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Abstract The phononic band structure of waves, which travel though composites, result from the7

geometric and mechanical properties of the materials and from the interaction of the different con-8

stituents. In this article we study two different models to simulate imperfect bonding and their impact9

on the phononic bands: (a) imperfect bonding is simulated by introducing an artificial interphase10

constituents with properties which define the bonding quality; (b) imperfect bonding is described by11

boundary conditions in the interface, in which the difference in the displacement is proportional to12

the interfacial stress. Viscoelastic behavior of the constituents has a crucial influence on the traveling13

signal, and the wave attenuates with increasing viscosity. We study the interaction of the different14

bonding conditions and the viscoelastic behavior as well as the impact of such interplay on the wave15

attenuation and dispersion characteristics of the material.16

Keywords wave propagation · imperfect bonding · viscoelasticity17

1 Introduction18

Thin coatings around inclusions are used in different applications of composites, for example as a19

mean to compensate the poor adhesion between fibers and the constituent matrix, and to increase the20

ability to carry higher loads [56]. Karpinos & Fedorenko [26] discuss the advantage of the mechanical21

properties of composites with coatings between fibers and the matrix over composites with uncoated22

fibers after high temperature production.23

Imperfect bonding between components plays a crucial role in the functionality and reliability24

of composites, and it might result from the lack of adhesion between the constituent and cracks.25

Imperfect bonding might also result from corrosion, as discussed in the work of Germain & Pamin26

[16]. In mechanical modeling, there exist different approaches to describe such imperfect conditions.27

One example is the so-called spring layer model, in which the differences in the displacements at the28

common interface of two constituents are proportional to the stress in the interface. Works which29
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employ this approach are, for example, Geymonat et al. [17], Klarbring [27], Krasucki & Lenci [28, 29],30

and Lenci [34]. Another way to model imperfect bonding is to introduce an artificial interphase of small31

thickness between the the constituents, with the properties of the interphase describing the quality of32

the bonding [19, 21].33

A challenging goal in the different fields of mechanics, is to identify the internal structure of a34

heterogeneous material by measurement of its macroscopic properties. This approach has great im-35

portance for various practical applications, such as non-destructive testing of composites, non-invasive36

diagnostic of biological tissues (e.g., bones, cartilages), detecting the texture of soils and rocks for the37

purposes of geological explorations, and many others. One solution to this problem is the investiga-38

tion of wave propagation in periodic media. A heterogeneous solid possesses a complicated pattern of39

frequency bands which consist of so-called pass bands, for which wave propagation is possible, and40

stop bands, for which traveling waves attenuate. In analogy to the photonic bands for electromagnetic41

waves, the frequency bands for propagating waves in solids are also denoted as phononic bands. If42

the frequency of the signal falls into a stop band, a stationary wave is excited and neighboring het-43

erogeneities (e.g., particles) vibrate in alternate directions. On the macro level, the amplitude of the44

global wave attenuates exponentially so that wave propagation is not possible. Thus, a composite can45

play the role of a wave filter. This effect of wave propagation and attenuation described above has46

great practical importance. Theoretical prediction of the phononic band structures may help to design47

new composites for a large variety of engineering applications, such as vibrationless environments for48

high-precision mechanical systems, acoustic filters, noise control devices, ultrasonic transducers, etc.49

Phononic bands can be predicted theoretically by the Floquet-Bloch approach [8, 14]. This ap-50

proach has been documented in the book by Brillouin [9], and has been utilized by many authors51

[3, 48, 47]. The basic idea is to represent the unknown solution as an effective wave modulated by52

some spatially periodic functions; such a modulation aims to describe the influence of the composite53

microstructure. The problem essentially reduces to a spectral eigenvalue problem that allows us to54

evaluate the dispersion curves and thus to determine pass and stop bands of the material.55

In the case of one-dimensional problems, e.g., for layered composites, it is usually possible to derive56

the exact dispersion equations [47, 7, 55]. In the case two-dimensional and three-dimensional problems,57

unknown fields as well as the material properties in a heterogeneous medium can be expressed by some58

infinite series expansions. Examples are the plane-wave expansions method [30, 31, 51, 52, 53, 54], the59

Rayleigh multipole-expansions method [41, 43], and the Korringa-Kohn-Rostoker method (also known60

as the multiple scattering method [25, 36, 46]). All of these methods represent the solution by some61

infinite series expansions and their convergence usually depends on the contrast between the properties62

of the components. Another widely used approach to study wave propagation in periodic media is the63

finite difference time domain method (see, for instance, the paper [40] and cited references therein).64

One of the first papers to discuss wave propagation in composites and the resulting frequency band65

strutcutre was written by Lee & Yang [33]. Properties of Floquet-Bloch waves were interpreted in terms66

of the normal mode theory, and the high frequency limit for Floquet-Bloch waves is investigated and67

interpreted in terms of geometrical optics type analysis. The bulk of research in this field is devoted to68

elastic case, and the articles of Guz & Shul’ga [20], Shul’ga [49, 50], and Mead [39] review the different69

achievements in this field. They analyzed a banded structure of the frequency spectrum composed of70

pass and stop bands. Properties of Floquet-Bloch waves were interpreted in terms of the normal mode71

theory and the high frequency limit for Floquet-Bloch waves is investigated and interpreted in terms of72

geometrical optics type analysis. Studies of the 1D [11] and 2D periodical lattices [12, 39, 45] provide73

a better understanding of the behavior of real composites.74

Wave propagation in damped and viscoelastic media has been also treated by many authors. Mace75

& Manconi [38] analyzed the influence of damping on dispersion curves for strings and beams without76

and with elastic foundations. The general dispersion and dissipation relations for a 1D viscoelastic77

lattice were obtained by Wang et al. [58]. Liu et al. [35] studied wave propagation in 2D viscoelastic78

Kelvin-Voigt type phononic crystals using a finite difference time domain method. The article of Merheb79

et al. [40] is devoted to the transmission of acoustic waves through elastic and viscoelastic Maxwell-80

Wiechert type 2D silicone rubber/air phononic crystal structures. Their calculations were based on a81

finite difference time domain method. The works of Guz & Shulga [20] and Shulga [49, 50] were based82

on the concepts of complex moduli and the Floquet-Bloch approach. Hussein [23] gives a detailed83

analysis of the effects of damping on the frequency band structure and associated phase and group84

velocity dispersion curves for periodical composite material. Ideal contact between the constituents is85
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supposed. Linear and isotropic elastic response and Rayleigh-type damping are assumed. The articles86

of Nouh et al. [44] and Wang et al. [59] investigate wave propagation in metameterials with periodic87

microstructure and viscoelastic constitutes.88

Our paper has the focus on the investigation of the interaction of viscoelastic behavior and imperfect89

bonding, and it is organized as follows: Section 2 investigates one-dimensional shear wave propagation90

in layered elastic composites for imperfect bonding. To simulate imperfect bonding, two approaches are91

taken into our consideration. In the first part, bonding is simulated by a thin interphase material. The92

thickness is taken to be much smaller than the dimensions of other constituents. The properties of this93

interphase defines the bonding conditions. The second approach defines the bonding conditions to the94

spring-layer model, in which the difference in displacement is assumed proportional to the governing95

shear stresses in the interface. These approaches are compared numerically. In Section 3, we investigate96

the interaction of viscoelastic behavior and imperfect bonding. The results are obtained by application97

of the Floquet-Bloch approach, which provides exact results for the dispersion relations. In Section 4,98

we apply the plane wave expansion method to obtain the relation between the wave number and the99

frequency of the propagating wave. In the first part, the results from the plane wave expansion method100

are compared to the results of the exact solution. In the second part, a brief example is provided, in101

which shear wave propagation in a fibrous composite with periodic miscrostructure is analyzed. The102

final section discusses the results and provides some concluding remarks.103

2 One-dimensional wave propagation in layered elastic composites104

In this section, we consider shear wave propagation through a spatially infinite layered composite with105

imperfect bonding between the constituents. To analyze the dispersion relation of the composite in the106

form of frequency bands, e.g., pass bands where wave propagation is possible, and stop bands where107

the traveling signal attenuated exponentially, we apply the Floquet-Bloch approach, which is based on108

the works of Floquet [14] and Bloch [8]. Note that in the literature this approach is also called the109

Floquet-Liapunov theorem or Bloch theorem. Floquet himself proved it for the function of one variable110

satisfying the well-known Mathieu equation [14]. Liapunov generalized this to a vector function of one111

variable [37], and later Bloch to functions of several variables [8]. This theory is a direct consequence112

of the translation symmetry of a structure, and it allows us to obtain an exact solution for the pass113

and stop band structures.114

The composite structure is periodically repeating with possessing layers of finite thickness in x-115

direction. The wave equation for a shear wave propagation in x-direction at time t has the form116

∂

∂x

�

G(x)
∂w(x, t)

∂x

�

= ρ(x)
∂2w(x, t)

∂t2
, (1)

where G(x) the shear modulus, ρ is the mass density, and w is the transverse displacement at location117

x. The coefficients in Eq. (1) are discontinuous functions, so that the solution of (1) must be treated118

in a weak sense [32]. The material properties of the components are considered to be constant in the119

individual constituents Ω(a), a = 1, 2, . . . , and the displacements to be continuous function of both x120

and t,121

G(x) = G(a), ρ(x) = ρ(a), w(x, t) = w(a)(x), x ∈ Ω(a). (2)

Applying (2), the wave Eq. (1) for the individual constituents Ω(a) can be rewritten as122

G(a) ∂
2w(a)

∂x2
= ρ(a)

∂2w(a)

∂t2
in Ω(a). (3)

The dispersion relation results from the properties of the constituents and from the quality of the123

bonding between the different constituents. Imperfect bonding between the constituents is taken into124

our considerations by two different approaches:125

– In the first case, imperfect bonding is simulated by an artificial interphase of thickness considered126

small in comparison to the dimensions of the other constituents. The length and the material127

properties of this interphase define the bonding behavior. This case will be discussed in detail in128

Sect. 2.1.129
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– In the second case, bonding between the constituents is directly described by the boundary condi-130

tions at the common interface, by application of the spring-layer model. This case will be discussed131

in detail in Sect. 2.2.132

In Sect. 2.3, the solutions of both approaches are compared. Such methodology allows us to develop133

models for composites with imperfect bonding, in which other than perfect bonding conditions are134

not taken explicitly into account, for example by the application of the plane wave expansion method,135

which will be discussed in detail in Sect. 4.136

2.1 Imperfect bonding simulated by an interphase constituent137

One periodically repeated unit cell of the layered structure consists of the inclusion Ω(1), the matrix138

Ω(3), and the interphase Ω(2) between the components Ω(1) and Ω(3). The thicknesses of the different139

layers are illustrated in Fig. 1. This interphase Ω(2) is considered to be thin in comparison to the

Ω
(1)

Ω
(3)

Ω
(2)

r (1) r (1)

r (2) r (2)

x

Fig. 1 A layered composite, which consists of periodical structure of the inclusion Ω(1), the matrix Ω(3), and
the interphase Ω(2).

140

lengths ℓ of the unit cell and the thickness 2r(1) of the constituent Ω(1),141

r(2) − r(1)

ℓ
≪ 1. (4)

Bonding between all neighboring constituents is taken to be perfect, so that both the shear stresses
and the displacements of two constitutes Ω(i) and Ω(i+1) are considered to be equal at their common
interface ∂Ωi,i+1, thus

�

G(i) ∂w
(i)

∂x
= G(i+1) ∂w

(i+1)

∂x

�
�

�

�

�

∂Ωi,i+1

, (5a)

�

w(i) = w(i+1)
�
�

�

�

∂Ωi,i+1

, (5b)

where i = 1, 2.142

This problem is now analyzed within a single unit cell of the length ℓ. Therefore, we consider a143

harmonic wave in the form144

w(i)(x, t) = F (i)(x) exp [j(µx+ ωt)] in Ω(i), i = 1, 2, 3, (6)
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where µ is the wave number, ω is the frequency, j =
√
−1, and145

F (i)(x) = F (i)(x + pℓ) (7)

are spatially periodic functions which describe the influence of the microstructure. The factor of ℓ in (7)146

is an integer, p = ±1,±2, . . . . From (6) and (7) one can conclude that that the displacement w(i)(x, t)147

at a location x and the displacement w(i)(x+ ℓ, t) at a location x+ ℓ are related via148

w(i)(x + ℓ, t) = w(i)(x, t) exp (jµℓ) . (8)

The frequency band structure of the composite can be determined by rewriting the wave number µ in149

complex notation as150

µ = µR + jµI , (9)

where the real part µR in a ω vs. µR diagram represents the pass bands, and the imaginary part µI in151

a ω vs. µR diagram represents the stop bands, for which the traveling signal attenuates exponentially.152

After substitution of ansatz (6) into the wave Eq. (3) for the individual constituents, we derive the153

function (7) in the form154

F (i)(x) = F
(i)
1

�

j
�

µ(i) − µ
�

x
�

+ F
(i)
2 exp

�

−j
�

µ(i) + µ
�

x
�

, (10)

where F
(i)
1 and F

(i)
2 are constant coefficients and µ(i) = ω

�

ρ(i)/G(i) is the wave number of the155

component Ω(i).156

Within the unit cell 0 ≤ x ≤ ℓ, the boundary conditions (5a) and (5b) become:
�

G(1) ∂w
(1)

∂x
= G(2) ∂w

(2)
−

∂x

��

�

�

�

�

x=r(2)−r(1)

, (11a)

�

w(1) = w
(2)
−

��

�

�

x=r(2)−r(1)
, (11b)

�

G(1) ∂w
(1)

∂x
= G(2) ∂w

(2)
+

∂x

�
�

�

�

�

�

x=r(1)+r(2)

, (11c)

�

w(1) = w
(2)
+

�
�

�

�

x=r(1)+r(2)
, (11d)

�

G(3) ∂w
(3)

∂x
= G(2) ∂w

(2)
+

∂x

��

�

�

�

�

x=2r(2)

, (11e)

�

w(3) = w
(2)
+

��

�

�

x=2r(2)
, (11f)

where the subscript “ − ” indicates the interphase on the left side of the inclusion Ω(1), and the
subscript “+” indicates the interphase on the right side of the inclusion. Taking into consideration the
periodicity condition (7), the outer boundaries of the unit cell are coupled by the following conditions:

�

G(3) ∂w
(3)

∂x

��

�

�

�

x=ℓ

−
�

G(2) ∂w
(2)
−

∂x

��

�

�

�

�

x=0

exp (jµℓ) = 0, (12a)

�

w(3)
��

�

�

x=ℓ
−

�

w
(2)
−

��

�

�

x=0
exp (jµℓ) = 0. (12b)

Equation (12a) couples the stresses at the outer boundaries, and (12b) couples the displacements.157

In Eqs. (11) and (12) we find a system of eight linear algebraic equations in the eight unknown158

coefficients F
(1)
i , F

(2)
i− , F

(2)
i+ , and F

(3)
i , i = 1, 2. If the determinant of the matrix of coefficients is set159

equal to zero, the system has a nontrivial solution which gives an exact relation between ω and µ,160

the dispersion relation. Exact dispersion relations for linear elastic layered composites with perfect161

bonding between the components are well known. For example, Shen & Cao [48] provide a solution for162

an arbitrary number of layers.163
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2.2 Imperfect bonding described by boundary conditions164

In the present section, we analyze wave propagation through a composite which consists of a matrix165

Ω(3) and inclusions Ω(1). A single unit cell of the layered structure is shown in Fig. 2. We want to

x

Ω(1) Ω(3)

r (1) r (1)

Fig. 2 One unit cell of the periodically repeated structure consisting of the inclusion material Ω(1), and the
matrix material Ω(3). Here the bonding at ∂Ω1,3 is considered to be imperfect.

166

directly apply boundary conditions which describe the quality of the bonding between Ω(1) and Ω(3).167

Therefore, we apply the spring-layer model, which describes a so-called “weak” interface. Let us explain168

this more in detail. Usually, stresses are continuous across the interface, while the displacements may169

be continuous or discontinuous. In the case in Sect. 2.1, the interface was denoted as “strong”, whereas170

in the present case it is called “weak”. A weak interface can be described by the spring-layer model,171

which assumes that the interfacial stress is a function of the difference in the displacements. This model172

was initially proposed by Goland and Reissner [19]. The asymptotic justification of the spring-layer173

model was proposed by a number of authors, e.g., Geymonat et al. [17], Klarbring [27], Krasucki &174

Lenci [28, 29], and Lenci [34]. These works derived the spring-layer model asymptotically, assuming175

that the interface is a layer with a thickness which tends to zero. While the present article restricts176

the mechanical properties to linear behavior, we want to refer to the articles of Danishevs’kyy et al.177

[13] to provide an example for nonlinear interface conditions, and to the article of Andrianov et al. [6],178

in which material behavior, as well as the interface conditons, are taken to be nonlinear.179

In Sect. 2.2 we simulated imperfect bonding by an artificial interphace, while in the present section180

we apply the spring-layer model. By contrasting these results, we can estimate the properties of the181

artificial interphase to simulate certain interfacial mechanical properties.182

To derive the spring-layer model, let us consider the situation illustrated in Fig. 3. The difference

Ω (1)

Ω (2)

Ω (3)

r (2) r (1)−

−w w(2) (1)

Fig. 3 Imperfect bonding between an inclusion material Ω(1) and the matrix material Ω(3) simulated by the
layer Ω(2).
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183

between the displacements w(3) and w(1) at the boundaries of Ω(2) is given by184

w(3) − w(1) = τ (2)
∆r

G(2)
, (13)

where τ (2) = G(2) ∂w(2)

∂x
is the shear stress in the layer Ω(2), and ∆r = r(2) − r(1).185

To quantify the quality of the bonding between the constituents Ω(1) and Ω(3) at their interface186

∂Ω13, we introduce the bonding factor γ in the form187

γ = lim
G(2)

→0
∆r→0

∆r

G(2)
= const. (14)

If γ = 0, then the bonding is perfect. With increasing values for γ the bonding quality decreases. In188

the limiting case γ → ∞, there is no bonding between the constituents.189

If we take the stress distribution to be homogeneous in the interface, we arrive at the following190

condition for the difference of the displacements at the boundary ∂Ω1,3 between the inclusion and the191

matrix:192

�

±
�

w(3) − w(1)
�

= γG(1) ∂w
(1)

∂x

��

�

�

�

∂Ω1,3

. (15)

The upper algebraic sign in ± belongs to the boundary on the right side of Ω(1), and the lower sign193

to the left side. This bonding model is discussed in detail by Andrianov et al. [6]. The stresses in the194

interface ∂Ω1,3 between the matrix and the inclusion are assumed to be equal, and independent from195

the stipulation of the bonding factor γ, thus196

�

G(1) ∂w
(1)

∂x
= G(3) ∂w

(3)

∂x

�
�

�

�

�

∂Ω1,3

. (16)

The governing situation will be analyzed within the unit cell 0 ≤ x ≤ ℓ. The propagating wave is again197

described by the ansatz presentation in Eq. (6), which, after substitution into the wave Eq. (3) for the198

individual constituents results into (10) with the four coefficients F
(1)
i and F

(3)
i , i = 1, 2.199

Within this unit cell, the boundary conditions in (15) and (16) become

�

G(1) ∂w
(1)

∂x
= G(3) ∂w

(3)

∂x

�
�

�

�

�

x=2r(1)
, (17a)

�

w(3) − w(1) = γG(1) ∂w
(1)

∂x

��

�

�

�

x=2r(1)
. (17b)

Recalling condition (8), which results from the periodicity of the composite, the outer boundaries x = 0
and x = ℓ of the unit cell are coupled via

�

G(3) ∂w
(3)

∂x

��

�

�

�

x=ℓ

=

�

G(1) ∂w
(1)

∂x

��

�

�

�

x=0

exp (jµℓ), (18a)

−
�

w(3)
��

�

�

x=ℓ
+

�

w(1)
��

�

�

x=0
exp (jµℓ)=

�

γG(1) ∂w
(1)

∂x

��

�

�

�

x=0

exp (jµℓ). (18b)

In (17) and (18) we find a system of four equations. If the determinant of the matrix of the coefficients200

F
(1)
i , F

(3)
i , i = 1, 2 is set equal to zero, then we obtain from the condition for existence of a non-trivial201

solution the dispersion relation, which allows us to determine the stop bands and pass bands of the202

material. The solution is presented in Appendix A.203
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2.3 Numerical examples204

The numerical example section consists of two parts. The first part shall illustrate the influence of the205

bonding factor γ on the dispersion relation. The second contrasts the solutions for the frequency band206

structure when the bonding condition is simulated by an artificial interphase between the inclusion and207

the matrix, as discussed in Sect. 2.1, and when the bonding condition is described by the boundary208

conditions at the interface between the constituents, as discussed in Sect. 2.2.209

Dispersion relation for imperfect bonding: We consider a composite as shown in Fig. 2, with the unit210

cell length ℓ, and r(1)/ℓ = 0.1. This composite is composed of a polyethylene matrix (G(3) = 0.117 GPa,211

ρ(3) = 910 kg/m3) and steel inclusions (G(1) = 80 GPa, ρ(1) = 7860 kg/m3). The material parameters212

are taken from [10]. The frequency band structure is obtained from the boundary value problem in Eqs.213

(17) and (18). The wave number is separated into a real part and an imaginary part, as given by (9).214

The results are illustrated in Fig. 4 for different values of the bonding factor γ, where the normalizations215

µ̄ = µℓ and ω̄ = ωℓ are applied. Due to such normalization, µ̄ becomes dimensionless, and its real part

-π

0

π

 0  5000  10000  15000  20000

- µ

-ω [m/s]

γ=0 [ms]2/kg
γ=1*10-10 [ms]2/kg
γ=2*10-10 [ms]2/kg
γ=3*10-10 [ms]2/kg

Fig. 4 Frequency band structure of a layered polyethylene (G(3) = 0.117 GPa, ρ(3) = 910 kg/m3) and steel

(G(1) = 80 GPa, ρ(1) = 7860 kg/m3) composite for different values of γ, where the normalizations µ̄ = µℓ
and ω̄ = ωℓ are applied. The pass bands (µR 6= 0, µI = 0) are plotted as positive values, and the stop bands
(µR = 0, µI 6= 0) are plotted as negative values.

216

takes values in the range between zero and π. This diagram shows that with increasing values for γ,217

the frequency bands shift closer together, and the local extrema of the attenuation factors change their218

values. For this example, the extremum of the first stop band decreases, while the extremum of the219

second stop band increases, with increasing values for γ.220

These results are comparable to those obtained in [5]. The present example will serve as a linear221

elastic reference case for the studies in Sect. 3 of this article, in which the interaction of viscoelastic222

behavior and imperfect bonding will be taken into account.223

Comparison of the results from Sects. 2.1 and 2.2: In order to estimate the quality of the simulation of224

imperfect bonding by a thin interphase material Ω(2) between the inclusion Ω(1) and the matrix Ω(3),225

we compare the frequency band structure for the approaches in Sect. 2.1, when imperfect bonding226

is simulated by the interphase Ω(2), and in Sect. 2.2, when imperfect bonding is described by the227

boundary conditions in the interface ∂Ω1,3. Both approaches have been derived by application of228

the Floquet-Bloch theorem and the exact solution for the dispersion relation. One unit cell is again229

considered to have the length ℓ, and r(1)/ℓ = 0.1. The composite is composed of a polyethylene matrix230

(G(3) = 0.117 GPa, ρ(3) = 910 kg/m
3
) and steel inclusions (G(1) = 80 GPa, ρ(1) = 7860 kg/m

3
) [10].231

– In the case of simulating the bonding condition between the inclusion Ω(1) and the matrix Ω(3) by232

an artificial interphase Ω(2), as described in Sect. 2.1, we choose the properties G(2) = 10−3 GPa,233

ρ(2) = 1000 kg/m
3
, and r(2)/ℓ =

�

r(1) + γG(2)
�

/ℓ.234

– In the case of imperfect bonding, which is described by the boundary conditions at the interface235

∂Ω1,3 between the inclusion and the matrix, we apply the interfacial conditions which have been236

derived in detail in Sect. 2.2.237
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The results are shown in Fig. 5 for different values of the bonding factor γ, with normalizations µ̄ = µℓ238

and ω̄ = ωℓ applied. Both approaches to describe imperfect bonding coincide well, especially in the

(a)
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- µ

-ω [m/s]

Imperfect Bonding (γ= 1*10-10 [ms]2/kg)

BC
AI

(b)
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0
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 0  5000  10000  15000  20000

- µ

-ω [m/s]

Imperfect Bonding (γ= 2*10-10 [ms]2/kg)

BC
AI

(c)

-π

0

π

 0  5000  10000  15000  20000

- µ

-ω [m/s]

Imperfect Bonding (γ= 3*10-10 [ms]2/kg)

BC
AI

Fig. 5 Frequency band structure of a layered polyethylene (G(3) = 0.117 GPa, ρ(3) = 910 kg/m3) and steel

(G(1) = 80 GPa, ρ(1) = 7860 kg/m3). In the case of bonding conditions described by the boundary conditions
at the interface ∂Ω1,3, different values for the bonding factor γ are chosen (BC). In the case of simulating the
bonding condition between the inclusion and the matrix by an artificial interphase, we choose the properties
G(2) = 10−3 GPa, ρ(2) = 1000 kg/m3, and r(2)/ℓ = [r(1)+γG(2)]ℓ. The pass bands (µR 6= 0, µI = 0) are plotted
as positive values, and the stop bands (µR = 0, µI 6= 0) are plotted as negative values.

239

lower frequency region for the chosen values of the material parameters.240

3 One-dimensional wave propagation in layered viscoelastic composites241

In Sect. 2, the constituents have been taken to be linear elastic. Now we consider that the mechanical242

behavior of a matrix Ω(3) depends on the frequency of the traveling signal. While in a purely elastic243

material the relation between stress and strain are in phase, e.g. both stress and strain appear simul-244

taneously, in a viscoelastic material the phases of the stresses and the strains are shifted. The dynamic245

shear modulus G(3) = G(3)(ω) of the matrix is here now modeled as a Kevin-Voigt type of material.246

Such a type of material is often represented by a spring, the elastic part of the mechanical behavior,247
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which is parallel to a dashpot, may represent the viscous behavior of the material (also see Flügge248

[15]). The dynamic shear modulus is taken in the complex form249

G(3)(ω) = G
(3)
R + jG

(3)
I (ω), (19)

where the real part G
(3)
R is independent of the frequency, and G

(3)
I (ω) is the frequency-dependent250

imaginary part. We consider this imaginary part in the form251

G
(3)
I (ω) = ν ω G

(3)
R , (20)

where ν is a constant with the dimension of time. This constant defines the imaginary part G
(3)
I252

relative to the product of the frequency and the real part G
(3)
R . The product of ν and G

(3)
R is also253

denoted as the viscosity. The viscosity of polymers depends on different factors, and for example,254

increasing temperature leads to an increased viscosity. If ν = 0, then the material is purely elastic,255

and this case has been discussed in the Sects. 2.1 and 2.2. If ν → ∞, then (19) represents a material256

of infinite stiffness.257

In the following examples we want to illustrate the effect of viscoelastic behavior on the dispersion258

relation for layered two component composite described in Sect. 2.2, where the bonding between the259

constituents is taken to be imperfect, and the bonding condition between the constituents is quantified260

by the bonding factor γ which has been introduced in (16).261

3.1 Numerical examples262

We consider wave propagation though the layered composite shown in Fig. 2, where the constituents263

Ω(1) is taken to be steel (G(1) = 80 GPa, ρ(1) = 7860 kg/m
3
), and the constituents Ω(3) is taken264

to be polyethylene with the dynamic modulus as given in (19). The real part is G
(3)
R = 0.117 GPa,265

G
(3)
I (ω) is given in (20), and ρ(3) = 910 kg/m

3
. The dispersion equation is obtained by solving the266

boundary value problem in (17) and (18). The numerical examples are subdivided into two parts. The267

first illustrates the dispersion relation for perfect bonding, and the second the interaction of imperfect268

bonding behavior.269

Dispersion relation for perfect bonding: Figure 6 illustrates the results for perfect bonding (γ = 0)270

and different values for ν. The real values of the wave number µR are plotted as positive values,

-π

0

π

 0  5000  10000  15000  20000

- µ

-ω [m/s]

Perfect Bonding (γ= 0 [ms]2/kg)

ν=0
ν=0.0001 [s]

Fig. 6 Frequency band structure of a layered polyethylene (G(3)(ω) in (19), where G
(3)
R = 0.117 GPa, and

G
(3)
I (ω) is given in (20), ρ(3) = 910 kg/m3) and steel (G(1) = 80 GPa, ρ(1) = 7860 kg/m3). Bonding between

the constituents is taken to be perfect (γ = 0). The real values of the wave number µR are plotted as positive
values, and the imaginary values of the wave number µI are plotted as negative values.

271

and the imaginary values of the wave number µI are plotted as negative values. The thick solid line272

represents the elastic case (ν = 0) as a reference. The thin solid line represents the case with the highest273
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viscosity, ν = 10−4 s. The dashed lines show some intermediate values for ν (ν = 10−6 s, ν = 10−5 s,274

ν = 4 ·10−5 s, ν = 5 ·10−5 s) to depict the behavior of the dispersion relation with increasing viscosity.275

In the elastic case, with ν = 0, the boundaries between the pass bands and the stop bands are clearly276

defined by regions where either µR = 0 or µI = 0. With increasing viscosity, i.e., with increasing values277

for ν, the values for the attenuation factor µI increase and the gaps with µI = 0 becomes narrower,278

and finally these gaps vanish.279

These effects have been observed in different articles. Nemat-Nasser et al. [42] investigated one-280

dimensional wave propagation in a periodic steel-polymer composite, comparing the attenuation rela-281

tion to experimental observations. Hussein et al. [24] discuss the dispersion relation for multiple layers282

in a one-dimensional unit cell with different arrangements with the goal to create a stop band with283

the maximum attenuation in a specific frequency region.284

Dispersion relation for imperfect bonding: We consider the same material as in the previous paragraph,285

but now the bonding between Ω(1) and Ω(3) is taken to be imperfect and described by the bonding286

factor γ. The results are presented in Fig. 7. The influence of the bonding factor γ on the dispersion
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Imperfect Bonding (γ= 1*10-10 [ms]2/kg)

ν=0
ν=0.0001 [s]

(b)
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ν=0
ν=0.0001 [s]

(c)
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ν=0
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Fig. 7 Frequency band structure of a layered polyethylene (G(3)(ω) in (19), where G
(3)
R = 0.117 GPa, and

G
(3)
I (ω) is given in (20), ρ(3) = 910 kg/m3) and steel (G(1) = 80 GPa, ρ(1) = 7860 kg/m3). Bonding between

the constituents is taken to be imperfect and described by different values of the bonding factor γ. The real
values of the wave number µR are plotted as positive values, and the imaginary values of the wave number µI

are plotted as negative values.

287

relation for the elastic case has been discussed in in respect of the examples in Sect. 2.3. These cases288

of linear elastic behavior with ν = 0 are represented by the thick solid lines as a reference. The thin289

solid line represents the case ν = 10−4 s, and the dashed lines show some intermediate values for ν290

(ν = 10−6 s, ν = 10−5 s, ν = 4 · 10−5 s, ν = 5 · 10−5 s) in (a)-(c). While for the here taken choices291

for ν the curves for µI do not intersect within the presented frequency range for perfect bonding (see292
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Fig. 6), in the case of imperfect bonding we find intersections of the µI -vs.-ω curves in all three panels293

of Fig. 7. For example, in (c) we can see for the frequency region around ω̄ = 11000 m/s, that the294

attenuation µI decreases with increasing viscosity. Similar to the case of perfect bonding we find that295

with increasing values for ν the band gaps for µI becomes narrower and finally vanish.296

This example shows the interaction of imperfect bonding and viscoelastic behavior. All curves shift297

to the left side with increasing values for γ, so that the attenuation of the traveling signal in general298

increases. This effect becomes obvious when we compare the attenuation factors µI at ω̄ = 20000 in299

Fig. 7 (a), Fig. 7 (b), and Fig. 7 (c).300

4 Plane-wave expansion method301

The application of the Floquet-Bloch approach to obtain exact solutions for the dispersion relation
is only possible for simple geometries. The plane-wave expansion method (PWEM) allows us to in-
vestigate wave propagation through periodic materials with more complex geometry. This approach
is investigated in details in the present section. The PWEM is founded on the idea that a periodic
function s(x) with a period T can be represented as a Fourier series in the form

s(x) =

∞
�

m=−∞

cm exp(jmωx), (21a)

cm =
1

T

� T

0

s(x) exp(−jmωx) dx. (21b)

This section is subdivided into two parts.302

– In the first we investigate the one-dimensional problem which was presented in Sect. 2.1, and303

compare the results of the PWEM to the exact results. This has the goal to identify the limitations304

of the PWEM when applied to the analysis of the dispersion relations of composites.305

– In the second part we apply this method to derive the dispersion relation for a composite with306

parallel fibers, in which a shear wave travels through the plane perpendicular to the fibers.307

4.1 One-dimensional wave propagation in layered composites: PWEM versus exact solution308

We consider the layered composite which has been presented in Fig. 1, which consists of the inclusion309

Ω(1), the matrix Ω(3), and the interphase Ω(2). The wave equation for the traveling signal has been310

presented in Eq. (1). We consider a harmonic wave in the form311

w(x, t) = F (x) exp [j(µx+ ωt)] , (22)

which travels in x-direction through the material. The materials parameters G(x) = G(x + ℓ) and
ρ(x) = ρ(x + ℓ), and the function F (x) = F (x + ℓ) are periodic functions, and we want to represent
these functions by their Fourier series in the form

F (x) =

∞
�

m1=−∞

Fm1 exp

�

j
2π

ℓ
m1x1

�

, (23a)

G(x) =

∞
�

m1=−∞

Gm1 exp

�

j
2π

ℓ
m1x1

�

, (23b)

ρ(x) =

∞
�

m1=−∞

ρm1 exp

�

j
2π

ℓ
m1x1

�

, (23c)
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where Gm1 and ρm1 are determined via

Gm1 =
1

ℓ

� ℓ

0

G(x) exp

�

−j
2π

ℓ
m1x1

�

dx1, (24a)

ρm1 =
1

ℓ

� ℓ

0

ρ(x) exp

�

−j
2π

ℓ
m1x1

�

dx1. (24b)

If we substitute (23a) into (22), which then together with (23b) and (23c) is substituted into (1), then312

we obtain a wave equation in terms of an infinite number of terms, in the form313

∞
�

m1=−∞

∞
�

n1=−∞

Fm1×
�

Gn1−m1

��

2π

ℓ
m1 + µ1

��

2π

ℓ
n1 + µ1

��

− ρn1−m1ω
2

�

= 0.

(25)

To apply (25), we restrict the number terms to |m1| ≤ mmax and |n1| ≤ mmax.314

The PWEM is an approach which approximates the solution of the dispersion relation. By taking315

into account a higher number of terms, e.g., by increasing mmax, the accuracy of the solution increases316

and higher frequencies are taken into the considerations. On the other hand, by taking into account317

a higher number of terms the computation time increases, so that for efficient use of the plane wave318

expansion method it is necessary to understand the limitations of this method, and quality of the319

results with every single term.320

In order to estimate the limitations of the PWEM, we consider two examples, in which the results321

from the PWEM are compared to exact results.322

Limitations of the plane wave expansion method: We want to investigate the limitations of the PWEM323

by contrasting the solution for the dispersion relation obtained by the PWEM to the exact solution of324

the Floquet-Bloch method. Therefore, we consider the one-dimensional problem previously presented325

in Sect. 2.2, a layered composite with the inclusion Ω(1), the matrix Ω(3), and the interphase Ω(2). The326

exact solution for the dispersion relation was provided by the solution of the boundary value problem327

in (17) and (18).328

Figure 8 shows the frequency band structure of a layered composite with unit cell length ℓ. This329

composite consists of a polyethylene matrix (G(3) = 0.117 GPa, ρ(3) = 910 kg/m
3
) and steel layers330

(G(1) = 80 GPa, ρ(1) = 7860 kg/m
3
, r(1)/ℓ = 0.1). The interphase Ω(2) has the properties G(2) =331

10−3 GPa, ρ(2) = 1000 kg/m
3
, and r(2)ℓ = [r(1) + γG(2)]/ℓ. This Figure contrasts the exact results332

from the Floquet-Bloch approach (FB) with those obtained from the PWEM for mmax = 0, 1, 2, 3, 4.333

– Fig. 8 (a) shows the results for the case of perfect bonding, γ = 0. With increasing terms of the334

expansion, the solution of the PWEM approaches the exact solution. For the first branch of the335

dispersion relation the difference between the the solution for mmax = 4 and the exact solution is336

relatively small, it becomes apparent that the differences for the second branch are relatively large.337

– Fig. 8 (b) shows the results for imperfect bonding with the bonding factor γ = 3 · 10−10[ms]2/kg.338

The differences in the results become even larger when imperfect bonding is taken into account.339

Note, that the results the PWEM in Figs. 8 (a) and 8 (b) are just slightly different.340

These differences in the results are explained as follows: The ratio of the shear moduli G(1)/G(3) = 683.8341

is relatively large in the present example, and G(x) is a discontinuous function of x. If a function is342

piece-wise defined, an overshoot appears at discontinuities. This overshoot reaches a limit, but it does343

not disappear with additional terms of the expansion. This effect is known as Gibbs phenomenon1 [22].344

In order to apply the plane wave expansion method, the values for material parameters have to be345

relatively close together.346

By comparing panels Figs. 8 (a) and 8 (b), we can conclude that imperfect bonding can only be347

taken into account by an interphase layer with material properties which describe slight imperfect348

bonding.349

1 This phenomenon is also denoted as the Gibbs-Wilbraham phenomenon.
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Fig. 8 Frequency band structure of a layered polyethylene (G(3) = 0.117 GPa, ρ(3) = 910 kg/m3) and steel

(G(1) = 80 GPa, ρ(1) = 7860 kg/m3) composite. The exact results from the Floquet-Bloch approach (FB) with
the results which are obtained from the PWEM for mmax = 0, 1, 2, 3, 4.

Wave propagation in a carbon-fiber matrix composite: The example in the previous paragraph discusses350

the limitations of the PWEM in the case of a high contrast between material parameters. In the present351

example, we choose a layered composite of unit cell with length ℓ, which consists of PANEX 33 carbon352

fibers (G(1) = 20 GPa, ρ(1) = 1800 kg/m3, r(1)/ℓ = 0.1) which are embedded in EPON 828 polymer353

matrix (shear modulus G(3) = 1.287 GPa, density ρ(3) = 1160 kg/m3). The material properties are354

taken from Wessel [60], Giurgiutiu et al. [18], and from the homepage of the company Hexion [1].355

We choose an interphase Ω(2) with mechanical properties (shear modulus G(2) = 5 GPa, density356

ρ(2) = 1000 kg/m3, r(2)/ℓ = 0.12) which are of a similar order to the mechanical properties of the357

constituents Ω(1) and Ω(3). Figure 9 shows the dispersion relation for a layered composite. The results
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Fig. 9 Frequency band structure of a layered EPON 828 (G(3) = 1.287 GPa, ρ(3) = 1160 kg/m3) and PANEX

33 (G(1) = 20 GPa, ρ(1) = 1800 kg/m3, r(1)/ℓ = 0.1) composite with the interphase Ω(2) (G(2) = 5 GPa,

ρ(2) = 1000 kg/m3, r(2)/ℓ = 0.12). The exact results from the Floquet-Bloch approach (FB) with the results
which are obtained from the PWEM for mmax = 0, 1, 2, 3, 4.

358
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obtained through use of the PWEM (25) for mmax = 0, 1, 2, 3, 4 are compared to results obtained359

by the boundary value problem in Eqs. (11) and (12). This Figure shows that for the first branch360

of the wave number, the results for mmax ≥ 1 are relatively close to results for the exact solution.361

For the second branch of the wave number, the results mmax ≥ 2 approximate the exact solution.362

With higher frequencies, the differences between the exact results and the results of the plane wave363

expansion method become larger. On the other hand, these larger frequencies might exceed the range364

of realistic values for practical applications.365

4.2 Two-dimensional wave propagation in a matrix-fiber composite366

In this section, we consider an spatially infinite composite which is composed of matrix Ω(3) and367

parallel fibers Ω(1). These fibers have a circular cross-section area and an infinite length occupying368

−∞ ≤ x3 ≤ ∞. The fibers are coated by an interphase Ω(2). One quadratic unit cell of the composite369

has the side length ℓ, and the fiber is located in the center of each unit cell. The cross sectional area of370

such a composite in the E1 −E2-plane is shown in Fig. 10. The basic translation vectors ℓ then have

(2)
Ω

(3)
Ω

(1)
Ω

µ

ϕ

x2

x1

r
r

(1)

(2)

Fig. 10 The x1-x2 cross section of a matrix-fiber composite.

371

the forms372

ℓ = E1r1ℓ+E2r2ℓ, (26)

where E1 and E2 are the base unit vectors of the Cartesian coordinate system, and r1 and r2 are the373

integers 0,±1,±2, . . . . A shear wave is assumed to propagate perpendicular to the fibers through the374

material in the x1-x2-plane, so that the wave equation can be presented in the form375

∇x [G(x)∇xw(x, t)] = ρ(x)
∂w(x, t)

∂t2
, (27)

where ∇x = E1
∂

∂x1
+E2

∂
∂x2

, G(x) and ρ(x) is the shear modulus and the density respectively at the376

location x = E1x1 + E2x2, and w(x1, x2, t) is the displacement in x3-direction at the location x and377

time t. The traveling wave is taken in the form378

w(x, t) = F (x) exp (j [µ · x+ ωt]) , (28)

where F (x) = F (x + pℓ) is a spatially periodic function, and µ = E1µ1 + E2µ2 is the wave vector.379

The length the wave vector µ = ||µ|| is the wave number.380
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To derive the dispersion relation, the function F (x) as well as the material properties G(x) and
ρ(x) are now expanded into their Fourier series,

F (x) =

∞
�

m1=−∞

∞
�

m2=−∞

Fm1,m2 exp

�

j
2π

ℓ
[m1x1 +m2x2]

�

, (29a)

G(x) =

∞
�

m1=−∞

∞
�

m2=−∞

Gm1,m2 exp

�

j
2π

ℓ
[m1x1 +m2x2]

�

, (29b)

ρ(x) =

∞
�

m1=−∞

∞
�

m2=−∞

ρm1,m2 exp

�

j
2π

ℓ
[m1x1 +m2x2]

�

, (29c)

where Gm1,m2 and ρm1,m2 are determined via

Gm1,m2 =

��

Ω0

G(x) exp

�

−j
2π

ℓ
[m1x1 +m2x2]

�

dx1 dx2, (30a)

ρm1,m2 =

��

Ω0

ρ(x) exp

�

−j
2π

ℓ
[m1x1 +m2x2]

�

dx1 dx2. (30b)

This specific form of the PWEM in (29) - (30) has also been derived in [3]. Let us substitute (29a) into381

(28), and then substitute this equation, together with the expansions of the material properties (29b)382

and (29c), into the wave equation (27). We then obtain the following system in the coefficients Fm1
m2

,383

∞
�

m1=−∞

∞
�

m2=−∞

∞
�

n1=−∞

∞
�

n2=−∞

Fm1,m2×
�

Gn1−m1,n2−m2

��

2π

ℓ
m1 + µ1

��

2π

ℓ
n1 + µ1

�

+

�

2π

ℓ
m2 + µ2

��

2π

ℓ
n2 + µ2

��

− ρn1−m1,n2−m2ω
2

�

= 0.

(31)

To apply (31) to determine the dispersion relation, we restrict the expansion in (31) to |mi| ≤ mmax384

and |ni| ≤ mmax, where i = 1, 2.385
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Fig. 11 Frequency band structure of EPON 828 matrix (G(3) = 1.287 GPa, ρ(3) = 1160 kg/m3) and PANEX

33 fibers (G(1) = 20 GPa, ρ(1) = 1800 kg/m3, r(1)/ℓ = 0.1) composite with the interphase Ω(2) (G(2) = 5 GPa,

ρ(2) = 1000 kg/m3, r(2)/ℓ = 0.12). The results are obtained by the PWEM for mmax = 1 for different angles
ϕ.



17

Shear wave propagation perpendicular to the fiber orientation: In this example we consider again a386

composite which consists of a EPON 828 polymer matrix (shear modulus G(3) = 1.287 GPa, density387

ρ(1) = 1160 kg/m3, r(1)/ℓ = 0.1) and PANEX 33 carbon fibers (G(1) = 20 GPa, ρ(1) = 1800 kg/m3,388

r(1)/ℓ = 0.1). We choose an interphase Ω(2) with mechanical properties (shear modulus G(2) = 5 GPa,389

density ρ(2) = 1000 kg/m3, r(2)/ℓ = 0.12) of the same order as the mechanical properties of the390

constituents Ω(1) and Ω(3).391

The dispersion relation is shown in Fig. 11 for mmax = 1. The angle ϕ defines the direction of the392

propagating wave relative to the x1-direction. For all angles ϕ the results for the first branch coincide.393

The second branch changes its shape as the values of ϕ, and the frequency range for the pass band394

vary.395
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Fig. 12 Frequency band structure of a polymer matrix and PANEX 33 fibers (G(1) = 20 GPa, ρ(1) =

1800 kg/m3, r(1)/ℓ = 0.1) composite with the interphase Ω(2) (G(2) = 5 GPa, ρ(2) = 1000 kg/m3,

r(2)/ℓ = 0.12). Based on the properties of the material parameters of the EPON 828, the matrix is mod-
eled as viscoelastic. The results are obtained by the PWEM for mmax = 1 and the propagation direction ϕ = 0
for different values of ν.

Let us now take the matrix to be viscoelastic, and the behavior of the matrix becomes frequency-396

dependent as given by (19). The real part of (19) is assumed to be given by G
(3)
R = 1.287 GPa, and the397

imaginary part is assumed to be described by (20). Figure 12 shows the dispersion relation which has398

been obtained by the PWEM for mmax = 1 and the propagation direction ϕ = 0 for different values399

of ν. This example illustrates the change of the shape and the location of the different branches of µ400

with increasing viscosity.401

5 Conclusions402

This article deals with wave propagation through composites with periodic micro-structures and the403

resulting dispersion relations. Sections 2 investigates coated inclusions and imperfect bonding between404

the constituents. To take imperfect bonding into account, two different approaches have been analyzed.405

In the first, imperfect bonding has been simulated by an interphase material, and the properties of406

such an interphase describe the bonding conditions. This method is useful when bonding conditions407

cannot be explicitly described by the boundary conditions at the interface between two constituents, for408

example when methods such as the plane wave expansion method are applied. The disadvantage of this409

method is the fact that introducing a thin artificial layer to simulate the bonding conditions slightly410

changes the geometry of the considered problem, which has an impact on the dispersion relations411

especially for higher frequencies. In the second case, bonding is described by the boundary conditions412

at the common interface of the two constituents. Therefore, the spring-layer model has been applied, in413

which the difference of the displacements is proportional to the governing stresses in the interface. The414

difference in the displacement and the stresses are related by a proportionality constant γ, which is415

denoted as the bonding factor. Such a method is the preferred approach when the boundary conditions416

can be explicitly taken into account, for example by the Floquet-Bloch method, as shown in this417

paper, or for other methods such as the asymptotic homogenization method, as for example discussed418

in [6, 13].419
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Different composites are composed of polymer constituents in which the material properties be-420

come frequency-dependent. Such material behavior has been in the focus of different studies on wave421

propagation [44, 24]. Section 3 has the goal to investigate the interaction between viscoelastic behavior422

and the bonding quality of the different constituents. It is shown that with decreasing bonding quality423

the attenuation of the wave decreases in composites with frequency-dependent material behavior.424

Section 4 focuses on the application of the plane wave expansion method to investigate the dis-425

persion relation in composites. The first part analyzes the limitations of the method, and shows that,426

especially for a high contrast in the values of the material parameters, the results strongly deviate427

from the exact results due to the Gibbs-Wilbraham phenomenon. A solution to this problem has been428

proposed in [4] by the application of Padé approximants. The second part of this section applies the429

plane-wave expansion method to investigate the dispersion relation for a fiber-reinforced composite, in430

which a shear wave propagates perpendicularly to the orientation of the parallel fibers. This example431

has been studies for different directions of the wave propagation, and for the case that one constituent432

shows frequency-dependent material behavior.433

This article has shown that a combination of different approaches is useful to gain a deeper under-434

standing of the properties of composites with periodic micro-structures. The Floquet-Bloch approach435

allows us to obtain exact results for relatively simple geometries. Although this method has limited436

practical value, it can still be considered to gain a basic understanding of the overall behavior of the437

composite. Methods to investigate more complex problems, such as the plane wave expansion method,438

often approximate the results, and therefore it is necessary to understand the limitations of such meth-439

ods. Due to the limitations of the plane wave expansion method, such an approach can be combined440

with further methods to understand the properties of composites. The need to combine different ap-441

proaches has been discussed in [2]. Within this paper, examples are based on material parameters,442

which may found in the literature, and on different assumptions and simplifications. Experiments443

might also be use useful to justify the applied approaches.444

A Dispersion relation for imperfect bonding between the constituents445

From (17) and (18) we obtain a dispersion equation which gives the exact relation between the frequency ω,446

the wave number µ, and the bonding factor γ [57],447

cos(µℓ) = cos
�
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(32)

where z(i) =
�

G(i)ρ(i).448

In the limiting case of γ = 0, the bonding between the matrix and the inclusions become perfect, and (32)449

reduces to450

cos(µℓ) = cos
�

2µ(1)r(1)
�

cos
�

µ(1)
�

ℓ− 2r(1)
��

−

�

z(1)
�2

+
�

z(2)
�2

2z(1)z(2)
sin

�

2µ(1)r(1)
�

sin
�

µ(1)
�

ℓ− 2r(1)
��

.

(33)

Equation (33) is well-known for a two-components layered composite, and it can be found in different works451

such as Silva [55], Bedford & Drumheller [7], Ruzzene & Baz [47], and Shulga [49].452
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