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In this paper we re-examine the relationship between non-trading frequency and portfolio return 

autocorrelation. We show that in portfolios where security specific effects have not been 

completely diversified, portfolio autocorrelation will not increase monotonically with increasing 

non-trading, as indicated in Lo and MacKinlay (1990). We show that at high levels of non-trading, 

portfolio autocorrelation will become a decreasing function of non-trading probability and may 

take negative values. We find that heterogeneity among the means, variances and betas of the 

component securities in a portfolio can act to increase the induced autocorrelation, particularly in 

portfolios containing fewer stocks. Security specific effects remain even when the number of 

securities in the portfolio is far in excess of that considered necessary to diversify security risk. 
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1  Introduction 

 

When securities respond nonsynchronously to market-wide news, portfolios comprised of those 

securities will display autocorrelation in returns. This characteristic of portfolio returns is important 

to recognize and understand because studies by Scholes and Williams (1977), Dimson (1979) and 

Cohen et al (1983) showed that this autocorrelation can cause a downward bias in the measurement 

of market betas. These studies each proposed methods to mitigate the effects of nonsynchronous 

trading on the estimation of beta. 

 

However, studies by Atchison et al (1985), using the Scholes and Williams (1977) model, 

and Lo and MacKinlay (1990a), using their generalization of that model, have suggested that only 

a relatively small proportion of observed autocorrelations can be accounted for by nonsynchronous 

trading. Atchison et al (1985) predicted a 4 percent daily first order autocorrelation coefficient due 

to nonsynchronous trading, against an observed level of around 30 percent. Lo and MacKinlay 

(1990a) reported a weekly first order autocorrelation of 46 percent for observed returns to a 

portfolio of small firms. However, their model suggested that the autocorrelation induced by the 

characteristics of observed nonsynchronous trading was less than 9 percent. A generalization of the 

Lo and MacKinlay (1990a) model by Boudoukh et al (1994), however, increased the predicted first 

order weekly autocorrelation due to nonsynchronous trading to 18 percent. Kadlec and Patterson 

(1999), using simulations based on observed trading times, found that over fifty percent of 

observed daily autocorrelations could be accounted for by thin trading, but around twenty five 

percent of observed weekly autocorrelation could be accounted for by thin trading. This places 

their result for weekly returns in between those of Lo and MacKinlay (1990) and Boudoukh et al 

(1994) results. 

 

A common feature in the models that relate portfolio autocorrelation to nonsynchronous trading is 

that they use model properties that require the number of securities in a portfolio to have increased 

without limit.1 While the number of stocks required for the diversification of idiosyncratic risk in a 

stock portfolio is well documented,2 the relationship between the number of stocks in a portfolio 

and the portfolio autocorrelation generated by nonsynchronous trading has not been subject to the 

                                                            
1.  See, for example, equations (8) and (9) in Atchison et al (1987) and Proposition 2.2 (equation 2.26) in Lo and MacKinlay (1990). Lo and 
MacKinlay (1990) liken their asymptotic approximation to that used in the Arbitrage Pricing Theory literature, see, for example, Chamberlain (1983) 
and Chamberlain and Rothschild (1983).  

2. See, for example, Statman (1987). 
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same level of scrutiny.3 We show that security means and variances may continue to influence the 

portfolio return autocorrelation in a portfolio that might be considered well-diversified from the 

viewpoint of portfolio risk. 

 

The objective of this study is to demonstrate how the portfolio autocorrelation properties of 

the leading model of nonsynchronous trading, Lo and MacKinlay (1990), change in portfolios that, 

despite containing a large number of securities, continue to be influenced by security-specific 

variation. A key property of the Lo and MacKinlay (1990) model is that there is a positive and 

strictly convex relation between stock trading infrequency and portfolio autocorrelation in 

portfolios where the number of securities has increased without limit. We show that when 

portfolios are not sufficiently large for security specific effects to have been eliminated, the 

relationship between non-trading and portfolio return autocorrelation is no longer strictly convex 

and always positive. We find that at high levels of non-trading, portfolio return autocorrelation can 

become a decreasing function of the non-trading probability. Moreover, for portfolios containing a 

small number of securities, portfolio autocorrelation may take negative values. These potential 

reductions in the portfolio return autocorrelation predicted by the Lo and MacKinlay model (1990) 

are more pronounced in portfolios containing a small number of securities. These reductions may 

be offset if the securities are sufficiently heterogeneous in their return means, variances and 

covariances. 

 

We estimate the frequency of non-trading for stocks listed on NYSE/AMEX and NASDAQ 

to show that it remains an important consideration for portfolio autocorrelation. We use these 

estimates to compute the effects of non-trading on portfolio autocorrelation where the portfolios 

are influenced by security specific parameters. To maintain consistency with the earlier work of Lo 

and MacKinlay (1990), Boudoukh et al (1994) and Kadlec and Patterson (1999), we use their 

market wide parameters together with a range of security specific parameters drawn from widely 

available historical estimates. 

 

Our results have two important implications. First, empirical studies that adjust risk 

measures for thin trading by reference to portfolio autocorrelation coefficients, using models such 

                                                            
3. An empirical study by Perry (1985) found that portfolio return autocorrelations increased as the number of securities increased in both a portfolio 
of small firms and a portfolio of large firms, but he did not explicitly measure the degree of non-trading in each portfolio. Steeley (1997) extended 
this approach to examine how portfolio return cross autocorrelations and time diversification are influenced by the number of securities in a 
portfolio. Atchison et al (1987) used the Scholes and Williams (1977) model of non-synchronous trading, but still used asymptotic properties in 
constructing their predicted autocorrelation function. The original observation of index return autocorrelation is Fisher (1966). 
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as those of Scholes and Williams (1977) and Dimson (1979), may have the potential to over-

correct the measures if the predicted autocorrelation is actually quite low.4 Second, the observation 

of high and homogeneous levels of infrequent trading alongside high levels of portfolio return 

autocorrelation must mean that factors, other than nonsynchronous trading, are generating the 

observed autocorrelations.5 

  

The remainder of the paper is structured as follows. The next section develops the 

properties of the Lo and MacKinlay (1990) model of nonsynchronous trading when portfolios 

continue to influenced by security specific parameters. Section 3 presents estimates of the 

frequency of non-trading among stocks listed on the NYSE/AMEX and NASDAQ, and presents 

contrasting estimates of portfolio return autocorrelation functions for portfolios with and without 

the influence of security specific parameters. This is undertaken both in the case where the 

securities are assumed to be homogeneous and in the case where heterogeneity among the 

securities is introduced. These estimates identify the relationships between portfolio return 

autocorrelation and the number of securities in a portfolio, the probability of non-trading and other, 

return-based, characteristics of the component securities. Section 4 summarizes and concludes. 

 

2  Implied autocorrelations in portfolios with a finite number of securities 

 

The first-order autocorrelation of the observed returns, ܴ௧, ݐ ൌ 1,2, … , ܶ, for a portfolio of ݅ ൌ

1,2, … , ݊,	securities is 

 

Corrሺܴ௧, ܴ௧ାଵሻ ൌ Covሺܴ௧, ܴ௧ାଵሻ Varሺܴ௧ሻ⁄  (1)

 

where 

                                                            
4.  Studies by Griffin and Oomen (2012) and Zhang (2012) show that estimated contemporaneous return covariances, and hence estimated betas, can 
be affected both by nonsynchronous trading and by the existence of i.i.d. microstructure noise associated with high-frequency sampling of realized 
returns. Both of these papers and an earlier unpublished study by Martens (2004), which uses the Lo and MacKinlay framework, show that there is a 
trade-off between the downward bias in contemporaneous covariance induced by nonsynchronous trading and the increase in the variance 
(imprecision) of the covariance estimate arising from microstructure noise, such as bid-ask bounce. None of the methods to adjust covariance 
measures, Scholes and Williams (1977), Dimson (1979), Cohen et al (1983) and Hayashi and Yoshida (2005), is free from this trade-off. Both 
Griffin and Oomen (2012) and Zhang (2012) develop optimal sampling frequencies to balance this trade-off, and show that the ranking of the 
proposed covariance adjustments depends on the scale of the microstructure noise. While both of these papers and our work assume a fixed time 
interval, a natural extension would be to allow time varying moments of returns. This is an open topic for future research. 

5. Portfolio autocorrelations have alternatively been associated with many other factors. For example, Keim and Stambaugh (1986) and Conrad and 
Kaul (1988) have shown that time varying expected returns can induce portfolio return autocorrelation. Mech (1993) has shown that frictions due to 
the bid-ask spread can cause return dependence.  Sias and Starks (1994) and Brindranath et al (1995) relate changes in institutional holding patterns 
relate to portfolio return autocorrelation while Boulatov et al (2013) examines how order flow patterns of informed traders influence portfolio serial 
correlation. Anderson et al (2011) provides a review of the alternative explanations for portfolio return autocorrelation. 
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ܴ௧ ൌ෍ω௜ܴ௜,௧	,				 subject to ෍ω௜

௡

௜ୀଵ

ൌ 1

௡

௜ୀଵ

 
(2)

 

and where ܴ௜,௧ is the return on security i at time t, and ω௜ is the weight on security i in the portfolio. 

For an equally-weighted portfolio, we obtain on substituting (2) into (1), 

  

Corrሺܴ௧, ܴ௧ାଵሻ ൌ
∑ Cov൫ܴ௜,௧, ܴ௜,௧ାଵ൯
௡
௜ୀଵ ൅ ∑ ∑ Cov൫ܴ௜,௧, ௝ܴ,௧ାଵ൯

௡
௝ୀଵ,ஷ௜

௡
௜ୀଵ

∑ Var൫ܴ௜,௧൯
௡
௜ୀଵ ൅ ∑ ∑ Cov൫ܴ௜,௧, ௝ܴ,௧൯

௡
௝ୀଵ,ஷ௜

௡
௜ୀଵ

 
(3)

 

which expresses the portfolio return autocorrelation in terms of the autocovariances, cross-

autocovariances, covariances and variances of the returns of the component securities. 

 

2.1 The Lo and MacKinlay (1990) model of nonsynchronous trading 

 

The models of Scholes and Williams (1977) and Lo and MacKinlay (1990) establish the 

relationship between the terms in equation (3) and the variance-covariance matrix of an underlying 

unobservable returns process, when securities trade nonsynchronously. Specifically, Lo and 

MacKinlay (1990) assume that unobservable security returns, ܴ௜,௧
∗  are determined by the stochastic 

model, 

ܴ௜,௧
∗ ൌ μ௜ ൅ β௜Λ௧ ൅ ε௜,௧ (4)

 

where Λ௧ is a zero-mean common factor, with variance σஃ
ଶ  ௜ is the expected unobserved return toߤ ,

security i, β௜ is the beta of security i with the common factor and ε௜,௧ are cross-sectionally and 

temporally independent idiosyncratic shocks. They further assume that the common factor Λ௧ is 

independently distributed and independent of ε௜,௧ି௦ for all i,t and s. 

 

In each period t, security i is assumed not to trade with a probability ݌௜. If the security does 

not trade, its observed return for period t is zero, while its unobservable return is given by equation 

(4) above. If the security does trade, its observed return is the sum of the unobserved returns for 

that period and all past consecutive periods for which it did not trade. This structure causes 

movements in the common factor to be reflected in security prices only when securities trade. 
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For this model, Lo and MacKinlay (1990, Proposition 2.1) establish the first and second 

moment properties of observed security returns as a function of the non-trading probabilities and 

the parameters of the unobserved returns in equation (4), specifically, 

 

Cov൫ܴ௜,௧, ܴ௜,௧ା௦൯ ൌ ቐ
σ௜
ଶ ൅

௜݌2
ሺ1 െ ௜ሻ݌

μ௜
ଶ for ݏ ൌ 0

െμ௜
ଶ݌௜							 for ݏ ൌ 1

 (5)

 

Cov൫ܴ௜,௧, ௝ܴ,௧ା௦൯ ൌ

ە
ۖ
۔

ۖ
ۓ
ሺ1 െ ௜ሻ൫1݌ െ ௝൯݌

൫1 െ ௝൯݌௜݌
β௜β௝σஃ

ଶ for ݏ ൌ 0

ሺ1 െ ௜ሻ൫1݌ െ ௝൯݌

൫1 െ ௝൯݌௜݌
௝β௜β௝σஃ݌

ଶ for ݏ ൌ 1

 
(6)

 

where Var൫ܴ௜,௧
∗ ൯ ൌ σ௜

ଶ and ݌௜ ൏ 1, ∀	݅.6 

  

Substituting (5) and (6) into equation (3), expresses the portfolio return autocorrelation 

function in terms of the non-trading probabilities and the parameters of the unobserved returns in 

equation (4). For a representative beta and non-trading probability for all securities in the portfolio, 

Lo and MacKinlay (1990) show that, as the number of securities in the portfolio increases without 

limit, the first order portfolio return autocorrelation is (asymptotically equal to) p where ݌ ൌ  .݅	∀	௜݌

Intuitively, their proof of this result runs as follows. As the number of securities is increased 

without limit, so the terms in (5) approach zero, and so (3) is approximately the ratio of the terms 

in (6). These terms immediately divide through to leave ݌௝ ൌ  the representative probability. In ݌

the case of autocorrelation of higher orders, they show that the portfolio return autocorrelation is 

equal to the power function ݌௦, where s is the autocorrelation order (lag). 

 

2.2   Implications for finite-sized portfolios 

 

If the number of securities does not increase without limit (but still maintaining a representative 

security assumption), we show that the portfolio return autocorrelation function is no longer a 

                                                            
5. The results in (5) and (6), and those derived from here onwards, are not defined for ݌௜ ൌ 1, the case of complete non-trading, when, at least 
intuitively, all covariances and variances will be zero. 



6 
 

power function of non-trading probability. Specifically, in the appendix we derive the following 

result. 

Proposition 1.  Under the definition of unobservable security returns in equation (4), using the 

variance, covariance and autocovariance properties set out in equations (5) and (6) and making a 

representative security assumption, the first order return autocorrelation of a portfolio containing 

n securities, where n has not increased without limit, is 

 

Corrሺܴ௧, ܴ௧ାଵሻ ൌ
ሺ1 െ ݌ሻ݌

θሺ1 ൅ ሻ݌ െ ݌2
 

(7)

where 

θ ൌ
ሺ݊ െ 1ሻሺ݌ െ 1ሻβଶσஃ

ଶ ൅ σଶሺ1 െ ሻ݌
ሺ݊ െ 1ሻሺ݌ െ 1ሻβଶσஃ

ଶ െ μଶሺ1 ൅ ሻ݌
 

(8)

 

Our Proposition 1 introduces the term θ, which we identify to be the adjustment to the portfolio 

return autocorrelation that is required for portfolios with a finite number of securities. This term 

shows that in the case of portfolios containing a finite number of securities, portfolio return 

autocorrelation may continue to be influenced by the (representative) beta of the securities, the risk 

of the common factor, σஃ
ଶ , the (representative) mean and variance of the securities, μ, σଶ, 

respectively, and the number of securities in the portfolio, ݊, through the adjustment term θ.7 

 

The earlier result of Lo and MacKinlay (1990, Proposition 2.2, equation 2.26) that portfolio 

return autocorrelation is a linear function of non-trading probability in the case of portfolios where 

the number of securities has increased without limit follows as a special case of our Proposition 1. 

In fact, any combination of security-level parameter values and the number of securities that leads 

to θ ൌ 1, will cause equations (7) and (8) to simplify immediately to Corrሺܴ௧, ܴ௧ାଵሻ ൌ  One such .݌

possibility is when ݊ → ∞ and so θ → 1, which will then confirm the asymptotic result of Lo and 

MacKinlay (1990) that they obtained through other means.8 

  

The dependence of portfolio return autocorrelation on the number of component securities, 

as shown in the adjustment term, equation (8), means in developing stock markets where indices 
                                                            
7. In Lo and MacKinlay (1990), the representative non-trading probability and beta are the asymptotic sample means. For the finite sample case that 
we have developed, an explicit representative security assumption is needed. While this is an essential base case for examination, various dimensions 
of this assumption are relaxed later in the paper. 

8. While the focus here is on the first-order autocorrelation coefficient of portfolio returns, as these have been found to be by far the most 
economically and statistically significant statistics in empirical work, the changes to the other second moments results in Lo and MacKinlay (1990, 
proposition 2.1) when n has not increased without limit can be extracted easily from the derivations in the appendix. 
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may be being constructed from only a very small number of securities that the return 

autocorrelations in these indices are likely to be heavily dependent on security level means, 

variances and covariances. The adjustment term provides a route to understand how these security 

level effects are contributing to index autocorrelation. 

 

2.3 Time aggregation 

 

In this section, we examine the properties of the extended version of the Lo and MacKinlay (1990) 

model that contrasts the autocorrelation of portfolio returns sampled at different intervals.9 For 

example, the properties of weekly or monthly observed returns can be written in terms of, say, 

daily non-trading probabilities.7 

 

Denoting ܴఛሺݍሻ as the observed return on a portfolio at time τ, where one unit of τ time is 

equal to q units of t time, such that 

ܴதሺݍሻ ൌ ෍ ܴ௧

த௤

௧ୀሺதିଵሻ௤ାଵ

 
(9)

 

Lo and MacKinlay (1990, Proposition 3.2, equation 3.11) show that under their asymptotic 

assumption, the first order autocorrelation function of the temporally aggregated returns is 

 

Corr൫ܴதሺݍሻ, ܴதାଵሺݍሻ൯ ൌ
ሺ1 െ ݌௤ሻଶ݌

ሺ1ݍ െ ଶሻ݌ െ ሺ1݌2 െ ௤ሻ݌
 

(10)

 

Equation (10) shows that the effect of temporal aggregation on (calendar independent) 

observed portfolio returns is to induce a strict convexity into the relation between autocorrelation 

and non-trading probability, ݌ ൏ 1. This can be seen in Figure 1, and replicates the figure in panel 

(d) of Figure 1 of Lo and MacKinlay (1990, p.196). This plot also shows that the degree of 

convexity increases with the coarseness of the observed return sampling interval. 

 

[Figure 1] 

 
                                                            
9. Later studies, such as Boudoukh et al (1994) and Kadlec and Patterson (1999) also adopted this approach. 
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In the appendix, we derive the companion result for the case where the number of securities 

in the portfolio has not increased without bound. Specifically, we obtain 

 

Proposition 2.  Under the definition of unobservable security returns in equation (4), using the 

variance, covariance and autocovariance properties set out in equations (5) and (6) and making a 

representative security assumption, the first order autocorrelation coefficient of time-aggregated 

returns in a portfolio of n securities, where n has not increased without limit, is 

 

Corr൫ܴதሺݍሻ, ܴதାଵሺݍሻ൯ ൌ
ሺ1 െ ݌௤ሻଶ݌

θݍሺ1 െ ଶሻ݌ െ ሺ1݌2 െ ௤ሻ݌
 

(11)

 

Where θ is as defined in (8).  

 

Our result, equation (11), generalizes the relation in equation (10) for the case where the 

number of securities in the portfolio has not increased without bound. Equation (11) differs only by 

the inclusion of θ from the result of Lo and MacKinlay (1990), shown in equation (10). Thus, the 

adjustment to the portfolio autocorrelation predicted in the case of portfolios with a finite number 

of component securities does not depend on the degree of temporal aggregation of the portfolio 

returns. Only in circumstances where the security-level parameters within θ give rise to θ ൌ 1, will 

our generalized autocorrelation relation be the same as that derived by Lo and MacKinlay and 

display the convex and increasing pattern seen in Figure 1. In circumstances where θ ് 1, the 

return autocorrelation of portfolios containing a finite number of securities may no longer conform 

to these patterns. 

 

In the next section, we investigate this issue by estimating the portfolio return 

autocorrelation coefficients, using equations (8) and (11), for varying mixtures of portfolio size, 

non-trading probability, and representative security characteristics, using parameters calibrated to 

market data. 

 

3 Calibration Analysis 

 

In this section, to demonstrate the economic relevance of our adjustment term for the calculation of 

the effects of nonsynchronous trading on portfolio return autocorrelation, we undertake a 



9 
 

calibration analysis. In this analysis, we show how the autocorrelation estimates generated by the 

model of Lo and MacKinlay (1990) change when portfolios contain a finite number of securities 

rather than the number of securities having increased without bound. We re-examine both the 

original results of Lo and MacKinlay (1990) and the extension of this work by Boudoukh et al 

(1994). 

 

Our generalization of the portfolio autocorrelation function contains the adjustment term, θ. 

This depends not only upon the representative probability of non-trading, p, but also upon security 

level parameters and the number of securities in the portfolio. Specifically, θ  depends upon β, the 

(representative) beta of the securities, the risk of the common factor, σஃ
ଶ , the (representative) mean 

and variance of the securities, µ, σଶ, and n, the number of securities in the portfolio. To examine 

the differences between our generalized autocorrelation function and the special case considered 

Lo and MacKinlay (1990), it is necessary to provide values for each of these parameters. Below we 

describe how we set the values of these parameters. 

 

From equation (4), the variance of the returns of a representative security, σଶ, can be 

decomposed as9 

σଶ ൌ βଶσஃ
ଶ ൅ varሺεሻ (12)

 

By assuming that the representative idiosyncratic return variance deviation, varሺεሻ	is proportional 

to the variance of the common factor, the overall variance of returns, varሺεሻ ൌ ζσஃ
ଶ , equation (12), 

becomes 

σଶ ൌ ሺβଶ ൅ ζሻσஃ
ଶ  

σଶ ൌ ϕσஃ
ଶ  

(13)

 

where the variance ratio ϕ ൌ ሺβଶ ൅ ζሻ ൌ σଶ/σஃ
ଶ  measures the variance of security relative to the 

variance of the common factor. If the representative security mean return is set relative to the 

standard deviation of returns using the reward ratio, ξ ൌ μ/σ, then the adjustment term, θ , can be 

written as follows 

θ ൌ
ሺ݊ െ 1ሻሺ݌ െ 1ሻβଶ ൅ ϕሺ1 െ ሻ݌
ሺ݊ െ 1ሻሺ݌ െ 1ሻβଶ െ ξଶϕሺ1 ൅ ሻ݌

 
(14)

Reconfiguring θ in this way removes the variance of the common factor, and means that only the 

reward ratio, ξ, the variance ratio,	ϕ and beta need to be assigned values.  
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We set the bench-mark value for ξ by reference to historical estimates of annualized means 

and standard deviations of stock returns, such as those produced by Dimson et al (2001). These 

report annualized mean (excess) returns of around 8 percent, standard deviations of around 20 

percent, and a reward ratio of around 0.41 for US stocks. Thus, we use ξ ൌ 0.41 as the bench-mark 

value for the reward ratio. We set the bench-mark value for ϕ to maintain consistency with the 

parameterization of the Lo and MacKinlay (1990) model by Kadlec and Patterson (1999) and also 

the historical estimates used to parameterize the reward ratio. Kadlec and Patterson (1999) use a 

value for the variance of the common factor that implies a value in the region of ϕ ൌ 4, when beta 

is set at unity, and so we take this as our base case.10 

 

To maintain consistency with Lo and MacKinlay (1990), we use hourly non-trading 

probabilities in our calculations and then express the induced autocorrelations as a function of daily 

non-trading probabilities. Thus, for weekly observed returns, we aggregate hourly returns having a 

non-trading probability of, say, 80.4 percent over 30 periods (6 hours per day), rather than 

aggregating daily returns having a non-trading probability of 27 percent ሺ. 804଺ ൌ 0.27ሻ  over 5 

periods (days). We convert all the other parameter values to hourly equivalents also. 

 

3.1 Homogeneous non-trading probabilities and betas 

 

To explore the properties of our generalized autocorrelation function, equations (11) and (14), we 

plot the estimated value of the function for varying non-trading probabilities and portfolio sizes, 

holding fixed the security level  parameters. In Figure 2, the generalized autocorrelation function is 

estimated using a beta of one, a variance ratio of ϕ ൌ 4 and a reward ratio, ξ ൌ 0.41, for portfolio 

returns of weekly, monthly, quarterly and annual frequencies. At the rear of each of the four graphs 

are the values of the function in the case where the number of securities has increased without 

limit, and which (as previously shown by Lo and MacKinlay (1990),increases towards unity. Each 

of these cases, which are for portfolios where the number of securities has increased without 

bound, support the empirical findings of both Perry (1985) and Atchison et al (1987) that portfolio 

return autocorrelation is an increasing function of the number of securities. 

 

[Figure 2] 
                                                            
10. We use a unit beta as our base case to enable direct comparison of our results to those in the homogeneous beta case examined in Boudoukh et al 
(1994). Variable security betas are considered in Section 3.2 below that re-examines the heterogeneous portfolios considered by Boudoukh et al 
(1994). 
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By contrast to these cases, the portions of the five graphs for portfolios containing finite 

numbers of securities, show that the autocorrelation functions are no longer always an increasing 

function of non-trading probability. Instead, they are a decreasing function after some relatively 

high non-trading probability. Although difficult to detect visually from Figure 2, the 

autocorrelation functions briefly take small negative values at some non-trading probability levels 

in excess of 99 percent. Moreover, the graphs also show that the non-trading probability level at 

which the autocorrelation function begins to decrease is itself an increasing function of the number 

of securities in the portfolio. 

 

Table 1 shows some estimated values of the generalized autocorrelation function for 

portfolio returns recorded at weekly, monthly, quarterly and annual intervals, for portfolios 

comprising 10, 20, 100 and 500 securities, for daily non-trading probabilities of 27, 60, 80 and 95 

percent. The non-trading probability of 27 percent corresponds to the observation by Boudoukh et 

al (1994) that the average non-trading probability for the smallest decile of US stocks is around 27 

percent.11 This observation received subsequent corroboration in the work of Lesmond, Ogden and 

Trzcinka (1999), who found that the proportion of zero volume days in the small firm decile for 

NYSE/AMEX stocks in the CRSP database is 27.81 percent, in the three-year period 1988-1990. In 

Figure 3, we update these findings and provide a series of annual measures of the non-trading 

among small firms in both the NYSE/AMEX and NASDAQ markets. It can be seen that while the 

proportion of zero volume days has declined since the early Nineties, there have been three 

occasions when it has risen once again, including in 2008. Across the entire sample, the average 

percentage of non-trading days is around 23 percent across the two markets, but this hides 

extensive historic variation that will be important to account for in research that covers these time 

periods. For example, in 1992, the percentage of zero volume days on NASDAQ small firm stocks 

was 46 percent. The even higher non-trading probabilities used as example levels in Table 1 not 

only recognize that for other less developed markets the probabilities of non-trading among small 

stocks may be even higher, but also help to reveal the properties of the generalized autocorrelation 

function. 

 

[Figure 3] 

 

                                                            
11. Using evidence in Foerster and Keim (1993) and Keim (1989). 
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The portfolio return autocorrelation values in Table 1 are obtained for nine different 

combinations of the variance ratio, ϕ ൌ 2,4,9, and the reward ratio, ξ ൌ 0.19, 0.41, 0.65, where the 

middle case in each of the triples is the bench-mark value used in Figure 2. The upper and lower 

variance ratio values represent a range of annualized standard deviations of security returns of 

between 15 percent and 32 percent, the latter being consistent with estimates of the standard 

deviation of the returns of small capitalization stocks reported in sources such as Dimson et al 

(2001). The reward ratios, combined with these variance ratios represent a range of annualized 

excess returns of between 3 percent and 20 percent. 

 

[Table 1] 

 

In Table 1, the rows marked ݊ → ∞ are the autocorrelations predicted by the model of Lo 

and MacKinlay (1990) for the case where the number of securities in the portfolio has increased 

without limit. They do not depend on the security level parameters and so are constant across the 

row in the table. They are specific examples of points on the curves shown in Figure 1. 

  

Where the number of securities in the portfolio has not increased without bound, the value 

of the autocorrelations are no longer independent of the security level parameters or the number of 

securities in the portfolio. This can be seen clearly in the variation in the autocorrelation 

coefficients in the other rows of Table 1, which are for portfolios containing, as examples, 10, 20, 

100 or 500 securities. The column labelled ϕ ൌ 4 and ξ ൌ 0.41 is used as a bench-mark case from 

which the effects of different security level parameters and numbers of securities can be gauged. 

This column corresponds to a portfolio having stocks with mean excess annual stock returns of 8 

percent and an annualized standard deviation of returns of 20 percent. The values in the rows of 

this central column of the table are specific examples of points in the four graphs in Figure 2. The 

remaining columns of Table 1, which consider changed values of these parameters show, therefore, 

how these graphs in Figure 2 may vary when the security level parameters are different from this 

bench-mark case. Columns with greater values of ϕ	represent an increase in the representative 

idiosyncratic volatility of the component stocks in the portfolio, while columns with increased 

values of ξ represent an increase the representative reward to risk ratio of the securities in the 

portfolio. Decreases in these parameter values represent corresponding decreases in idiosyncratic 

risk and reward ratio, respectively. 
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For large portfolios, of 500 companies, the inclusion of security level information leads to 

no more than a 1 percentage point reduction in portfolio return autocorrelations from the 

asymptotic value, in the column headed ݊ → ∞, for daily non-trading probabilities of 27 and 60 

percent. The effects are of similar magnitude at the 80 percent probability level, except for weekly 

returns where a 2 percentage point reduction is observed, but only when the variance ratio and 

reward ratios take high values. At the 95 percent probability level, the autocorrelations are reduced 

less than one percentage point for quarterly or annual returns. For monthly returns, the reduction is 

limited to around 2 percentage points, and this is only observed for high values of the variance ratio 

and the reward ratio. For weekly returns, the reductions in autocorrelation coefficients can be 

greater. For low values of the variance ratio, the impact can amount to a 3 percentage point 

reduction, while for the high variance ratio, the autocorrelation coefficients can reduce by 12 

percentage points (from 85 percent to 73 percent). 

 

For portfolios containing 100 component securities, the effects on portfolio return 

autocorrelation coefficients of including security level parameters are similar to those observed for 

portfolios of 500 securities, at non-trading probabilities of 27 percent and 60 percent. At higher 

levels of non-trading, we observe greater percentage point changes in the portfolio return 

autocorrelation coefficients than were observed for portfolios of 500 securities. Specifically, for 

monthly returns, the coefficient can fall by up to 10 percentage points, while for daily returns it can 

fall by up to 38 percentage points. The changes in the autocorrelation coefficient are larger in the 

cases where the variance ratio takes on a high value, meaning that the security level parameters 

matter most when they take relatively large values. For the case of quarterly and annual returns, 

where it can be seen that the autocorrelations in any case take very low values except in 

circumstances of extreme thin trading, the effects of the number of securities in the portfolio are 

more modest, with differences of less than 2 percentage points obtained. 

 

 For the portfolios containing 20 securities, which might be regarded as well-diversified 

from the point of view of the influence of idiosyncratic variance, the generalized portfolio return 

autocorrelation coefficients are much more noticeably different from the asymptotic values, even 

when the non-trading probability is 27 percent. Specifically, weekly autocorrelation coefficients 

will see a reduction from the asymptotic level of 8.9 percent to 5.7 percent, when the variance ratio 

is high. At the 60 percent non-trading level, the weekly coefficients can reduce to around one half 

of their asymptotic levels, a drop of around 12 percentage points. At the 80 percent probability 
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level, the autocorrelations for annual and quarterly observed returns are affected by around only 2 

percentage points, but in the high variance ratio case, monthly return autocorrelations can be 

reduced by up to 5 percentage points. For weekly returns, the asymptotic autocorrelation of 50 

percent can be reduced by 10 percentage points in the low variance ratio scenario, but by 28 

percentage points (around three-fifths of its value) in the high variance ratio case. At the 95 percent 

probability level, autocorrelations for all the return horizons are affected noticeably. For annual 

returns and quarterly returns, the asymptotic autocorrelations of 4 and 19 percent, respectively, can 

be reduced by 2 and 8 percentage points. For monthly and weekly returns, the asymptotic 

autocorrelations of 50 and 84 percent can be reduced to 22 percent and 16 percent, respectively, in 

the high variance ratio scenario. 

 

For portfolios of just 10 securities, we would expect security idiosyncratic elements to even 

more dramatically influence portfolio return autocorrelation.12 The autocorrelation coefficients in 

this case are affected in a similar way to those observed for portfolios of 20 securities, but the 

effects are much more pronounced. For annual returns, the value of the portfolio return 

autocorrelation coefficients can be halved by including security level parameters, although as these 

coefficients take relatively small values to begin with, the percentage point reductions are small. 

For quarterly returns, the effects are similar, except when non-trading probabilities are at 95 

percent, when the autocorrelation coefficient can reduce from the asymptotic value of 19 percent to 

7 percent. For monthly returns, it is again when non-trading probabilities are extreme that most 

impact is seen. At the 95 percent non-trading probability, the autocorrelation coefficient can reduce 

from 50 percent to 13 percent. In the case of weekly returns, even for relatively small return 

variances and reward ratios, the reduction in the autocorrelation coefficient can be 55 percentage 

points in the 95 percent non-trading probability case, and 6 percentage points at non-trading 

probabilities of 60 percent. But, when the reward ratio and the variance ratio take on high values, 

the autocorrelation coefficients, at a non-trading probability level of 27 percent can reduce to one 

half of their asymptotic value. When non-trading probabilities are as high as 95 percent, weekly 

portfolio return autocorrelations can reduce from 84 percent to 8 percent. Even when the reward 

ratio and the variance ratio take low values, the reduction would be from 84 percent to 30 percent 

in this case. 

 

                                                            
12. The number of securities required to diversify a portfolio is usually estimated to be about 15, see for example, Statman (1987). 
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We consider next whether these potential downward adjustment to the asymptotic 

autocorrelation coefficients, which are found in portfolios containing a finite number of securities, 

are magnified or mollified when the securities in the portfolio have diverse non-trading, variance 

ratios and reward ratios. 

 

3.2 Heterogeneous non-trading probabilities and betas 

 

Boudoukh et al (1994) demonstrated the importance of considering the influence on non-trading 

induced portfolio autocorrelation of heterogeneity among the component securities in the 

portfolio.13 They found that the asymptotic weekly portfolio return autocorrelation arising under 

homogeneity of both beta and non-trading probability of 8.90 percent, the top row in Table 1, 

increases to 17.82 percent when the beta and non-trading probabilities are both at their most 

heterogeneous. In Table 1, we have shown that consideration of security level parameters that have 

not been diversified away in a portfolio containing a fixed number of securities, can reduce the 

autocorrelation coefficients. In this section, we consider whether these reductions are maintained in 

portfolios containing more heterogeneous securities. Specifically, we will explore whether the 

differences between the autocorrelation coefficients in portfolios of unlimited size and those of a 

finite size are increased or decreased once the homogeneity restriction is relaxed, and how sensitive 

this difference is to the level of heterogeneity. 

 

To be able to directly compare our results with those of Boudoukh et al (1994), we start 

with the same four different distributions of non-trading and three distributions of security beta 

examined in their study. These distributions are imposed across six sub-portfolios, which comprise 

fractions 5, 20, 25, 25, 20 and 5 percent of stocks in the overall portfolio. Our smallest portfolio, 

therefore contains 20 securities, such that 1 security represents 5 percent of the portfolio. The non-

trading distributions used by Boudoukh et al (1994) were chosen to reflect the characteristics of 

security trading uncovered by Foerster and Keim (1993). The first distribution is homogeneous, 

with daily non-trading probabilities of (27,27,27,27,27,27) percent.14 The other three distributions 

are heterogeneous with daily non-trading probabilities (0,11,21,32,44,55) percent, 

(0,0,11,32,60,85) percent, and (0,0,0,43,60,85) percent. Taking the first heterogeneous case as an 
                                                            
13. Boudoukh et al (1994, Figure 2. p.559) actually conjectured that extreme heterogeneity in non-trading probability could generate decreasing 
portfolio return autocorrelation. In the previous section, we have shown that decreasing portfolio autocorrelation can also arise with homogeneous 
non-trading probabilities. 
13.Our own calculations of the non-trading probabilities among the stocks in the small firm deciles for both NYSE/AMEX and NASDAQ markets 
indicate that the non-trading probability has since declined to an average of 23 percent. This can be seen in Figure 3.  
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example, this would mean that 5 percent of the portfolio has stocks that always trade, 20 percent of 

the stocks has an 11 percent probability of non-trading, 25 percent of the stocks has a 21 percent 

probability of non-trading, a further 25 percent of the stocks has a 32 percent probability of non-

trading, a further 20 percent of the stocks has a 44 percent probability of non-trading, while the 

final 5 percent of stocks has a 55 percent probability of non-trading. The average non-trading 

probability in each of the four non-trading distributions is 27 percent, but the more heterogeneous 

the distribution, the higher the variance of non-trading probabilities. The three beta distributions 

are (1,1,1,1,1,1), (0.8,0.9,1.0,1.0,1.1,1.2), and (0.8,1.2,1.6,2.0,2.4,2.8), and apply across the sub-

portfolios in a similar fashion to the variable non-trading probabilities. The first two distributions 

of beta have the same mean, while the most heterogeneous distribution has both a higher mean 

(1.8) and a higher variance. The beta distributions are also those used by Boudoukh et al (1994). 

 

To examine the difference between the asymptotic autocorrelation levels and those obtained 

using the finite sample formula, we recalculate the weekly autocorrelations using equations (11) 

and (14). We use the same security level parameters as examined in the case of homogeneity, in 

Table 1, and consider portfolios containing 20, 100 and 500 securities. As both βଶ	and ζ, the ratio 

of idiosyncratic variance, varሺεሻ, to the common factor variance, σஃ
ଶ , have similar multiplicative 

effects on the total variance of a security, equation (13), we hold ζ  constant at the central scenario 

value of ζ ൌ 3 used in Table 1 that, for a unit beta, implies a variance ratio of ϕ ൌ 4 and an 

annualized security return standard deviation of around 20 percent. Hence, in the presence of 

heterogeneous betas, the variance ratio, ϕ , now takes the value ϕ ൌ βଶ ൅ 3, where the beta values 

are from the distributions introduced previously.15 As the securities in the portfolio are now 

permitted to have different betas, so the variance ratios of the securities will also be heterogeneous. 

For any given security return variance, we use the same three scenarios for the reward ratio of 

mean to standard deviation, (0.19, 0.41, 0.65), as in homogeneous beta case. For a given scenario, 

all securities in the portfolio will have the same reward ratio, but as the variances are 

heterogeneous, then so also will be the security mean returns. Therefore, beta heterogeneity 

induces heterogeneity in the variances and means of the component securities of the portfolio, but 

does so in a manner in which the influence of beta heterogeneity can be isolated. 

 

                                                            
15. This helps isolate the influence of beta heterogeneity in the comparison of autocorrelation coefficients. The case where both beta and 
idiosyncratic return variance could change between scenarios in the calculation of total security variance was also examined, but the quantitative 
differences to the results were small and the qualitative conclusions unchanged.  
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The autocorrelation coefficients, for heterogeneous betas and non-trading probabilities, are 

shown in panel (a) of Table 2. As observed by Boudoukh et al (1994), heterogeneity in both beta 

and non-trading probability acts to increase the measured autocorrelations. Our results, which 

extend these findings to portfolios of different finite numbers of component securities display some 

more subtle characteristics. For any given distribution of non-trading probabilities among the 

component securities in the portfolio, the proportional increase in portfolio return autocorrelation 

observed as the betas of the securities also become more heterogeneous is larger for portfolios 

containing smaller numbers of securities. By contrast, for any given distribution of betas among the 

component securities of the portfolio, the proportional increase in portfolio return autocorrelation 

observed as non-trading becomes more heterogeneous within the portfolio is roughly equivalent for 

large and small portfolios. This suggests that the increases in portfolio return autocorrelation are 

being influenced more by the heterogeneity in security beta than by the heterogeneity in the 

security non-trading probabilities. It can also be seen that, for any given distribution of 

heterogeneous betas and non-trading probability, increases in the reward ratio of the component 

securities now cause barely detectable falls in the autocorrelation coefficients. 

 [Table 2] 

 

We can alternatively view the same results in Table 2, panel (a) in terms of the influence of 

the number of securities in a portfolio, given the level of heterogeneity of beta and non-trading 

probability among the component securities. For any given combination of non-trading probability 

and beta heterogeneity, the portfolio return autocorrelation coefficient reduces as the portfolio 

contains a smaller number of component securities. The difference between the influence of non-

trading probability heterogeneity and beta heterogeneity also reappears when the results are viewed 

in these terms. For a given distribution of security betas, the reduction in portfolio autocorrelation 

coefficient between large and small portfolios is of proportionately equivalent magnitude 

regardless of the heterogeneity of non-trading. For example, for the beta distribution 

(0.8,0.9,1.0,1.0,1.1,1.2), the autocorrelation coefficient for a portfolio of 20 securities is around 80 

percent of the value of the autocorrelation coefficient for an asymptotically large portfolio, whether 

the distribution of non-trading probabilities is (27,27,27,27,27,27) or (0,0,0,43,60,85). In the 

former case, the autocorrelation coefficient reduces from 0.089 to 0.073, while in the latter case, it 

reduces from 0.1508 to 0.1193. By contrast, for any given distribution of non-trading probabilities, 

the magnitude of the fall in the value of the autocorrelation coefficient as the heterogeneity of beta 

increases, appears to decrease. However, it only does so when both the mean and the variance of 
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the distribution of betas increase. Thus, the 20 percent reductions in the autocorrelation coefficients 

between the asymptotically large portfolio and the portfolio of 20 securities, seen in the case of the 

beta distributions of (1,1,1,1,1,1) and (0.8,0.9,1.0,1.0,1.1,1.2), decreases to an 12 percent reduction 

in the case of the (0.8,1.2,1.6,2.0,2.4,2.8) beta distribution. For example, for the distribution of 

non-trading probabilities (0,0,0,43,60,85), the autocorrelation coefficient reduces from 0.1397 to 

0.1114 in the case of the (1,1,1,1,1,1) beta distribution, from 0.1508 to 0.1193 in the case of the 

(0.8,0.9,1.0,1.0,1.1,1.2) beta distribution, but from 0.1782 to only 0.1562 in the case of the 

(0.8,1.2,1.6,2.0,2.4,2.8) beta distribution. So, as was observed when isolating the impacts of 

heterogeneity, for a given number of securities in a portfolio, heterogeneity in beta seems to exert 

more influence on portfolio autocorrelations than does heterogeneity in nonsynchronous trading 

probability. However, it does so in particular when the average beta increases. 

 

Taking the combined impacts of heterogeneity in betas and non-trading probabilities and 

reduction in portfolio size together, it can be seen that the impact on portfolio return 

autocorrelation of heterogeneity is considerably larger than (close to double) the impact of 

reducing the number of securities in a portfolio. Thus, estimating the influence of non-synchronous 

trading on portfolio return autocorrelation using an asymptotic approximation, which effectively 

assumes homogeneous betas and non-trading probabilities, would actually become more accurate 

an approximation for a portfolio of finite size, the more heterogeneous are the component 

securities. 

 

To determine whether these results are sensitive to the average level of non-trading, we 

repeat the analysis of panel (a) in Table 2, using non-trading probabilities centred on 60 percent, 

one of the higher average non-trading levels considered in Table 1. Again each distribution of non-

trading probabilities has the same mean, but greater heterogeneity within a distribution results in a 

higher variance for that distribution. The results of the analysis for the cases of 60 percent average 

non-trading probabilities are contained in panel (b) of Table 2.16 As with the lower average non-

trading probabilities, heterogeneity in either or both non-trading probability and beta serves to 

increase the portfolio return correlation, and, for any given distribution of non-trading probabilities 

among the component securities in the portfolio, the proportional increase in portfolio return 

                                                            
16. Given the ranges of the heterogeneous non-trading probability distributions centred on a 27 percent probability, it is not possible to match the 
variances of these distributions when the mean is shifted to 60 percent, without affecting the shape of the distribution. Hence, although the variances 
increase, as the distributions centred on 60 percent increase in the heterogeneity of the non-trading probabilities of the component securities, the 
variances are each smaller than in the counterpart distribution centred on 27 percent. 
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autocorrelation observed, as the betas of the securities also become more heterogeneous, is larger 

for portfolios containing smaller numbers of securities. But, in a difference to what was observed 

for the distributions of lower average non-trading probabilities, for any given distribution of betas 

among the component securities of the portfolio, the proportional increase in portfolio return 

autocorrelation observed as non-trading becomes more heterogeneous within the portfolio is 

smaller for the smaller portfolios. For example, in the case of the (0.8,0.9,1.0,1.0,1.1,1.2) beta 

distribution, the autocorrelation coefficient for a portfolio of 20 securities increases by 22 percent 

from 0.1945, for the (60,60,60,60,60,60) distribution of nonsynchronous trading probabilities to 

0.2377 for the (24,29,44,80,80,80) distribution of nonsynchronous trading probabilities. Whereas, 

for a portfolio of 500 securities, it increases by 29 percent from 0.2569, for the (60,60,60,60,60,60) 

distribution of nonsynchronous trading probabilities to 0.3275 for the (24,29,44,80,80,80) 

distribution of nonsynchronous trading probabilities. This suggests that the influence of non-

trading heterogeneity on portfolio return autocorrelation is relatively more important at higher 

average levels of non-trading. The influence of changes in the reward ratio of the component 

securities is once again negligible in comparison to other factors. 

 

The contrast between the results for low and high average levels of non-trading also arises 

when the results are expressed in terms of the number of securities in the portfolio. For any given 

combination of heterogeneous non-trading probability and beta heterogeneity, the portfolio return 

autocorrelation coefficient declines as the portfolio contains a smaller number of component 

securities, as it has done in all prior scenarios. By contrast to the results for the lower level of 

average non-trading, for a given distribution of security betas, the reduction in portfolio 

autocorrelation coefficient between large and small portfolios is proportionately larger for 

portfolios containing more heterogeneous nonsynchronous trading probabilities. For example, in 

the case of the (0.8,0.9,1.0,1.0,1.1,1.2) beta distribution, the autocorrelation coefficient, for the 

(60,60,60,60,60,60) distribution of nonsynchronous trading probabilities, decreases by 24 percent 

from 0.2569, for a portfolio of 500, to 0.1954 for a portfolio of 20 securities. Whereas, for the 

(24,29,44,80,80,80) distribution of nonsynchronous trading probabilities, it decreases by 27 percent 

from 0.3275, for a portfolio of 500 securities to 0.2377 for a portfolio of 20 securities. 

 

For any given distribution of non-trading probabilities, the magnitude of the fall in the 

value of the autocorrelation coefficient between large and small portfolios decreases as the 

heterogeneity of beta increases. For example, in the case of the (24,29,44,80,80,80) distribution of 
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nonsynchronous trading probabilities, the autocorrelation coefficient for the (1,1,1,1,1,1) 

distribution of security betas reduces by 27 percent from 0.3150 in the case of a portfolio 

containing 500 securities to 0.2306 in the case of a portfolio containing 20 securities. Whereas, for 

the (0.8,1.2,1.6,2.0,2.4,2.8) distribution of security betas, it decreases by 17 percent from 0.3679 in 

the case of a portfolio containing 500 securities, to 0.3050 in the case of a portfolio containing 20 

securities. However, as was the case at the lower average nonsynchronous trading probabilities, 

this decrease appears to need both the mean and the variance of betas to have increased. For the 

(0.8,0.9,1.0,1.0,1.1,1.2) distribution of security betas, the autocorrelation coefficient decreases by 

27 percent, the same as in the homogeneous beta case. 

 

In summary, the impact of heterogeneity of nonsynchronous trading probabilities and betas 

and the number of securities in the portfolio are broadly similar at different average levels of non-

synchronous trading. Having fewer securities in a portfolio reduces the autocorrelation coefficients, 

in a similar manner to what was observed in the homogeneous security cases. Heterogeneity in beta 

can act to offset this reduction, but only when the mean and the variance of the component 

securities have both increased above the values in the homogeneous case. Heterogeneity in 

nonsynchronous trading probability is relatively benign in its interaction with the number of 

securities in a portfolio, but may not offer as much offset, to the reduction in autocorrelation 

coefficient arising in portfolios of small numbers of securities, in situations of relatively high 

nonsynchronous trading probability. 

 

4 Conclusion 

 

In this study, we have examined the relationship between portfolio return autocorrelation and the 

number of securities in the portfolio, using hitherto concealed properties of the leading model of 

nonsynchronous trading, Lo and MacKinlay (1990). A key result of the original study is that there 

is a positive and strictly convex relation between stock trading infrequency and portfolio 

autocorrelation for portfolios where the number of securities has increased without limit. In this 

study, we demonstrate that for portfolios with a large, but finite, number of securities, a more 

complex relation exists between portfolio size and non-trading frequency that permits both zero 

and possibly large negative autocorrelation coefficients. Specifically, we identify an adjustment 

factor to the autocorrelations predicted by the Lo and MacKinlay (1990) model, which depends 
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upon the means, variances and covariances of the component securities in the portfolio, and that is 

independent of the return measurement interval. 

 

We show that at levels of nonsynchronous trading observed in well-developed markets, our 

adjustment factor implies that the return autocorrelations predicted by the Lo and MacKinlay 

(1990) model can be substantially lower than has been suggested previously, particularly at very 

short return intervals. However, we also show that while the likelihood of these lower predicted 

values increases with the probability of non-trading, it decreases with increased heterogeneity of 

the securities. This means that the subsequent predictions by Boudoukh et al (1994) are much less 

affected by the use of finite sized portfolios, at least for relatively modest levels of nonsynchronous 

trading. Our results for heterogeneous portfolios also reveal a rich structure of relationships 

between the number of securities in a portfolio, and the distributions of nonsynchronous trading 

probabilities and betas among those component securities. We find that the interaction of 

nonsynchronous trading probabilities and the number of component securities in a portfolio is 

relatively benign, except at relatively high probability levels, whereas the influence of beta 

heterogeneity can act to offset the reduction in autocorrelation coefficient arising from using finite 

sized portfolios. Overall, heterogeneity among the component securities tends to increase 

autocorrelation coefficients by more than the use of finite sized portfolios reduces them, except at 

very high level of security nonsynchronous trading, suggesting that making allowances for the 

heterogeneity of securities in the application of the Lo and MacKinlay (1990) model is essential to 

ensure it is most robust to applications involving portfolios of finite size. 

 

For markets characterized by high levels of thin trading, our results have two further 

implications. First, models that adjust risk measures for portfolio autocorrelation by reference to 

the extent of thin trading may have the potential to over-correct the measures if the predicted 

autocorrelation is actually quite low. Conversely, one could fail to adjust for extreme levels of thin 

trading if one only examines the portfolio returns autocorrelation coefficients, since these can 

feasibly take low values when thin trading is extensive in the data. Second, the observation of both 

high and homogeneous levels of infrequent trading and high levels of portfolio return 

autocorrelation must mean that factors, other than nonsynchronous trading, are generating the 

observed autocorrelations. What these might be is beyond the scope of this study, but if trading is 

nonetheless highly infrequent, and in the absence of any structural weaknesses in a market, it may 

be very difficult to identify such economic or behavioural factors. 
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Appendix 
 
Proof of Proposition 1 

The first-order autocorrelation of the observed returns, ܴ௧, ݐ ൌ 1,2, … , ܶ, for a portfolio of ݅ ൌ
1,2, … , ݊,	securities is 

 

Corrሺܴ௧, ܴ௧ାଵሻ ൌ Covሺܴ௧, ܴ௧ାଵሻ Varሺܴ௧ሻ⁄  (A1.1)

 
where 

ܴ௧ ൌ෍ω௜ܴ௜,௧	,				 subject to ෍ω௜

௡

௜ୀଵ

ൌ 1

௡

௜ୀଵ

 
(A1.2)

 
 

and where ܴ௜,௧ is the return on security i at time t, and ω௜ is the weight on security i in the portfolio. 

For an equally-weighted portfolio, we obtain on substituting (A1.2) into (A1.1), 
  

Corrሺܴ௧, ܴ௧ାଵሻ ൌ
∑ Cov൫ܴ௜,௧, ܴ௜,௧ାଵ൯
௡
௜ୀଵ ൅ ∑ ∑ Cov൫ܴ௜,௧, ௝ܴ,௧ାଵ൯

௡
௝ୀଵ,ஷ௜

௡
௜ୀଵ

∑ Var൫ܴ௜,௧൯
௡
௜ୀଵ ൅ ∑ ∑ Cov൫ܴ௜,௧, ௝ܴ,௧൯

௡
௝ୀଵ,ஷ௜

௡
௜ୀଵ

 
(A1.3)

 
which expresses the portfolio return autocorrelation in terms of the autocovariances, cross-
autocovariances, covariances and variances of the returns of the component securities. 
 

Each of the components of the right hand side of (A1.3) can be expressed in terms of the 
following properties of the Lo and MacKinlay (1990) model, that is, 

Cov൫ܴ௜,௧, ܴ௜,௧ା௦൯ ൌ ቐ
σ௜
ଶ ൅

௜݌2
ሺ1 െ ௜ሻ݌

μ௜
ଶ for ݏ ൌ 0

െμ௜
ଶ݌௜							 for ݏ ൌ 1

 (A1.4)

 

Cov൫ܴ௜,௧, ௝ܴ,௧ା௦൯ ൌ

ە
ۖ
۔

ۖ
ۓ
ሺ1 െ ௜ሻ൫1݌ െ ௝൯݌

൫1 െ ௝൯݌௜݌
β௜β௝σஃ

ଶ for ݏ ൌ 0

ሺ1 െ ௜ሻ൫1݌ െ ௝൯݌

൫1 െ ௝൯݌௜݌
௝β௜β௝σஃ݌

ଶ for ݏ ൌ 1

 
(A1.5)

where β௜ is the loading for security i on a zero-mean common factor, which has variance σஃ
ଶ , μ௜ and 

σ௜
ଶ are the expected return and variance of security i and ݌௜ is the non-trading probability for 

security i. Substituting (A1.4) and (A1.5) into (A1.3) gives 

Corrሺܴ௧, ܴ௧ାଵሻ ൌ

∑ ሺെμ௜
ଶ݌௜ሻ

௡
௜ୀଵ ൅ ∑ ∑

ሺ1 െ ௜ሻ൫1݌ െ ௝൯݌
൫1 െ ௝൯݌௜݌

௝β௜β௝σஃ݌
ଶ 		௡

௝ୀଵ,ஷ௜
௡
௜ୀଵ

∑ ൬σ௜
ଶ ൅

௜݌2
ሺ1 െ ௜ሻ݌

μ௜
ଶ൰௡

௜ୀଵ ൅ ∑ ∑
ሺ1 െ ௜ሻ൫1݌ െ ௝൯݌

൫1 െ ௝൯݌௜݌
β௜β௝σஃ

ଶ௡
௝ୀଵ,ஷ௜

௡
௜ୀଵ

 

(A1.6)
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Making a representative security assumption, and setting β௜ ൌ β௜ ൌ β,݌௜ ൌ ௝݌ ൌ μ௜ ,݌ ൌ μ 

and σ௜ ൌ σ gives, after expanding the denominators of the covariance terms, 

Corrሺܴ௧, ܴ௧ାଵሻ ൌ
∑ ሺെμଶ݌ሻ௡
௜ୀଵ ൅ ∑ ∑

ሺ1 െ ሻሺ1݌ െ ሻ݌
ሺ1 െ ሻሺ1݌ ൅ ሻ݌ β݌

ଶσஃ
ଶ 		௡

௝ୀଵ,ஷ௜
௡
௜ୀଵ

∑ ൬σଶ ൅
݌2

ሺ1 െ ሻ݌ μ
ଶ൰௡

௜ୀଵ ൅ ∑ ∑
ሺ1 െ ሻሺ1݌ െ ሻ݌
ሺ1 െ ሻሺ1݌ ൅ ሻ݌ β

ଶσஃ
ଶ௡

௝ୀଵ,ஷ௜
௡
௜ୀଵ

 

(A1.7)

 
Summing the component variance and covariance terms gives 

Corrሺܴ௧, ܴ௧ାଵሻ ൌ
െ݊μଶ݌ ൅ ݊ሺ݊ െ 1ሻ

ሺ1 െ ሻሺ1݌ െ ሻ݌
ሺ1 െ ሻሺ1݌ ൅ ሻ݌ β݌

ଶσஃ
ଶ

݊σଶ ൅
݌2݊

ሺ1 െ ሻ݌ μ
ଶ ൅ ݊ሺ݊ െ 1ሻ

ሺ1 െ ሻሺ1݌ െ ሻ݌
ሺ1 െ ሻሺ1݌ ൅ ሻ݌ β

ଶσஃ
ଶ

 

(A1.8)

 

which can be simplified by multiplying through by ሺ1 ൅ ሻሺ1݌ െ  ሻ/݊ to give݌

 

Corrሺܴ௧, ܴ௧ାଵሻ ൌ
െμଶ݌ሺ1 െ ሻሺ1݌ ൅ ሻ݌ ൅ ሺ݊ െ 1ሻሺ1 െ ሻሺ1݌ െ βଶσஃ݌ሻ݌

ଶ

σଶሺ1 െ ሻሺ1݌ ൅ ሻ݌ ൅ ሺ1݌2 ൅ ሻμଶ݌ ൅ ݊ሺ݊ െ 1ሻሺ1 െ ሻሺ1݌ െ ሻβଶσஃ݌
ଶ  

(A1.9)

 

Adding and subtracting 2݌ሺ1 െ ሻሺ݊݌ െ 1ሻβଶσஃ
ଶ  to the denominator gives 

 

Corrሺܴ௧, ܴ௧ାଵሻ ൌ
െμଶ݌ሺ1 െ ሻሺ1݌ ൅ ሻ݌ ൅ ሺ݊ െ 1ሻሺ1 െ ሻሺ1݌ െ βଶσஃ݌ሻ݌

ଶ

σଶሺ1 െ ሻሺ1݌ ൅ ሻ݌ ൅ ሺ1݌2 ൅ ሻμଶ݌ ൅ ሺ݊ െ 1ሻሺ1 െ ሻሺ1݌ ൅ ሻβଶσஃ݌
ଶ െ ሺ1݌2 െ ሻሺ݊݌ െ 1ሻβଶσஃ

ଶ  (A1.10)

 
and allows the simplification 
 

Corrሺܴ௧, ܴ௧ାଵሻ ൌ
ሺ1݌ െ ሻൣሺ݊݌ െ 1ሻሺ1 െ ሻβଶσஃ݌

ଶ െ μଶሺ1 ൅ ሻ൧݌
ሺ1 ൅ ሻሾሺ݊݌ െ 1ሻሺ1 െ ሻβଶσஃ݌

ଶ ൅ σଶሺ1 െ ሻሿ݌ െ ሾሺ݊݌2 െ 1ሻሺ1 െ ሻβଶσஃ݌
ଶ െ μଶሺ1 ൅ ሻሿ݌

 
(A1.11)

 
which, using the common factor in the numerator and denominator, can be rearranged as 
 

Corrሺܴ௧, ܴ௧ାଵሻ ൌ
ሺ1݌ െ ሻ݌

ሺ1 ൅ ሻ݌ ൤
ሺ݊ െ 1ሻሺ1 െ ሻβଶσஃ݌

ଶ ൅ σଶሺ1 െ ሻ݌
ሺ݊ െ 1ሻሺ1 െ ሻβଶσஃ݌

ଶ െ μଶሺ1 ൅ ሻ݌
൨ െ ݌2

 (A1.12)

 
Defining (as equation (8) in the text) 
  

θ ൌ
ሺ݊ െ 1ሻሺ݌ െ 1ሻβଶσஃ

ଶ ൅ σଶሺ1 െ ሻ݌
ሺ݊ െ 1ሻሺ݌ െ 1ሻβଶσஃ

ଶ െ μଶሺ1 ൅ ሻ݌
 

(A1.13)

 
gives equation (7) in the text, 

Corrሺܴ௧, ܴ௧ାଵሻ ൌ
ሺ1 െ ݌ሻ݌

θሺ1 ൅ ሻ݌ െ ݌2
 

(A1.14)
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Proof of Proposition 2 
For portfolio returns aggregated over q periods, where the aggregated periods are indexed 

by, τ so that one unit of τ time is equal to q units of t time, the first order autocorrelation coefficient 
is given by 
 

Corr൫ܴதሺݍሻ, ܴதାଵሺݍሻ൯ ൌ Cov൫ܴதሺݍሻ, ܴதାଵሺݍሻ൯ Var൫ܴதሺݍሻ൯ൗ  (A2.1)

 
where 

ܴதሺݍሻ ൌ෍ω௜ܴ୧,தሺݍሻ , subject to ෍ω௜

௡

௜ୀଵ

ൌ 1

௡

௜ୀଵ

 
(A2.2)

 

and where ܴ୧,தሺݍሻ is the return on security i at time τ, where one unit of τ time is equal to q units of 

t time. For an equally-weighted portfolio, we obtain on substituting (A2.2) into (A2.1), 
 

Corr൫ܴதሺݍሻ, ܴதାଵሺݍሻ൯ ൌ
∑ Cov ቀܴ௜,தሺݍሻ, ܴ௜,தାଵሺݍሻቁ
௡
௜ୀଵ ൅ ∑ ∑ Cov ቀܴ௜,தሺݍሻ, ௝ܴ,தାଵሺݍሻቁ

௡
௝ୀଵ,ஷ௜

௡
௜ୀଵ

∑ Var ቀܴ௜,தሺݍሻቁ௡
௜ୀଵ ൅ ∑ ∑ Cov ቀܴ௜,தሺݍሻ, ௝ܴ,தሺݍሻቁ௡

௝ୀଵ,ஷ௜
௡
௜ୀଵ

 
(A2.3)

 
which expresses the time-aggregated portfolio return autocorrelation in terms of the time-
aggregated autocovariances, cross-autocovariances, covariances and variances of the returns of the 
component securities. 
 

Each of the components of the right hand side of (A2.3) can be expressed in terms of the 
following properties of the Lo and MacKinlay (1990) model,17 that is, 

Cov ቀܴ௜,தሺݍሻ, ܴ௜,தା௦ሺݍሻቁ ൌ

ە
ۖ
۔

ۖ
σ௜ݍۓ

ଶ ൅
௜൫1݌2 െ ௜݌

௤൯
ሺ1 െ ௜ሻଶ݌

μ௜
ଶ for	ݏ ൌ 0

െμ௜
ଶ݌௜ ቆ

1 െ ௜݌
௤

1 െ ௜݌
ቇ
ଶ

for	ݏ ൌ 1

 
(A2.4)

 

Cov ቀܴ௜,தሺݍሻ, ௝ܴ,தା௦ሺݍሻቁ ൌ

ە
ۖ
۔

ۖ
ۓ
቎ݍ െ

௜൫1݌ െ ௜݌
௤൯൫1 െ ௝൯݌

ଶ
൅ ௝൫1݌ െ ௝݌

௤൯ሺ1 െ ௜ሻଶ݌

ሺ1 െ ௜ሻ൫1݌ െ ௝൯൫1݌ െ ௝൯݌௜݌
቏ β௜β௝σஃ

ଶ 			for	ݏ ൌ 0

ሺ1 െ ௜ሻ൫1݌ െ ௝൯݌

൫1 െ ௝൯݌௜݌
ቆ
1 െ ௝݌

௤

1 െ ௝݌
ቇ

ଶ

௝β௜β௝σஃ݌
ଶ 		for	ݏ ൌ 1

 

 
(A2.5)

where β௜ is the loading for security i on a zero-mean common factor, which has variance σஃ
ଶ , μ௜ and 

σ௜
ଶ are the expected return and variance of security i and ݌௜ is the non-trading probability for 

security i. 
 
                                                            
17. Equation (A2.5) uses the specification in Boudoukh et al (1994) equation (9), which corrects errors in the original specification in equation (3.6) 
of Lo and MacKinlay (1990). 
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Making a representative security assumption, and setting β௜ ൌ β௜ ൌ β,݌௜ ൌ ௝݌ ൌ μ௜ ,݌ ൌ μ 

and σ௜ ൌ σ gives, 
 

Corr൫ܴதሺݍሻ, ܴதାଵሺݍሻ൯ ൌ
∑ െμଶ݌ ൬

1 െ ௤݌

1 െ ݌ ൰
ଶ

௡
௜ୀଵ ൅ ∑ ∑

ሺ1 െ ሻଶ݌

ሺ1 െ ଶሻ݌ ൬
1 െ ௤݌

1 െ ݌ ൰
ଶ

βଶσஃ݌
ଶ௡

௝ୀଵ,ஷ௜
௡
௜ୀଵ

∑ ଶߪݍ ൅
ሺ1݌2 െ ௤ሻ݌
ሺ1 െ ሻଶ݌ μଶ		௡

௜ୀଵ ൅ ∑ ∑ ൤ݍ െ
ሺ1݌ െ ሻଶሺ1݌ െ ௤ሻ݌ ൅ ሺ1݌ െ ሻଶሺ1݌ െ ௤ሻ݌

ሺ1 െ ሻଶሺ1݌ െ ଶሻ݌ ൨ βଶσஃ
ଶ௡

௝ୀଵ,ஷ௜
௡
௜ୀଵ

 

(A2.6)

 
which on summing over n securities gives 

Corr൫ܴதሺݍሻ, ܴதାଵሺݍሻ൯ ൌ
െ݊μଶ݌ ൬

1 െ ௤݌

1 െ ݌ ൰
ଶ

൅ ݊ሺ݊ െ 1ሻ
ሺ1 െ ሻଶ݌

ሺ1 െ ଶሻ݌ ൬
1 െ ௤݌

1 െ ݌ ൰
ଶ

βଶσஃ݌
ଶ

݊ ൬ߪݍଶ ൅
ሺ1݌2 െ ௤ሻ݌
ሺ1 െ ሻଶ݌ μଶ൰ ൅ ݊ሺ݊ െ 1ሻ ൤ݍ െ

ሺ1݌ െ ሻଶሺ1݌ െ ௤ሻ݌ ൅ ሺ1݌ െ ሻଶሺ1݌ െ ௤ሻ݌
ሺ1 െ ሻଶሺ1݌ െ ଶሻ݌ ൨ βଶσஃ

ଶ
 

(A2.7)

 

Cancelling the common factor ሺ1 െ  ሻଶ in the covariance terms gives݌

 

Corr൫ܴதሺݍሻ, ܴதାଵሺݍሻ൯ ൌ
െ݊μଶ݌ ൬

1 െ ௤݌

1 െ ݌ ൰
ଶ

൅ ݊ሺ݊ െ 1ሻ
ሺ1 െ ௤ሻଶ݌

ሺ1 െ ଶሻ݌ β݌
ଶσஃ

ଶ

݊ ൬ߪݍଶ ൅
ሺ1݌2 െ ௤ሻ݌
ሺ1 െ ሻଶ݌ μଶ൰ ൅ ݊ሺ݊ െ 1ሻ ൤ݍ െ

ሺ1݌2 െ ௤ሻ݌
ሺ1 െ ଶሻ݌ ൨ βଶσஃ

ଶ
 

(A2.8)

 
Using a common divisor in the terms in the denominator of (A2.8) and expanding terms in 

all the divisors gives 

Corr൫ܴதሺݍሻ, ܴதାଵሺݍሻ൯ ൌ

െ݊μଶ݌ሺ1 െ ௤ሻଶ݌

ሺ1 െ ሻሺ1݌ െ ሻ݌ ൅ ݊ሺ݊ െ 1ሻ
ሺ1 െ ௤ሻଶ݌

ሺ1 െ ሻሺ1݌ ൅ ሻ݌ β݌
ଶσஃ

ଶ

݊ ൬
ଶሺ1ߪݍ െ ሻଶ݌ ൅ ሺ1݌2 െ ௤ሻμଶ݌

ሺ1 െ ሻሺ1݌ െ ሻ݌ ൰ ൅ ݊ሺ݊ െ 1ሻ ൤
ሺ1ݍ െ ଶሻ݌ െ ሺ1݌2 െ ௤ሻ݌

ሺ1 െ ሻሺ1݌ ൅ ሻ݌ ൨ βଶσஃ
ଶ

 

(A2.9)

 

Multiplying through by ሺ1 െ ሻଶሺ1݌ ൅  ሻ/݊ gives݌
 

Corr൫ܴதሺݍሻ, ܴதାଵሺݍሻ൯ ൌ
െμଶ݌ሺ1 െ ௤ሻଶሺ1݌ ൅ ሻ݌ ൅ ሺ݊ െ 1ሻሺ1 െ ௤ሻଶሺ1݌ െ βଶσஃ݌ሻ݌

ଶ

ሺߪݍଶሺ1 െ ሻଶ݌ ൅ ሺ1݌2 െ ௤ሻμଶሻሺ1݌ ൅ ሻ݌ ൅ ሺ݊ െ 1ሻሺ1 െ ሺ1ݍሻሾ݌ െ ଶሻ݌ െ ሺ1݌2 െ ௤ሻሿβଶσஃ݌
ଶ  (A2.10)

 
Rearranging terms gives 
 

Corr൫ܴதሺݍሻ, ܴதାଵሺݍሻ൯ ൌ
ሺ1݌ െ ௤ሻଶሾሺ݊݌ െ 1ሻሺ1 െ ሻβଶσஃ݌

ଶ െ μଶሺ1 ൅ ሻሿ݌

ሺ1ݍ െ ଶሻሾሺ݊݌ െ 1ሻሺ1 െ ሻβଶσஃ݌
ଶ ൅ ଶሺ1ߪ െ ሻሿ݌ െ ሺ1݌2 െ ௤ሻሾሺ݊݌ െ 1ሻሺ1 െ ሻβଶσஃ݌

ଶ െ μଶሺ1 ൅ ሻሿ݌
 (A2.11)

 
Defining (as equation (8) in the text) 
  

θ ൌ
ሺ݊ െ 1ሻሺ݌ െ 1ሻβଶσஃ

ଶ ൅ σଶሺ1 െ ሻ݌
ሺ݊ െ 1ሻሺ݌ െ 1ሻβଶσஃ

ଶ െ μଶሺ1 ൅ ሻ݌
 

(A1.12)

gives 

Corr൫ܴதሺݍሻ, ܴதାଵሺݍሻ൯ ൌ
ሺ1 െ ݌௤ሻଶ݌

θݍሺ1 െ ଶሻ݌ െ ሺ1݌2 െ ௤ሻ݌
 

(A2.13)

which is equation (11) in the text. 
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Table 1: Estimated Portfolio Return Autocorrelations 

This table contains the autocorrelation coefficients for temporally aggregated portfolio returns, estimated using equations 
(11) and (14). The portfolios are comprised of n securities having a common non-trading probability, p, a common reward 
ratio, ξ, a common ratio of representative security return variance to common factor variance, ϕ, and unit beta. 

n p 
 ϕ ൌ 2   ϕ ൌ 4   ϕ ൌ 9  

ξ ൌ 0.19 ξ ൌ 0.41 ξ ൌ 0.65 ξ ൌ 0.19 ξ ൌ 0.41 ξ ൌ 0.65 ξ ൌ 0.19 ξ ൌ 0.41 ξ ൌ 0.65 

Panel A: Weekly returns 

݊ → ∞ 27 0.0890 0.0890 0.0890 0.0890 0.0890 0.0890 0.0890 0.0890 0.0890 

500 27 0.0886 0.0886 0.0886 0.0882 0.0882 0.0882 0.0872 0.0872 0.0872 

100 27 0.0870 0.0870 0.0870 0.0850 0.0850 0.0850 0.0804 0.0804 0.0804 

20 27 0.0792 0.0792 0.0792 0.0713 0.0713 0.0713 0.0571 0.0571 0.0571 

10 27 0.0705 0.0705 0.0705 0.0584 0.0584 0.0584 0.0409 0.0408 0.0408 

݊ → ∞ 60 0.2601 0.2601 0.2601 0.2601 0.2601 0.2601 0.2601 0.2601 0.2601 

500 60 0.2585 0.2585 0.2585 0.2569 0.2569 0.2569 0.2530 0.2529 0.2529 

100 60 0.2521 0.2521 0.2521 0.2446 0.2446 0.2445 0.2277 0.2276 0.2275 

20 60 0.2233 0.2232 0.2231 0.1956 0.1955 0.1953 0.1494 0.1492 0.1488 

10 60 0.1930 0.1929 0.1926 0.1534 0.1532 0.1528 0.1014 0.1011 0.1006 

݊ → ∞ 80 0.5094 0.5094 0.5094 0.5094 0.5094 0.5094 0.5094 0.5094 0.5094 

500 80 0.5043 0.5043 0.5043 0.4993 0.4993 0.4992 0.4873 0.4872 0.4870 

100 80 0.4848 0.4846 0.4844 0.4624 0.4622 0.4618 0.4145 0.4141 0.4133 

20 80 0.4026 0.4022 0.4014 0.3329 0.3322 0.3309 0.2322 0.2313 0.2296 

10 80 0.3266 0.3259 0.3246 0.2403 0.2394 0.2378 0.1446 0.1437 0.1418 

݊ → ∞ 95 0.8458 0.8458 0.8458 0.8458 0.8458 0.8458 0.8458 0.8458 0.8458 

500 95 0.8179 0.8173 0.8163 0.7917 0.7907 0.7887 0.7331 0.7311 0.7272 

100 95 0.7215 0.7193 0.7151 0.6291 0.6257 0.6192 0.4764 0.4718 0.4631 

20 95 0.4456 0.4409 0.4320 0.3024 0.2976 0.2888 0.1675 0.1635 0.1561 

10 95 0.2920 0.2872 0.2784 0.1763 0.1722 0.1646 0.0883 0.0851 0.0792 

Panel B: Monthly returns 

݊ → ∞ 27 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 

500 27 0.0178 0.0178 0.0178 0.0177 0.0177 0.0177 0.0175 0.0175 0.0175 

100 27 0.0175 0.0175 0.0175 0.0171 0.0171 0.0171 0.0163 0.0163 0.0163 

20 27 0.0161 0.0161 0.0161 0.0146 0.0146 0.0146 0.0120 0.0120 0.0120 

10 27 0.0145 0.0145 0.0145 0.0122 0.0122 0.0122 0.0088 0.0088 0.0088 

݊ → ∞ 60 0.0488 0.0488 0.0488 0.0488 0.0488 0.0488 0.0488 0.0488 0.0488 

500 60 0.0486 0.0486 0.0486 0.0483 0.0483 0.0483 0.0478 0.0478 0.0478 

100 60 0.0477 0.0477 0.0477 0.0467 0.0467 0.0467 0.0443 0.0443 0.0443 

20 60 0.0437 0.0437 0.0437 0.0396 0.0396 0.0396 0.0321 0.0320 0.0320 

10 60 0.0392 0.0392 0.0391 0.0328 0.0327 0.0327 0.0232 0.0232 0.0231 

݊ → ∞ 80 0.1258 0.1258 0.1258 0.1258 0.1258 0.1258 0.1258 0.1258 0.1258 

500 80 0.1251 0.1251 0.1251 0.1245 0.1245 0.1245 0.1230 0.1230 0.1229 

100 80 0.1226 0.1226 0.1226 0.1197 0.1197 0.1196 0.1129 0.1128 0.1127 

20 80 0.1111 0.1110 0.1109 0.0995 0.0993 0.0991 0.0788 0.0786 0.0782 

10 80 0.0983 0.0982 0.0980 0.0807 0.0805 0.0801 0.0557 0.0554 0.0549 

݊ → ∞ 95 0.5062 0.5062 0.5062 0.5062 0.5062 0.5062 0.5062 0.5062 0.5062 

500 95 0.5012 0.5011 0.5009 0.4962 0.4960 0.4956 0.4843 0.4838 0.4830 

100 95 0.4818 0.4813 0.4803 0.4596 0.4587 0.4569 0.4121 0.4104 0.4071 

20 95 0.4003 0.3984 0.3948 0.3310 0.3282 0.3228 0.2309 0.2271 0.2200 

10 95 0.3248 0.3219 0.3163 0.2389 0.2352 0.2282 0.1436 0.1394 0.1315 
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Table 1 cont. 
This table contains the autocorrelation coefficients for temporally aggregated portfolio returns, estimated using equations 
(11) and (14). The portfolios are comprised of n securities having a common non-trading probability, p, a common reward 
ratio, ξ, a common ratio of representative security return variance to common factor variance, ϕ, and unit beta. 

N p 
 ϕ ൌ 2   ϕ ൌ 4   ϕ ൌ 9  

ξ ൌ 0.19 ξ ൌ 0.41 ξ ൌ 0.65 ξ ൌ 0.19 ξ ൌ 0.41 ξ ൌ 0.65 ξ ൌ 0.19 ξ ൌ 0.41 ξ ൌ 0.65 

Panel C: Quarterly returns 

݊ → ∞ 27 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 

500 27 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 0.0057 0.0057 0.0057 

100 27 0.0057 0.0057 0.0057 0.0056 0.0056 0.0056 0.0053 0.0053 0.0053 

20 27 0.0052 0.0052 0.0052 0.0048 0.0048 0.0048 0.0039 0.0039 0.0039 

10 27 0.0047 0.0047 0.0047 0.0040 0.0040 0.0040 0.0029 0.0029 0.0029 

݊ → ∞ 60 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 

500 60 0.0152 0.0152 0.0152 0.0151 0.0151 0.0151 0.0150 0.0150 0.0150 

100 60 0.0150 0.0150 0.0150 0.0147 0.0147 0.0147 0.0140 0.0140 0.0140 

20 60 0.0138 0.0138 0.0138 0.0125 0.0125 0.0125 0.0103 0.0102 0.0102 

10 60 0.0124 0.0124 0.0124 0.0105 0.0105 0.0104 0.0075 0.0075 0.0075 

݊ → ∞ 80 0.0364 0.0364 0.0364 0.0364 0.0364 0.0364 0.0364 0.0364 0.0364 

500 80 0.0363 0.0363 0.0363 0.0361 0.0361 0.0361 0.0357 0.0357 0.0357 

100 80 0.0356 0.0356 0.0356 0.0349 0.0349 0.0349 0.0332 0.0332 0.0331 

20 80 0.0327 0.0327 0.0327 0.0297 0.0297 0.0296 0.0241 0.0240 0.0240 

10 80 0.0294 0.0294 0.0293 0.0246 0.0246 0.0245 0.0175 0.0175 0.0173 

݊ → ∞ 95 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929 

500 95 0.1918 0.1918 0.1918 0.1908 0.1907 0.1906 0.1881 0.1880 0.1879 

100 95 0.1876 0.1875 0.1873 0.1825 0.1823 0.1819 0.1710 0.1706 0.1698 

20 95 0.1680 0.1675 0.1666 0.1488 0.1480 0.1463 0.1156 0.1142 0.1116 

10 95 0.1469 0.1460 0.1444 0.1186 0.1172 0.1146 0.0799 0.0780 0.0743 

Panel D: Annual returns 

݊ → ∞ 27 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 

500 27 0.0016 0.0016 0.0016 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 

100 27 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0014 0.0014 0.0014 

20 27 0.0014 0.0014 0.0014 0.0013 0.0013 0.0013 0.0011 0.0011 0.0011 

10 27 0.0013 0.0013 0.0013 0.0011 0.0011 0.0011 0.0008 0.0008 0.0008 

݊ → ∞ 60 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 

500 60 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 

100 60 0.0040 0.0040 0.0040 0.0039 0.0039 0.0039 0.0037 0.0037 0.0037 

20 60 0.0037 0.0036 0.0036 0.0033 0.0033 0.0033 0.0027 0.0027 0.0027 

10 60 0.0033 0.0033 0.0033 0.0028 0.0028 0.0028 0.0020 0.0020 0.0020 

݊ → ∞ 80 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 

500 80 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0092 0.0092 0.0092 

100 80 0.0092 0.0092 0.0092 0.0090 0.0090 0.0090 0.0086 0.0086 0.0086 

20 80 0.0084 0.0084 0.0084 0.0077 0.0077 0.0077 0.0063 0.0063 0.0063 

10 80 0.0076 0.0076 0.0076 0.0064 0.0064 0.0064 0.0046 0.0046 0.0046 

݊ → ∞ 95 0.0434 0.0434 0.0434 0.0434 0.0434 0.0434 0.0434 0.0434 0.0434 

500 95 0.0432 0.0432 0.0432 0.0430 0.0430 0.0430 0.0426 0.0426 0.0425 

100 95 0.0425 0.0425 0.0424 0.0416 0.0415 0.0415 0.0395 0.0394 0.0392 

20 95 0.0389 0.0388 0.0387 0.0353 0.0351 0.0348 0.0286 0.0283 0.0277 

10 95 0.0349 0.0344 0.0344 0.0292 0.0289 0.0284 0.0207 0.0202 0.0194 
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Table 2: Estimated Autocorrelations for returns to heterogeneous portfolios 

This table contains the weekly return autocorrelation coefficients, estimated from equations (11) and (14), for portfolios 
comprised of 6 groups of securities, classified by beta (.,.,.,.,.,.) and non-trading probability [.,.,.,.,.,.], which comprise the 
fractions 5, 20, 25, 25, 20 and 5 percent of the portfolio. Size refers to the number of securities in the portfolio; 
autocorrelations alongside the blank size cells are the asymptotic values. ξ is the common reward ratio for firms in the 
portfolio. 

  Betas 

Non-trading 
probability 

Size 
ሺ1,1,1,1,1,1ሻ ሺ. 8, .9,1,1,1.1,1.2ሻ ሺ. 8,1.2,1.6,2.0,2.4,2.8ሻ 

ξ ൌ 0.19 ξ ൌ 0.41 ξ ൌ 0.65 ξ ൌ 0.19 ξ ൌ 0.41 ξ ൌ 0.65 ξ ൌ 0.19 ξ ൌ 0.41 ξ ൌ 0.65 

(a) Low average non-trading probability 

ሾ27,27,27,27,27,27ሿ ݊ → ∞ 0.0890 0.0890 0.0890 0.0890 0.0890 0.0890 0.0890 0.0890 0.0890 

 500 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882 0.0886 0.0886 0.0886 

 100 0.0850 0.0850 0.0850 0.0850 0.0850 0.0850 0.0870 0.0870 0.0869 

 20 0.0713 0.0713 0.0713 0.0713 0.0713 0.0713 0.0791 0.0791 0.0791 

ሾ0,11,21,32,44,55ሿ ݊ → ∞ 0.1033 0.1033 0.1033 0.1072 0.1072 0.1072 0.1160 0.1160 0.1160 

 500 0.1023 0.1023 0.1023 0.1062 0.1062 0.1062 0.1155 0.1155 0.1155 

 100 0.0986 0.0986 0.0986 0.1023 0.1023 0.1023 0.1132 0.1132 0.1132 

 20 0.0828 0.0828 0.0827 0.0856 0.0856 0.0856 0.1025 0.1024 0.1024 

ሾ0,0,11,32,60,85ሿ ݊ → ∞ 0.1318 0.1318 0.1318 0.1420 0.1420 0.1420 0.1643 0.1643 0.1643 

 500 0.1305 0.1305 0.1305 0.1405 0.1405 0.1405 0.1634 0.1634 0.1634 

 100 0.1256 0.1256 0.1256 0.1350 0.1350 0.1350 0.1600 0.1600 0.1600 

 20 0.1050 0.1050 0.1050 0.1121 0.1121 0.1120 0.1439 0.1439 0.1438 

ሾ0,0,0,43,60,85ሿ ݊ → ∞ 0.1397 0.1397 0.1397 0.1508 0.1508 0.1508 0.1782 0.1782 0.1782 

 500 0.1383 0.1383 0.1383 0.1493 0.1493 0.1493 0.1772 0.1772 0.1772 

 100 0.1331 0.1331 0.1331 0.1435 0.1435 0.1434 0.1735 0.1735 0.1734 

 20 0.1115 0.1114 0.1113 0.1193 0.1193 0.1192 0.1562 0.1562 0.1561 

(b) High average non-trading probability 

ሾ60,60,60,60,60,60ሿ ݊ → ∞ 0.2601 0.2601 0.2601 0.2601 0.2601 0.2601 0.2601 0.2601 0.2601 

 500 0.2569 0.2569 0.2569 0.2569 0.2569 0.2569 0.2585 0.2585 0.2585 

 100 0.2446 0.2446 0.2445 0.2446 0.2446 0.2445 0.2521 0.2521 0.2521 

 20 0.1956 0.1955 0.1953 0.1955 0.1954 0.1952 0.2231 0.2230 0.2229 

ሾ39,47,56,65,72,80ሿ ݊ → ∞ 0.2775 0.2775 0.2775 0.2855 0.2855 0.2855 0.3044 0.3044 0.3044 

 500 0.2740 0.2740 0.2740 0.2817 0.2817 0.2817 0.3023 0.3023 0.3023 

 100 0.2604 0.2604 0.2603 0.2675 0.2675 0.2674 0.2940 0.2940 0.2940 

 20 0.2067 0.2065 0.2063 0.2114 0.2113 0.2109 0.2569 0.2568 0.2566 

ሾ24,39,51,73,80,80ሿ ݊ → ∞ 0.3059 0.3059 0.3059 0.3179 0.3179 0.3179 0.3499 0.3499 0.3499 

 500 0.3017 0.3017 0.3017 0.3133 0.3133 0.3133 0.3472 0.3472 0.3472 

 100 0.2857 0.2857 0.2855 0.2963 0.2962 0.2961 0.3367 0.3367 0.3366 

 20 0.2237 0.2235 0.2231 0.2304 0.2302 0.2298 0.2905 0.2903 0.2900 

ሾ24,39,44,80,80,80ሿ ݊ → ∞ 0.3197 0.3197 0.3197 0.3325 0.3325 0.3325 0.3709 0.3709 0.3709 

 500 0.3150 0.3150 0.3150 0.3275 0.3275 0.3275 0.3679 0.3679 0.3679 

 100 0.2976 0.2976 0.2974 0.3089 0.3088 0.3087 0.3562 0.3562 0.3561 

 20 0.2309 0.2306 0.2301 0.2380 0.2377 0.2372 0.3052 0.3050 0.3046 
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