± 0.018 51.6 ± 0.2 7.23 ± 0.10 – – –
WASP-70 56 768 1 3.140 ± 0.015 167.0 ± 0.2 2.1507 ± 0.0009 – Yes (M) 11 14
WASP-77 56 883 9 3.274 ± 0.005 153.68 ± 0.07 1.512 ± 0.002 1.698 ± 0.004 Yes (MC) 7 14
WASP-90 56 786 1 0.992 ± 0.011 184.9 ± 0.2 3.22 ± 0.09 – – –
WASP-100 56 921 2 3.982 ± 0.012 186.30 ± 0.15 6.152 ± 0.008 6.18 ± 0.05 No (C) –

Notes. “N” indicates the number of observations used for each star. Where more than one observation was used, the MJD quoted is in the middle
of the range of observing dates. The ‘Bound?’ column indicates cases where our analyses determined that the companion is bound or unbound,
and the method with which this was confirmed (Proper Motion M, Relative Brightness B, or Stellar Colours C) – no entry is given if our analyses
were inconclusive. The references column lists previous analyses (if any) of the candidates.

References. (1) Collier Cameron et al. (2007); (2) Daemgen et al. (2009); (3) Queloz et al. (2010); (4) Enoch et al. (2011); (5) Smith et al.
(2012); (6) Hartman et al. (2012); (7) Maxted et al. (2013); (8) Bergfors et al. (2013); (9) Adams et al. (2013); (10) Ginski et al. (2013);
(11) Anderson et al. (2014); (12) Ngo et al. (2015); (13) Wöllert et al. (2015); (14) Wöllert & Brandner (2015).

4.6. CoRoT-11

A nearby bright companion to CoRoT-11 was noted in
Gandolfi et al. (2010), 2.1 mag fainter in R at a separation of 2′′,

and was further observed using lucky imaging in 2013 and 2014
by Wöllert et al. (2015) and Wöllert & Brandner (2015). We re-
observed the companion, which we denote “1”, and find a po-
sition consistent with previous measurements. The NOMAD
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Table 7. Our measurements of candidate companions to OGLE planet host stars.

Target MJD Nobs Separation (′′) Pos. angle (◦) ∆r TCI ∆vTCI
OGLE-TR-113 (1) 58 785 4 2.534 ± 0.007 19.38 ± 0.11 2.94 ± 0.02 –
OGLE-TR-113 (2) 58 785 4 3.015 ± 0.008 343.42 ± 0.11 4.73 ± 0.14 –
OGLE-TR-113 (3) 58 785 4 3.255 ± 0.007 179.81 ± 0.11 -0.546 ± 0.002 –
OGLE-TR-113 (4) 58 785 4 4.27 ± 0.04 23.2 ± 0.4 6.4 ± 0.5 –
OGLE-TR-113 (5) 58 785 4 4.882 ± 0.010 133.65 ± 0.11 4.62 ± 0.10 –
OGLE-TR-113 (6) 58 785 4 4.90 ± 0.05 229.1 ± 0.5 6.6 ± 0.6 –
OGLE-TR-113 (7) 58 785 4 4.934 ± 0.010 267.08 ± 0.11 1.901 ± 0.008 –
OGLE-TR-211 56 784 3 4.222 ± 0.010 25.49 ± 0.12 3.944 ± 0.04 –
OGLE2-TR-L9 (1) 56 786 5 2.331 ± 0.006 140.66 ± 0.09 5.193 ± 0.009 –
OGLE2-TR-L9 (2) 56 786 5 2.486 ± 0.006 261.49 ± 0.09 5.203 ± 0.009 –
OGLE2-TR-L9 (3) 56 786 5 4.084 ± 0.008 106.40 ± 0.09 5.182 ± 0.009 –
OGLE2-TR-L9 (4) 56 786 5 4.24 ± 0.11 191.4 ± 1.2 7.9 ± 1.0 –
OGLE2-TR-L9 (5) 56 786 5 4.540 ± 0.013 341.50 ± 0.13 6.5 ± 0.3 –
OGLE2-TR-L9 (6) 56 786 5 4.552 ± 0.10 114.61 ± 0.10 6.22 ± 0.19 –

Notes. “N” indicates the number of observations used for each star. Where more than one observation was used, the MJD quoted is in the middle
of the range of observing dates. No previous analyses have been published for the stars in this table.

Table 8. Observations and basic properties of all detected stars.

Exposure time (s)
Target ID Separation (′′) Position angle (◦) ∆r TCI ∆vTCI Obs. Date (BJDTDB)
CoRoT-1 1 8.67 ± 0.03 227.9 ± 0.2 4.46 ± 0.03 2 456 769.4897
CoRoT-1 2 9.62 ± 0.15 121.5 ± 1.6 8.7 ± 1.5 2 456 769.4897
CoRoT-1 3 11.51 ± 0.04 178.1 ± 0.2 3.221 ± 0.010 2 456 769.4897

...
CoRoT-20 1 6.46 ± 0.02 76.9 ± 0.2 5.7 ± 0.3 7.6 ± 1.2 2 456 924.8918
CoRoT-20 2 9.96 ± 0.04 91.5 ± 0.3 6.7 ± 0.6 2 456 924.8918
CoRoT-20 3 10.54 ± 0.04 265.7 ± 0.2 5.35 ± 0.18 6.6 ± 0.5 2 456 924.8918

...

Notes. This table is available in full at the CDS.

Table 9. The preferred models of relative motions for candidate com-
panions with previous astrometric measurements.

Target Comp. Preferred Model Significance
CoRoT-2 1 CPM 0.4σ
CoRoT-3 1 CPM1 0.7σ
CoRoT-3 2 CPM2 0.1σ
CoRoT-11 1 CPM 0.8σ
HAT-P-30 Near CPM >5.0σ
HAT-P-30 Far BG 0.6σ
HAT-P-41 1 CPM 2.0σ
WASP-2 1 CPM >5.0σ
WASP-8 1 CPM >5.0σ
WASP-36 1 CPM 0.1σ
WASP-70 1 CPM >5.0σ
WASP-77 1 CPM >5.0σ

Notes. The Common Proper Motion model (CPM) assumes that the
two stars have the same proper motion and parallax; the Background
model (BG) is based on the candidate companion being a distant back-
ground star with negligible proper motion and parallax. Results signifi-
cant by more than 1.0σ are highlighted in the table. (1) NOMAD and PP-
MXL give significantly different proper motions to UCAC4 for CoRoT-
3; the CPM model is preferred at 4.3σ using NOMAD, and at 2.3σ
PPMXL proper motions. The results for companion 2 are unchanged.
(2) NOMAD gives a significantly different proper motion to UCAC4 for
CoRoT-11; the CPM model is preferred at 3.5σ using NOMAD.

catalogue gives a much larger proper motion for CoRoT-11 than
the UCAC4 or PPMXL, and whilst a companion with common
proper motion is preferred by the NOMAD data, the motions in
the other catalogues only slightly prefer this scenario. The mo-
tion predicted by the UCAC4 catalogue is shown in Fig. 6.

We also report two new faint stars, with companion 2 be-
ing 7.2 mag fainter at a separation of 3′′, and companion 3 be-
ing 6.8 mag fainter at 4′′. Due to CoRoT-11’s high effective tem-
perature of 6440 ± 120 K (Gandolfi et al. 2010), it is possible
that these could be faint bound M dwarfs.

4.7. HAT-P-30

A nearby star was first reported in Enoch et al. (2011), where it
was stated that a faint star was observed at a separation of 1.5′′
during observations with the CORALIE spectrograph, though it
is likely that the separation was underestimated (Triaud, 2015,
priv. comm.). The system was reobserved in the infrared using
adaptive optics in 2011, and a companion was reported at a sepa-
ration of 3.7′′ (Adams et al. 2013). Ginski et al. (2013) reported
further measurements of the companion at 3.7′′, finding that it
was better explained as a stationary background object than a co-
moving companion, whereas Ngo et al. (2015) concluded that
the two stars do show common proper motion. We report one
new observation of the 3.7′′ companion, and find that it is com-
pletely inconsistent with being an unbound background object,
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Fig. 6. The relative motions between planet host stars and the candidate companions where observations over several epochs are available. The
black lines show the expected motion if the detected star were a distant background star, assuming that such a star would have negligible proper
motion compared to the foreground planet host star. The shaded areas indicate the 1σ uncertainties on the motions, based on the errors in proper
motion. The dashed blue line is the best fit assuming no relative motion between the two stars. The symbols indicate the source of each point: blue
circles – this work; green squares – Wöllert et al. (2015), Wöllert & Brandner (2015); red upwards triangles – Faedi et al. (2013); cyan downwards
triangles – Ngo et al. (2015); magenta hexagons – Adams et al. (2013); yellow diamonds – Ginski et al. (2013); black pentagons – 2MASS.

as shown in Fig. 6, where this companion is labelled “HAT-P-30
(Near)”.

The Washington Double Star Catalog (Mason et al. 2001) in-
cludes a “C” component for the HAT-P-30 system, observed in
1960 at a separation of 14′′ and a position angle of 71◦, 7 mag
fainter than the A component. We find a star at 10′′ and a position
angle of 53◦ with a similar magnitude difference. The two stars
were resolved by the 2MASS survey (Skrutskie et al. 2006), and
we derive a separation of 10.5 ± 0.3′′ and position angle of
51 ± 2◦ from the 2MASS observations (MJD at observation

51 571.1435), which are shown along with our position measure-
ment in Fig. 6, labelled “HAT-P-30 (Far)”. However, our lucky
imaging data and the positions from 2MASS do not conclusively
prefer either common proper motion or a background star.

We were able to further analyse the more distant candidate
companion using its J−H colour index of 0.1±0.3 derived from
the 2MASS photometry, the source being undetected in K. This
colour characterises the star with a spectral type of A/F if it is on
the main sequence (Straižys & Lazauskaitė 2009), and hence im-
plies that it is a distant background object given its faintness. We
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also consider a scenario in which the star is a physically bound
white dwarf, using colours and relative magnitudes derived from
the evolutionary models presented in Althaus et al. (2007), with
relative magnitudes in the I filter values being adopted as an ap-
proximation to r TCI. We conclude from the J − H colour and
relative magnitudes in r TCI, J, and H that the star is several mag-
nitudes too bright to be a physically bound white dwarf.

4.8. HAT-P-41

The HAT-P-41 system was reported to be a potential binary, the
planet orbiting an F-type dwarf with a K-dwarf companion 3.56′′
away (Hartman et al. 2012). Two sets of observations confirm-
ing the presence of the companion have since been published
(Wöllert et al. 2015; Wöllert & Brandner 2015). We report a
new observation of this companion, denoted “1”, and derive a
position and magnitude in agreement with previous results. We
also report the detection of a new candidate companion star “2”
at 1.0′′, 4.4 mag fainter than HAT-P-41.

As shown in Fig. 7, the separation between HAT-P-41 and
companion 1 shows an increase over time, which is opposite
to the motion that would be shown by a background object,
and also much larger than would be expected of orbital mo-
tion for such a wide binary. No trend is obvious in position
angle, although it should be noted that no measurement was pro-
vided in Hartman et al. (2012), limiting the observational base-
line. We note that the PPMXL and NOMAD catalogues quote
significantly different proper motions for HAT-P-41 compared
to UCAC4, but these values are also inconsistent with compan-
ion 1 either being bound or a stationary background object. One
possible explanation for the trend is that the reported companion
is a star at a similar or lower distance, exhibiting its own proper
motion. Further observations are needed to determine whether or
not the trend is real, and if so, its origin.

4.9. WASP-2

A companion to WASP-2 was announced in
Collier Cameron et al. (2007), where it was stated to be
2.7 mag fainter in the H band and located 0.7′′ to the east. This
companion has been further studied in a number of papers using
data from the AstraLux Norte and AstraLux Sur lucky imaging
cameras. Daemgen et al. (2009) observed the companion in
2007 in the i′ and z′ filters. Bergfors et al. (2013) presented
further observations between 2009 and 2011, and showed that
the two stars show common proper motion, followed by 2013
data in Wöllert et al. (2015). Adams et al. (2013) presented
Ks band observations from 2011, and JHK observations from
2012/2013 were given in Ngo et al. (2015), along with further
analysis supporting the common proper motion hypothesis.

We observed the target three times, but only on 2014-05-
10 were the two stars sufficiently resolved to allow the com-
panion to be analysed. The separation and position angle are
similar, but not entirely consistent, with previous results. There
appears to have been a trend of reducing separation at a rate
of ∼7 mas/year over a baseline of seven years, illustrated by
a red line in Fig. 7. This corresponds to a transverse motion
of approximately 1.1 au/year at WASP-2’s distance of 140 pc
(Collier Cameron et al. 2007), which compares to an upper limit
of orbital motion of 1.0 au/year for a 0.85 + 0.39 M� binary, as-
suming a circular orbit and that the projected separation is the
actual separation. However, given that the two stars appear to
be moving directly towards one another, the orbit would have to

be nearly edge-on, implying that the projected motion would be
much less than 1.0 au/year when the two stars appear furthest
apart. Increasing the orbital radius increases the part of the mo-
tion that would be projected, but reduces orbital velocity, and so
such an orbit would never result in a projected motion as large
as the observed trend.

We obtained a position measurement from the adaptive op-
tics images presented in Collier Cameron et al. (2007, Skillen,
priv. comm.), with a separation of 0.70± 0.03′′ and a position an-
gle of 101.8±0.2◦ on 6/7 September 2007, which does not visibly
support the trend. However, even with this additional data, the
Bayesian Information Criterion (BIC) of a flat line fitted to the
data with no gradient is 638, compared to a BIC of 26 for a line
including a linear trend, giving a highly significant ∆BIC = 612.
We note that the fit is mainly constrained by three data points:
two astrometric measurements from adaptive optics observations
by Ngo et al. (2015); and a lucky imaging measurement in 2007
by Daemgen et al. (2009) with a small uncertainty of 0.001′′.
This uncertainty is much smaller than those reported for the ob-
servations by Bergfors et al. (2013) using the same instrument
(0.024′′ and 0.013′′). However, refitting after excluding the data
from Daemgen et al. (2009) still results in a significant result of
∆BIC = 24, and the additional exclusion of the precise data from
Ngo et al. (2015) only reduces this slightly to ∆BIC = 19. The
fitted trend being in the same direction with a similar magnitude
in all cases (4.9±0.3mas/year for all data, 5.4±1.9 mas/year ex-
cluding data from Daemgen et al. (2009), and 7.6±3.1 mas/year
excluding all high precision data).

We therefore conclude that with the currently available data
the trend appears to be real. A chance alignment of the motions
of two field stars is statistically unlikely due to the high proper
motion of WASP-2 (51.5 mas/year), which would require the
two stars to have very similar proper motions for the trend to
be so small. Additionally, all previous analyses of the spectral
types of the two stars have found them to be consistent with be-
ing at the same distance (Daemgen et al. 2009; Bergfors et al.
2013; Ngo et al. 2015), although none have considered that the
companion may be a distant red giant star. One possible scenario
is that the two stars originated from the same star forming region,
which could explain the similar proper motions without requir-
ing that they are bound. Further high-precision astrometric data
would be useful in confirming the existence of the trend, whilst
spectroscopic observations would be able to provide informa-
tion on the radial motion of the companion, as well as additional
information about its physical properties.

4.10. WASP-8

Queloz et al. (2010) reported the presence of two stars in the
WASP-8 system, with WASP-8B being a faint M-dwarf com-
panion to the planet host star, recorded in both the CCDM
and Washington Double Star Catalog. Further observations
from 2012 and 2013 were presented in Ngo et al. (2015). We
present seven measurements between 2014-07-25 and 2014-09-
21, which show little difference to previous results, shown in
Fig. 7, and find common proper motion is strongly preferred.
From two colour photometry, we conclude that the two stars
have consistent photometric parallaxes, and derive effective tem-
peratures of 6090 ± 100 K and 3740 ± 100 K for the A and B
components respectively. Our value for WASP-8A is higher than
the spectroscopically-determined value of 5600 K (Queloz et al.
2010), whilst for WASP-8B our values are consistent with
previously measured temperatures of 3700 K (Queloz et al.
2010) and 3380–3670 K (Ngo et al. 2015). The source of the
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Fig. 7. The relative motions between planet host stars and the candidate companions where observations over several epochs are available. The
black lines show the expected motion if the detected star were a distant background star, assuming that such a star would have negligible proper
motion compared to the foreground planet host star. The shaded areas indicate the 1σ uncertainties on the motions, based on the errors in proper
motion. The dashed blue line is the best fit assuming no relative motion between the two stars. In the case of WASP-2, the red line shows the best fit
to the linear trend in separation and position angle, discussed in Sect. 4.9. The symbols indicate the source of each point: blue circles – this work;
green squares – Wöllert et al. (2015), Wöllert & Brandner (2015); cyan downwards triangles – Ngo et al. (2015); magenta hexagons – Adams et al.
(2013); brown diamonds – Daemgen et al. (2009), Bergfors et al. (2013) black pentagons – 2MASS, Washington Double Star catalog (WASP-70)
or Skillen (priv. comm., WASP-2).

disagreement in the temperature for WASP-8A is not clear, with
our relative magnitudes in vTCI and r TCI being similar to the dif-
ferences of ∆V = 4.7 and ∆I = 3.5 measured by Queloz et al.
(2010). An offset in photometrically derived temperatures can
be an indicator of an unresolved source, which would have to be
bluer than WASP-8A in order to bias our results towards a hotter
source. With WASP-8’s high proper motion of 111 mas/year, it
would be expected that a sufficiently bright background source

would be visible in previous high resolution observations – how-
ever, we note that no such source was observed by Ngo et al.
(2015) in 2012 or 2013.

4.11. WASP-36

A star separated by 4′′ from WASP-36 was reported by
Smith et al. (2012), with a relative magnitude of 4.8 in the
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Gunn r filter. The star was observed again in 2015 by
Wöllert & Brandner (2015), who found that the candidate com-
panion was dimmer than previously reported, 8.5 mag fainter
than the planet host star in i and 6.5 mag in z. Our position mea-
surements are consistent with those previously reported, and we
find that the flux ratio given in Smith et al. (2012) agrees well
with our value of 4.6 mag fainter in r TCI. Our analysis of the
motions of the two stars was inconclusive, due to the low proper
motion of WASP-36 and the accuracy of the measurements,
illustrated in Fig. 7.

4.12. WASP-49

We present measurements of a candidate companion at 2.2′′
separation, 5.0 mag fainter in the red filter. This star was pre-
viously observed by chance using the FORS2 instrument in
September 2009 by Lendl et al. (2016), who found the compan-
ion to be 4.3 mag fainter in z′, with separate spectra of the two
stars being used to calculate the relative flux in 27 bins in the
range 738–1026 nm, showing that the candidate companion is
redder. We also confirm the presence of the previously reported
star at 9.2′′ (Lendl et al. 2012).

4.13. WASP-70

The WASP-70 system was announced as a G4+K3 binary, with
a transiting planet orbiting WASP-70A (Anderson et al. 2014).
The separation was measured as 3.2′′, consistent with archival
data and hence indicating no relative motion, and the stars
were also found to be co-moving in the radial direction through
spectroscopic analysis. Lucky imaging observations from Octo-
ber 2014 have been published by Wöllert & Brandner (2015),
and we present an observation from 2014-04-21, shown in Fig. 7.
We confirm the common proper motion of the two stars, showing
it to be significant at the 5σ level.

4.14. WASP-77

The WASP-77 system was reported as a G8+K5 binary with
a separation of 3.3′′, the planet transiting the primary star
(Maxted et al. 2013). The current positions of the two compo-
nents are consistent since 19036, as recorded in the Washington
Double Star Catalog (Mason et al. 2001). Wöllert & Brandner
(2015) published a lucky imaging observation of the system in
October 2014. We present nine observations of the system, with
the positions matching well with all previously published values,
shown in Fig. 7. Common proper motion is clearly preferred at
more than 5σ, including the 1903 position measurement in the
Washington Double Star Catalog. Using two colour photome-
try, we derive temperatures of 5830 ± 100 K and 4810 ± 100 K
for the A and B components. The temperature of the primary
is significantly higher than the value of 5500 ± 80 K given in
Maxted et al. (2013), whilst our temperature for the secondary is
consistent within 3σ with the previous value of 4700 ± 100 K.

4.15. WASP-100

We discover a candidate companion at 4.0′′ from the planet host
star WASP-100, 6 mag fainter in r TCI. Using two colour pho-
tometry we derive a temperature of 4400 K for the star. A physi-
cally associated main sequence star with this temperature would

6 The last two digits of this date were accidentally swapped in
Maxted et al. (2013).

be approximately three magnitudes brighter, and hence we con-
clude that the star is likely a background object.

4.16. Candidates imaged in two colours

We list all candidate companions that were imaged and detected
in two colours (red and visual) in Table A.1. In each case,
the effective temperature of the target star and its companions
were estimated from their (v − r) TCI colour using relations in-
terpolated from the data in Table 3. The measured colours were
corrected for atmospheric extinction and the systematic offset
of −0.46 mag discussed in Sect. 3.5. From the temperatures of
each target-companion pair, the magnitude difference that would
be expected if the two stars were bound (i.e. at the same dis-
tance) was determined from Table 3, and the offset between
the expected and measured differences was calculated. Based
on the scatter in the colour measurements, all temperatures are
quoted with a minimum error of ±100 K – this scatter may
have been caused by changes to the Visual camera during its
commissioning.

The colours of the previously reported bound companion
WASP-77 is found to be consistent with this scenario, but that
the previously reported companion to WASP-8 is inconsistent
– the temperature that we derive for WASP-8A . Companion 2
to CoRoT-18 is also consistent, and with a calculated distance
of 790 ± 50 pc and a projected separation of 11′′, the two
stars would be at least 8000 au apart. Several other compan-
ions to CoRoT stars are consistent within our uncertainties, but
these uncertainties are large and so we do not draw any definite
conclusions from this.

We compare the derived temperatures for the planet host
stars to the published values contained in the TEPCat database,
and find that for the WASP targets and HATS-5 our tempera-
tures are generally within 300 K of the expected value. For the
CoRoT stars, we find that our values are systematically lower,
by up to 1000 K – given the increased distance to these stars and
their position in the galactic plane, this systematic error is likely
caused by interstellar reddening, which we have not corrected
for.

5. Discussion

We report a total of 51 candidate companion stars within 5′′ of
a target star, and 499 are recorded within 20′′, the separation out
to which our survey is complete – these detections are shown
in Fig. 8, as well as a typical detection curve from our survey.
To analyse the distribution of companions, we divide the host
stars into three categories: OGLE host stars, which are situated
in very crowded fields towards the galactic centre; CoRoT host
stars, which are along the galactic plane, but suffer from less
crowding than OGLE targets; and sparse field host stars, includ-
ing targets such as WASP, HAT, and HAT-South host stars, which
are located further away from the galactic plane in less crowded
regions of the sky. The number and projected surface density
of stars is given in Table 10, divided into the three categories. In
all categories the density of stars is higher within 5′′ than 20′′, as
would be expected of a population of bound companions that are
more likely to be found at small separations, although the relative
increase in density is smaller in the crowded fields, matching the
increasing population of background stars. We note that there
is a large increase in stellar density for the OGLE stars, espe-
cially considering that dim companions are more difficult to de-
tect in crowded fields – however, the very small sample prevents
meaningful analysis of this result.
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Table 10. The number of stars, N, found within 5′′ and 20′′ for the three
groups of targets, and the density of stars per square arcsecond, ρA.

Group Targets N (5′′) N (20′′) ρA (5′′) ρA (20′′)
CoRoT 13 18 268 0.0176 0.0163
OGLE 3 14 168 0.0594 0.0446
Other 85 19 163 0.0028 0.0015
Total 101 51 599

Fig. 8. The separation and relative magnitude of all detected candidate
companions. Also plotted is the 5σ detection limit of our observations
of WASP-7, typical of our data. Note that the sensitivity of some ob-
servations was better at low separation (the closest companion, that to
WASP-2, was detected in exceptionally good seeing), and that the lower
limit on sensitivity at large separations varied with target brightness and
atmospheric conditions.

5.1. Multiplicity rate

To estimate the fraction of systems with bound companions, we
created a model in which the distribution of detected stars is de-
scribed using two components. The first is a population of un-
bound field stars uniformly distributed in space, derived from
the TRILEGAL galaxy model, v1.6 (Girardi et al. 2005). To re-
duce computation time, the models were generated on a grid
with steps of 30◦ in galactic longitude l and 10◦ in galactic lat-
itude b, with the grid spacing reduced near the galactic centre
(l > 300◦ or l < 60◦, −10◦ < b < +10◦) to 10◦ in l and 5◦ in
b. The default model parameters and magnitude limits (R = 26)
were used, listed in Table 11. For each model, 1 square degree
of sky was simulated to ensure that a sufficiently large number
of stars were generated, with the least dense grid point including
over 9000 stars. The Cousins I band was used as an approxima-
tion to rTCI. For each target, the density of background stars was
based on that of the nearest grid point, the I-band magnitude of
the target, and the sensitivity curve of our observations.

The second model component is made up of bound com-
panions orbiting a fraction fc of the exoplanet host stars, with
physical parameters distributed following the results for solar-
type stars in Raghavan et al. (2010). The mass ratios q = M2

M1
of

the two components were given a distribution approximating the
solar sample, being randomly placed in one of three regimes:
low mass ratio (0.00 < q ≤ 0.20, 13.2% chance), intermediate
mass ratio (0.20 < q ≤ 0.95, 75% chance), or high mass ratio

(0.95 < q ≤ 1.00, 11.8% chance). This means that components
with nearly equal mass were more likely, and systems with ex-
treme mass ratios were less likely. The actual values of q were
taken from a uniform distribution of values within the chosen
regime. It was assumed that the TEP host star was the more mas-
sive star in all cases. The mass of the companion was required to
be above the canonical brown dwarf limit of 0.08 M� in all cases,
as the relations between temperature, mass, and radius derived in
Sect. 3.7 are not valid in the brown dwarf regime.

The periods follow a log-normal distribution, with a mean
log P of 5.03 (293 yrs) and standard deviation of 2.28 (cover-
ing 1.5–55 900 yrs), P being expressed in days. Periods were
restricted to lie above 10 yrs (log P > 3.56), as a close-in
stellar object is likely to have been detected either through ra-
dial velocities or by gravitational perturbations of the planet’s
orbit. Values of eccentricity were uniformly distributed in the
range 0.00 ≤ e ≤ 0.95, and all other orbital elements, includ-
ing the phase at time of observation, were distributed uniformly
throughout their entire range. The companion ratio, fc, varies
from 0 to 100%, i.e. each system may have up to, but not more
than, one physically bound companion. Multiple star systems are
often found to be of a hierarchical nature, and we assume that a
triple stellar system would be composed of the primary orbited
at large separation by a close binary, which we count as a single
companion. For each randomly generated companion, its pro-
jected separation from the planet host star was calculated using
the generated orbital elements and the distance to the planet host
stars derived in Sect. 3.7.

The companion fraction was determined using a likelihood
ratio test, with the null model being the special case of fc = 0
(no bound companions), and the alternative model with a non-
zero companion fraction. For each target star, we randomly gen-
erated 100 000 systems with bound companions and determined
their distribution with projected separation, counting any com-
panion that fell below our sensitivity curve as undetected. To
determine the expected number of detected companions for each
value of fc, the fraction of the simulated systems with detections
was multiplied by fc. Therefore, if 50% of the 100 000 simu-
lated binary systems had a detectable low mass component, and
the overall multiplicity fraction fc was set to 10%, we concluded
that 5% of stars observed would have a detectable bound com-
panion. The model component consisting of background stars
was then added, unmodified by fc.

From our model, we find an overall companion fraction of
38+17
−13% among all target stars. Using the data for solar type stars

in multiple systems from Raghavan et al. (2010), the fraction
of systems with a component whose period is above 10 yrs is
35 ± 2%, consistent with our value. However, a number of long-
period systems in the sample of Raghavan et al. (2010) also in-
clude closer companions to the primary, and it has been sug-
gested that planet formation is inhibited in close binaries by
theoretical models of planet formation (e.g. Zhou et al. 2012).
Analysis of the known population of planets has also shown that
planets are very rarely found in binaries with separations less
than 20 au (Eggenberger et al. 2011; Wang et al. 2014, 2015),
with planet frequency being diminished out to binary separations
of approximately 100 au (Desidera & Barbieri 2007; Roell et al.
2012). 28% of the systems in the sample of Raghavan et al.
(2010) have a short period component (P < 10 yrs). Remov-
ing these systems from the sample and leaving only single stars
or multiple systems with long period components only, we find
that the expected multiplicity rate among the planet-hosting stars
would be 36 ± 2%. This value is very similar to the fraction
among all systems (35 ± 2%), indicating that the presence of
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Table 11. These parameters were used to generate the TRILEGAL galactic stellar models.

Parameter Value

Total field area 1 deg2

Limiting magnitude R = 26
Distance mod. resolution 0.1 mag.
IMF Chabrier Lognormal
Binary fraction 0.3
Binary mass ratios 0.7 to 1.0
Binary components Combined (single entry)
Extinction AV (∞) = 0.0378
Extinction 1σ dispersion 0
Sun galactocentric radius 8700 pc
Sun height above disc 24.2 pc
Thin disc
Vertical profile sech2

Scale height h = z0(1 + t/t0)α

z0 94.6902 pc
t0 5.55079 Gyr
α 5

3
Radial profile Exponential
Scale length 2913.16 pc
Cutoffs 0 pc, 15 000 pc
Local calibration Σd(�) 55.4082 M�/pc2

SFR and AMR 2-step SFR, Fuhrman AMR,
α enhanced

SFR and AMR age 0.73509t
Thick disc
Vertical profile sech2

Scale height h = 800 pc
Radial profile Exponential
Scale length 2394.07
Cutoffs 0 pc, 15 000 pc
Local calibration Ωtd(�) 0.0010 M�/pc3

SFR and AMR 11–12 Gyr constant,
Z = 0.008,
σ[M/H] = 0.1

SFR and AMR age t
Halo
Shape Oblate r1/4 spheroid
Effective radius rh 2698.93 pc
Oblateness qh 0.583063
Local calibration Ωh(�) 0.000100397 M�/pc3

SFR and AMR 12–13 Gyr,
Ryan and Norris [M/H]

SFR and AMR age t
Bulge
Shape Triaxial bulge
Scale length am 2500 pc
Truncation scale length a0 95 pc
y/x axial ratio η 0.68
z/x axial ratio ξ 0.31
Sun-GC-bar angle φ0 15◦

Central calibration Ωb(GC) 406.0 M�/pc3

SFR and AMR 10 Gyr
Zoccali et al. (2003) [M/H] + 0.3

SFR and AMR age t − 2.0 Gyr

Notes. These parameters were the default set for v1.6 of the model at the time of writing.
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Fig. 9. The probability density of binary fraction as determined by our
statistical model. The black line and grey shaded area indicate the best
fit value and 1σ uncertainty. The dashed black line and red shaded area
show the fraction of solar-type stars in long period binaries (periods
longer than 10 yrs).

long period stellar companions is nearly independent of the pres-
ence of short period components. As a result, it is not possible to
infer any details about any potential lack of short period compan-
ions from our survey. The fit to the companion fraction is shown
in Fig. 9, with the overall multiplicity rate of 35 ± 2% indicated.

The consistency of the overall multiplicity rate does not nec-
essarily mean that the distribution of binary properties is the
same as the solar sample. Wang et al. (2015) found that whilst
the overall stellar multiplicity rate for Kepler gas giant hosts
is consistent with solar-type stars, the binary rate is much re-
duced for the planet host stars below 20 au, enhanced between 20
and 200 au, and finally consistent with the solar sample be-
yond 200 au. Our survey is mainly sensitive to companions be-
yond the 200 au limit, and so an enhanced binary rate at smaller
separations would not be detected. Further observations of our
target systems capable of probing within this limit, such as imag-
ing assisted by adaptive optics or a search for radial velocity
trends, are required to determine how the binary fraction changes
with distance.

5.2. Comparison with other surveys

Daemgen et al. (2009) presented 12′′ × 12′′ lucky imaging ob-
servations of 14 transiting exoplanet hosts finding 3 to have
stellar companions, and this survey has since been expanded to
cover a total of 31 stars, with 7 potential multiple systems, by
Bergfors et al. (2013). A statistical analysis of the whole sam-
ple was unable to give stringent limits on the multiplicity frac-
tion, but a lower limit of 38% was derived (Bergfors et al. 2013).
Three stars from our survey were observed: WASP-2, with one
reported companion, and WASP-7 and WASP-15, for which no
companions were discovered. We re-observed the companion to
WASP-2 and confirm the lack of any companion to WASP-15,
but find a star separated by 4 arcsec from WASP-7, 9 mag fainter
in rTCI.

Faedi et al. (2013) observed 16 systems using lucky imag-
ing out to a radius of 6.5′′, finding 6 companions. Given the
low probability of chance alignments with background stars
(4% or less), it was argued that all were likely to be physically

bound, giving a multiplicity rate of 38%. Two targets have been
re-observed by our survey: CoRoT-2, with one reported compan-
ion, and CoRoT-3, with two companions (although only one was
analysed in detail). We re-observe and find consistent results for
all companions, as well as finding a number of additional faint
companions for CoRoT-3.

12 Kepler targets and 15 TEP hosts were observed by
Adams et al. (2013) using adaptive optics. Of the non-Kepler
systems, companions were reported within 4′′ for five stars. Two
of the systems with companions, WASP-2 and HAT-P-30, have
been re-observed by our survey and several others, although
we note that the results in Adams et al. (2013) appear to suf-
fer from systematic errors in both separation (∼5% too low) and
position angle (∼2–5 degrees). We also confirm the lack of any
companion within 4′′ of CoRoT-1.

A survey of 50 systems using adaptive optics was presented
by Ngo et al. (2015) with a 10′′ × 10′′ field of view. Statistical
analysis resulted in an estimated companion rate of 49 ± 9%,
in agreement with our finding of 38+17

−13%. Twelve targets were
re-observed in this survey, of three were reported to have a com-
panion, and in all cases we confirm the presence (or lack of) a
close companion.

Wöllert et al. (2015) and Wöllert & Brandner (2015) pre-
sented a large lucky imaging survey of TEP host stars, with a
field of view of 12′′ × 12′′.37 targets were also reobserved with
our survey, of which 12 were reported to have companions. For
ten of these systems, we confirm the existence of the compan-
ions. For the remaining two systems, HAT-P-27 and WASP-103,
the companions are below our sensitivity curve, and we are
unable to detect them. For the CoRoT-3, CoRoT-7, CoRoT-11
and WASP-90 systems, we find a total of 7 faint companions
within 5′′ that were not detected by Wöllert et al. (2015) and
Wöllert & Brandner (2015). Whilst the exposure times are sim-
ilar to those in our survey, ranging from 150s to 900s, we note
that only the best 10% of lucky imaging exposures were used,
rather than the maximum fraction of 90% used in this paper. As
a result, our sensitivity at large separations is 2–3 mag better for
most targets.

6. Conclusions

We present lucky imaging observations of 101 TEP host systems
in the southern hemisphere, with measurements of 499 candidate
companion stars within 20′′ of a target: 168 stars were found near
the 3 OGLE targets located along the galactic plane, 268 near
13 CoRoT targets, and 163 near the remaining 85 targets. The
majority of these stars are likely to be unbound background ob-
jects. Within 5′′, 51 stars were found – due to their smaller sep-
aration, these stars are more likely to be physically related to the
target stars, and also provide the greatest amount of photometric
and spectroscopic contamination.

For 12 candidate companions with historical observations we
present proper motion analyses, and we also provide two band
photometry for a subset of the targets. We find that a star lo-
cated 10 arcsec from HAT-P-30, recorded as a bound compan-
ion in the Washington Double Star Catalog, is likely being a
background star. For the close companion to HAT-P-30, and the
companions to WASP-8, WASP-70 and WASP-77, we confirm
common proper motion. For WASP-2B, we provide a revised
separation and position angle for the 2007 observation that bet-
ter matches later measurements. We find that the two stars in
the WASP-2 system appear to be moving together on the sky,
but find a statistically significant trend of reducing separation of
approximately 0.8 mas/year corresponding to a projected motion
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of 1 au/year, far above the expected orbital motion. Additionally,
no such trend is apparent in position angle, and we are unable
to explain the origin of the trend – possible scenarios include
a chance alignment of two stars at a similar distance, similar
proper motions of two stars originating from the same starform-
ing region, or that the companion is actually a distant red giant
star with a high velocity. For the previously reported compan-
ion to HAT-P-41, we find evidence that the two stars are moving
relative to one another, suggesting that the two stars are not phys-
ically related. The remainder of our proper motion analyses are
not conclusive, due to low numbers of observations, low proper
motions of the target stars, or inconsistent measurements from
different groups.

We test our distribution of candidate companions against a
model which includes both physically bound and background
stars. By comparing the number and separation of compan-
ions against a varying companion fraction, we conclude that hot
Jupiter host stars have a multiplicity rate of 38+17

−13%, consistent
with the fraction of solar-type stars that have a companion star
with an orbital period over 10 years (35 ± 2%). We also inves-
tigate the effect of close binaries, which are known to suppress
planet formation – many stellar multiple systems are hierarchi-
cal, containing both short period and long period components.
We find that the expected multiplicity rate if planet formation
occurs around only single stars or those in long period binaries
is 36 ± 2%, almost indistinguishable from the fraction expected
if systems with short period components are included. We there-
fore conclude that our sample does not show an overabundance
of long period companions in the range of 1–40′′, suggesting that
planet formation does not preferentially occur in wide stellar bi-
naries. The populations of companions at short and long periods
do not appear to be linked, and so we are unable to make any
inferences about the presence – or lack of – short period stel-
lar companions. Probing this regime requires powerful imaging
techniques such as adaptive optics imaging, with the latest high
contrast instruments such as SPHERE (Macintosh et al. 2008)
or GPI (Beuzit et al. 2008) being best suited to finding dim stel-
lar companions at distances less than a few tens of au, where
the dynamical influence of such companions would be strongest.
Alternative techniques sensitive to close-in companions should
also be considered, with examples including radial velocity sur-
veys (e.g. Knutson et al. 2014) or spectroscopic searches for
unresolved stars (e.g. Piskorz et al. 2015).

The results of calibrations for the detector scale and the
colour response of the TCI are presented, along with a set of
theoretical stellar colour indices. Since late 2014, the TCI has
been capable of simultaneous two colour photometry, and multi-
colour observations of candidate companions allow us to deter-
mine whether or not their distance is consistent with that of the
target star, providing an efficient way to detect background ob-
jects. We analyse the stars for which two colour photometry was
available, and find that the bound companions to WASP-8 and
WASP-77 are consistent with being at the same distance. We
compare the derived effective temperatures for the planet host
stars with two colour photometry, and find them generally re-
liable, but that systematic offsets can be caused by interstellar
extinction, for which a correction is not yet available.

In the future we will obtain new measurements of the sep-
aration and position angle of candidate companions, allowing
the detection of common proper motion. Two colour photometry
will be performed for all future observations, allowing the rela-
tive distances to the target and companion stars to be calculated,
providing an additional indicator of boundedness. We will also

be extending the HITEP campaign to include analyses of several
recently published transiting exoplanet systems.
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Appendix A: Additional table

Table A.1. The properties of all candidate companions imaged in two colours.

Expected Offset (σ)
Target HJD Comp. Teff Targ. (K) Teff Comp. (K) ∆r TCI ∆vTCI ∆r TCI ∆vTCI
CoRoT-8 2 456 863.6817 3 4250 ± 100 3410 ± 130 1.9 ± 0.4 2.7 ± 0.5 11.7 7.9
CoRoT-8 2 456 863.6817 12 4250 ± 100 4200 ± 190 0.0 ± 0.4 0.0 ± 0.5 10.5 7.9
CoRoT-8 2 456 863.6817 13 4250 ± 100 4500 ± 400 –0.5 ± 0.7 –0.6 ± 0.9 7.2 5.7
CoRoT-8 2 456 863.6817 16 4250 ± 100 3500 ± 1700 1.6 ± 2.8 2.2 ± 3.8 1.8 1.3
CoRoT-8 2 456 863.6817 17 4250 ± 100 3900 ± 1300 0.7 ± 2.2 0.9 ± 2.9 2.4 1.8
CoRoT-8 2 456 863.6817 20 4250 ± 100 4150 ± 1500 0.2 ± 2.4 0.3 ± 3.1 2.5 1.9
CoRoT-8 2 456 863.6817 23 4250 ± 100 5300 ± 1000 –1.8 ± 1.3 –2.3 ± 1.6 5.4 4.5
CoRoT-8 2 456 863.6817 24 4250 ± 100 4300 ± 1500 0.0 ± 2.2 0.0 ± 2.8 2.7 2.1
CoRoT-8 2 456 863.6817 25 4250 ± 100 4400 ± 240 –0.2 ± 0.5 –0.3 ± 0.6 9.7 7.5
CoRoT-8 2 456 863.6817 31 4250 ± 100 4400 ± 130 –0.2 ± 0.3 –0.3 ± 0.3 24.0 18.4
CoRoT-8 2 456 863.6817 35 4250 ± 100 4300 ± 1000 0.0 ± 1.5 0.0 ± 2.0 3.5 2.8
CoRoT-18 2 456 924.9054 1 5270 ± 100 4120 ± 100 2.1 ± 0.3 2.6 ± 0.3 5.6 5.6
CoRoT-18 2 456 924.9054 2 5270 ± 100 3600 ± 500 3.1 ± 1.1 4.1 ± 1.5 0.7 0.5
CoRoT-18 2 456 924.9054 3 5270 ± 100 3800 ± 1300 2.7 ± 2.3 3.7 ± 3.0 0.9 0.7
CoRoT-18 2 456 524.9054 5 5270 ± 100 4100 ± 1100 2.2 ± 1.8 2.7 ± 2.4 1.3 1.0
CoRoT-19 2 456 526.8618 1 5090 ± 100 3400 ± 1700 3.6 ± 2.9 4.9 ± 4.0 1.4 1.0
CoRoT-20 2 456 524.8918 1 5070 ± 100 3000 ± 1600 4.8 ± 2.8 6.7 ± 3.9 0.3 0.2
CoRoT-20 2 456 524.8918 3 5070 ± 100 3400 ± 1400 3.6 ± 2.5 4.8 ± 3.4 0.7 0.5
CoRoT-20 2 456 524.8918 4 5070 ± 100 4140 ± 140 1.7 ± 0.3 2.2 ± 0.4 5.2 3.8
CoRoT-20 2 456 524.8918 5 5070 ± 100 3800 ± 400 2.4 ± 0.9 3.1 ± 1.2 2.2 1.6
HATS-5 2 456 579.9143 1 5520 ± 100 4740 ± 150 1.2 ± 0.3 1.4 ± 0.4 12.7 10.3
HATS-5 2 456 579.9143 1 5540 ± 100 4730 ± 140 1.3 ± 0.3 1.5 ± 0.3 13.8 11.1
WASP-8 2 456 863.9339 1 6280 ± 100 3840 ± 100 4.0 ± 0.3 4.9 ± 0.3 2.0 2.0
WASP-8 2 456 578.7882 1 5730 ± 100 3920 ± 100 3.1 ± 0.3 3.9 ± 0.3 1.8 1.8
WASP-8 2 456 580.8132 1 5930 ± 100 3660 ± 100 4.0 ± 0.3 5.1 ± 0.4 1.9 1.9
WASP-8 2 456 580.8149 1 6310 ± 100 3780 ± 100 4.1 ± 0.3 5.2 ± 0.4 2.7 2.7
WASP-8 2 456 521.7105 1 6190 ± 100 3650 ± 100 4.3 ± 0.3 5.5 ± 0.4 3.4 3.4
WASP-28 2 456 863.9232 1 6130 ± 100 3200 ± 1400 5.7 ± 2.5 7.5 ± 3.0 0.5 0.4
WASP-28 2 456 580.7920 1 6430 ± 100 3280 ± 140 5.6 ± 0.4 7.3 ± 0.7 3.0 1.9
WASP-35 2 456 521.8631 1 5990 ± 100 5600 ± 300 0.5 ± 0.4 0.6 ± 0.5 13.3 11.3
WASP-35 2 456 521.8631 2 5990 ± 100 3800 ± 1100 3.6 ± 1.9 4.5 ± 2.6 2.0 1.5
WASP-77 2 456 863.8716 1 5860 ± 100 4950 ± 100 1.3 ± 0.2 1.5 ± 0.2 1.1 1.1
WASP-77 2 456 863.8730 1 5830 ± 100 4860 ± 100 1.4 ± 0.2 1.7 ± 0.3 0.5 0.5
WASP-77 2 456 863.8742 1 5840 ± 100 4880 ± 100 1.4 ± 0.2 1.7 ± 0.3 0.7 0.7
WASP-77 2 456 863.8753 1 5930 ± 100 4830 ± 100 1.6 ± 0.2 1.9 ± 0.3 0.3 0.3
WASP-77 2 456 578.8952 1 5770 ± 100 4830 ± 100 1.4 ± 0.2 1.7 ± 0.3 0.2 0.2
WASP-77 2 456 579.8820 1 5770 ± 100 4670 ± 100 1.7 ± 0.2 2.0 ± 0.3 0.7 0.7
WASP-77 2 456 581.8291 1 5780 ± 100 4660 ± 100 1.7 ± 0.2 2.0 ± 0.3 0.8 0.8
WASP-98 2 456 578.9191 1 5780 ± 100 >12 0001

WASP-98 2 456 579.8985 1 5740 ± 100 9100 ± 19002

WASP-98 2 456 581.8420 1 5780 ± 100 7200 ± 19002

WASP-100 2 456 521.8449 1 6760 ± 100 6800 ± 400 –0.1 ± 0.4 –0.1 ± 0.5 14.7 12.6
WASP-100 2 456 521.8461 1 6800 ± 100 6400 ± 400 0.4 ± 0.4 0.4 ± 0.5 13.0 11.1

Notes. The expected relative magnitudes for a bound companion are given in both bands, and the offset between the measured and expected values
are shown, divided by the error on the expected values. (1) The measured (v − r) TCI colour of −0.8 is outside the range of the colour calibrations
presented in Table 3, and so an effective temperature could not be calculated. (2) The effective temperature of the star is above the range of the
Temperature-Radius fit. Therefore, an expected magnitude difference could not be calculated. However, the candidate companion is over 7 mag
fainter than the cooler target star, and so is inconsistent with a bound main sequence star.
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