
Asymptotic theory

for Rayleigh and Rayleigh-type waves.

J.Kaplunov and D.A. Prikazchikov

School of Computing and Mathematics,

Keele University, Keele, ST5 5BG, UK

Abstract:

Explicit asymptotic formulations are derived for Rayleigh and Rayleigh-type interfacial and

edge waves. The hyperbolic-elliptic duality of surface and interfacial waves is established, along

with the parabolic-elliptic duality of the dispersive edge wave on a Kirchhoff plate. The effects

of anisotropy, piezoelectricity, thin elastic coatings, and mixed boundary conditions are taken

into consideration. The advantages of the developed approach are illustrated by steady-state

and transient problems for a moving load on an elastic half-space.
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1 Introduction

A time-harmonic surface wave on a linearly elastic isotropic half-space was discovered by

Lord Rayleigh (1885). This pioneering piece of work was inspired by the needs of seismology,

including earthquake prediction. Later on, similar Rayleigh-type waves were found for solid-

solid and fluid-solid interfaces, see Stoneley (1924), Gogoladze (1948), Schölte (1949), as well

as for the edge of a thin Kirchhoff plate, investigated by Konenkov (1960). We also mention

a piezoelastic surface wave studied by Bleustein (1968) and Gulyaev (1969), important for

various applications, see Campbell (1998) and references therein. Nowadays surface waves are
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also widely used in the theory and practice of non-destructive evaluation, see e.g. Gudra &

Stawiski (2000). Another recent application is associated with cloaking of surface waves and

seismic metamaterials, see Brulé et al. (2014) and Colombi et al. (2016).

Current trends in this area include taking into consideration inhomogeneity, anisotropy,

and pre-stress with one of the main focuses on the existence and uniqueness of localised time-

harmonic eigensolutions, see references in the introductory sections 2 and 3, which also recall

the standard derivations of well-known dispersion relations along with elementary proofs of

existence and uniqueness. However, in spite of a substantial interest in the topic, the Rayleigh

wave for a long time seemed to be somehow hidden within the classical elasticity model. In

particular, the related Lamé wave potentials, e.g. see Achenbach (1973), govern the bulk waves

but not the surface one. At the same time the Rayleigh wave contribution often dominates in

the overall dynamic response, including the case of a resonant surface excitation. It also usually

prevails over a far-field zone near the surface. These observations motivate the derivation of a

specialised formulation oriented to the Rayleigh wave.

In section 4 we develop a multiscale perturbation procedure for an elastic half-space subject

to prescribed surface stresses. The peculiarities of the procedure are clarified in Appendix A

by a simple example of a single degree of freedom linear oscillator. In subsection 4.1 the 2D

dynamic equations of the plane strain problem are perturbed around the eigensolution for a

surface wave of arbitrary profile obtained in Chadwick (1976b), see also earlier papers of Fried-

lander (1948) and Sobolev (1937), as well as more recent publications, including Achenbach

(1998); Kiselev (2004); Parker & Kiselev (2009); Kiselev & Parker (2010); Rousseau & Maugin

(2011); Prikazchikov (2013); Parker (2013), and Kiselev (2015), treating homogeneous Rayleigh

and Rayleigh-type waves in a more general setup. It appears that this eigensolution can be

expressed in terms of a single harmonic function. As a result, we arrive at a hyperbolic-elliptic

theory. This involves a wave equation for one of the Lamé potentials that governs propagation

of surface disturbances along with pseudo-static elliptic equations for calculating the Lamé po-

tentials over the interior. The derived model is extended to the general 3D case in subsection

4.2 using the integral Radon transform.

The proposed formulation reflects a duality of the Rayleigh wave. Indeed, hyperbolicity

stands for propagation along the surface, whereas ellipticity may be associated with decay into
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the interior. At the same time, it should be noted that hyperbolicity is characteristic only for

one of the Lamé potentials along the surface, see Erbaş & Şahin (2016) for more detail.

A similar theory is also established in section 5 for several Rayleigh-type waves, including

interfacial waves and the surface wave on a coated half-space. For the latter, the hyperbolic

equation along the surface is singularly perturbed by a pseudo-differential operator. The effects

of anisotropy and mixed boundary conditions are also addressed in this section, along with the

extension to piezoelastic surface waves.

The validity of the proposed models is tested in section 6 by comparison with the exact

solution of steady-state and transient plane strain moving load problems, given in Appendix B

and Kaplunov et al. (2010), respectively. The near-resonant regimes of moving loads apparently

present the optimal framework for evaluating the accuracy of the asymptotic approach. In this

section we also obtain the explicit solutions of 3D moving load problems for a homogeneous

and coated half-space in terms of elementary functions.

Finally, in section 7 we derive a parabolic-elliptic model for a dispersive bending wave prop-

agating along the edge of a thin elastic plate. In this case the adapted asymptotic procedure

also perturbs in slow time the eigensolution corresponding to an edge wave of general shape

expressed through a single plane harmonic function. This eigenfunction is obtained starting

from an implicit ansatz, for which the counterpart for the Rayleigh wave is the classical wave

equation.

The material in this chapter originates from the publications Kaplunov & Kossovich (2004);

Kaplunov et al. (2004, 2006); Dai et al. (2010); Kaplunov et al. (2010); Erbaş et al. (2013);

Kaplunov & Prikazchikov (2013); Kaplunov et al. (2013); Prikazchikov (2013); Erbaş et al.

(2014); Kaplunov et al. (2014); Ege et al. (2015); Kaplunov & Nobili (2015); Kaplunov et al.

(2016). We express our sincere gratitude to all the co-authors in the publications mentioned

above, and also acknowledge fruitful discussions with P. Chadwick, Y. Fu, A.P. Kiselev, D.F.

Parker, and A. Pichugin. We also thank P. Wootton for reading the final version of the

manuscript and making several valuable comments.
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2 Time-harmonic Rayleigh wave on an elastic half-space

In this section we present some basic results for surface waves, including the derivation of the

classical Rayleigh equation as well as analysis of a surface wave of arbitrary profile, preceding

the development of the explicit hyperbolic-elliptic formulation for the Rayleigh wave field.

2.1 Elementary derivation

Let us first derive the original surface wave equation discovered by Lord Rayleigh (1885).

Consider a linearly elastic isotropic half-space

H+
3 =

{

(x1; x2; x3)
∣

∣−∞ < x1 <∞, −∞ < x2 <∞, 0 ≤ x3 <∞
}

.

The equations of motion in linear elastodynamics are given by

σij,j = ρui,tt, i, j = 1, 2, 3, (2.1)

e.g. see Achenbach (1973). Here σij and ui are the components of the Cauchy stress tensor σ

and the displacement vector u, respectively, ρ denotes mass volume density, and comma indi-

cates differentiation with respect to spatial or time variables. Einstein’s summation convention

is adopted throughout this chapter, unless otherwise stated. The stress-strain relations for an

isotropic solid are given by

σij = λuk,kδij + 2µεij, i, j = 1, 2, 3, (2.2)

with λ and µ being the Lamé elastic moduli, δij standing for the Kronecker delta, and the

kinematic relations for the components of the strain tensor ε being expressed as

εij =
1

2
(ui,j + uj,i) . (2.3)

On substituting the constitutive relations (2.2) into the equations of motion (2.1) and taking

into consideration the relations (2.3), we have the wave equation

(λ+ µ) uj,ji + µ ui,jj = ρui,tt. (2.4)

Let us now decompose the displacement field according to the Helmholtz theorem as

u = gradφ+ curlΨ, (2.5)

4



where φ and Ψ = (ψ1, ψ2, ψ3) are scalar longitudinal and vector transverse elastic potentials,

respectively, allowing separation of extensional and shear motions for an isotropic solid. In

addition, the constraint

divΨ = 0, (2.6)

is required. This condition is not unique, e.g. see Miklowitz (1978). On substituting the

Helmholtz decomposition (2.5) into (2.4), we have

φ,tt − c21∆φ = 0, Ψ,tt − c22∆Ψ = 0, (2.7)

where ∆ is the 3D Laplace operator in x1, x2 and x3, and

c1 =

√

λ+ 2µ

ρ
, c2 =

√

µ

ρ
(2.8)

are the longitudinal and transverse wave speeds, respectively.

The stress-free boundary conditions are imposed on the surface x3 = 0, i.e.

σ3i = 0, i = 1, 2, 3, (2.9)

or, in terms of the elastic potentials,

2φ,13 − ψ1,12 + ψ2,11 − ψ2,33 + ψ3,23 = 0,

2φ,23 − ψ1,22 + ψ1,33 + ψ2,12 − ψ3,13 = 0, (2.10)

λ (φ,11 + φ,22) + (λ + 2µ)φ,33 + 2µ (ψ2,13 − ψ1,23) = 0.

The solutions of (2.7) and (2.10) are now sought in the form of the travelling harmonic wave

(φ, ψ1, ψ2, ψ3) = (A1, A2, A3, A4) e
ik(x1 cos θ+x2 sin θ−ct)−kqx3, (2.11)

where Ai, i = 1, 4, are arbitrary constants, k is the wave number, q is the attenuation factor

to be determined and c is the sought-for phase speed; the condition ℜ(q) > 0 is assumed,

ensuring decay of the surface wave field as x3 → ∞. On substituting (2.11) into the equations

of motion (2.7), we obtain

φ = A1 e
ik(x1 cos θ+x2 sin θ−ct)−kαx3, (2.12)

and

(ψ1, ψ2, ψ3) = (A2, A3, A4) e
ik(x1 cos θ+x2 sin θ−ct)−kβx3, (2.13)
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with the attenuation orders

α =

√

1− c2

c21
, β =

√

1− c2

c22
. (2.14)

Then, on inserting (2.12) and (2.13) into the boundary conditions (2.10) and using the con-

straint (2.6), we obtain a set of linear algebraic equations in respect of the constants Ai,

namely

−2iα cos θA1 + sin θ cos θA2 − (cos2 θ + β2)A3 − iβ sin θA4 = 0,

−2iα sin θA1 + (sin2 θ + β2)A2 − sin θ cos θA3 + iβ cos θA4 = 0, (2.15)

(1 + β2)A1 + 2iβ sin θA2 − 2iβ cos θA3 = 0,

i cos θA2 + i sin θA3 + βA4 = 0.

The determinant of (2.15) equals zero provided that

(1 + β2)2 − 4αβ = 0. (2.16)

The latter is the well-known Rayleigh equation. It is often presented as

R(r) = 0, (2.17)

where

R(r) = (2− r)2 − 4
√
1− r

√
1− κ2r, (2.18)

with

r =
c2

c22
, κ =

c2
c1
< 1. (2.19)

The first proof of the existence and uniqueness of the solution of (2.17) was seemingly

presented by Sobolev (1937), see also Babich & Kiselev (2014). A similar proof is given below,

showing that the Rayleigh equation (2.17) has a unique solution for the phase speed c = cR

over the interval 0 < r < 1. First, note that

R(0) = 0, R(1) = 1, (2.20)

while the derivative

R′(0) = 2(κ2 − 1) < 0. (2.21)
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In addition, the second derivative

R′′(r) = 2 +
(1− κ2)2

[(1− r)(1− κ2r)]3/2
(2.22)

is positive for 0 < r < 1, so the function R(r) is concave upwards over the interval. Thus, the

conditions (2.20) and (2.21) imply the existence of a zero of R(r) in the interval 0 < r < 1,

with (2.22) ensuring uniqueness of solution. A typical behaviour of R(r) is shown in Fig.1 for

κ = 1
3

(

ν = 1
4

)

.

It is obvious that the solution of (2.17) for a given Poisson ratio ν is a constant, i.e. the

Rayleigh wave is non-dispersive. A variation of the scaled Rayleigh wave speed cR/c2 versus

the Poisson ratio is shown in Fig. 2.
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Figure 1: Variation of R(r) along the interval 0 < r < 1 for ν = 1
4
.

It is also well-known from the original paper of Lord Rayleigh (1885) that (2.17) may be

transformed to the cubic equation

r3 − 8(r − 1)
(

r − 2(1− κ2)
)

= 0. (2.23)

The solution of this equation may be obtained through Cardano’s formula, see e.g. Malis-

chewsky (2000) and Vinh & Ogden (2004). It should be noted that existence and uniqueness

of the Rayleigh wave have been also proved for anisotropic materials, e.g. see Barnett & Lothe

(1974) and Kamotskii & Kiselev (2009). Obviously, the evaluation of the surface wave speed

becomes more difficult in anisotropic medium. In this case the so-called surface-impedance
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Figure 2: The Rayleigh wave speed vs. the Poisson ratio ν.

matrix technique, leading to a matrix Ricatti equation, see Fu & Mielke (2002), proved to be

robust. We also mention contributions studying surface waves in media with more sophisti-

cated properties, see e.g. Hayes & Rivlin (1961); Alenitsyn (1963); Agarwal (1978); Ivanov

(1988); Dowaikh & Ogden (1990); Rogerson (1998); Destrade (2004, 2007); Steigmann & Og-

den (2007); Kiselev & Rogerson (2009); Dockrey et al. (2013); Vinh et al. (2014), and many

others.

2.2 Rayleigh wave of arbitrary profile

In the previous section the solution was sought in the form of a travelling time-harmonic

plane wave. Below we generalise it to a wave of general time-dependence, relying on the key

contribution of Chadwick (1976b), see also the earlier works of Friedlander (1948) and Sobolev

(1937). Following these papers, we consider a plane strain problem, assuming

u2 = 0, ui = ui(x1, x3, t), i = 1, 3, (2.24)

for the half-plane

H+
2 =

{

(x1; x3)
∣

∣−∞ < x1 <∞, 0 ≤ x3 <∞
}

. (2.25)

In this case the displacement field is conventionally expressed through the 2D elastic poten-

tials φ and ψ as

u1 =
∂φ

∂x1
− ∂ψ

∂x3
, u3 =

∂φ

∂x3
+
∂ψ

∂x1
, (2.26)

8



satisfying the wave equations

φ,tt − c21 (φ,11 + φ,33) = 0, ψ,tt − c22 (ψ,11 + ψ,33) = 0. (2.27)

together with the boundary conditions

2φ,13 + ψ,11 − ψ,33 = 0,

(κ−2 − 2)φ,11 + κ−2φ,33 + 2ψ,13 = 0,
(2.28)

along the stress-free surface x3 = 0, where, as before,

κ =
c2
c1

=

√

1− 2ν

2− 2ν
.

Let us study the elastic potentials of the form

φ = φ(x1 − ct, x3), ψ = ψ(x1 − ct, x3), (2.29)

corresponding to a wave of arbitrary shape propagating at a speed c. Using (2.29), the equa-

tions of motion (2.27) are reduced to the elliptic equations

φ,33 + α2φ,11 = 0, ψ,33 + β2ψ,11 = 0, (2.30)

where α and β are defined by (2.14). Thus, the eigensolutions for the elastic potentials are

φ = φ(x1 − ct, αx3), ψ = ψ(x1 − ct, βx3), (2.31)

being plane harmonic functions. In the subsequent analysis we employ the Cauchy-Riemann

identities

f,3 = −γf ∗
,1, f,1 =

1

γ
f ∗
,3, f ∗∗ = −f, (2.32)

for a harmonic function f(x1, γx3), being a solution of the equation

f,33 + γ2f,11 = 0, γ = (α, β),

where the asterisk denotes a harmonic conjugate function, see e.g. Titchmarch (1939).

After straightforward manipulations involving the aforementioned Cauchy-Riemann identi-

ties (2.32), the boundary conditions (2.28) at x3 = 0 may be rearranged as

−2αφ∗
,11 + (1 + β2)ψ,11 = 0,

(1 + β2)φ,11 + 2β ψ∗
,11 = 0,

(2.33)
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Then, on taking conjugate of the first equation, we deduce from the solvability of (2.33) that

(1 + β2)2 − 4αβ = 0, (2.34)

which is the Rayleigh equation, see (2.16). Therefore c = cR, hence, the sought for harmonic

eigenfunctions are

φ = φ(x1 − ct, αRx3), ψ = ψ(x1 − ct, βRx3), (2.35)

where

αR =

√

1− c2R
c21
, βR =

√

1− c2R
c22
. (2.36)

In addition, we obtain the relations between the potentials along the surface x3 = 0, following

from (2.28), namely

ψ,1 = − 2

1 + β2
R

φ,3, ψ,3 =
1 + β2

R

2
φ,1. (2.37)

Moreover, the maximum principle for harmonic functions implies a condition relating the

potentials φ and ψ not only along the surface x3 = 0, but over the entire half-plane. Thus,

ψ(x1 − cRt, βRx3) =
2αR

1 + β2
R

φ∗(x1 − cRt, βRx3), (2.38)

and

φ(x1 − cRt, αRx3) = − 2βR
1 + β2

R

ψ∗(x1 − cRt, αRx3), (2.39)

for more details see Chadwick (1976b). This allows expressing the displacements in terms of a

single plane harmonic function, say in terms of the potential φ, as

u1(x1, x3, t) = φ,1(x1 − cRt, αRx3)−
1 + β2

R

2
φ,1(x1 − cRt, βRx3),

u3(x1, x3, t) = φ,3(x1 − cRt, αRx3)−
2

1 + β2
R

φ,3(x1 − cRt, βRx3).

(2.40)

The obtained representation (2.40) extends the class of decaying eigensolutions, in partic-

ular, allowing a non-periodic behaviour along the surface. In fact, the potentials φ and ψ

generally may not decay at infinity. As an example, we take

φ(sR, x3) = tan−1 sR
αRx3 + a

, ψ(sR, x3) =
αR

1 + β2
R

ln
[

s2R + (βRx3 + a)2
]

, (2.41)
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where a > 0 is a parameter chosen in order to smooth discontinuities at the origin and sR =

x1 − cRt is a moving coordinate. The potentials (2.41) correspond to the following decaying

displacement components

u1(x1, x3, t) =
αRx3 + a

s2R + (αRx3 + a)2
− 1 + β2

R

2

βRx3 + a

s2R + (βRx3 + a)2
,

u3(x1, x3, t) = − αRsR
s2R + (αRx3 + a)2

+
2

1 + β2
R

βRsR
s2R + (βRx3 + a)2

.

(2.42)

Variation of the displacements (2.42) on sR at several depths is shown in Fig. 3 for a = 0.1 and

the Poisson’s ratio ν = 1
3
. An example of non-decaying displacements is studied in subsection

6.1.

It is clear that similar derivation may be performed for a surface wave travelling in the

opposite direction, when the argument x1 − ct in (2.11) is replaced by x1 + ct. Moreover,

it is also possible to take into account simultaneously surface waves propagating along both

directions. To this end, we should assume an implicit travelling wave ansatz given by

φ,tt − c2φ,11 = 0, ψ,tt − c2ψ,11 = 0, (2.43)

where φ = φ(x1, x3, t) and ψ = ψ(x1, x3, t). It is easily verified that on employing the last

assumptions, the wave equations (2.27) become the elliptic equations (2.30), with all the fol-

lowing derivations above being perfectly valid and leading to the eigensolution of arbitrary

profile (2.40).

To conclude this subsection, we note that the obtained representation of the Rayleigh wave

field in terms of a single harmonic function may be generalised to the 3D case. More details

on the subject may be found in the recent contribution by Kiselev & Parker (2010). The same

results also follow from a more general analysis in Dai et al. (2010).
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3 Rayleigh-type interfacial and edge elastic waves

In this section we discuss several extensions of the Rayleigh elastic wave, including the waves

localised at solid-fluid and solid-solid interfaces. In addition, we derive the dispersion relation

for the bending wave propagating along the edge of a semi-infinite thin elastic plate. All of

these waves were originally referred to as Rayleigh-type waves, see Stoneley (1924), Schölte

(1949), Gogoladze (1948), and Konenkov (1960).

3.1 Schölte-Gogoladze wave

Let us consider the half-plane H+
2 composed of a linearly elastic isotropic material, see (2.25),

contacting with the half-plane

H−
2 =

{

(x1; x3)
∣

∣−∞ < x1 <∞, −∞ < x3 ≤ 0
}

,

occupied by an ideal fluid. We concentrate on the wave propagating along the interface x3 = 0

and decaying away from it. This wave was discovered independently by Schölte (1949) and

Gogoladze (1948) and is usually named after these authors.

The equations of motion for the elastic medium are given by (2.27), whereas the fluid motion

is governed by the wave equation

χ,tt − c2f (χ,11 + χ,33) = 0, (3.1)

where χ is the displacement potential and cf is the sound wave speed. The interfacial conditions

at x3 = 0 are written as

σ31 = 0, u3 = v, σ33 = pf , (3.2)

where v and pf are the vertical displacement and pressure in the fluid, respectively, given by

v = χ,3, pf = ρf χ,tt,

with ρf denoting the fluid volume density.

The conditions (3.2) may be presented as

2φ,13 − ψ,11 + ψ,33 = 0,

φ,3 + ψ,1 − χ,3 = 0,

µ [(κ−2 − 2)φ,11 + κ−2φ,33 − 2ψ,13]− ρfχ,tt = 0.

(3.3)
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The solution for the potentials are found from the wave equations (2.27) and (3.1) in the

form of a travelling harmonic wave ensuring decay away from the interface into the interior,

namely

(φ, ψ, χ) =
(

A1 e
−kαx3 , A2 e

−kβx3, A3 e
kγx3

)

eik(x1−ct), (3.4)

where, as before, k is the wave number, c is the sought for phase speed, the attenuation orders

α and β are defined by (2.14), and

γ =

√

1− c2

c2f
. (3.5)

Substitution of (3.4) into (3.3) results in a set of linear algebraic equations in respect of the

constants A1, A2, and A3. The solvability of the latter implies the related determinant being

zero, giving
(

1 + β2
SG

)2 − 4αSGβSG +
ρf
ρ

αSG

γSG

(

1− β2
SG

)2
= 0, (3.6)

where

αSG =

√

1− c2SG
c21
, βSG =

√

1− c2SG
c22
, γSG =

√

1− c2SG
c2f

, (3.7)

with cSG denoting the Schölte-Gogoladze wave speed. It is may be shown that the sought

for solution always exists in the interval 0 < cSG < cf provided that cf < c2 < c1, see e.g.

Gogoladze (1948), and also Viktorov (1981), tackling a more general setup. Indeed, let us

denote the left hand side of (3.6) by

SG(r) = (2− r)2 − 4
√
1− r

√
1− κ2r +

ρf
ρ

√
1− κ2r

√

1− κ2fr
r2 (3.8)

where

κf = c2/cf > 1, (3.9)

with r and κ defined by (2.19). It is then clear that

SG(0) = 0, lim
r→κ−2

f
−0

SG(r) = +∞, SG′(0) = 2(κ2 − 1) < 0, (3.10)

guaranteeing existence of the solution over the interval 0 < r < κ−2
f . It is also known that

leaky interfacial waves are possible, see e.g. Zhu et al. (2004) and references therein.

Similarly to the surface wave of arbitrary profile considered in subsection 2.2, the eigenso-

lution for the Schölte-Gogoladze wave of general time dependence may be derived, as shown

by Kiselev & Parker (2010) and Parker (2012).
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3.2 Stoneley wave

Let us now consider the wave propagating along the interface of two elastic half-planes H−
2

and H+
2 . This wave was first discovered by Stoneley (1924). Unlike the Rayleigh wave, it only

exists for a restricted range of material parameters. The existence conditions for two bonded

isotropic half-spaces have been obtained by Schölte (1947). It is also known from Barnett et al.

(1985), that the Stoneley wave speed exceeds the smaller of the Rayleigh wave speeds for the

two half-spaces. The cited contribution of Barnett et al. (1985) also contains rigorous results

on existence of the Stoneley wave on the interface of two anisotropic half-spaces. Similarly to

the Rayleigh wave, the surface-impedance matrix method may be used for robust computations

of the Stoneley wave speed, see Destrade & Fu (2006). We also mention contributions dealing

with Stoneley waves in media with more sophisticated properties, see e.g. Dowaikh & Ogden

(1991); Goda (1992); Vinh & Seriani (2010).

For the sake of simplicity, we once again restrict ourselves to the framework of the plane

strain assumption. The equations of motion are written in terms of the elastic wave potentials

as

φn,tt − c21n (φn,11 + φn,33) = 0, ψn,tt − c22n (ψn,11 + ψn,33) = 0, (3.11)

where the suffix n = 1, 2 corresponds to the elastic media occupying H+
2 and H−

2 , respectively,

and c1n and c2n denote the longitudinal and transverse wave speeds in these media. The

interfacial conditions at x3 = 0 for perfectly bonded half-spaces are given by

φ1,1 − φ2,1 + ψ1,3 − ψ2,3 = 0,

φ1,3 − φ2,3 − ψ1,1 + ψ2,1 = 0

2µ1φ1,13 − 2µ2φ2,13 + µ1 (ψ1,33 − ψ1,11)− µ2 (ψ2,33 − ψ2,11) = 0,

λ1φ1,11 + (λ1 + 2µ1)φ1,33 − λ2φ2,11 − (λ2 + 2µ2)φ2,33 − 2µ1ψ1,13 + 2µ2ψ2,13 = 0,

(3.12)

where λn and µn, n = 1, 2, are the Lamé elastic moduli.

As usual, the potentials are found from (3.11) in the form of a travelling harmonic wave

decaying away from the interface, namely

(φ1, ψ1, φ2, ψ2) =
(

A1 e
−kα1x3, A2 e

−kβ1x3, A3 e
kα2x3, A4 e

kβ2x3

)

eik(x1−ct), (3.13)

where

αn =

√

1− c2

c21n
, βn =

√

1− c2

c22n
, n = 1, 2. (3.14)
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On substituting (3.13) into (3.12), we deduce the well-known equation

c4S
(

(ρ1 − ρ2)
2 − a1a2

)

+ 2c2Sm12(ρ2b1 − ρ1b2) +m2
12b1b2 = 0, (3.15)

in which cS is the Stoneley wave speed and

a1 = ρ1α2S + ρ2α1S, a2 = ρ1β2S + ρ2β1S ,

bn = 1− αnβn, m12 = 2 (µ1 − µ2) ,
(3.16)

with

αnS =

√

1− c2S
c21n

, βnS =

√

1− c2S
c22n

, n = 1, 2. (3.17)

An interfacial Stoneley wave of arbitrary profile have been investigated by Chadwick (1976b),

resulting in the representation of the displacement field in terms of a single plane harmonic

function, similarly to the Rayleigh wave. These results have been recently generalised to three

dimensions by Kiselev & Parker (2010). The cited papers allow reduction of a vector problem

in linear elasticity for both surface and interfacial waves to a scalar Dirichlet problem for the

Laplace equation. Thus, the analysis of interfacial waves turns out to be not much different

compared to that of the Rayleigh waves.

3.3 Bending edge wave on a thin plate

Consider now the Rayleigh-type bending wave on a semi-infinite elastic plate of thickness 2h

occupying the region −∞ < x1 < ∞, 0 ≤ x2 < ∞, −h ≤ x3 ≤ h. This wave has been

originally discovered by Konenkov (1960), however, clear hints may already be seen in the

earlier work of Ishlinsky (1954) studying stability of a thin plate. It is peculiar that this wave

was rediscovered several times, for more detail see Norris et al. (2000) and Lawrie & Kaplunov

(2012).

Within the framework of the classical Kirchhoff plate theory, the deflection of the midplane

W = W (x1, x2, t) is governed by

D∆2W + 2ρhW,tt = 0, (3.18)

where ρ is volume mass density, ∆ is the Laplacian in the variables x1 and x2, and the bending

stiffness D is given by

D =
2Eh3

3 (1− ν2)
, (3.19)
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with E and ν denoting the Young’s modulus and the Poisson ratio, respectively.

In the absence of bending moments and modified shear forces the boundary conditions at

the edge x2 = 0 are written as

W,22 + νW,11 = 0,

W,222 + (2− ν)W,112 = 0.

(3.20)

The solution of (3.18) is found in the form of a travelling harmonic wave as

W (x1, x2, t) =
2

∑

j=1

Aje
i(kx1−ωt)−kγjx2 , (3.21)

where the attenuation coefficients γj are given by (ℜ(γj) > 0)

γj =

√

1 + (−1)j

√

2ρh

D

ω

k2
, j = 1, 2. (3.22)

On substituting (3.21) into (3.20), we arrive at the set of linear algebraic equations

(γ21 − ν))A1 + (γ22 − ν))A2 = 0,

((2− ν)γ1 − γ31)A1 + ((2− ν)γ2 − γ32)A2 = 0.
(3.23)

Then, on employing the solvability condition, we deduce the dispersion relation

Dk4γ4e = 2ρhω2, (3.24)

as first shown by Konenkov (1960). Here the coefficient

γe =
[

(1− ν)
(

3ν − 1 + 2
√
2ν2 − 2ν + 1

)]1/4

(3.25)

depends on the Poisson’s ratio only, see Fig. 3. In view of (3.24), we have for the attenuation

coefficients

γj =
√

1 + (−1)jγ2e , j = 1, 2. (3.26)

Thus, the bending edge wave is a dispersive analogue of the Rayleigh surface wave. It

should also be noted that such a wave may be considered within the framework of refined

plate theories, see e.g. Zakharov (2004), and may be generalised to a plate with a curved

contour as in Cherednichenko (2007). The effect of anisotropy may also be addressed, see e.g.

Norris (1994), Thompson et al. (2002). The aspects of existence and uniqueness of bending
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Figure 4: The coefficient γe vs. the Poisson’s ratio ν.

edge waves in a generally anisotropic thin elastic plate were studied by Fu (2003) by using

the edge-impedance matrix. Recent developments in the theory of bending edge waves involve

incorporating the effect of an elastic foundation, see Kaplunov et al. (2014), Kaplunov & Nobili

(2015), and Kaplunov et al. (2016). The recent contribution by Destrade et al. (2016) on a

closely related problem of edge wrinkling opens the path for bending edge waves in pre-stressed

plates.

In addition to bending edge waves in thin elastic plates, we also mention extensional waves,

see Pichugin & Rogerson (2012), and related 3D edge waves, see e.g. Kaplunov et al. (2005),

Zernov & Kaplunov (2008), and Kryshynska (2011).
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4 Hyperbolic-elliptic model for the Rayleigh wave in-

duced by surface stresses

In this section we present the derivation of an asymptotic formulation for the near-surface

wave field in an elastic half-space, induced by prescribed surface stresses. This formulation

was first reported in Kaplunov & Kossovich (2004), starting from the symbolic Lourier method,

e.g. see Kaplunov et al. (1998) and references therein. The subject was further developed in

Kaplunov et al. (2006), using a slow time perturbation procedure applied to the self-similar

eigensolution in Chadwick (1976b), followed by extension to the 3D case in Dai et al. (2010)

and other contributions. Below we present an improved perturbation scheme based on the

implicit travelling wave ansatz (2.43).

4.1 Plane strain problem

In the plane strain setup the equations of motion of the elastic isotropic half-plane H+
2 are

taken in the form (2.27), with the boundary conditions along the surface x3 = 0 given by

σ31 = Q(x1, t), σ33 = P (x1, t), (4.1)

where P (x1, t) and Q(x1, t) are prescribed surface stresses. The conditions (4.1) may be ex-

pressed in terms of the wave potentials as

2φ,13 + ψ,11 − ψ,33 =
Q

µ
,

(κ−2 − 2)φ,11 + κ−2φ,33 + 2ψ,13 =
P

µ
,

(4.2)

where, as previously, µ is the Lamé elastic shear modulus and κ = c2/c1.

In what follows we consider separately the effects of vertical (Q(x1, t) = 0) and horizontal

(P (x1, t) = 0) loads. First, we analyse the near-resonant regimes of the vertical load

P = P (x1 ± ct), (4.3)

see Fig. 5, where the load speed c is close to the Rayleigh wave speed cR, i.e.

c = cR(1± ε), (4.4)
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with a small parameter 0 < ε ≪ 1.

We proceed with a multiple scale perturbation scheme, see e.g. Cole (1968) and Nayfeh

(2000), introducing the the fast and slow time variables, τf and τs, respectively, as

τf = t, τs = εt. (4.5)

The concept of slow time is essential for modelling of the near-resonant phenomena caused by

the load of the form, see (4.3),

P = P (x1 ± cRτf , τs). (4.6)

The simplest example of a near-resonant excitation is presented in Appendix A for a single

degree of freedom linear oscillator.

On taking into account the symbolic identity

∂

∂t
=

∂

∂τf
+ ε

∂

∂τs
, (4.7)

the equations of motion (2.27) become

φ,τfτf + 2εφ,τfτs + ε2φ,τsτs − c21 (φ,11 + φ,33) = 0,

ψ,τf τf + 2εψ,τfτs + ε2ψ,τsτs − c22 (ψ,11 + ψ,33) = 0.
(4.8)

We now employ the implicit travelling wave ansatz (2.43) having

φ,τfτf − c2Rφ,11 = 0, ψ,τf τf − c2Rψ,11 = 0. (4.9)
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It is obvious that the load (4.6) satisfies (2.43) with respect to fast time, i.e.

P,τf τf − c2RP,11 = 0. (4.10)

Then, the equations (4.8) take the form

φ,33 + α2
Rφ,11 − 2

ε

c21
φ,τf τs −

ε2

c21
φ,τsτs = 0,

ψ,33 + β2
Rψ,11 − 2

ε

c22
ψ,τf τs −

ε2

c22
ψ,τsτs = 0.

(4.11)

Next, we expand the potentials in asymptotic series as

φ(x1, x3, τf , τs) = ε−1 (φ0(x1, x3, τf , τs) + εφ1(x1, x3, τf , τs) + . . . ) ,

ψ(x1, x3, τf , τs) = ε−1 (ψ0(x1, x3, τf , τs) + εψ1(x1, x3, τf , τs) + . . . ) ,
(4.12)

where the factor ε−1 is due to a near-resonant excitation, see also a similar asymptotic expansion

in Appendix A.

Below we present in detail the perturbation procedure for the potential φ, which, in view of

the ansatz (4.9), at leading order satisfies the equation

φ0,33 + α2
Rφ0,11 = 0, (4.13)

with the solution given by a plane harmonic function in the first two arguments, i.e.

φ0 = φ0(x1, αRx3, τf , τs). (4.14)

At next order

φ1,33 + α2
Rφ1,11 =

2

c21
φ0,τf τs, (4.15)

so the first order correction can be written as

φ1 = φ10 + x3φ11, (4.16)

where φ10 = φ10(x1, αRx3, τf , τs) and φ11 = φ11(x1, αRx3, τf , τs) are plane harmonic functions.

On substituting the solution (4.16) into (4.15) and using the Cauchy-Riemann identities, we

arrive at

φ11,1 =
1

αRc21
φ∗
0,τf τs

, (4.17)
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where, as previously, the asterisk denotes a harmonic conjugate function. The derivation for the

transverse potential ψ is very similar to that presented above. Thus, the two-term expansions

for the derivatives of the potentials are

φ,1 =
1

ε

[

φ0,1 + ε

(

φ10,1 +
x3
αRc21

φ∗
0,τf τs

)

+ . . .

]

,

ψ,1 =
1

ε

[

ψ0,1 + ε

(

ψ10,1 +
x3
βRc22

ψ∗
0,τf τs

)

+ . . .

]

.

(4.18)

It may be readily observed that the obtained expansion is essentially a slow time perturbation

of the eigensolution for the Rayleigh wave of arbitrary profile discussed in subsection 2.2.

On substituting (4.18) into (4.2) atQ = 0 and making use of the Cauchy-Riemann identities,

we obtain at leading order

2αRφ0,11 + (1 + β2
R)ψ

∗
0,11 = 0,

(1 + β2
R)φ0,11 + 2βRψ

∗
0,11 = 0,

(4.19)

implying the Rayleigh equation

(

1 + β2
R

)2 − 4αRβR = 0 (4.20)

as a solvability condition. In addition, we recover the relations (2.37) between the leading

order potentials φ0 and ψ0.

At next order we deduce

2φ10,113 + ψ10,111 − ψ10,133 = − 2

αRc21
φ∗
0,1τf τs

+
2

βRc22
ψ∗
0,3τf τs

,

(κ−2 − 2)φ10,111 + κ−2φ10,133 + 2ψ10,113 = − 2

αRκ2c
2
1

φ∗
0,3τf τs

− 2

βRc
2
2

ψ∗
0,1τf τs

+
P,1

µ
.

(4.21)

Then, on using the Cauchy-Riemann identities along with (2.37), these equations may be

simplified to

2αRφ10,111 + (1 + β2
R)ψ

∗
10,111 =

(

2

αRc
2
1

− 1 + β2
R

βRc
2
2

)

φ0,1τf τs,

(1 + β2
R)φ10,111 + 2βRψ

∗
10,111 =

(

2

c22
− 1 + β2

R

β2
Rc

2
2

)

φ0,1τf τs −
P,1

µ
.

(4.22)

The solvability of the latter implies

φ0,τf τs = −(1 + β2
R)c

2
R

4µB
P, (4.23)
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where

B =
αR

βR
(1− β2

R) +
βR
αR

(1− α2
R)− 1 + β4

R (4.24)

is a dimensionless constant. On taking into account the leading order approximation φ = ε−1φ0

and the ansatz (4.9), the relation (4.23) may be rewritten as

φ,τfτf + 2εφ,τfτs − c2Rφ,11 = −(1 + β2
R) c

2
R P

2µB
. (4.25)

Now, employing the approximate symbolic formula

∂2

∂t2
=

∂2

∂τ 2f
+ 2ε

∂2

∂τs∂τf
+O(ε2), (4.26)

we restate (4.25) in terms of the original variables as

φ,11 −
1

c2R
φ,tt =

(1 + β2
R)P

2µB
. (4.27)

Thus, the asymptotic formulation for the Rayleigh wave involves a scalar problem for the

pseudo-static elliptic equation

φ,33 + α2
Rφ,11 = 0, (4.28)

subject to the Dirichlet boundary condition at x3 = 0 in the form of the 1D wave equation

(4.27). The transverse potential ψ may then be restored from (2.38).

We also note that the hyperbolic equation (4.27) can be transformed to an equation for

the horizontal displacement u1. Indeed, on differentiating (4.27) with respect to x1 and using

(2.40) at x3 = 0, we get

u1,11 −
1

c2R
u1,tt =

1− β4
R

4µB
P,1. (4.29)

Consider now the boundary conditions (4.2) for a horizontal load, when P = 0. A very

similar procedure leads to the same two-term expansions (4.18). The analysis of the boundary

conditions gives the Rayleigh equation (4.20) at leading order, along with the relations (2.37)

between the potentials φ0 and ψ0. Finally, we arrive at a 1D wave equation for the potential

ψ which can be written as

ψ,11 −
1

c2R
ψ,tt = −(1 + β2

R)Q

2µB
. (4.30)

Its solution provides a Dirichlet boundary condition for the elliptic equation given by

ψ,33 + β2
Rψ,11 = 0. (4.31)
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In this case the potential φ follows from (2.39). Similarly to (4.29), we also have

u3,11 −
1

c2R
u3,tt = −1− β4

R

4µB
Q,1. (4.32)

The asymptotic formulations (4.27), (4.28) and (4.30), (4.31) reveal a dual hyperbolic-elliptic

nature of the Rayleigh wave. Indeed, the elliptic equations (4.28) and (4.31) characterise decay

of a wide range of surface disturbances into the interior, whereas the 1D wave equations (4.27)

and (4.30) govern the wave propagation along the surface with a finite speed cR. At the same

time, it should be emphasized that a hyperbolic wave-like behaviour is only typical for one of

the potentials along the surface, see (4.27) and (4.30).

Finally, it should be noted that the applicability of the developed explicit formulations for

the surface wave field is not restricted only to near-resonant loading as in (4.6). In fact, it may

be shown, using the integral transform technique, that they approximate the contribution of

the Rayleigh wave to the overall dynamic response for an arbitrary surface load as well. For

example, in case of the vertical load P = P (x1, t) the transformed solution of the problem

(4.27) and (4.28) is given by

φFL = −(1 + β2
R) c

2
R e

−αR|p|x3

2µB (p2 + c2Rk
2)

P FL, (4.33)

where k and p are the Fourier and Laplace transform parameters, respectively, and the su-

perscript FL denotes Fourier-Laplace transforms. The formula (4.33) coincides with the local

behaviour of the transformed exact solution of the original plane problem near the Rayleigh

wave poles, see consideration in subsection 4.3.1 ensuring identical surface wave patterns.

4.2 3D problem

Let us generalise the analysis in the previous subsection to the 3D setup, in which the equations

of motion are taken in the form (2.4), with the boundary conditions at x3 = 0 written as

σ3i = Qi(x1, x2, t), σ33 = P (x1, x2, t), i = 1, 2. (4.34)

4.2.1 Vertical load

Consider a vertical load, see Fig. 6, when Q1 = Q2 = 0 in (4.34). First, we specify the Radon
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Figure 6: An elastic half-space under a vertical load.

integral transform

f (α) (χ, α, x3, t) =

∞
∫

−∞

f (χ cosα− η sinα, χ sinα + η cosα, x3, t) dζ, (4.35)

where

χ = x1 cosα + x2 sinα, η = −x1 sinα + x2 cosα,

with the angle α varying over the interval 0 ≤ α < 2π; here and below the Radon transforms are

supplied with the superscript (α). It is well-known that the Radon transform allows reduction

of the original 3D problem in elasticity to a 2D problem for the associated transforms, see

Georgiadis & Lykotrafitis (2001).

Let us also define transformed displacements in the Cartesian frame (χ, η) as

u(α)χ = u
(α)
1 cosα+ u

(α)
2 sinα, u(α)η = −u(α)1 sinα + u

(α)
2 cosα, (4.36)

imposing the assumption

u(α)η = 0, (4.37)

meaning that anti-plane motion does not induce surface waves.

On taking into account (4.37), the transformed equations of motion (2.4) become, see also
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Dai et al. (2010),

(λ+ 2µ)u
(α)
χ,χχ + µu

(α)
χ,33 + (λ+ µ)u

(α)
3,χ3 = ρu

(α)
χ,tt,

(λ+ µ)u
(α)
χ,χ3 + µu

(α)
3,χχ + (λ+ 2µ)u

(α)
3,33 = ρu

(α)
3,tt.

(4.38)

The transformed boundary conditions (4.34) at Q1 = Q2 = 0 are written as

σ
(α)
χ3 = µ

(

u
(α)
χ,3 + u

(α)
3,χ

)

= 0,

σ
(α)
33 = µu

(α)
χ,χ + (λ+ 2µ)u

(α)
3,3 = P (α).

(4.39)

The equations (4.38) and (4.39) are formally identical to those in the plane strain problem.

Therefore, we can introduce the conventional scalar wave potentials φ(α) and ψ(α), having

u(α)χ =
∂φ(α)

∂χ
− ∂ψ(α)

∂x3
, u

(α)
3 =

∂φ(α)

∂x3
+
∂ψ(α)

∂χ
(4.40)

and follow the multiple scale procedure developed in the previous subsection. In this case the

transformed implicit travelling wave ansatz, see (2.43),

φ(α)
,τfτf

− c2Rφ
(α)
,χχ = 0. (4.41)

corresponds to the 2D wave equation

φ,τf τf − c2R∆φ = 0, (4.42)

where ∆ denotes the 2D Laplace operator in x1 and x2.

The analogues of the two-term asymptotic expansions (4.18) become

φ(α)
,χ =

1

ε

[

φ
(α)
0,χ + ε

(

φ
(α)
10,χ +

x3
αRc21

φ
(α) ∗
0,τf τs

)

+ . . .

]

,

ψ(α)
,χ =

1

ε

[

ψ
(α)
0,χ + ε

(

ψ
(α)
10,χ +

x3
βRc

2
2

ψ
(α) ∗
0,τf τs

)

+ . . .

]

.

(4.43)

On substituting these formulae into the boundary conditions (4.39), at leading order we obtain

the Rayleigh wave equation and the relations between the potentials mirroring (2.37), whereas

at next order the solvability dictates

φ
(α)
0,τf τs

= −(1 + β2
R)c

2
R

4µB
P (α), (4.44)

with the material constant B defined by (4.24). Finally, the explicit formulation for the Radon

transforms includes the hyperbolic equation

φ(α)
,χχ −

1

c2R
φ
(α)
,tt =

(1 + β2
R)P

(α)

2µB
, (4.45)
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along the surface x3 = 0, following from (4.44) and providing the boundary condition for the

elliptic equation

φ
(α)
,33 + α2

Rφ
(α)
,χχ = 0 (4.46)

over the interior. Now, the transformed potential ψ(α) satisfies the equation

ψ
(α)
,33 + β2

Rψ
(α)
,χχ = 0, (4.47)

being related on the surface to φ(α) by the formulae

ψ(α)
,χ = − 2

1 + β2
R

φ
(α)
,3 (4.48)

and

ψ
(α)
,3 =

1 + β2
R

2
φ(α)
,χ . (4.49)

Next, we introduce a pair of the potentials ψ
(α)
1 = ψ(α) cosα and ψ

(α)
2 = ψ(α) sinα in order

to invert the transforms in (4.46)-(4.49). As a result, we get the elliptic equations

φ,33 + α2
R∆φ = 0, ψi,33 + β2

R∆ψi = 0, i = 1, 2, (4.50)

governing behaviour over the interior. The boundary conditions at x3 = 0 include a 2D wave

equation for the potential φ, i.e.

∆φ− 1

c2R
φ,tt =

(1 + β2
R)P

2µB
, (4.51)

along with the relations

φ,i =
2

1 + β2
R

ψi,3, φ,3 = −1 + β2
R

2
(ψ1,1 + ψ2,2) , i = 1, 2. (4.52)

The Helmholz representation (2.5) for the displacement vector u may now be written as

u = gradφ+ curlΨ, (4.53)

where Ψ = (−ψ2, ψ1, 0), as observed in Kaplunov & Prikazchikov (2013). In view of (4.52) and

(4.53), at x3 = 0

ui =
1− β2

R

2
φ,i, i = 1, 2. (4.54)

Hence, we deduce hyperbolic equations on the surface for the horizontal displacements, u1

and u2, namely,

∆ui −
1

c2R
ui,tt =

1− β4
R

4µB
P,i, i = 1, 2, (4.55)

corresponding to (4.29) within the plane strain formulation.
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4.2.2 Horizontal load

Consider now a horizontal load, setting P = 0 in (4.34), see Fig. 7. First, we decompose the
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Figure 7: An elastic half-space under a horizontal load.

surface stresses using the Helmholz theorem into the gradient and rotational parts, Qg(x1, x2, t)

and Qr(x1, x2, t), respectively, as

Q1 = Qg,1 +Qr,2, Q2 = Qg,2 −Qr,1. (4.56)

On applying the Radon transform (4.35) along with the assumption (4.37), we express the

boundary conditions (4.34) as

µ
(

2φ
(α)
,χ3 + ψ

(α)
,χχ − ψ

(α)
,33

)

= Q
(α)
g,χ,

(κ−2 − 2)φ
(α)
,χχ + κ−2φ

(α)
,33 + 2ψ

(α)
,χ3 = 0.

(4.57)

Thus, as might be expected, the rotational part of the load does not contribute to the excitation

of the Rayleigh wave, see Ege et al. (2015) for further detail.

A slow time perturbation procedure similar to that developed in subsection 4.1, results in

a boundary value problem for the elliptic equation

ψ
(α)
,33 + β2

Rψ
(α)
,χχ = 0. (4.58)

Predictably, the surface wave propagation along the boundary x3 = 0 is governed by the

hyperbolic equation

ψ(α)
,χχ −

1

c2R
ψ

(α)
,tt = −1 + β2

R

2µB
Q(α)

g,χ. (4.59)
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The transformed potential φ(α) is then found from (4.47) combined with any of the relations

(4.48) or (4.49).

On applying the inverse Radon transform to the formulae above, we arrive at the same 3D

pseudo-static elliptic equations

φ,33 + α2
R∆φ = 0, ψi,33 + β2

R∆ψi = 0, i = 1, 2, (4.60)

together with the relations between the potentials at x3 = 0

φ,i =
2

1 + β2
R

ψi,3 φ,3 = −1 + β2
R

2
(ψ1,1 + ψ2,2) , i = 1, 2. (4.61)

The counterpart of (4.51) now involves a 2D vector hyperbolic equation containing the gradient

part of the in-plane load Qg, namely

∆ψi −
1

c2R
ψi,tt = −1 + β2

R

2µB
Qg,i, i = 1, 2. (4.62)

We also write down the 2D wave equation for the vertical displacement u3 on the surface

x3 = 0, following from (4.52) and (4.53), complementing (4.32)

∆u3 −
1

c2R
u3,tt =

1− β4
R

4µB
∆Qg. (4.63)

4.3 Examples

This subsection contains a few examples of dynamic surface loading demonstrating the ad-

vantages of the explicit formulation for the Rayleigh wave developed in subsections 4.1 and

4.2.

4.3.1 Comparison with 2D exact solution

Let us compare the approximate solution coming from the derived hyperbolic-elliptic formu-

lation with the exact solution of the plane strain problem. For example, for the vertical load

P = P (x1, t) we get by applying the double Fourier-Laplace integral transform in (2.27) and

(4.2) at Q = 0

φFL
,33 − k2a2Rφ

FL = 0, ψFL
,33 − k2b2Rφ

FL = 0, (4.64)
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subject to

2ikφFL
,3 − k2ψFL − ψFL

,33 = 0,

(2− κ−2) k2ψFL + κ−2φFL
,33 + 2ikψFL

,3 =
P FL

µ
,

(4.65)

at x3 = 0. In the above

aR =

√

1 +
p2

c21k
2
, bR =

√

1 +
p2

c22k
2
, (4.66)

where k and p are the Fourier and Laplace transform parameters, respectively.

The solution of the problem (4.64) and (4.65) for the transformed potential φFL is given by

φFL = −1 + b2R
R

P FL

µ

e−aR|k|x3

k2
, (4.67)

where

R = R

(

p2

k2

)

= 4

√

1 +
p2

c21k
2

√

1 +
p2

c22k
2
−
(

2 +
p2

c22k
2

)2

. (4.68)

At the same time, within the framework of the hyperbolic-elliptic model in 4.1, the associated

transformed solution takes the form (4.33). It is clear that the Rayleigh poles in (4.67) are

given by p2 = −c2Rk2. In this case the quantities aR and bR defined by (4.66) become αR

and βR, respectively. Therefore, by expanding the denominator R in (4.67) as a Taylor series

around p2 = −c2Rk2, we have

R ≈ R′(−c2R)
(

p2

k2
+ c2R

)

= 2B

(

1 +
p2

c2Rk
2

)

, (4.69)

where B is the same as in (4.24).

Thus, the approximation of (4.67) in the vicinity of the Rayleigh poles coincides with (4.33),

providing another justification of the validity of the developed model. We remark that the

consideration in this subsection is restricted to the loads, which do not generate the poles that

are close to the Rayleigh ones, arising from P FL in the transformed solution (4.67).

The proposed approach brings in a significant simplification of the Rayleigh wave analysis,

reducing the original problem to a scalar problem for the elliptic equation (4.28) together with

a boundary condition in the form of the hyperbolic equation (4.27).

Consider, for example, the Lamb problem, see Lamb (1904), for the vertical point impulse

P = P0δ(x1)δ(t). In this case P FL = P0 in (4.67). On evaluating the residues related to the
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Rayleigh poles and taking the inverse Fourier transform, we get

φ =
(1 + β2

r )cR P0

4πµB

[

tan−1 x1 − cRt

αRx3
− tan−1 x1 + cRt

αRx3

]

. (4.70)

The last formula also follows from (4.33). However, the derivation starting from the Rayleigh

wave model allows a more straightforward treatment, which does not require double integral

transforms. Indeed, we solve the hyperbolic equation

φ,11 −
1

c2R
φ,tt =

(1 + β2
R)P0

2µB
δ(x1)δ(t), (4.71)

on the surface x3 = 0, immediately having

φ
∣

∣

x3=0
=

(1 + β2
R)cRP0

4µB
[H(x1 − cRt)−H(x1 + cRt)] , (4.72)

which follows from the fundamental solution of the wave equation, e.g. see Polyanin (2002).

Then, the Poisson formula, e.g. see Courant & Hilbert (1989), enables the potential φ to be

restored over the interior, coinciding with (4.70).

Thus, for the studied 2D problem the approximate approach captures the contribution of

the Rayleigh wave, which is usually dominant in the far-field zone, see also a practical example

in Chouet (1985).

4.3.2 2D near-resonant time-harmonic excitation

Next, investigate the time-harmonic plane strain problem for the vertical load

P = P0e
ik(x1−ct), (4.73)

where k is the wave number and c is the phase speed (4.4), being close to the Rayleigh wave

speed cR.

The solution for the potential φ within the approximate formulation (4.27) and (4.28) is

readily obtained in the form

φ =
(1 + β2

R)P0

2µBk2
c2R

c2 − c2R
eik(x1−ct)−kαRx3, (4.74)

demonstrating a resonant response as c→ cR.
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For the sake of definiteness, below we set c = (1 + ε)cR. Then, c
2 − c2R ≈ 2εc2R. Hence, the

near-resonant behaviour of (4.74) becomes

φ =
(1 + β2

R)P0

4εµBk2
eik(x1−ct)−kαRx3 . (4.75)

Now, let us study the exact 2D solution for the prescribed near-resonant harmonic loading.

The same potential φ, satisfying the equations (2.27), subject to the conditions (4.2) with P

in the form of (4.73), is written as

φ =
P0(1 + β2)

µk2R(c)
eik(x1−ct)−kαx3 , (4.76)

with

R(c) = (1 + β2)2 − 4αβ (4.77)

and α and β defined by (2.14). On employing the asymptotic formulae

α ∼ αR

(

1− ε
1− α2

R

α2
R

)

, β ∼ βR

(

1− ε
1− β2

R

β2
R

)

, (4.78)

we deduce

R(c) ∼ (1 + β2
R)

2 − 4αRβR + 4ε

[

αR

βR
(1− β2

R) +
βR
αR

(1− α2
R)− 1 + β4

R

]

= 4εB, (4.79)

with B defined by (4.24). Thus, the limiting behaviour of (4.76) coincides with (4.75), since

at leading order α ∼ αR and β ∼ βR as c→ cR.

A comparison of the asymptotic and exact solutions, given by (4.75) and (4.76), respectively,

is demonstrated in Fig. 8, where the scaled potential

φs =
εµk2

P0
e−ik(x1−ct)φ(x1, 0, t) (4.80)

is displayed. Here the solid line shows variation of the exact solution over a range of near-

resonant speeds, whereas the dashed line corresponds to the asymptotic model, clearly match-

ing at ε = 0.

In addition to the consideration in subsection 4.3.1 mainly oriented to the far-field analysis,

this example highlights another major application of the proposed methodology, associated

with a near-resonant excitation.
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Figure 9: An axisymmetric vertical point load.

4.3.3 Axisymmetric and 3D problems for point impulses

Let us now analyse the effect of a vertical point force, setting P = P0δ(x1)δ(x2)δ(t) and

Q1 = Q2 = 0 in (4.34), see Fig. 9.

The longitudinal potential φ on the surface is found as the fundamental solution of the wave

equation, see e.g. Polyanin (2002). It follows from (4.51), that

φ(x1, x2, 0, t) =
(1 + β2

R)P0

4πµBcR

H (cRt− r)
√

c2Rt
2 − r2

, (4.81)

where r =
√

x21 + x22 is the polar radius. In order to restore the potential φ over the interior,

we solve the equation (4.50) with the boundary condition (4.81). On applying the Hankel
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transform, we get
∂ 2φH

∂x23
− α2

Rp
2φH = 0, (4.82)

where

φH =

∞
∫

0

φ(r, x3, t)J0(pr)rdr. (4.83)

Therefore,

φ(x1, x2, x3, t) =
(1 + β2

R)P0

4πµBcR

∞
∫

0

sin(cRpt)exp(αRpx3)J0(pr) dp

=
(1 + β2

R)P0

4πµBcR
Im

∞
∫

0

exp [−(αRpx3 − icRt)] J0(pr) dp,

=
(1 + β2

R)P0

4πµBcR
Im

{

[

r2 + (αRx3 − icRt)
2
]−1/2

}

. (4.84)

Then, using the relations (4.52), we obtain the potentials ψn, n = 1, 2, in the form

ψ1(x1, x2, x3, t) = − αRP0

2πµcRB
Re

{

cos θ(βRx3 − icRt)

r [r2 + (βRx3 − icRt)2]
1/2

}

. (4.85)

and

ψ2(x1, x2, x3, t) = − αRP0

2πµBcR
Re

{

sin θ(βRx3 − icRt)

r [r2 + (βRx3 − icRt)2]
1/2

}

, (4.86)

where θ is the polar angle. It may also be verified that (4.84)-(4.86) satisfy both (4.50) and

(4.52).

The behaviour of the scaled longitudinal potential

φ∗(r1, z) = Im
{

[

r21 + (αRz − i)2
]−1/2

}

,

with

r1 =
r

cRt
, z =

x3
cRt

,

is illustrated in Fig 10. The Rayleigh wave front propagating along the surface is shown by

dotted line at r1 = 1. The associated discontinuity becomes smoother with depth as seen from

Fig. 10. Graphs for the scaled transverse potential

ψ1∗(r1, z) = Re

{

cos θ(βRz − i)

r1 [r21 + (βRz − i)2]
1/2

}

,
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Figure 12: A horizontal point load.

are plotted in Fig. 11 for θ = 0. Obviously, we may expect a similar behaviour of the second

component of the transverse potential ψ2.

Next, we investigate the effect of a horizontal point impulse, see Fig. 12, on substituting

Q1 = Q0δ(x1)δ(x2)δ(t), and Q2 = P = 0 into (4.34).

We restrict ourselves to analysis of the surface transverse displacement only. First, we

decompose the prescribed in-plane load (Q1, Q2) according to (4.56), having

∆Qg = Q0δ
′(x1)δ(x2)δ(t). (4.87)

This allows a straightforward evaluation of the aforementioned displacement governed by

(4.63). Indeed, on using (4.87) along with the fundamental solution (4.81), we finally arrive at

u3(x1, x2, 0, t) =
cRQ0(1− β4

R)r cos θ

8πµB

H (cRt− r)

(c2Rt
2 − r2)

3/2
. (4.88)
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5 Generalisations of the hyperbolic-elliptic model

5.1 Coated half-space

The asymptotic formulation derived in the previous section may be extended to a coated half-

space at the long-wave limit. Consider an elastic half-space H+
3 coated by an elastic layer

occupying the region −h ≤ x3 ≤ 0, see Fig. 13. Throughout this subsection we assume the

x
1

x3

P

h

xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx

0

Figure 13: A half-space coated by a thin elastic layer

thickness of the coating h to be small in comparison with a typical wave length L, i.e. h≪ L.

Similarly to subsection 4.2, we impose the boundary conditions (4.34) on the upper face of

the coating x3 = −h. We also assume continuity of all displacements and stresses along the

interface x3 = 0 and restrict ourselves to a vertical load only.

A standard asymptotic technique, applied to a thin coating, for more details see Dai et al.

(2010) and references therein, results in effective boundary conditions on the interface x3 = 0,

namely

σ31 = ρ0h
{

u1,tt − c220
[

u1,22 + 4
(

1− κ−2
0

)

u1,11 +
(

3− 4κ−2
0

)

u2,12
]}

,

σ32 = ρ0h
{

u2,tt − c220
[

u2,11 + 4
(

1− κ−2
0

)

u2,22 +
(

3− 4κ−2
0

)

u1,12
]}

,

and

σ33 = ρ0h u3,tt + P.

(5.1)

where ρ0 is density of the coating, c10 and c20 are associated bulk wave speeds, and κ0 = c10/c20.

Thus, the original problem for a coated half-space is reduced to analysis of the homogeneous

half-space H+
3 subject to the boundary conditions (5.1) imposed along its surface x3 = 0. In

this case the transformed equations

φ
(α)
,χχ + φ

(α)
,33 − 1

c21
φ
(α)
,tt = 0, ψ

(α)
,χχ + ψ

(α)
,33 − 1

c22
ψ

(α)
,tt = 0, (5.2)
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following from (4.38) and (4.40), are accompanied by the boundary conditions at x3 = 0

µ
[

2φ
(α)
,χ3 + ψ

(α)
,χχ − ψ

(α)
,33

]

= µ0h
[

c−2
20

(

φ
(α)
,χtt − ψ

(α)
,3tt

)

− 4
(

1− κ−2
0

)

(

φ
(α)
,χχχ − ψ

(α)
,3χχ

)]

,

µ
[

(κ2 − 2)φ
(α)
,χχ + κ2φ

(α)
,33 + 2ψ

(α)
,χ3

]

= µ0hc
−2
20

(

φ
(α)
,3tt + ψ

(α)
,χtt

)

− P (α).

(5.3)

A multiple scale perturbation procedure similar to that in subsection 4.1 results in a singularly

perturbed hyperbolic equation on the surface x3 = 0, which can be written as

φ(α)
,χχ −

1

c2R
φ
(α)
,tt +

bh

αR

φ
(α)
,3χχ =

1 + β2
R

2µB
P (α), (5.4)

where the constant

b =
µ0

µ

(1− β2
R)

2B

[

(1− β2
R0)(αR + βR)− 4βR(1− κ−2

0 )
]

(5.5)

depends on the properties of both the substrate and the coating, with B defined in (4.24).

In the original variables, we get from (5.4)

∆φ− 1

c2R
φ,tt +

bh

αR
∆φ,3 =

(1 + β2
R)P

2µB
, (5.6)

which is a boundary condition for the elliptic equation (4.60), where, as before, ∆ is the 2D

Laplace operator in the variables x1 and x2.

The perturbed hyperbolic equation (5.6) can also be presented in a pseudo-differential form,

i.e.

∆φ− 1

c2R
φ,tt − bh

√
−∆(∆φ) =

(1 + β2
R)P

2µB
. (5.7)

In the plane strain case it becomes

φ,11 −
1

c2R
φ,tt − bh

√

−∂,11φ,11 =
(1 + β2

R)P

2µB
. (5.8)

This can also be rewritten using the Hilbert transform as

φ,11 −
1

c2R
φ,tt − bhĤφ,111 =

(1 + β2
R)P

2µB
, (5.9)

where

Ĥf(x) =
1

π

∞
∫

−∞

f(ξ)

ξ − x
dξ, (5.10)

denotes the Hilbert transform, e.g. see Erdelyi et al. (1954).
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Thus, the presence of a coating inevitably leads to a pseudo-differential or an integro-

differential formulation.

The derived equation enables a straightforward approximation of the exact dispersion rela-

tion, e.g. see Shuvalov & Every (2008). Naturally, we deduce from (5.8) that

vph =
c

cR
= 1− b

2
|kh|+ . . . , (5.11)

demonstrating that the Rayleigh wave speed cR is a local extremum over the long-wave domain

kh≪ 1, where, as usual, k denotes the wave number, see Fig. 14.

0 kh

v

1

0

v

1
b < 0 > 0b

ph ph

kh

(a) (b)

Figure 14: Local extrema of the phase speed.

In order to illustrate the developed approach, let us consider an impulse point load, setting

P = P0δ(x1)δ(t) in the R.H.S. of (5.8) and specify the dimensionless variables as

X =
x1
L
, τ =

cRt

L
, (5.12)

where L is a chosen linear scale. Then, on introducing the quantities

Θ = − φ

B0
, hL =

h|b|
L

≪ 1 (5.13)

where

B0 =
(1 + β2

R) cRP0

4µB
, (5.14)

the equation (5.8) becomes

Θ,XX −Θ,ττ − hLsgn(b)
√

−∂XX Θ,XX = −δ(X)δ(τ). (5.15)

Below we implement the method of matched asymptotic expansions, see e.g. Cole (1968)

and Nayfeh (2000). The inner co-ordinate associated with the boundary layer occurring in the

vicinity of the Rayleigh wave front X = τ is

ζ =
τ −X√
hL

. (5.16)

39



Thus, the width of the boundary layer is O(h
1/2
L ). On substituting (5.16) into the homogeneous

equation (5.15), we obtain for the inner region at leading order

Θinn
,τ − hL

2
sgn(b)

√

−∂,ζζΘinn
,ζ = 0. (5.17)

The solution of (5.17) is written as

Θinn =
1

2π

∞
∫

−∞

(

C(ω) exp

[

iω

(

ζ0 −
hL|ω|τ sgn(b)

2

)])

dω, (5.18)

where ζ0 = τ −X and C(ω) has to be determined from matching with the leading oder outer

expansion.

In the outer region (5.15) reduces to the wave equation

Θout
,XX −Θout

,ττ = −2δ(X)δ(τ), (5.19)

from which we have

Θout = H (ζ0) =
1

2π

∞
∫

−∞

(

πδ(ω) +
1

iω

)

exp (iωζ0) dω. (5.20)

Matching of the expansions (5.18) and (5.20) yields

Θinn =
1

2π

∞
∫

−∞

(

πδ(ω) +
1

iω

)

exp

[

iω

(

ζ0 −
hLωτ sgn(b)

2

)]

dω, (5.21)

resulting in the uniform asymptotic behaviour

Θ =
1

2
− 1

π
sgn(b) I

(

(X − τ) sgn(b)√
2hLτ

)

, (5.22)

where

I(x) =

∞
∫

0

sin (t2 + 2tx)

t
dt =

π

2

[

1

2
+ sgn(x) [C(x) + S(x)]− C2(x)− S2(x)

]

, (5.23)

and C(x) and S(x) are Fresnel integrals, see e.g. Prudnikov et al. (1986),

C(x) =

x
∫

0

cos
(π

2
t2
)

dt, S(x) =

x
∫

0

sin
(π

2
t2
)

dt. (5.24)
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Figure 15: Receding and advancing Rayleigh wave fronts.

Numerical results illustrating the effect of the coating on smoothing the wave front are

displayed in Fig. 15 for τ = 1 and hL = 0.01. In case b > 0 corresponding to the local

maximum of the phase velocity at the Rayleigh wave speed, see Fig. 14(a), we observe a

receding front. Another case b < 0 is associated with the minimum of the phase velocity

leading to an advancing front, see Fig. 14(b). We also remark that similar graphs expressed

in terms of Airy functions were observed for receding and advancing fronts in the problem of

pre-stressed plate extension, see Kaplunov et al. (2000).

5.2 Mixed boundary value problems

The formulation for the Rayleigh wave developed in subsection 4.1 may also be extended to

mixed boundary value problems in linear elasticity. Consider a vertical stamp acting on the

surface of the elastic half-plane H+
2 , see (2.25). The boundary conditions at x3 = 0 include

the normal stress P and vertical displacements U3 prescribed along the disjoint parts of the

surface S1 and S2, (S1 ∪ S2 = R), respectively, see Fig. 16, along with zero tangential stress,

i.e.

σ33 = P (x1, t), at x1 ∈ S1,

u3 = U3(x1, t), at x1 ∈ S2,

σ31 = 0, at x1 ∈ R.

(5.25)

On employing (4.27) and (4.28) along with (2.38), we arrive at a scalar mixed boundary

value problem for the elliptic equation

φ,33 + α2
Rφ,11 = 0 (5.26)
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Figure 16: A vertical rigid stamp

subject to the following mixed boundary conditions along the surface x3 = 0

φ,11 −
1

c2R
φ,tt =

1 + β2
R

2µB
P, at x1 ∈ S1, (5.27)

and

φ,3 =
1 + β2

R

1− β2
R

U3, at x1 ∈ S2, (5.28)

see Erbaş et al. (2013) for more detail. The shear potential ψ may then be determined through

(2.38).

We stress that the approximate formulation above is meaningful only provided that the

contribution of the Rayleigh wave is dominant compared to that of the bulk waves. As an

example, consider the near-resonant regime of a stamp, moving steadily at the constant speed

c given by (4.4), setting in the above formulae U3(x1, t) = f(x1 − ct) and also assuming for

simplicity the absence of normal stresses on S2, see Fig. 17.
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Figure 17: Steady-state motion of a rigid stamp.

On introducing the moving coordinate s = x1 − ct, the problem (5.26) - (5.28) may be

reduced to a standard mixed problem for the Laplace equation for the scaled normal derivative

ϕ1(s, z) =
β2
R − 1

β2
R + 1

φ,3, (5.29)

where z = αRx3. Indeed, we have

ϕ1,zz + ϕ1,ss = 0, (5.30)
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with the mixed boundary conditions

ϕ1 = f(s), at s ∈ S ′
2 (5.31)

and

ϕ1,z = 0, at s ∈ S ′
1, (5.32)

where and S ′
1 and S ′

2 are the traction free and constrained parts of the surface z = 0, respec-

tively.

The vertical displacement is expressed in terms of the quantity ϕ1 as

u3(s, x3) =
1

β2
R − 1

[(

β2
R + 1

)

ϕ1(s, αRx3)− 2ϕ1(s, βRx3)
]

. (5.33)

This result matches the limiting behaviour of the exact solution (B.6), see also (B.14) and

(B.15), as c→ cR, leading to α→ αR and β → βR. It is confirmed by the numerical comparison

in Erbaş et al. (2013) for a semi-infinite stamp of an exponential shape f(s) = be−as, where

a, b > 0. For the latter

ϕ1(s, z) = bRe
{

e−aq
[

1− erf
(√

−aq
)]}

, (5.34)

where q = s+ iz, see Sveshnikov & Tikhonov (2005), and

erf(q) =
2√
π

q
∫

0

e−x2

dx

is the error function, e.g. see Abramowitz & Stegun (2012).

A resonant nature of the Rayleigh wave is also clearly seen from the formula for the normal

stress under the stamp

σ33(s, 0) =
2µBα3

R (c2 − c2R)

(β2
R − 1)c2R

ϕ1,z(s, 0) at s ∈ S2, (5.35)

demonstrating that the limit as c → cR corresponds to asymptotically vanishing stresses in-

duced by displacements of finite magnitude.

The approach exposed in this subsection can also be adapted for high speed moving cracks

and dislocations, see e.g. important contributions by Eshelby (1949), Yoffe (1951), along

with the substantial book by Freund (1990). In particular, it would be interesting to apply

the hyperbolic-elliptic model for surface waves to analysis of crack front waves, see Willis &

Movchan (1995), Morrissey & Rice (1998), Norris & Abrahams (2007), and references therein.
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5.3 Interfacial waves

In this subsection we implement the proposed methodology to the Schölte-Gogoladze and

Stoneley interfacial waves introduced in section 3. Similarly to the Rayleigh wave, we obtain

a scalar formulation for an elliptic equation over the interior, subject to the condition in the

form of a hyperbolic equation along the interface.

5.3.1 Schölte-Gogoladse wave

The equations of motion are given by (2.27) and (3.1), respectively. Let us focus on the wave

field arising from a vertical interfacial load P , assuming the following contact conditions at

x3 = 0

σ31 = 0, u3 = v, σ33 − pf = P (x1, t). (5.36)

The relations (5.36) expressed in terms of the potentials φ, ψ, and χ become

2φ,13 − ψ,11 + ψ,33 = 0,

φ,3 + ψ,1 − χ,3 = 0,

µ [(κ−2 − 2)φ,11 + κ−2φ,33 − 2ψ,13]− ρfχ,tt = P.

(5.37)

Then, similarly to the consideration in subsection 4.1, we establish a multiscale perturbation

procedure resulting in an approximate hyperbolic-elliptic formulation for the Schölte-Gogoladze

wave. The behaviour over the interior is again governed by the elliptic equation

φ,33 + α2
SGφ,11 = 0, (5.38)

whereas the wave propagation along the interface is described by the hyperbolic equation

∂ 2φ

∂x21
− 1

c2SG

∂ 2φ

∂t2
=

1 + β2
SG

2µBSG
P, (5.39)

where

BSG =
βSG
αSG

(1− α2
SG) +

αSG

βSG
(1− β2

SG)− 1 + β4
SG

−ρf
ρ

(1− β2
SG)

2 (γ2SG − α2
SG − 4α2

SGγ
2
SG)

4αSGγ
3
SG

,

(5.40)

with αSG, βSG, and γSG defined by (3.7).
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The potentials ψ and χ are related to φ as

ψ(x1, βSGx3, t) =
2αSG

1 + β2
SG

φ∗(x1, βSGx3, t), (5.41)

and

χ(x1, γSGx3, t) = −1− β2
SG

1 + β2
SG

φ(x1, γSGx3, t). (5.42)

5.3.2 Stoneley wave

In case of the wave propagating along a solid-solid interface the statement of the problem

includes the equations of motion (3.11), subject to

φ1,1 − φ2,1 + ψ1,3 − ψ2,3 = 0,

φ1,3 − φ2,3 − ψ1,1 + ψ2,1 = 0

2µ1φ1,13 − 2µ2φ2,13 + µ1 (ψ1,33 − ψ1,11)− µ2 (ψ2,33 − ψ2,11) = 0,

λ1φ1,11 + (λ1 + 2µ1)φ1,33 − λ2φ2,11 − (λ2 + 2µ2)φ2,33 − 2µ1ψ1,13 + 2µ2ψ2,13 = P,

(5.43)

where P = P (x1, t) is once again a prescribed vertical disturbance.

The asymptotic model for the Stoneley wave arising from the boundary value problem (3.11)

and (5.43), contains the elliptic equation

φ1,33 + α2
1Sφ1,11 = 0, (5.44)

governing the behaviour over the interior. The rest of the wave potentials are determined by

ψ2(x1, β2Sx3, t) =
f4

f1β2S
φ∗
1(x1, β2Sx3, t),

φ2(x1, α2Sx3, t) =
f2
f1
φ1(x1, α2Sx3, t), (5.45)

ψ1(x1, β1Sx3, t) =
f3
f4
ψ2(x1, β1Sx3, t),

where

f1 = (m12 − ρ1c
2
S)b2 + ρ2c

2
S(1 + α2Sβ1S),

f2 = (ρ2c
2
S +m12)b1 − ρ1c

2
S(1 + α1Sβ2S),

f3 = ρ2c
2
S(α1S + α2S)−m12α1Sb2,

f4 = ρ1c
2
S(α1S + α2S)−m12α2Sb1,

(5.46)

with the problem parameters introduced in subsection 3.2, see (3.16).
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The hyperbolic equation for φ1 on the interface x3 = 0 is written as

φ1,11 −
1

c2S
φ1,tt =

f1P

c 2SBS
, (5.47)

where the constant BS is given by

BS = −2c2S
[

(ρ1 − ρ2)
2 − a1a2

]

−m12c
2
S (ρ2l2 − ρ1l1)

−m
2
12

2
(b2l1+b1l2)−

c4S
2
(d1a2+d2a1) + 2m12 (ρ2b1−ρ1b2) ,

(5.48)

with

dn =
ρ2

αnSc21n
+

ρ1
βnSc22n

, ln =
αnS

βnSc22n
+

βnS
αnSc21n

, (k = 1, 2).

It is remarkable that even though the models for the interfacial Stoneley and Schölte-

Gogoladze waves contain rather cumbersome material constants BSG and BS, the obtained

formulations are not more difficult than that for the Rayleigh wave, due to the relations (5.41),

(5.42), and (5.45) allowing reduction to a scalar elliptic problem for one of the potentials.

5.4 Bleustein-Gulyaev wave

Next consider the antiplane motion of the transversely isotropic piezoelastic half-plane H+
2 ,

with the out of plane axis oriented along the direction of the sixfold axis for a crystal in the

symmetry class C6mm. The associated surface wave was discovered independently by Bleustein

(1968) and Gulyaev (1969), see also Ikeda (1990). The governing equations of motion are

written as

u2,11 + u2,33 − c−2
e u2,tt = 0, ψe,11 + ψe,33 = 0, (5.49)

where u2 is the out of plane displacement, ψe is a complementary function related to the electric

potential φe as

ψe = φe −
e15
ǫ11

u2 (5.50)

with

ce =

(

c44
ρ

)1/2

, c44 = c44 +
e215
ǫ11

. (5.51)

Here c44 is the piezoelectrically stiffened elastic constant, ρ is the volume mass density, ce is

the low-frequency limit of the shear horizontal wave speed, and c44, e15, and ǫ11 are the elastic,

piezoelectric, and dielectric constants, respectively.
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In what follows we study two types of boundary conditions along the surface x3 = 0, e.g.

see Kaplunov et al. (2006), including a surface coated by an infinitesimally thin perfectly

conducting grounded electrode, for which

σ32 = c44u2,3 + e15ψe,3 = P, φe = 0, (5.52)

and also a surface in contact with a vacuum modelled by

σ32 = P, φe = φ̂e, e15u2,3 − ǫ11φe,3 = φ̂e,3. (5.53)

In the above φ̂e is the electric potential in a vacuum satisfying

φ̂e,11 + φ̂e,33 = 0, x3 ≤ 0, (5.54)

and P = P (x1, t) denotes a prescribed mechanical load along the surface x3 = 0.

First, we derive the eigensolution of arbitrary time-dependence for a surface coated with an

electrode, see (5.52) at P = 0. The travelling wave ansatz, similar to (2.43), now takes the

form

u2,tt − c2u2,11 = 0, φe,tt − c2φe,11 = 0, (5.55)

where c is the sought for phase speed. Then, (5.49) implies

u2,33 + α2
eu2,11 = 0, ψe,11 + ψe,33 = 0, (5.56)

with

α2
e = 1− c2

c2e
. (5.57)

The solution of (5.56) may be expressed in terms of plane harmonic functions as

u2 = u2(x1, αex3, t), ψe = ψe(x1, x3, t). (5.58)

On substituting the latter into (5.52) and employing the Cauchy-Riemann identities, we have

at x3 = 0

αec44u2,1 + e15ψe,1 = 0,

e15u2 + ǫ11ψe = 0.
(5.59)

Hence, we get from the solvability

c = cBG = ce

√

1− α2
BG, (5.60)
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coinciding with Bleustein (1968), where αBG is the electromechanical coupling factor

αBG =
e215
ǫ11c44

. (5.61)

The eigenfunctions u2 and ψe are related as

u2(x1, αBGx3, t) = − e15
c44αBG

ψe(x1, αBGx3, t), (5.62)

being a counterpart of (2.37) for the Rayleigh wave.

In the same manner, for a surface contacting with a vacuum we insert (5.58) together with

the implicit ansatz

φ̂e,tt − c2φ̂e,11 = 0 (5.63)

into (5.53), having the following boundary conditions at x3 = 0

αec44u2,1 + e15ψe,1 = 0,

e15u2 + ǫ11(ψe − φ̂e) = 0,

ǫ11ψe,3 + φ̂e,3 = 0.

(5.64)

These formulae lead to the same expression (5.60), with the coupling factor

αBG =
e215

ǫ11(1 + ǫ11) c44
. (5.65)

Finally, in addition to (5.62), the electrical potential in a vacuum is given by

φ̂e(x1, x3, t) = ǫ11 ψe(x1,−x3, t). (5.66)

In case of a non-zero mechanical forcing P in (5.52) and (5.53) a hyperbolic-elliptic for-

mulation extracting the contribution of the piezoelastic surface wave to the overall dynamic

response may be derived, for more detail see Kaplunov et al. (2006). For a coated surface

(5.52) it contains the elliptic equation

u2,33 + α2
BGu2,11 = 0, (5.67)

where αBG is defined by (5.61), with the boundary condition at x3 = 0 arising from the

hyperbolic equation

χe,11 −
1

c2BG

χe,tt =
2α2

BG

ρc2BG

P,11, (5.68)

where χe = u2,3. The function ψe is then determined from (5.58). For a surface contacting

with a vacuum we get the same relations (5.67), (5.68), and (5.58), with αBG now given by

(5.65). The electrical potential in a vacuum φ̂e may be obtained from (5.66).
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5.5 Effect of anisotropy

The described methodology may also be adapted for anisotropic media. The surface wave

eigensolution in terms of a single harmonic function has been recently derived in Parker (2013)

for arbitrary anisotropy by means of the Stroh formalism. Here we present briefly a more

explicit result obtained by Prikazchikov (2013) for an orthorhombic half-plane.

The equations of motion are written as

c11u1,11 + c55u1,33 + (c13 + c55) u3,13 = ρü1,

(c13 + c55) u1,13 + c55u3,11 + c33u3,33 = ρü3,
(5.69)

where c11, c13, c33, and c55 are the stiffness components satisfying the conditions

c11 > 0, c11c33 − c213 > 0, c55 > 0, (5.70)

ensuring the positive definiteness of the strain-energy density, see Chadwick (1976a). The

stress-free boundary conditions along the surface x3 = 0 of the half-plane H+
2 are expressed in

terms of the displacements as

u1,3 + u3,1 = 0, c13u1,1 + c33u3,3 = 0. (5.71)

As in subsection 2.2, we start from the implicit travelling wave ansatz

uj,tt − c2uj,11 = 0, j = 1, 3, (5.72)

where, as usual, c is the sought for surface wave speed, see also (2.43). Substitution of the

latter into the equations (5.69) gives

(

c11 − ρc2
)

u1,11 + c55u1,33 + βu3,13 = 0,

βu1,13 +
(

c55 − ρc2
)

u3,11 + c33u3,33 = 0,
(5.73)

with β = c13 + c55.

On eliminating one of the displacements, (5.73) may be transformed to a fourth order partial

differential equation. For example, we obtain in terms of u1

u1,1111 + δu1,1133 + γu1,3333 = 0, (5.74)
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where

δ =
c255 + c11c33 − β2 − (c33 + c55)ρc

2

c33c55
, γ =

(c11 − ρc2) (c55 − ρc2)

c33c55
(5.75)

throughout this subsection.

It it not difficult to verify that the equation (5.74) is elliptic, with δ and γ coinciding with

the coefficients in the related secular equation for the attenuation orders, see e.g. Royer &

Dieulesaint (1996). It may therefore be rewritten in an operator form as

[

∂33 + Λ2
1∂11

] [

∂33 + Λ2
2∂11

]

u1 = 0, (5.76)

where

Λ2
1 + Λ2

2 = δ, Λ2
1Λ

2
2 = γ. (5.77)

Hence, the solution of (5.76) is

u1 =

2
∑

n=1

Un (x1,Λnx3, t) , (5.78)

where Un are arbitrary plane harmonic functions in the first two arguments. Then, on employ-

ing the Cauchy-Riemann identities, it is possible to express the remaining displacement from

(5.73) as

u3 =
2

∑

n=1

T (Λn, ρc
2)U∗

n (x1,Λnx3, t) , (5.79)

with the asterisk, as before, denoting a harmonic conjugate and

T (Λn, ρc
2) =

c55Λ
2
n − c11 + ρc2

βΛn
. (5.80)

The solutions (5.78) and (5.79) are now substituted into the boundary conditions (5.71),

giving
2

∑

n=1

(

T
(

Λn, ρc
2
)

− Λn

)

Un,1 (x1, 0, t) = 0,

2
∑

n=1

(

c13 + c33ΛnT (Λn, ρc
2)
)

Un,1 (x1, 0, t) = 0.

(5.81)

The solvability dictates

c33c55ρ
2c4

(

c11 − ρc2
)

−
(

c55 − ρc2
) [

c33
(

c11 − ρc2
)

− c 213
]2

= 0, (5.82)
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coinciding with the surface wave equation in an orthorhombic half-plane, see again Royer &

Dieulesaint (1996). Then, as in subsection 2.2, we express the displacements in terms of a

single harmonic function. Indeed, as follows from (5.81), the functions U1 and U2 are related

as

U2(x1,Λ2x3, t) = −Y (ρc2R)U1(x1,Λ2x3, t), (5.83)

where c = cR is the unique real root of (5.82) and

Y (ρc2R) =
T (Λ1, ρc

2
R)− Λ1

T (Λ2, ρc2R)− Λ2

.

Therefore, the representation of the surface wave field through the plane harmonic function

U1 is given by

u1(x1, x3, t) = U1(x1,Λ1x3, t)− Y (ρc2R)U1(x1,Λ2x3, t),

u2(x1, x3, t) = T (Λ1, ρc
2
R)U

∗
1 (x1,Λ1x3, t)− T (Λ2, ρc

2
R) Y (ρc

2
R)U

∗
1 (x1,Λ2x3, t) .

(5.84)

This eigensolution is a key preliminary step for deriving a hyperbolic-elliptic model for the

surface wave in anisotropic media.
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6 Moving load problems

This is seemingly the optimal setup for validating the asymptotic considerations in the sub-

sections 4.1, 4.2 and 5.1. First of all, a near-resonant moving load obeys the basic assumption

(4.4). At the same time there are several benchmark exact solutions available in literature,

including the famous paper by Cole & Huth (1958). In addition, a further insight into near-

resonant regimes of moving loads is inspired by the needs of modern high-speed transport, e.g.

see Dieterman & Metrikine (1996), de Hoop (2002), Cao et al. (2012), and also experimental

data in Madshus & Kaynia (2000).

6.1 Plane strain steady-state problem

We begin with the plane strain problem for a steadily moving vertical line force, see Fig. 18,

using the hyperbolic-elliptic model derived in subsection 4.1, with P = P0δ(x1 − ct) in the

wave equation (4.27) along the surface x3 = 0. Here c is a constant speed of the load, which is

assumed to be close to the Rayleigh wave speed, see (4.4).

x

cP
0

1

x
3

O

Figure 18: A line force travelling along the surface of a half-space.

Then, (4.27) reduces to

φ,ss(s, 0) =
(1 + β2

R)c
2
RP0

2µB (c2R − c2)
δ(s), (6.1)

where s = x1 − ct is a moving coordinate. Remarkably, the resonant effect at c = cR follows

immediately from an elementary analysis of the surface behaviour (6.1). On integrating the

last equation with respect to s, we deduce

φ,s(s, 0) =
(1 + β2

R)c
2
RP0

2µB (c2R − c2)

[

H(s)− 1

2

]

, (6.2)
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where H denotes the Heaviside function and a constant of integration is chosen because of

symmetry.

Let us focus on the derivative ϕ = φ,s, for which

ϕ,33 + α2
Rϕ,ss = 0, (6.3)

following from (4.28), subject to the boundary condition (6.2). On employing the Poisson

formula, e.g. see Courant & Hilbert (1989), we obtain

φ,s(s, x3) =
(1 + β2

R)c
2
RP0

2µB (c2R − c2)

∞
∫

−∞

αRx3
(r − s)2 + α2

Rx
2
3

[

H(r)− 1

2

]

dr

=
(1 + β2

R)P0c
2
R

2πµB (c2R − c2)
tan−1 s

αR x3
.

(6.4)

The derivative of the transverse potential ψ is restored through the relations (2.38), giving

ψ,s(s, x3) = − αRP0c
2
R

4πµB (c2R − c2)
ln
(

s2 + β2
R x

2
3

)

. (6.5)

On using the Cauchy-Riemann identities, the steady-state displacements are written as

ust1 (ξ) =
(1 + β2

R)P0v
2
R

2µπB(v2R − v2)

[

tan−1 ξ

αR
− 1 + β2

R

2
tan−1 ξ

βR

]

,

ust2 (ξ) = −(1 + β2
R)P0v

2
RαR

4µπB(v2R − v2)

[

ln (ξ2 + α2
R)−

2

1 + β2
R

ln (ξ2 + β2
R)

]

,

(6.6)

with the following dimensionless quantities

ξ =
s

x3
, v =

c

c2
, vR =

cR
c2
.

It is worth noting that the displacements (6.6) do not decay at infinity in contrast to the

Rayleigh wave eigensolutions in subsection 2.2. At the same time, it is possible to show that

(6.6) is the leading order Taylor expansion of the exact solution around the Rayleigh speed

c = cR presented in Appendix B, see (B.11).

In Fig. 19 we present the graphs of the scaled stresses

S33 =
πσ33x3
P0

, (6.7)

against the speed v at ξ = 0.1 and ν = 1
4
corresponding to vR ≈ 0.9194.
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Figure 19: The near-resonant stresses (6.8) and (6.9).

The exact solution

S33 =
α

R(c)

[

(1 + β2)2

ξ2 + α2
− 4β2

ξ2 + β2

]

(6.8)

corresponding to the displacements (B.11) is shown by the solid line, whereas the asymptotic

formula

S33 =
2αRβRv

2
R

(v2R − v2)B

[

− αR

ξ2 + α2
R

+
βR

ξ2 + β2
R

]

(6.9)

following from (6.6), is depicted by the dashed line. It may be easily shown that over the

near-resonant region, as the speed c is defined by (4.4), the limiting behaviour of (6.8) agrees

with (6.9), since

α ∼ αR, β ∼ βR, R(c) ∼ 4εB,
vR − v2

v2R
∼ −2ε, (6.10)

with B defined in (4.24).

6.2 Transient plane strain problem

Next, we address the associated transient problem. In this case the boundary condition for

(6.3) at x3 = 0 is written as

φ,ss −
1

c2R
φ,tt =

(1 + β2
R)P0

2µB
δ(s). (6.11)

On calculating the convolution of the moving impulse with the fundamental solution, see
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(4.72), we have for the potential φ along the surface, see Kaplunov et al. (2010) for more detail,

φ(s, 0, t) = B0

t
∫

0

[H (s+ (c− cR)r)−H (s+ (c+ cR)r)] dr, (6.12)

where B0 has been introduced in (5.14). Then, we immediately derive from (6.12)

φ(s, 0, t) =



























B0
s− s1
cR − c

, 0 ≤ s < s1;

B0
s− s2
cR + c

, s2 < s < 0;

0, otherwise,

(6.13)

and

φ(s, 0, t) =































2B0
cRs

c2 − c2R
, s1 ≤ s ≤ 0;

−B0
s− s2
cR + c

, s2 < s < s1;

0, otherwise.

(6.14)

for the sub-Rayleigh (c < cR) and super-Rayleigh (c > cR) regimes, respectively. In the above

the values s1 and s2 are

s1 = t(cR − c), and s2 = −t(cR + c). (6.15)

For the resonant regime (c = cR) we have

φ(s, 0, t) =











−B0
s− s2
2cR

, s2 ≤ s ≤ 0;

0, otherwise,

(6.16)

with s2 = −2cRt.

Analysis of the 1D problem along the surface, resulting in the solutions (6.13), (6.14),

and (6.16), provides an immediate insight into the peculiarities of the near-resonant transient

phenomena. The plots of the function φ(s, 0, t) at a fixed time instance t in Fig. 20 show

that the resonant regime is clearly distinctive from the two others. If c 6= cR, the solution in

question is continuous in s, see Figs 20(a) and 20(b). At the same time, the limiting resonant

solution in Fig. 20(c) demonstrates a discontinuity under the force (s = 0), which grows

linearly in time. As a result, we should not expect a steady-state regime at c = cR. Thus, a
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s
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s2 s1 0

−2B0tcR
c+ cR

(b)

s

φ(s, 0, t)

s2 0

−B0t

(c)

Figure 20: The longitudinal wave potential φ vs. the moving co-ordinate s along the surface

x3 = 0: (a) sub-Rayleigh regime (c < cR); (b) super-Rayleigh regime (c > cR); (c) resonant

regime (c = cR).

rather trivial analysis of the 1D moving load problem (6.11) for an infinite string reveals the

resonant phenomena associated with the Rayleigh wave.

Once the potential φ is determined along the surface x3 = 0, it may then be restored over

the interior through the Poisson formulae, as in the previous subsection. In the sub-Rayleigh
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and super-Rayleigh regimes the displacement components are given by

u1(ξ, τ) =
2B0 vR

πc2(v2R − v2)

[

arctan
ξ

αR
− 1 + β2

R

2
arctan

ξ

βR

]

− B0

πc2(vR + v)

[

arctan
ξ − ξ2
αR

− 1 + β2
R

2
arctan

ξ − ξ2
βR

]

− B0

πc2(vR − v)

[

arctan
ξ − ξ1
αR

− 1 + β2
R

2
arctan

ξ − ξ1
βR

]

,

(6.17)

and

u3(ξ, τ)=
B0 αR

2πc2(vR+v)

[

ln
(ξ−ξ2)2+α2

R

ξ2 + α2
R

− 2

1+β2
R

ln
(ξ − ξ2)

2+β2
R

ξ2 + β2
R

]

+
B0 αR

2πc2(vR−v)

[

ln
(ξ−ξ1)2+α2

R

ξ2 + α2
R

− 2

1+β2
R

ln
(ξ − ξ1)

2+β2
R

ξ2 + β2
R

]

,

(6.18)

with

τ =
c2t

x3
, ξ1 =

s1
x3

= (vR − v)τ, ξ2 =
s2
x3

= −(v + vR)τ, (6.19)

and s1 and s2 defined by (6.15). For the resonant regime we obtain

u1(ξ, τ) =
B0αRτ

πc2

[

1

ξ2 + α2
R

− 2β2
R

(1 + β2
R)(ξ

2 + β2
R)

]

+
β

2πc2vR

[

arctan
ξ

αR
− arctan

ξ − ξ2
αR

]

− B0(1 + β2
R)

4πc2vR

[

arctan
ξ

βR
− arctan

ξ − ξ2
βR

]

,

(6.20)

and

u3(ξ, τ) =
B0αRξτ

πc2

[

2

(1 + β2
R)(ξ

2 + β2
R)

− 1

ξ2 + α2
R

]

+
B0αR

4πc2vR

[

ln
(ξ − ξ2)

2+α2
R

ξ2 + α2
R

− 2

1+β2
R

ln
(ξ − ξ2)

2+β2
R

ξ2 + β2
R

]

,

(6.21)

with ξ2 = −2vRτ .

The obtained displacements (6.17)-(6.21) are expressed in terms of elementary functions in

contrast to the integral exact solution of the problem presented in Appendix of Kaplunov et al.

(2010). The approximate solution also captures all of the key features of the studied problem.

In particular, a large time limiting behaviour as τ → ∞ is immediately deduced from the

formulae above. In the sub-Rayleigh regime we have

ui(ξ, τ) ∼ u∞i (ξ, τ), u∞i (ξ, τ) = usti (ξ) + uri (τ), i = 1, 2, (6.22)
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where usti are the steady-state displacements calculated in the previous subsection, see (6.6),

whereas

ur1(τ) = ur01 , ur2(τ) = ur02 + urτ2 (τ), (6.23)

with

ur01 =
B0v (1− β2

R)

2c2(v
2
R − v2)

,

ur02 = −B0αR(1− β2
R)

πc2(1 + β2
R)

[

ln(vR + v)

vR + v
+

ln |vR − v|
vR − v

]

,

and

urτ2 (τ) = − 2B0vRαR(1− β2
R)

πc2(v2R − v2)(1 + β2
R)

ln τ.

(6.24)

Here uri (i = 1, 2) are the components of the rigid body motion of the half-space. It is

remarkable that the rigid body motion along the vertical axis demonstrates a logarithmic

growth in time according to (6.23) and (6.24), which was first noted in Kaplunov (1986). This

means that the steady-state regime for the vertical displacement established in subsection 5.1,

cannot be reached at a large time limit.

The formulae (6.22)-(6.24) are also valid for the super-Rayleigh case, except the expression

for the rigid body motion component along the horizontal axis, which is now given by

ur01 = −B0vR (1− β2
R)

2c2(v
2
R − v2)

. (6.25)

In the resonant case the limiting behaviour as τ → ∞ is

ui(ξ, τ) ∼ u∞i (ξ, τ) (i = 1, 2), (6.26)

with

u∞1 (ξ, τ) =
B0αRτ

πc2

[

1

ξ2 + α2
R

− 2β2
R

(1 + β2
R)(ξ

2 + β2
R)

]

, (6.27)

and

u∞2 (ξ, τ) =
B0αRξτ

πc2

[

2

(1 + β2
R)(ξ

2 + β2
R)

− 1

ξ2 + α2
R

]

+
B0αR(β

2
R − 1)

4πc2vR(β
2
R + 1)

ln τ.

(6.28)

Thus, the displacements exhibit a linear growth in time, except for the vertical displacement

at ξ = 0, which increases as ln τ .
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Ũ2

Figure 21: The sub-Rayleigh (a) horizontal and (b) vertical displacements (6.17) and (6.18)

and their large time limits for v = 0.9.
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Figure 22: The super-Rayleigh (a) horizontal and (b) vertical displacements (6.17) and (6.18)

and the large time limits (6.22) for v = 0.95.
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Figure 23: The resonant (a) horizontal and (b) vertical displacements (6.20) and (6.21) for

v = vR.

Numerical examples in Figs. 21-23 were produced taking the Poisson’s ratio ν = 1
4
, which

corresponds to vR ≈ 0.9194. We plot the dimensionless quantities

Ui =
πµui
P0

, i = 1, 2,

and also

Ũ2 =
πµ

P0

(u2(ξ, τ)− urτ2 (τ)) ,

subtracting from the vertical displacement u2(ξ, τ) the function u
rτ
2 (τ) which has a logarithmic

growth in time, see (6.23) and (6.24). In this case we depict only a bounded in time component

in order to achieve convergence at a large time limit.

The sub-Rayleigh displacements of the half-space (6.17) and (6.18) are plotted in Fig. 21

for v = 0.9 and several values of time τ . Similar results for the super-Rayleigh regime are given

in Fig. 22 at v = 0.95. The limiting behaviours (6.22) are shown by solid lines. As might be

expected, the transient displacements tend to their large time values as time increases. The

resonant displacements (6.20) and (6.21) are displayed in Fig. 23 for τ = 10, 30, 50 and 100.

They demonstrate a linear growth in time according to the formulae (6.20) and (6.21).

Fig. 24 illustrates a comparison of the horizontal displacement obtained from the asymptotic

model with that arising from the exact solution of the associated plane strain problem presented

in Appendix of Kaplunov et al. (2010). The computations are performed for v = 0.9, ξ = 0,

and ν = 1
4
. It is readily observed from Fig. 24 that the use of the asymptotic solution is
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Figure 24: Comparison of approximate and exact solutions

justified once the effect of the bulk waves can be neglected, say, at τ > 10. This observation

is in agreement with the validity of the formula (6.17), which fails at small times, when the

arguments of tan−1 become small. This results in the absence of the pole v = vR violating the

original assumption of the Rayleigh wave dominance.

Another interesting example is concerned with the resonant regime of a moving semi-infinite

strip, for which P = P0H(x1 − cRt), see Fig. 25. In this case the asymptotic model for the

x

c

P
0

1

x
3

O

R

Figure 25: A moving step load.

Rayleigh wave recovers a rather technical result in Goldstein (1965), but with much less effort.

Indeed, the derivative of the step load P corresponds to a moving impulse. Thus, the sought

for displacements may be obtained by straightforward integration of (6.20) and (6.21).
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In the latter case we have for the stresses at τ → ∞

σ11 ∼
(1 + β2

R)vrP0

4µπB

[

2α2
R + β2

R − 1

ξ2 + α2
R

− βR(1 + β2
R)

ξ2 + β2
r

]

τ,

σ22 ∼
αRβRvrP0

µπB

[

βR
ξ2 + β2

R

− αR

ξ2 + α2
R

]

τ,

σ12 ∼
(1 + β2

R)αRvrP0

2µπB

α2
R − β2

R

(ξ2 + β2
R)(ξ

2 + α2
R)
ξτ,

(6.29)

for more detail see Kaplunov et al. (2010). Note that the expression for σ11 coincides with the

formula (2.4) presented in Goldstein (1965).

6.3 3D steady-state problem

Let us now study the steady-state near-resonant regimes of a point vertical force

P = −P0δ(x2)δ(x1 − ct),

travelling along the Ox1 axis at a constant speed c, see Fig. 26. From the very beginning

x

xx 12

3

P

O

c

Figure 26: A moving vertical point load.

we distinguish between the sub-Rayleigh and super-Rayleigh regimes, having from (4.51) the

elliptic equation

φ,22 + ǫ2φ,ss =
(1 + β2

R)P0

2µB
δ(s)δ(x2) (6.30)

for the sub-Rayleigh case, and the hyperbolic equation

φ,22 − ǫ2φ,ss =
(1 + β2

R)P0

2µB
δ(s)δ(x2) (6.31)
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for the super-Rayleigh one. Here and below in this section the small parameter ǫ is defined as

ǫ =

∣

∣

∣

∣

1− c2

c2R

∣

∣

∣

∣

1/2

. (6.32)

Let us introduce the scaling

η1 =
s

ǫ
, η2 = x2, η3 =

x3
ǫ
. (6.33)

and rewrite the equations (6.30) and (6.31) as

φ,22 + φ,11 =
(1 + β2

R)P0

2µBǫ
δ(η1)δ(η2) (6.34)

and

φ,22 − φ,11 =
(1 + β2

R)P0

2µBǫ
δ(η1)δ(η2) (6.35)

with the subscript ,i indicating differentiation along the variable ηi, i = 1, 2, 3.

The elliptic equations (4.60) and relations (4.61) now take the form

φ,33 + α2
Rφ,11 = 0, ψi,33 + β2

Rψi,11 = 0, i = 1, 2. (6.36)

and

ψ1,3 =
1 + β2

R

2
φ,1, ψ2,3 =

(1 + β2
R)ǫ

2
φ,2. (6.37)

6.3.1 Sub-Rayleigh regime

For the sub-Rayleigh speeds c < cR the solution along the surface is

φ (η1, η2, 0) =
(1 + β2

R)P0

8πµBǫ
ln(η21 + η22), (6.38)

see e.g. Polyanin (2002). Then, we restore the potential φ over the interior from (6.36), using

the Poisson formula. The result is

φ(η1, η2, η3) =
(1 + β2

R)P0

8πµBǫ
ln
[

η21 + (αRη3 + |η2|)2
]

. (6.39)

This solution is formally not differentiable with respect to η2 along the plane η2 = 0 due to

the omitted O(ε2) terms in the equation (6.36). Now, using (6.36) for the transverse wave

potentials ψ1 and ψ2 together with (6.37), we have

ψ1(η1, η2, η3) =
αRP0

2πµBǫ
tan−1 βRη3 + |η2|

η1
, (6.40)
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and

ψ2(η1, η2, η3) =
αRP0

4πµBǫ
sgn(η2) ln

[

η21 + (βRη3 + |η2|)2
]

. (6.41)

The leading order displacements are found from (4.53) as

u1 =
(1 + β2

R)P0η1
8µπBǫ2

[

2

η21 + (αRη3 + |η2|)2
+

1 + β2
R

η21 + (βRη3 + |η2|)2
]

, (6.42)

u2 =
(1 + β2

R)P0sgn(η2)

8µπBǫ

[

2(αRη3 + |η2|)
η21 + (αRη3 + |η2|)2

+
(1 + β2

R) (βRη3 + |η2|)
η21 + (βRη3 + |η2|)2

]

, (6.43)

and

u3 =
(1 + β2

R)P0

8µπBǫ2

[

2αR(αRη3 + |η2|)
η21 + (αRη3 + |η2|)2

− (1 + β2
R) (βRη3 + |η2|)

βR (η21 + (βRη3 + |η2|)2)

]

. (6.44)

We note that the asymptotically secondary displacement u2 has a discontinuity at η2 = 0

coming from differentiation of (6.39) with respect to η2.

Numerical results for the scaled displacements

Ui =
µ ui
P0

, i = 1, 2, 3,

are presented in Figs. 27-29. The graphs in these figures show no discontinuities, with the
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Figure 27: The sub-Rayleigh diplacement U1 vs. η1 at |η2| = 1 and η3 = 0, 0.5, 1.0.

displacement amplitudes increasing slightly while getting closer to the surface.
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Figure 28: The sub-Rayleigh diplacement U2 vs. η1 at |η2| = 1 and η3 = 0, 0.5, 1.0.
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Figure 29: The sub-Rayleigh diplacement U3 vs. η1 at |η2| = 1 and η3 = 0, 0.5, 1.0.
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6.3.2 Super-Rayleigh regime

Inspection of the hyperbolic equation (6.35) along the surface η3 = 0 immediately suggests a

Mach cone associated with the Rayleigh wave, see Fig. 30. Then, on employing the causality

1
η

η
2

O

1η

η 2

=

1

η

η
2

= −

Figure 30: A Mach cone.

principle, i.e. assuming absence of surface disturbances in front of a travelling load, we obtain,

see Erbaş & Şahin (2016) for further detail,

φ (η1, η2, 0) =
(1 + β2

R)P0

2µBǫ
H(−η1) [H(η2 − η1)−H(η2 + η1)] . (6.45)

The potential φ over the interior is determined from (6.36), giving

φ (η1, η2, η3) =
(1 + β2

R)P0

4πµBǫ
cot−1 η1 + |η2|

αRη3
. (6.46)

The potentials ψ1 and ψ2 are then found from (6.36) and (6.37) as

ψ1 (η1, η2, η3) = − P0α
2
R

4πµBβRǫ
ln
[

(η1 + |η2|)2 + α2
Rη

2
3

]

(6.47)

and

ψ2 (η1, η2, η3) = −P0α
2
Rsgn(η2)

4πµBβR
ln
[

(η1 + |η2|)2 + α2
Rη

2
3

]

. (6.48)

Finally, the leading order displacement components corresponding to (6.46)-(6.48) are obtained

from (4.53). They are

u1 = −(1 + β2
R)P0αRη1

8µπBǫ2

[

2

(η1 + |η2|)2 + α3
Rη

2
3

+
1 + β2

R

(η1 + |η2|)2 + β3
Rη

2
3

]

, (6.49)

u2 = −(1 + β2
R)P0 αRη3 sgn(η2)

8µπBǫ

[

2

(η1 + |η2|)2 + α3
Rη

2
3

+
1 + β2

R

(η1 + |η2|)2 + β3
Rη

2
3

]

, (6.50)
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and

u3 =
(1 + β2

R)P0(η1 + |η2|)αR

8µπBǫ2

[

2

(η1 + |η2|)2 + α3
Rη

2
3

− 1 + β−2
R

(η1 + |η2|)2 + β3
Rη

2
3

]

. (6.51)

The discontinuities along the surface η3 = 0 associated with the Mach cone η1 + |η2| = 0, can

be seen from the formulae (6.49)-(6.51).

Numerical results are displayed in Figs. 31-33. In contrast to the sub-Rayleigh case, the

analysed super-Rayleigh displacements increase significantly near the surface η3 = 0. The

discontinuities occurring on the surface at η1 = −1 are shown by solid line.
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Figure 31: The super-Rayleigh diplacement U1 vs. η1 at |η2| = 1 and η3 = 1, 0.5, 0.1.
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Figure 32: The super-Rayleigh diplacement U2 vs. η1 at |η2| = 1 and η3 = 1, 0.5, 0.1.
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Figure 33: The super-Rayleigh diplacement U3 vs. η1 at |η2| = 1 and η3 = 1.0, 0.5, 0.1.

68



6.4 3D steady-state problem for a coated half-space

Let us extend the consideration of the previous subsection to an elastic half-space H+
3 coated

by a thin layer occupying the domain −h ≤ x3 ≤ 0, subject to the moving point force

P = P0δ(x1 − ct)δ(x2), see Fig. 34. The statement of the problem includes now a pseudo-

①✶

①✷

①✸

✵

�❤

❝

P

Figure 34: A moving point load on a coated half-space.

differential equation at x3 = 0, see (5.6), which may be written as

φ,22 +

(

1− c2

c2R

)

φ,ss − bh
√

−(∂,ss + ∂,22) (φ,ss + φ,22) =
(1 + β2

R)P0

2µB
δ(s)δ(x2), (6.52)

where, as previously, s = x1 − ct is a moving coordinate. The formulated problem has two

small parameters, including ǫ≪ 1 defined by (6.32), and h/L≪ 1 over the long-wave domain,

see subsection 5.1. The degenerations at ǫ = 0 and h = 0 correspond to the critical speed of

the load coinciding with the Rayleigh wave speed and a homogeneous half-space, respectively.

These observations motivate the scaling

ξ =
ǫ2s

bh
, η =

ǫ3s

bh
, (6.53)

for more detail throughout this subsection see Erbaş et al. (2014). Then, (6.52) takes the form

of

φ,ξξ + φ,ηη −
√

−∂,ξξ φ,ξξ =
(1 + β2

R)P0

2µBǫ
δ (ξ) δ (η) (6.54)

or

φ,ξξ − φ,ηη −
√

−∂,ξξ φ,ξξ =
(1 + β2

R)P0

2µBǫ
δ (ξ) δ (η) (6.55)
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for the sub-Rayleigh and super-Rayleigh regimes, respectively.

First, we investigate the sub-Rayleigh case. On applying the Fourier transform in (6.54),

we have

φF
,ηη − k2(1− |k|)φF =

(1 + β2
R)P0

2µBǫ
δ(η), (6.56)

where

φF (k, η, 0) =

∞
∫

−∞

φ (ξ, η, 0) e−ikξdξ. (6.57)

The solution of this equation is piecewise-defined in the parameter |k|. Due to symmetry in η

along with decay at infinity, it may be written as

φF (k, η, 0) =







































−(1 + β2
R)P0

2µBǫ

e−|k|
√

1−|k||η|

|k|
√

1− |k|
, |k| < 1;

(1 + β2
R)P0

2µBǫ

sin
(

|k|
√

|k| − 1|η|
)

|k|
√

|k| − 1
, |k| > 1.

(6.58)

Therefore, using (4.54), we have for the horizontal displacement u1 along the plane x3 = 0

u1(ξ, η, 0) =
(1 + β2

R)P0εc
2
Rsgn(ξ)

4πµBc22bh





1
∫

0

e−k
√
1−k|ξ|m

√
1− k

sin (k|ξ|) dk

−
∞
∫

1

sin
(

k
√
k − 1|ξ|m

)

√
k − 1

sin (k|ξ|) dk



 ,

(6.59)

where m =

∣

∣

∣

∣

η

ξ

∣

∣

∣

∣

.

Let us study the far-field approximation |ξ| ≫ 1. It can be shown that the leading order

asymptotic behaviour of u1 is given by the contribution of the stationary points arising from

the second integral in (6.59). Changing the variable k to t =
√
k − 1, this integral takes the

form ∞
∫

1

sin
(

k
√
k − 1|η|

)

√
k − 1

sin (k|ξ|) dk =

2
∑

n=1

Gn(|ξ|, m), (6.60)

where

Gn(|ξ|, m) = (−1)n+1

∞
∫

0

cos
[

|ξ|(t2 + 1)(tm+ (−1)n)
]

dt. (6.61)
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Figure 35: The longitudinal cross-section of the sub-Rayleigh horizontal displacement U1 at

|η| = 3.

It may be shown that only the intergrand in G1 possesses stationary points, namely

t∗ =
1±

√
1− 3m2

3m
, 0 < m ≤ 1√

3
, (6.62)

which coincide along the line |ξ| =
√
3|η|. In this case the uniform stationary phase method,

see e.g. Borovikov (1994), yields

G1 (|ξ|, m) =
2π

3

√

3m|ξ|
cos (p1|ξ|)Ai

(

p2|ξ|2/3
)

, (6.63)

where

Ai(z) =
1

π

∞
∫

0

cos

(

t3

3
+ zt

)

dt (6.64)

is the Airy function, see Abramowitz & Stegun (2012), with

p1 =
2(9m2 + 1)

27
, p2 =

3m2 − 1

(3m)4/3
. (6.65)

The resulting far-field approximation for the displacement u1 is given by

u1 ∼ −(1 + β2
R)P0c

2
Rsgn(ξ)

2µBc22bh
3

√

3|ξ|m
cos (p1|ξ|)Ai

(

p2|ξ|2/3
)

. (6.66)

The numerical illustrations in Figs. 35 and 36 demonstrate comparisons of the solution

(6.59) with its far-field asymptotic approximation (6.66) depicted by the solid and dotted

lines, respectively. Fig. 35 shows the variation of the scaled displacement

U1 =
2bhµBc22

(1 + β2
R)P0c

2
Rǫ
u1, (6.67)
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Figure 36: The transverse cross-section of the displacement profile U1 at |ξ| = 7.

over ξ for the fixed value of |η| = 3, whereas Fig. 36 presents the perpendicular cross-section

of U1 at |ξ| = 7. It may be observed from Figs. 35 and 36 that even though there is no

Mach cone for the sub-Rayleigh regime, there is still a region of oscillations associated with

m < 1√
3
. The period of these oscillations decreases as m→ 0. The analysed profiles suggest an

exponential decay over the regionm > 1√
3
. Next, we plot a 3D graph of the scaled displacement

U1 corresponding to (6.59), over the region −4 ≤ ξ ≤ 0 and 0 ≤ η ≤ 4, see Fig. 37.

The super-Rayleigh case is treated similarly. The pseudo-differential equation (6.55) be-

comes

φF
,ηη + k2(1 + |k|)φF =

(1 + β2
R)P0

2µBǫ
δ(η), (6.68)

from which

φ(ξ, η, 0) =
(1 + β2

R)P0

2πµBǫ

∞
∫

0

sin
(

k
√
1 + k|η|

)

cos (kξ)

k
√
1 + k

dk. (6.69)

The displacement u1 is then given by

u1(ξ, η, 0) =
(1 + β2

R)P0c
2
Rǫ

8πµBc22bh

2
∑

n=1

In(ξ, η), (6.70)

where

In(ξ, η) = sgn(ξ)

∞
∫

0

cos (|ξ|fn(k))
g(k)

dk, n = 1, 2, (6.71)

with

fn(k) = k
[

g(k)m+ (−1)n+1
]

, g(k) =
√
1 + k,
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Figure 37: A 3D profile of the longitudinal sub-Rayleigh displacement U1.

and, as previously, m =

∣

∣

∣

∣

η

ξ

∣

∣

∣

∣

.

The far-field asymptotic behaviour of the oscillating integrals (6.71) as |ξ| ≫ 1, assuming

m ∼ 1, may now be studied. It appears that the effect of the first integral I1 is asymptotically

minor, whereas I2 is dominated by the contribution of the stationary point

k∗ =
2
(

1− 3m2 +
√
3m2 + 1

)

9m2
(6.72)

of the function f2(k).

The Mach cone observed in subsection 6.3.2, corresponds to the limit h→ 0, and is defined

by |ξ| = |η| or m = 1. Moreover, on the contour of the Mach cone, when m = 1, the stationary

point k∗ coincides with the lower limit of the integral I2. Therefore, we again apply the uniform

stationary phase method, leading to

I2 ∼ Re





ei|ξ|f∗

g∗

∞
∫

0

e
1

2
i|ξ|f ′′

2
(k∗)(k−k∗)2dk



 , (6.73)

where

f∗ = f2(k∗) =
2
(

1− 3m2 +
√
3m2 + 1

) (√
3m2 + 1− 2

)

27m2
, (6.74)
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and

g∗ = g(k∗) =
1 +

√
3m2 + 1

3m
. (6.75)

The displacement u1 becomes

u1 ∼
(1 + β2

R)P0εc
2
Rk∗

16πµBc22bhg∗a

sgn(ξ)

|ξ|1/2 F (|ξ|, m), (6.76)

where

F (|ξ|, m) = cos [f∗|ξ|]
{

1− 2C
(

a
√

|ξ|
)}

− sin [f∗|ξ|]
{

1− 2S
(

a
√

|ξ|
)}

, (6.77)

with

a = −k∗
√

h′′(k∗)

π
=

√

2

π

[

3m2 − 1−
√
3m2 + 1

]

4
√
3m2 + 1

3m
[

1 +
√
3m2 + 1

] , (6.78)

and S(x) and C(x) are the Fresnel functions (5.24). It is evident that the derived uniform

asymptotic formula is also valid at m > 1 when k∗ < 0 and a takes imaginary values.

The interpretation of the formulae in this subsection, written in terms of |ξ| and |η|, relies
on the implementation of the causality principle, see also Erbaş & Şahin (2016). In absence

of a coating, when h = 0, the equation (6.55) degenerates into the wave equation. Hence, it

seems to be logical to deal with the Mach cone behind the load, i.e. for ξb > 0, see Fig 38.

In the presence of a coating, we have to expect decay of the solution outside the interior of

❜ ❃ ✵❜ ❁ ✵

✵ ✘

✑

Figure 38: A Mach cone

the Mach cones predicted by the related degenerate non-dispersive equation. The asymptotic

behaviours of the Fresnel functions in (6.77) at the large imaginary values of the argument

show that the function (6.77) is exponentially small at m− 1 ≫ |ξ|−1.
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Figure 39: The super-Rayleigh displacement U1 at |ξ| = 3.

Similarly to the sub-Rayleigh case, we analyse the longitudinal and transverse cross-sections

of the scaled horizontal displacement

U1 =
8µπBc22bh

(1 + β2
R)P0c

2
Rǫ
u1, (6.79)

see Figs. 39 and 40. The results of numerical integration in (6.70) are depicted by the solid

line, with the dotted line corresponding to the far-field approximation (6.76). Fig. 39 displays

dependence of U1 on the transverse variable |η| at |ξ| = 3. Fig. 40 mirrors Fig. 39, showing

the variation of U1 vs. |ξ| at |η| = 3.
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Figure 40: The super-Rayleigh displacement U1 at |η| = 3.
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It is clearly seen from both Figs. 39 and 40 that the dispersive effect of a coating leads to

smoothing of the discontinuities along the contours of the Mach cone |ξ| = |η|, arising in a

homogeneous half-space, see subsection 6.3. The oscillations occurring inside the Mach cone

decay outside of it. The period of the oscillations diminishes in both graphs as m → 0, due

to f∗ → ∞, as may be noticed from (6.74). Finally, we present a 3D graph of the scaled

displacement profile corresponding to the integral solution (6.70), over the region −4 ≤ ξ ≤ 0

and 0 ≤ η ≤ 6 see Fig. 41.

U1

η

ξ

Figure 41: A 3D profile of the horizontal super-Rayleigh displacement U1.
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7 Parabolic-elliptic model for a bending edge wave on a

thin plate

In this section we derive an asymptotic formulation for the bending edge wave introduced in

subsection 3.3, complementing the hyperbolic-elliptic models for surface and interfacial waves

considered in sections 4 and 5.

7.1 Bending edge wave of arbitrary profile

We begin with an eigensolution generalizing that of a sinusoidal profile, see (3.21). Throughout

this section we operate with the dimensionless variables

ξ =
x1
h
, η =

x2
h
, τ =

t

h

(

E

3ρ(1− ν2)

)1/2

. (7.1)

Then, (3.18) becomes

∆2W +W,ττ = 0, (7.2)

where ∆ now denotes the 2D Laplace operator in the variables ξ and η.

Next, we proceed with the implicit ansatz

γ4e
∂4W

∂ξ4
+
∂2W

∂τ 2
= 0, (7.3)

where γe is defined by (3.25). The latter is in fact a counterpart of the implicit travelling wave

ansatz (2.43) for the Rayleigh wave. It is clear that the sinusoidal solution (3.21) satisfies (7.3),

leading to the dispersion relation (3.24). At the same time, in contrast to (2.43), (7.3) does

not allow a functionally invariant travelling wave solution.

Now, using (7.3), we eliminate the time derivative in (7.2), arriving, as in subsection 2.2, at

the pseudo-static equation

(

1− γ4e
) ∂4W

∂ξ4
+ 2

∂4W

∂ξ2∂η2
+
∂4W

∂η4
= 0, (7.4)

which may be rewritten in an operator form as

∆1∆2W = 0, (7.5)
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where

∆j = ∂ηη + γ2j ∂ξξ, j = 1, 2 (7.6)

and

γ2j = 1 + (−1)jγ2e . (7.7)

The equation (7.5) is elliptic, since γ2j are both positive at 0 < γe < 1. Its general solution

is therefore given by the sum of two arbitrary plane harmonic functions in the variables ξ and

γjη, i.e.

W =
2

∑

j=1

Wj (ξ, γjη, τ) . (7.8)

On substituting (7.8) into the homogeneous edge boundary conditions (3.20), rewritten in

terms of the dimensionless variables and employing the Cauchy-Riemann identities, we obtain

(ν − γ21)W1,ξξ + (ν − γ22)W2,ξξ = 0,

γ1 (γ
2
1 − 2 + ν)W ∗

1,ξξξ + γ2 (γ
2
2 − 2 + ν)W ∗

2,ξξξ = 0,

(7.9)

with the asterisk, as previously, denoting a harmonic conjugate. These conditions imply

γ21γ
2
2 + 2(1− ν)γ1γ2 − ν2 = 0, (7.10)

which coincides with the dispersion relation (3.24).

Hence, on using (7.9), the representation for the bending edge wave through a single plane

harmonic function is now established in the form

W (x, y, t) = Wj (x, γjy, t)−
ν − γ2j
ν − γ2n

Wj (x, γny, t) , 1 ≤ j 6= n ≤ 2, (7.11)

which is similar to (2.40) for the Rayleigh wave. On the edge η = 0 the last formula reduces

to

W (x, 0, t) =
γ2j − γ2n
ν − γ2n

Wj (x, 0, t) , 1 ≤ j 6= n ≤ 2. (7.12)

As an example, we construct a non-time-harmonic eigensolution for the bending edge wave

mirroring that considered in subsection 2.2. The sought for functions Wj, j = 1, 2, should

satisfy the ansatz (7.3) along with the elliptic equations

Wj,ηη + γ2jWj,ξξ = 0. (7.13)
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Let us specify the initial conditions

Wj

∣

∣

τ=0
= Aj(ξ, γjη), Wj,τ

∣

∣

τ=0
= Bj(ξ, γjη), (7.14)

where Aj and Bj are plane harmonic functions. Then, (7.11) implies

W
∣

∣

τ=0
= Aj(ξ, γjη)−

ν − γ2j
ν − γ2n

Aj(ξ, γnη),

W,τ

∣

∣

τ=0
= Bj(ξ, γjη)−

ν − γ2j
ν − γ2n

Bj(ξ, γnη),

(7.15)

The Fourier transforms of the functions Wj are given by

W F
j = wj(k, τ)e

−γj |k|η, (7.16)

with the initial conditions for the quantities wj

wj

∣

∣

τ=0
= AF

j (k, 0), wj,τ

∣

∣

τ=0
= BF

j (k, 0), (7.17)

where k is the Fourier transform parameter. Hence, the functions Wj satisfying (7.3) are

Wj =
1

2π

∞
∫

−∞

[

BF
j (k, 0)

γ2ek
2

sin
(

γ2ek
2τ
)

+ AF
j (k, 0) cos

(

γ2ek
2τ
)

]

e−γj |k|η+iξkdk, (7.18)

with the edge deflection following from (7.11).

Consider, for example, the functions Aj(ξ, γjη) and Bj(ξ, γjη) specified as

Aj(ξ, γjη) =
γj (η + a)

π
(

γ2j (η + a)2 + ξ2
) , Bj(ξ, γjη) = 0, (7.19)

where a is a positive constant corresponding to a distributed delta-like initial profile at the

edge η = 0; at the limit a→ 0 we get Wj(ξ, 0, 0)=δ(ξ). On inserting the Fourier transforms of

(7.19) into (7.18), we arrive at

W (ξ, η, τ) =
1

π

2
∑

j=1

+∞
∫

0

cos
(

γ2ek
2τ
)

cos(ξk)e−γjk(η+a)dk, (7.20)

decaying away from the edge η = 0. The integrals in (7.20) may be evaluated with the help of

the formula, e.g. see Prudnikov et al. (1986)

I(p, q) =

+∞
∫

0

e−p2k−qkdk =
1

2

√

π

p
f

(

q

2
√
p

)

, (7.21)
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Figure 42: The scaled deflection W̃ vs. ξ1 at ν = 1/3.

where f(z) = ez
2

erfc(z), Re(p) = 0, Im(p) 6= 0, Re(q) ≥ 0, with

erfc(z) =
2√
π

+∞
∫

z

e−t2dt (7.22)

denoting the complementary error function, see Abramowitz & Stegun (2012).

As a result, (7.20) is expressed in terms of the quantities ξ1 =
ξ√
τ

and η1 =
η + a√

τ
as

W (ξ, η, τ) = τ−0.5 W̃ (ξ1, η1), (7.23)

where

W̃ (ξ1, η1) =
1

4γe
√
π

2
∑

j=1

Re

[

eiπ/4
2

∑

m=1

f(ζjm)

]

, (7.24)

with ζjm =
eiπ/4 (γjη1 + (−1)miξ1)

2γe
.

A numerical illustration of (7.24) is given in Fig. 42 for the Poisson’s ratio ν = 1/3. As

might be expected, the amplitudes of the propagating disturbances decay away from the edge

η1 = 0.
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7.2 Bending edge wave induced by prescribed moments and shear

forces

Once the eigensolution is established, we proceed with the development of an explicit model for

the bending edge wave, aiming at extracting its contribution to the overall dynamic response

in a manner similar to that presented in section 4 for the Rayleigh wave.

Throughout this subsection we study bending edge waves induced by prescribed bending

moment M0 and shear force N0. The boundary conditions along the edge x2 = 0 are therefore

given by

W,22 + νW,11 = −M0

D
,

W,222 + (2− ν)W,112 = −N0

D
.

(7.25)

As before, we start from a multiple scale procedure, adapting it for plate bending. Accord-

ingly, the slow time τs = ετ is introduced along with the fast time τf = τ , where ε ≪ 1 is

a small parameter, characteristic of a near-resonant edge excitation, see subsection 7.4.2 and

also Kaplunov et al. (2016).

First, we rewrite (7.2) in the form

∆2W +W,τf τf + 2εW,τf τs + ε2W,τsτs = 0. (7.26)

Then, the deflection W can be expanded into asymptotic series as

W =
h2P

εD

(

W (0) + εW (1) + ...
)

. (7.27)

Here and below in this subsection

P = max
x,t

[M0(x, t), hN0(x, t)] . (7.28)

On substituting (7.27) into (7.26), we have at leading order

∆2W (0) +W (0)
,τfτf

= 0. (7.29)

In view of the ansatz (7.3), the last equation is transformed to the elliptic equation

W (0)
,ηηηη + 2W

(0)
,ξξηη +

(

1− γ4e
)

W
(0)
,ξξξξ = 0, (7.30)
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leading to

W (0) =
2

∑

j=1

W
(0)
j (ξ, γjη, τf , τs) , (7.31)

with the scaling factors γj, j = 1, 2, defined by (7.7).

At next order, we obtain from (7.26)

∆2W (1) +W (1)
,τf τf

+ 2W (0)
,τfτs

= 0. (7.32)

In view of the assumption (7.3) along with the superposition principle, the equation (7.32)

may be re-written as

∆1∆2W
(1)
j = −2W (0)

,τf τs
(j = 1, 2), (7.33)

with W (1) = W
(1)
1 +W

(1)
2 .

Let us first study W
(1)
1 . On employing the basic properties of harmonic functions, we have

∆2W
(0)
1 = (γ22 − γ21)W

(0)
1,ξξ = 2γ2eW

(0)
1,ξξ. (7.34)

Then, due to (7.33) and (7.34), we infer

∆1∆2W
(1)
1,ξξ = − 1

γ2e
∆2W

(0)
1,τf τs

, (7.35)

from which

∆1W
(1)
1,ξξη = − 1

γ2e
W

(0)
1,τf τsη

. (7.36)

The solution of (7.35) is found in the form

W
(1)
1,ξξη = Φ

(1,0)
1,ξξη −

η

2γ2e
W

(0)
1,τf τs

, (7.37)

where Φ1 = Φ1 (ξ, γ1η, τf , τs) is an arbitrary plane harmonic function in the first two arguments.

Similar derivations for W
(1)
2 yield

W
(1)
2,ξξη = Φ

(1,0)
2,ξξη +

η

2γ2e
W

(0)
2,τf τs

, (7.38)

where Φ2 = Φ2 (ξ, λ2η, τf , τs) is also a plane harmonic function.

Thus, we obtain the following two-term asymptotic expansion

W,ξξη =
h2P

D

[

ε−1
(

W
(0)
1,ξξη +W

(0)
2,ξξη

)

+ Φ
(1,0)
1,ξξη + Φ

(1,0)
2,ξξη

− η

2γ2e

(

W
(0)
1,τf τs

−W
(0)
2,τf τs

)

+ ...

]

.
(7.39)
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Now, we proceed further with analysis of the non-homogeneous edge boundary conditions

(7.25), beginning with a prescribed bending moment (M0 6= 0, N0 = 0). On rewriting (2.9) in

terms of the dimensionless variables ξ and η, we get

W,ηη + νW,ξξ = −h
2

D
M0,

W,ηηη + (2− ν)W,ξξη = 0.

(7.40)

Then, we insert the asymptotic expansion (7.39) into (7.40), having at leading order

(ν − γ21)W
(0)
1,ξξ + (ν − γ22)W

(0)
2,ξξ = 0,

γ1 (γ
2
1 − 2 + ν)W

(0)
1,ξξξ + γ2 (γ

2
2 − 2 + ν)W

(0)
1,ξξξ = 0.

(7.41)

It can be easily verified that these equations imply the dispersion relation (7.10).

At next order, after straightforward transformations involving (7.35), the boundary condi-

tions (7.40) yield
(

1− ν

γ21

)

W
(1)
1,ξξηη +

(

1− ν

γ22

)

W
(1)
2,ξξηη −

ν

γ2eγ
2
1

W
(0)
1,τf τs

+
ν

γ2eγ
2
2

W
(0)
2,τf τs

= − 1

P
M0,ξξ,

W
(1)
1,ξξηηη +W

(1)
2,ξξηηη + (2− ν)W

(1)
1,ξξξξη + (2− ν)W

(1)
2,ξξξξη = 0.

(7.42)

On substituting (7.39) into (7.42), using the Cauchy-Riemann identities, taking the harmonic

conjugate of the second equation, and integrating with respect to ξ, the analysed boundary

conditions may be rearranged to

(ν − γ21)Φ
(1,0)
1,ξξξξ + (ν − γ22)Φ

(1,0)
2,ξξξξ =

1

2γ2e

(

1 +
ν

γ21

)

W
(0)
1,τf τs

− 1

2γ2e

(

1 +
ν

γ22

)

W
(0)
2,τf τs

− 1

P
M0,ξξ,

γ1 (ν − γ22) Φ
(1,0)
1,ξξξξ + γ2 (ν − γ21) Φ

(1,0)
2,ξξξξ =

γ2
γ2e
W

(0)
2,τf τs

− γ1
γ2e
W

(0)
1,τf τs

.

(7.43)

In contrast to (7.41), the equations (7.43) are non-homogeneous, with the determinant

vanishing due to (7.10). Then, the compatibility condition necessitates
[

γ1(ν − γ22)−
γ2(ν

2 − γ41)

2γ21

]

W
(0)
1,τf τs

+

[

γ2(ν − γ22) +
(ν − γ21)(ν + γ22)

2γ2

]

W
(0)
2,τf τs

= −γ
2
eγ2(ν − γ21)

P
M0,ξξ.

(7.44)
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In view of (7.11), it is possible to express W
(0)
1 and W

(0)
2 through W (0) on the edge η = 0,

leading to

W (0)
,τf τs

=
BK

2P
M0,ξξ, (7.45)

where

BK = − 4γ4eγ2(ν − γ21)

a1K(ν − γ21) + a2K(ν − γ22)
, (7.46)

with

a1K =
(ν + γ22)(ν − γ21)

2γ2
+ γ2(ν − γ22), a2K =

γ2(ν
2 − γ41)

2γ21
+ γ1(ν − γ22).

After some rather tedious but straightforward algebra, (7.46) can be reduced to

BK =

√

1− γ4e

(

ν +
√

1− γ4e

)

1− ν +
√

1− γ4e
, (7.47)

depending on the Poisson’s ratio only. Fig. 43 reveals a monotonic increase of BK in ν.
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Figure 43: The coefficient BK vs. ν

Finally, on employing the leading order approximation

W =
h2P

εD
W (0), (7.48)

we present (7.45) as

2εW,τfτs =
3BK(1− ν2)

2Eh
M0,ξξ. (7.49)

Then, due to the ansatz (7.3), this equation becomes

γ4eW,ξξξξ +W,τf τf + 2εW,τfτs =
3BK(1− ν2)

2Eh
M0,ξξ, (7.50)
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or, in the original variables to within the error O(ε2)

Dγ4eW,1111 + 2ρhW,tt = BK M0,11. (7.51)

In this case the behaviour over the interior is described by the elliptic equations

Wj,22 + γ2jWj,11 = 0, (7.52)

which should be solved in conjunction with the deduced parabolic equation (7.51) and the

relation (7.11). Thus, the solution of the dynamic equation (7.51) is used together with (7.12)

as a boundary condition for the pseudo-static equations (7.52). The obtained plane harmonic

function is then substituted into (7.11) in order to restore the deflection of the plate.

Similarly to the Rayleigh wave, it may be shown that the derived parabolic-elliptic formula-

tion provides a correct evaluation of the edge wave contribution to the overall response arising

from an arbitrary edge moment M0. This is not surprising, since the developed procedure is,

in fact, aimed at accounting for edge wave poles, see subsection 7.4.1 below.

A parabolic-elliptic formulation may also be established for a shear force excitation, having

N0 6= 0,M0 = 0. However, instead of the deflection W , the parabolic equation is now obtained

in respect of the rotation angle θK =W,2 evaluated at the edge x2 = 0. It is

Dγ4eθK,1111 + 2ρhθK,tt = −BKN0,11, (7.53)

with the constant BK defined by (7.47). In this case the parabolic-elliptic model also contains

the elliptic equations

θKj,22 + γ2j θKj,11 = 0, (7.54)

which are to be solved together with (7.53) and (7.11).

7.3 Plate on elastic foundation

Bending edge waves in plates on elastic foundations have recently been investigated in Kaplunov

et al. (2014), Kaplunov & Nobili (2015), and Kaplunov et al. (2016). In this subsection we

briefly address several peculiarities of the bending edge wave on a thin Kirchhoff plate resting

on a Winkler foundation. In this case an additional term arises in the governing equation

(3.18), namely

D∆2W + 2ρhW,tt + βWW = 0, (7.55)
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where βW is the Winkler foundation modulus. The related dispersion relation is

Dk4γ4e + βW = 2ρhω2. (7.56)

The latter may be simplified to

K4 = Ω2 − 1, (7.57)

where

K = kγe (D/βW )1/4 , Ω = ω (2ρh/βW )1/2 . (7.58)

The presence of a Winkler foundation leads to the cut-off frequency Ω0 = 1, see Fig. 44.

Another remarkable feature caused by a foundation is the local minimum of the phase velocity

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

K

ΩΩ0

Figure 44: The dispersion curve (7.57).

V ph =
Ω

K
=

Ω

(Ω2 − 1)1/4
(7.59)

V ph =
√
2, occurring at Ω =

√
2 or K = 1, see Fig. 45. Moreover, at this point V ph coincides

with the group velocity

V g =
dΩ

dK
=

2

Ω

(

Ω2 − 1
)3/4

. (7.60)

It is also worth mentioning that the minimal value of the phase velocity V ph = V g =
√
2,

similar to that shown in Fig. 45, corresponds to the critical speed of a moving load in the

steady-state problem for a beam supported by a Winkler foundation, e.g. see the well-known
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Figure 45: The phase and group velocities according to (7.59) and (7.60).

contribution of Timoshenko (1927). Therefore, the same resonant effect may be expected for

a moving load on the edge of an elastically supported plate.

Finally, we present the parabolic-elliptic formulation for a plate on a Winkler foundation,

which may be derived in the same manner as in the previous subsection 7.2, see also Kaplunov

et al. (2016). The ansatz generalising (7.3) is now written as

γ4eW,ξξξξ +W,ττ +
βWh

4

D
W = 0. (7.61)

As a result, we arrive at the pseudo-static elliptic equation (7.52), subject to a boundary

condition on the edge x2 = 0 given by the dynamic parabolic equation

Dγ4eW,1111 + 2ρhW,tt + βWW = BK M0,11, (7.62)

or the similar equation (7.54) with the boundary condition

Dγ4eθK,1111 + 2ρhθK,tt + βW θK = −BKN0,11. (7.63)

7.4 Examples

Consider now examples demonstrating the implementation of the formulation developed in

subsection 7.2.

87



7.4.1 Comparison with exact solution

Let us apply the Laplace transform in time τ and the Fourier transform in the longitudinal

coordinate ξ in (7.2). Then, the transformed deflection W FL satisfies the equation

W FL
,ηηηη − 2k2W FL

,ηη +
(

k4 + p2
)

W FL = 0, (7.64)

where k and p, as above, denote the parameters of the Fourier and Laplace transforms, respec-

tively. The solution of this equation is

W FL = C1e
−g1η + C2e

−g2η, (7.65)

where Cn(k, p), n = 1, 2, are arbitrary functions and

g1,2 = k2 ± ip. (7.66)

Consider an arbitrary bending moment M0 applied at the edge η = 0. In this case the

boundary conditions (7.40) are transformed to

W FL
,ηη − νk2W FL = −h

2

D
MFL

0 ,

W FL
,ηηη − (2− ν) k2W FL

,η = 0,

(7.67)

where MFL
0 is the transformed moment M0. On substituting (7.65) into (7.67), we determine

Cn, having

W FL =
1

G

(

G1e
−g1η +G2 e

−g2η
)

, (7.68)

where

Gj = (−1)jgj
[

g2j − (2− ν)k2
] h2MFL

0

D
, (j = 1, 2)

G = (g1 − g2) [g
2
1g

2
2 + 2g1g2(1− ν)k2 − ν2k4] .

(7.69)

Next, we note that the term in square brackets in the expression for G may be rewritten as

k4 + p2 + 2(1− ν)k2
√

k4 + p2 − ν2k4. (7.70)

The poles

p2 = −γ4ek4, (7.71)
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correspond to those of the dispersion relation (7.10). It is worth mentioning that at the poles

(7.71) the equation (7.64) is identical to the tranformed elliptic equation (7.5) (or (7.52)), while

(7.68) is related to the parabolic equation (7.51) at the edge η = 0. In particular, on taking

into account (7.69), we deduce from (7.68)

W FL
∣

∣

η=0
= −

h2MFL
0

(

√

k4 + p2 + νk2
)

D
(

k4 + p2 + 2(1− ν)k2
√

k4 + p2 − ν2k4
) . (7.72)

Near the poles (7.71) the latter becomes

W FL
∣

∣

η=0
≈ −

h2MFL
0 p2

√

1− γ4e

(

√

1− γ4e + ν
)

D
(

√

1− γ4e + 1− ν
)

(γ4ek
4 + p2)

, (7.73)

which is indeed the transformed solution of the equation (7.51) expressed in the variables ξ

and τ . Thus, the formulation (7.51) and (7.52) captures the contribution of the poles of the

bending edge wave induced by a moment of a general shape.

7.4.2 Near-resonant excitation

Let a prescribed bending edge moment be

M0 = Aei(kx−ωt), (7.74)

with no shear edge force assumed. Then, the solution of the plate bending equation (3.18),

subject to the non-homogeneous boundary conditions (7.40), can be written as

W (x, y, t) = V (y)ei(kx−ωt). (7.75)

As a result, (3.18) becomes

d 4V

dy4
− 2k2

d 2V

dy2
+

(

k4 − 2ρhω2

D

)

V = 0, (7.76)

leading to

W (x, y, t) =

2
∑

n=1

Cne
i(kx−ωt)−kχny, (7.77)

with

χ2
1 + χ2

1 = 2, χ2
1χ

2
2 = 1− 2ρhω2

Dk4
. (7.78)
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It is easily verified that the attenuation orders χn, n = 1, 2, coincide with γn defined by

(7.7), provided that the frequency ω and the wave number k satisfy the dispersion relation

(3.24). The constants Cn may be determined from the boundary conditions (7.40). The exact

solution at the edge is then given by

W (x, 0, t) = − A

Dk2
χ1χ2 + ν

χ2
1χ

2
2 + 2(1− ν)χ1χ2 − ν2

ei(kx−ωt). (7.79)

Compare this formula with that obtained from the approximate formulation derived in

subsection 7.2 and given by the solution of (7.51). The latter is

W (x, 0, t) = − ABKk
2

Dk4γ4e − 2ρhω2
ei(kx−ωt), (7.80)

with BK defined by (7.47). It may be observed that both (7.79) and (7.80) exhibit a resonant

behaviour when the frequency ω and the wave number k satisfy the dispersion relation (3.24).

Let the excitation frequency be close to that of the bending edge wave, i.e.

ω = ω0 + εω1, |ε| ≪ 1, (7.81)

where ω0 =

√

Dγ2ek
4

2ρh
, see (3.24). This is exactly the setup of bending edge motion evolving in

the slow time τs ∼ εt, which is in line with the asymptotic theory developed in subsection 7.2.

First, we obtain

χ1χ2 ≈ γ1γ2 −
2ρh

Dk4
εω0ω1

γ1γ2
. (7.82)

On substituting the latter into (7.79) and making use of (7.10), we arrive at

W (x,0,t) ≈ − A

Dk2
(γ1γ2 + ν) ei(kx−ωt)

[γ21γ
2
2 + 2(1− ν)γ1γ2−ν2]−

4ρhεω0ω1

Dk4

(

1 +
1− ν

γ1γ2

)

=
ABKk

2ei(kx−ωt)

4ρhεω0ω1

.

(7.83)

This expression coincides with the leading order behaviour of (7.80). Indeed, on inserting

(7.81), we have

W (x, 0, t) ≈ − ABKk
2 ei(kx−ωt)

[Dk4γ4e + β − 2ρhω2
0]− 4ρhεω0ω1

=
ABKk

2ei(kx−ωt)

4ρhεω0ω1
, (7.84)

which coincides with (7.83).
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8 Conclusion

Explicit hyperbolic-elliptic and parabolic-elliptic models drastically simplify treatment and un-

derstanding of dynamic phenomena involving Rayleigh and Rayleigh-type waves. In particular,

they enable a straightforward insight into various impact and moving load problems, includ-

ing surprisingly simple asymptotic formulae for the 3D displacement fields caused by a point

moving load. Another important advantage of these models is the separation of the original

exact formulations into two parts, namely hyperbolic or parabolic dynamic problems along the

surface or edge together with pseudo-static elliptic problems over the interior. The solutions of

dynamic problems provide boundary conditions for pseudo-static ones; in doing so, sometimes

it is enough to restrict ourselves to the dynamic problems only. In addition, the possibility of

dealing with elliptic equations over the interior instead of hyperbolic ones appears to be very

useful for optimising numerical computations.

The developed methodology allows a number of extensions. Among them, we mention finite

and curved bodies as well as half-spaces with a more general vertical inhomogeneity. Modelling

of the surface wave induced by internal sources is also of obvious interest. Another important

area is concerned with interaction of surface and bulk waves. This may occur when an elastic

structure, e.g. a rod, is attached to the surface or in the case of a rigid stamp. Also, the

well-known phenomenon of the conversion of plate bending and extensional waves into surface

ones at a short-wavelength limit may open new prospects for deriving refined plate theories.

Analysis of some of the aforementioned problems is already in progress.
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Appendix A. Near-resonant behaviour of a single degree

of freedom linear oscillator

Consider forced vibrations of a single degree of freedom linear oscillator governed by

d 2x

dt2
+ ω2

0x = F (τ)e−iω0t, (A.1)

where ω0 is the natural frequency, and τ = εt is the slow time. Here the parameter ε ≪ 1

is associated with a small deviation of the excitation frequency from the natural one. For

example, the forcing F (τ) = e−iω1τ prescribes the excitation frequency of ω = ω0 + εω1.

Let us now develop a multiple scale perturbation procedure, see e.g. Cole (1968) and Nayfeh

(2000), expanding

x(t, τ) = ε−1 (x0(t, τ) + εx1(t, τ) + . . . ) , (A.2)

and making use of the symbolic identity

d 2

dt2
=
∂ 2

∂t2
+ 2ε

∂ 2

∂t∂τ
+ ε2

∂ 2

∂τ 2
. (A.3)

Then, on substituting (A.2) into (A.1), we have at leading order

x0,tt + ω2
0x0 = 0. (A.4)

As before, the comma in the subscript denotes a partial derivative. Therefore

x0 = A(τ)e−iω0t. (A.5)

At next order we obtain

x1,tt + ω2
0x1 + 2x0,tτ = F (τ)e−iω0t, (A.5)

or

x1,tt + ω2
0x1 = (F (τ) + 2iA′(τ)) e−iω0t. (A.6)

In order to exclude a secular term, we impose

F (τ) + 2iA′(τ) = 0. (A.7)

Then the sought for leading order solution becomes

x0(t, τ) =
ie−iω0t

2

∫

F (τ)dτ. (A.8)
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Appendix B. Exact analysis of plane moving load prob-

lems

In this appendix we discuss steady-state problems for a vertical force or stamp moving along

the surface of an elastic half-plane.

First, we study dynamic response of the elastic half-plane H+
2 , see (2.25), subject to a

vertical distributed force P , moving steadily at a constant speed c. The boundary conditions

at x3 = 0 are specified as

σ13 = 0, σ33 = P (s), (B.1)

where, as previously, s is a moving coordinate, i.e. s = x1 − ct. The governing equations for

the elastic potentials written in the moving coordinate frame (s, x3), become

φ,33 +

(

1− c2

c21

)

φ,ss = 0,

ψ,33 +

(

1− c2

c22

)

ψ,ss = 0.

(B.2)

Then, the boundary conditions (B.1) take the form

2φ,s3 + ψ,ss − ψ,33 = 0,

(κ2 − 2)φ,ss + κ2φ,33 + 2ψ,s3 =
P (s)

µ
.

(B.3)

Let us focus on the subsonic regime (c < c2 < c1), when the equations (B.2) are ellip-

tic. In this case the solution is expressed through plane harmonic functions in line with the

consideration in subsection 2.2. Thus,

φ = φ(s, αx3), ψ = ψ(s, βx3), (B.4)

with α and β defined by (2.14). The only difference of solution (B.4) from (2.31) is that,

instead of the phase speed, c now denotes the speed of a moving load.

Not surprisingly, the elastic potentials φ and ψ may be related to each other using the first

homogeneous boundary condition (B.3) along with the Cauchy-Riemann identities, resulting

in

ψ =
2α

β2 + 1
φ∗. (B.5)
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Hence, the displacement components are expressed in terms of a single plane harmonic function,

similarly to subsection 2.2, as

u1(s, x3) = φ,s (s, αx3)−
2αβ

1 + β2
φ,ξ (ξ, βx3) ,

u3(s, x3) = φ,3 (s, αx3)−
2

1 + β2
φ,3 (s, βx3) .

(B.6)

Also, using (B.5), the second boundary condition (B.3) becomes

φ,ss

∣

∣

x3=0
= −(1 + β2)P (s)

µR(c)
, (B.7)

where R(c) is defined by (4.77).

Let us assume that P (s) = P0
dp

ds
. Then, on employing the Poisson formula, see e.g. Courant

& Hilbert (1989), the derivative φ,s is given by

φ,s(s, αx3) = −(1 + β2)P0

πµR(c)

∞
∫

−∞

αx3p(r)

(r − s)2 + α2x23
dr, (B.8)

enabling a straightforward calculation of the displacement field through (B.6). For example, for

the point load P (s) = P0δ(s), e.g. see the well-known paper of Cole & Huth (1958), integration

in (B.7) gives

φ,s

∣

∣

x3=0
= −(1 + β2)P0

µR(c)

[

H(s)− 1

2

]

. (B.9)

This solution is determined to within an arbitrary constant, which cannot be found from the

steady-state formulation. The value 1
2
in (B.9) is chosen in order to have symmetry.

On satisfying the boundary condition (B.9), the harmonic function φ,s(s, αx3) is obtained

as

φ,s(s, αx3) = −(1 + β2)P0

πµR(c)
tan−1 s

αx3
. (B.10)

Finally, the sought for displacements are given by

u1(s, x3) = −(1 + β2)P0

πµR(c)

[

tan−1 s

αx3
− 2αβ

1 + β2
tan−1 s

βx3

]

,

u3(s, x3) =
α(1 + β2)P0

2πµR(c)

[

ln (s2 + α2x23)−
2

1 + β2
ln (s2 + β2x23)

]

.

(B.11)

This result is identical to that presented in the aforementioned paper by Cole & Huth (1958),

up to a rigid body motion component of the horizontal displacement.
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The same methodology may be applied to mixed boundary value problems. In particular,

consider the steady-state problem for a rigid stamp moving along the boundary of the elastic

half-plane H+
2 at a constant speed c < c2. The equations of motion in the moving coordinate

frame (s, x3) are again taken in the form (B.2), whereas now the boundary conditions along

the surface x3 = 0 become

σ33 = 0, s ∈ S1;

u3 = f(s), s ∈ S2;

σs3 = 0, s ∈ R,

(B.12)

where S1 ∪ S2 = R. Due to the last condition, the relation (B.5) holds true. On introducing

the auxiliary function

φ1 =
β2 − 1

β2 + 1
φ,3 (B.13)

and also the scaling z = αx3, it is possible to reduce the first equation of (B.2) with the

boundary condition (B.12) to a conventional mixed boundary value problem for the Laplace

equation. Thus, we have

φ1,zz + φ1,ss = 0 (B.14)

subject to

φ1 = f(s), ξ ∈ S2;

φ1,s = 0, ξ ∈ S1,
(B.15)

along the surface z = 0.
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