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We consider turbulence driven by a large-scale horizontal shear in Kolmogorov flow
(i.e. with sinusoidal body forcing) and a background linear stable stratification with
buoyancy frequency N2

B imposed in the third, vertical direction in a fluid with kinematic
viscosity ν. This flow is known to be organised into layers by nonlinear unstable steady
states, which incline the background shear in the vertical and can be demonstrated
to be the finite-amplitude saturation of a sequence of instabilities, originally from the
laminar state. Here, we investigate the next order of motions in this system, i.e. the time-
dependent mechanisms by which the density field is irreversibly mixed. This investigation
is achieved using ‘recurrent flow analysis’. We identify (unstable) periodic orbits, which
are embedded in the turbulent attractor, and use these orbits as proxies for the chaotic
flow. We find that the time average of an appropriate measure of the ‘mixing efficiency’ of
the flow E = χ/(χ+D) (D is the volume-averaged kinetic energy dissipation rate and χ
is the volume-averaged density variance dissipation rate) varies non-monotonically with
the time-averaged buoyancy Reynolds numbers ReB = D/(νN2

B), and is bounded above
by 1/6, consistently with the classical model of Osborn (1980). There are qualitatively
different physical properties between the unstable orbits that have lower irreversible
mixing efficiency at low ReB ∼ O(1) and those with nearly optimal E . 1/6 at
intermediate ReB ∼ 10. The weaker orbits, inevitably embedded in more strongly
stratified flow, are characterised by straining or ‘scouring’ motions, while the more
efficient orbits have clear overturning dynamics in more weakly stratified, and apparently
shear-unstable flow.

1. Introduction

A fundamental outstanding problem in stratified turbulence relates to the mixing
of the stratifying agent, e.g. heat or salinity. Moreover such flows typically exhibit
strong anisotropy with vertical motions being suppressed due to gravitational forces,
and layerwise motions commonly being observed. The route by which the flow field
rearranges the density field into well-defined mixed regions or ‘layers’ separated by sharp
gradients or ‘interfaces’ as well as the layer/interface structure’s robustness are subjects
of continuing research. A widely utilised characterisation of mixing comes in the form
of some appropriate measure of the ‘mixing efficiency’, often defined as the ratio of
irreversible potential energy increase relative to the irreversible kinetic energy loss (Peltier
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& Caulfield 2003). One reason for this interest in mixing efficiency stems from the effort
to devise accurate parameterisations of diapycnal diffusivity for use in ocean models, and
there is growing evidence that such parameterisations should take into account variation
of the efficiency with control parameters (Salehipour et al. 2016; Mashayek et al. 2017).

Here our approach to explore mixing in a turbulent stratified (shear-driven) flow is
somewhat unconventional; rather than a statistical examination of increasingly large sim-
ulations or high-fidelity experimental/field data, we consider flows from the perspective
of a high dimensional dynamical system and look for representative unstable solutions
embedded within the stratified turbulence. Such an approach has seen great success in
clarifying the behaviour of transitional wall-bounded shear flows (Kawahara & Kida 2001;
Cvitanović & Gibson 2010; Kawahara et al. 2012) as well as the sustaining mechanisms
exhibited by stationary turbulence (van Veen et al. 2006; Chandler & Kerswell 2013;
Lucas & Kerswell 2017). Recently Lucas et al. (2017), (henceforth LCK17) have shown
how such an approach can advance our understanding of layer formation by locating
nonlinear layered steady states about which the turbulence organises. Given this success,
we are motivated to investigate whether the next order of motions can be identified,
those time-dependent simple invariant manifolds, i.e. periodic orbits, which capture some
salient signature of the processes by which buoyancy is mixed. In particular, we are
interested in how ‘efficient’ (defined in a precise fashion below) such mixing is, and how
such processes vary with control parameters.

To address these issues, the paper is organised as follows. Section 2 contains the
formulation and discussion of the methods employed, while section 3 presents a set of
preliminary and motivational direct numerical simulations (DNS) with a discussion of
their mixing properties. Section 4 shows results from the recurrent flow analysis together
with a discussion of the processes exhibited by the periodic orbits discovered, and finally
section 5 presents our conclusions.

2. Formulation

We begin by considering the following version of the non-dimensionalised, monochro-
matic body-forced, incompressible, Boussinesq equations

∂u

∂t
+ u · ∇u +∇p =

1

Re
∆u + sin(ny)x̂−Bρẑ, (2.1)

∂ρ

∂t
+ u · ∇ρ = w +

1

RePr
∆ρ, ∇ · u = 0 (2.2)

where we define the (external) Reynolds number Re, the bulk stratification parameter
B and the Prandtl number Pr as

Re :=

√
λ

ν

(
Ly
2π

)3/2

, B :=
gβL2

y

ρ0λ4π2
, P r =

ν

κ
. (2.3)

Here, u(x, y, z, t) = ux̂+vŷ +wẑ is the three-dimensional velocity field, p is the pressure
and the density is decomposed into ρtot = ρ0 + ρB(z) + ρ(x, t), i.e as the sum of a
Boussinesq reference density, a constant linear background stratification and a fully
varying disturbance density. We have non-dimensionalised using the characteristic length
scale Ly/2π, characteristic time scale

√
Ly/2πλ and density gradient scale β = dρ∗B/dz.

(see LCK17 for details). Furthermore, n is the forcing wavenumber, λ is the forcing
amplitude, ν is the kinematic viscosity, κ is the molecular diffusivity. We impose periodic
boundary conditions in all directions and solve over the cuboid [0, 2π/α]× [0, 2π]2 where
α = Ly/Lx defines the horizontal aspect ratio of the domain. Vorticity ω = ∇ × u is
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used as the prognostic variable and DNS are performed using the fully dealiased (two-
thirds rule) pseudospectral method with mixed fourth order Runge-Kutta and Crank-
Nicolson timestepping implemented in CUDA to run on GPU cards. We initialise the
velocity field’s Fourier components with uniform amplitudes and randomised phases
in the range 2.5 6 |k| 6 9.5 such that the total enstrophy 〈|ω|2〉V = 1 and ρ′ =
0 initially. Throughout, 〈(·)〉V := α

∫∫∫
(·) dxdydz/(2π)3 denotes a volume average,

〈(·)〉h := α
∫∫

(·) dxdy/(2π)2 denotes a horizontal average and 〈(·)〉v :=
∫
(·) dz/(2π)

denotes a vertical average.
We define the diagnostics involved in the energetic budgets as

K =
1

2
〈|u|2〉V , P =

B

2
〈ρ2〉V , I = 〈u · f〉V = 〈u sin(ny)〉V , (2.4)

B = 〈u ·Bρẑ〉V = B〈wρ〉V , D =
1

Re
〈|∇u|2〉V , χ =

B

PrRe
〈|∇ρ|2〉V , (2.5)

where dK
dt = I − B − D, dP

dt = B − χ and K is the total kinetic energy density, P
the density variance, I is the energy input by the forcing, B is the buoyancy flux, D is
the viscous dissipation rate, and χ the density variance dissipation rate. We fix α =
0.5 to avoid subcritical transition, Pr = 1 for numerical efficiency and n = 1, i.e. the
flow is forced with sin(y)x̂, to mimic closely other large scale shear profiles previously
studied (e.g. stratified Taylor-Couette flow (Woods et al. 2010) and vertically sheared
Kolmogorov flow (Garaud et al. 2015)) and denote time averages with overbars, i.e.

(·) = [
∫ T
0

(·)dt]/T where T is normally the full simulation time.

3. Irreversible mixing in the direct numerical simulations

We begin by characterising the mixing in this system by conducting a set of simulations
across a range of Re and B. The pertinent single point diagnostics are presented in table 1.
In particular we examine the irreversible mixing efficiency which we, following Salehipour
& Peltier (2015) and Maffioli et al. (2016), define in terms of the dissipation rates:

E (t) =
χ

χ+D . (3.1)

The dependence of E on typical flow parameters is a crucial ongoing problem in
stratified turbulence, and a source of some controversy. As discussed by Mater & Ve-
nayagamoorthy (2014), the flow of a turbulent, shear-driven stratified fluid has several
competing time scales, and it is natural to attempt to parameterise E in terms of param-
eters quantifying the relative importance of these time scales. Using shear-instability
simulations and comparison with observations, Salehipour et al. (2016) developed a
parameterisation using two parameters: an appropriately defined ‘buoyancy Reynolds
number’, effectively a ratio of the time scale of the stratification to the time scale of
the turbulence; and an appropriately defined Richardson number, effectively a ratio of
the square of the time scale of the vertical shear (assumed to be the dominant driver of
the mixing) to the time scale of the stratification. In order to determine how the mixing
efficiency varies with these dimensionless numbers in this flow, we define the buoyancy
Reynolds number ReB(t) and the (local) gradient Richardson number RiG(x, t) as (with
the usual caveat that comparing different studies is difficult if the key parameters are
defined differently)

ReB(t) =
DRe
B

, RiG(x, t) =
−B ∂ρtot

∂z(
∂uh

∂z

)2 , (3.2)
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where (∂uh/∂z)
2 = (∂u/∂z)2+(∂v/∂z)2. RiG is a pointwise quantity which characterises

the relative stability of the flow to overturning shear instabilities, and developing an
appropriate overall average for this quantity to characterise a particular flow should be
performed with care, not least because locations of low vertical shear significantly skew
the distributions of RiG. The appropriate averaging used here is thus

RiB(t) =

〈〈−B ∂ρtot
∂z

〉
h〈(

∂uh

∂z

)2〉
h

〉
z

. (3.3)

There are two important points to appreciate about these definitions. First, we have
chosen to define RiB with the total gradients of density while ReB only depends
explicitly on the background NB . Second, although in principle these are independent
nondimensional parameters, it remains to be established that they are in this flow, as
there exist situations where they are strongly correlated (see e.g. Zhou et al. (2017)).

In figure 1(a) and (b) we plot the time-averaged mixing efficiency E against the time-
averaged parameters RiB and ReB . We observe non-monotonic dependence of E on both
parameters, in at least qualitative agreement with the experimental analysis of Linden
(1979) and numerical simulations of Shih et al. (2005). Indeed, E appears to saturate
near the critical value of 1/6, (marked with a horizontal line) equivalent to the upper
bound on the turbulent flux coefficient Γ ' E /(1− E ) 6 0.2 proposed by Osborn (1980)

and then decreases for ReB & 30, with a dependence not entirely unlike the E ∝ Re−1/2B

observed by Shih et al. (2005) in what they referred to as the ‘energetic’ regime (see Ivey
et al. (2008) for a more detailed discussion).

However, although these similarities are intriguing, there are still significant differences.
Firstly, we do not observe a ‘transitional’ plateau of approximately constant mixing
efficiency at intermediate ReB . Indeed, the qualitative structure of the mixing efficiency
curve is more reminiscent of the Padé approximant proposed by Mashayek et al. (2017)

using (vertical) shear-instability numerical data as well as observations, where Γ ∝ Re1/2B

and Re
−1/2
B for small and large ReB respectively. Second, and once again reminiscent

of the approach proposed by Mashayek et al. (2017) to parameterise mixing in terms
of ReB alone, the two parameters RiB and ReB are actually closely correlated, and our
simulations actually trace out a (monotonic) curve in RiB−ReB space, as shown in figure
1(c), independently of the externally imposed parameters B and Re. The low mixing
efficiency observed at high RiB can thus be understood as being entirely associated with
weaker turbulence (smaller ReB) and the maximum mixing efficiency occurs at a sweet
spot of sufficiently vigorous turbulence at sufficiently high stratification, analogously to
the results of Zhou et al. (2017). We stress that we are not claiming that this clear
correlation between RiB and ReB is generic, (see for example the discussion in Scotti &
White (2016)) just that it occurs for this flow.

It is apparent that at small RiB , RiB ∝ Re
−1
B . This is unsurprising, as the turbulence

and shear are largely unaffected by such weak stratification, and the variation of both
parameters with B completely dominates. As RiB increases beyond the value associated
with the most efficient mixing however, the turbulence and shear do indeed become
suppressed by the strengthening stratification, and the power law dependence steepens

so RiB ∝ Re
−3/2
B . There is undoubtedly also an increasing significance of viscosity, which

becomes dominant for the largest values of RiB > 1, where ReB drops below one, and the
turbulence is essentially completely suppressed, with very inefficient mixing. However, it
is always important to remember that both RiB and ReB are global measures averaged
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Figure 1. The variation of average mixing efficiency E with: (a) average bulk Richardson

number RiB and (b) average buoyancy Reynolds number ReB . The horizontal line is E = 1/6,
consistent with the upper bound of Osborn (1980). The closed loops mark the projections onto
the time-dependent (RiB , E ) and (ReB , E ) planes of the two unstable relative periodic orbits
UPO-o1 (solid line) and UPO-l1 (dashed line) discussed in section 4. (c) shows the variation of

ReB with RiB . Different symbols mark different values of Re. The red curve in (b) corresponds

to E = Re
−1/2
B , the large ReB behaviour suggested by Shih et al. (2005).

in both space and time. Both RiB and ReB are functions of time, and there could also
be spatial variation of RiG within the flow domain. Such variation proves to be a key
part of the behaviour of the periodic orbits which we identify, and hence of the mixing
occuring in these flows.

4. Recurrent flow analysis

In order to determine what processes underpin the turbulence in our simulations,
we use ‘recurrent flow analysis’. The general approach is as follows. First a simulation
is conducted during which near recurrences are located in the chaotic trajectory. This
is achieved by storing a historical record of state vectors and periodically checking the
history against the current state vector. When an appropriately ‘near repeat’ is identified,
it is stored for a later convergence attempt with a Newton-GMRES-hookstep algorithm.
For more details on this approach see Chandler & Kerswell (2013); Lucas & Kerswell
(2015). Here, we are interested in finding representative unstable periodic orbits (UPOs)
with qualitatively different mixing properties in a broad range of flows, rather than
identifying a large number of UPOs for a specific set of parameters. Therefore, we have
identified five orbits in two broad classes: one class of two orbits found in the relatively
weakly stratified simulation A1 with Re = 20 and B = 1, and the other class of three
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# Re B RiB ηkmax E ReB lo Reλ

A1 20 1 0.325 2.7 0.0859 9.8 0.695 31.3
A2 30 1 0.235 2.0 0.1026 14.9 0.698 51.2
A3 30 5 0.525 1.8 0.0892 4.04 0.244 25.5
A4 40 5 0.489 1.5 0.114 4.64 0.226 52.1
A5 40 7.5 0.58 1.5 0.099 3.45 0.177 31.6
A6 40 10 0.835 1.6 0.096 1.94 0.124 23.6

B1 50 5 0.398 1.3 0.121 5.89 0.228 44.7
B2 50 10 0.608 1.3 0.112 3.21 0.141 44.1
B3 50 50 3.18 1.2 0.054 0.83 0.048 31.3
B4 50 100 14.95 1.4 0.038 0.25 0.022 45.9

C1 100 0.5 0.046 1.6 0.109 94.82 1.15 98.5
C2 100 0.75 0.065 1.6 0.129 65.19 0.86 92.5
C3 100 1.0 0.089 1.6 0.144 48.03 0.69 94.1
C4 100 1.5 0.126 1.6 0.156 31.41 0.50 91.2
C5 100 2.0 0.156 1.6 0.160 24.3 0.41 88.6
C6 100 5.0 0.278 1.5 0.153 10.8 0.22 76.2
C7 100 10.0 0.423 1.5 0.137 5.91 0.14 62.9

Table 1. Imposed parameters and diagnostic outputs for the three groups of simulations. The

nondimensional Kolmogorov microscale is given by η = Re−3/4D−1/4
and is scaled by the

maximum wavenumber allowable kmax = N/3. Groups A and B have resolution 128 × 642 and
group C has 256 × 1282 to retain spectral convergence. The nondimensional Ozmidov length

scale lO = D1/2
/B

3
4 , the average buoyancy Reynolds number ReB = DRe/B, the average bulk

Richardson number RiB and the Taylor microscale Reynolds number Reλ = Kturb

√
10Re/D

are also listed. Here we define Kturb = (1/2)〈(u−u)2〉V and overbars are always time averages
over the full T = 1000 window.

orbits in the more strongly stratified simulation B3 with Re = 50 and B = 50. The first
class has ReB ∼ O(10), and we label it as class ‘o’, for ‘overturning’, while the second
class has ReB ∼ O(1), and we label it as class ‘l’ for layered. We plot projections onto
the time-dependent (RiB ,E ) and (ReB ,E ) planes of the trajectories of characteristic
relative periodic orbits UPO-o1 (solid line) and UPO-l1 (dashed line) on figures 1(a) and
(b), demonstrating that these two classes do indeed have qualitatively different mixing
properties, and also that these time-dependent properties are consistent with the time-
averaged properties of the ‘full’ DNS.

Table 2 lists properties of the converged orbits, including period, relative shifts due
to the continuous symmetries in x and z, stability and some diagnostic averages. By
comparison with the averages of the DNS in table 1, it is clear the UPOs are repro-
ducing the bulk time-averages quite well. The projection of the trajectories onto the
(ReB , E) plane of the five converged orbits are plotted in figure 2, with greyscale colours
representing the probability density function (p.d.f.) of the turbulent DNS. Notice that
the darker colours represent regions where the turbulent trajectory spends more time,
and lighter colours represent less frequent excursions to that part of phase space. For
simulation B3, the ‘l’ class of converged UPOs sit across the darkest region of the p.d.f.
where the turbulence spends most of its time but miss the higher efficiency, intermittent
turbulent bursts that the DNS exhibits. Missing extreme events is a known failing of
the recurrent flow analysis in some circumstances and is a topic of ongoing research, see
Lucas & Kerswell (2015). However, for the ‘o’ class in simulation A1, the orbit UPO-o1
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No. DNS Re B Tp sx sz my Λ−1 Nλ ReB max(E ) RiB E

UPO-o1 A1 20 1 21.28 5.98 0.35 0 1.65 25 8.5 0.13 0.333 0.078
UPO-o2 A1 20 1 7.51 7.81 -0.06 0 2.30 27 8.9 0.097 0.265 0.067
UPO-l1 B3 50 50 8.75 0.016 0 0 0.211 7 0.62 0.07 3.17 0.052
UPO-l2 B3 50 50 8.74 0 0 0 0.207 6 0.63 0.058 3.13 0.048
UPO-l3 B3 50 50 9.21 0 0.007 0 0.116 6 0.57 0.051 4.64 0.045

Table 2. Table cataloguing the unstable recurrent flows showing the DNS from which they
come (table 1), period Tp, relative shifts in x and z directions- sx, sz discrete shift/reflect in y
my, inverse stability coefficient (Λ−1, see Chandler & Kerswell (2013)), the number of unstable

directions Nλ, ReB , maximum and time averaged mixing efficiency E and time averaged bulk
Richardson number RiB .

(in particular) appears to span the turbulent attractor well in this projection, missing
only some very rare excursions to high ReB . As shown in table 2, the ‘o’ class orbits are
considerably more unstable than the orbits in ‘l’ class.

In order to compare how the timescales of the UPOs relate to those exhibited by
the turbulence, we plot in figure 3 the power spectra of the kinetic energy for the two
DNS signals from which the UPOs have been extracted (i.e. A1 and B3). Vertical lines
show that the the periods of the orbits are approximately coincident with observed
frequencies. For simulation A1 the largest non-zero peak in the frequency spectrum
occurs at approximately half the fundamental frequency observed in the UPOs, i.e.
f ≈ 2π/15 = 0.42 with the fundamental period around 7.5, UPO-o1 having just under
three such periods. For simulation B3 the periods of the orbits are on the edge of the
main distribution of frequencies near f = 0.6. This is reasonable evidence that the
timescales of the UPOs are representative of the typical timescales of the turbulence.
We can also consider the buoyancy frequency and its influence on these cases. For
simulation A1 where B = 1, the background buoyancy frequency NB =

√
(B) = 1

so the timescale or ‘buoyancy period’ is TN = 2π which is not far from the “fundamental
period” we have established from the UPOs and spectrum. For B3, the buoyancy period
TN = 2π/

√
(50) ≈ 0.9 which is much faster than the timescales found in the spectrum.

We find some signature of this frequency later in this section. Henceforth, we will focus
attention on UPO-o1 and UPO-l1 since, having larger amplitude, they represent better
proxies for the turbulence, although the dynamics within each class is broadly similar.

Further evidence that the two classes are qualitatively different is shown in figure 4,
where we plot the time dependence of RiB and E for UPO-o1 and UPO-l1. The dynamics
of UPO-o1 show relatively low RiB , strongly correlated to the mixing efficiency E . There
are three distinct sub-periods, each of which shows the bulk RiB decrease to small values
(indeed below the canonical value of 1/4 for the linear instability of a stratified (vertical)
shear layer given by the Miles-Howard theorem and frequently invoked as a diagnostic
for overturning), followed by a maximum in mixing efficiency as the flow overturns.
Such overturnings are visualised in figure 5, where snapshots of total density ρtot and
streamwise velocity u are chosen before and after the final minimum of RiB and near
the subsequent maximum of RiB following the peak E as marked on figure 4(a). (An
animation of the time evolution of these fields is available as supplementary material.)
The density field shows very distinct Kelvin-Helmholtz-like billows forming at t = 16.5
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Figure 2. Projection onto the (ReB , E ) plane of the UPOs and the p.d.f. of the direct numerical
simulations rendered in greyscale, with darker shades denoting that the turbulent trajectory
spends more time there for: (a) class ‘o’ UPOs from simulation A1; and (b) class ‘l’ UPOs from
simulation B3.
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where E and RiB are beginning their growth phase, justifying the labelling of this UPO
as being in class ‘o’. Of course, a bulk measure of the Richardson number does not capture
the stability properties of the flow, and so in figure 5 we also plot the p.d.f. of RiG(x) over
the spatial domain at the same times, with a vertical line indicating RiG = 1/4. These
distributions show a striking increase of the proportion of the domain with RiG < 1/4
prior to the overturning mixing event. This proportion then decreases with time, but
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does not vanish completely. Even in the periods of maximum bulk RiB some regions
of the domain remain with RiG < 1/4. Apparently, it is necessary for an appreciable
proportion of the domain to have a local gradient Richardson number RiG < 1/4 before
overturning is observed.

By contrast, as is apparent in figure 4(b), UPO-l1 has much larger overall RiB ,
seemingly uncorrelated to the behaviour of the markedly lower mixing efficiency E . This
is also apparent in the snapshots shown in figure 6 at the characteristic times marked
on figure 4(b) (and the associated animations available as supplementary materials). No
overturns occur, and the cycle of mixing behaviour is associated with straining or scouring
motions drawing the perturbation density ρ into thin layers, justifying the labelling as
class ‘l’. The instantaneous p.d.f.s of the gradient RiG plotted in figure 6 now show that
nowhere in the domain has RiG < 1/4, even near t = 5.5 when mixing efficiency is
maximised. At peak E , t ≈ 5.5, the snapshot of ρ shows increased layers and arguably
larger ∂ρ/∂z.

In order to characterise the straining/scouring motions exhibited by the ‘l’ class, we
examine the properites of the strain tensor

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

This tensor has three real eigenvalues, which we denote by α̃, β̃, γ̃, referred to as the
principal strains, which sum to zero in an incompressible flow. In general α̃ > 0 and is
therefore the stretching strain, γ̃ < 0 and is the compressional strain and the intermediate
strain β̃ will control the three dimensionality, i.e. β̃ < 0 represent compression in two
directions and fluid elements drawn into filaments, β̃ > 0 compression in one direction and
fluid elements are drawn into sheets and β̃ = 0 a purely two-dimensional straining field.
Figure 7 shows time series of the volume-averaged strains for the two characteristic UPOs,
UPO-o1 and UPO-l1. In the overturning case, UPO-o1 shows that 〈β̃〉V is well correlated
to the mixing efficiency, being positive and maximum when E is largest. This is in good
agreement with Smyth (1999) who examined these strains for a freely decaying Kelvin-
Helmholtz unstable shear layer; 〈β̃〉V is positive and has a distinct maximum during the
second phase of the overturn where the flow becomes more isotropic (isotropic turbulence
is observed to have the strains approximately in the ratio 3:1:-4 (Smyth 1999; Ashurst
et al. 1987)) and approaches zero in the quiescent periods as the flow relaxes back to
the parallel shear mean flow. For the layered case, UPO-l1 is distinctly more anisotropic;
the overall absolute values for 〈β̃〉V are an order of magnitude smaller and are actually
negative for much of the cycle. At the point where the mixing efficiency is maximal
(t ≈ 5.5) 〈β̃〉V also has a maximum, but here this amounts to crossing the axes and
〈α̃〉V ≈ −〈γ̃〉V . Our interpretation is then that the flow approaches two-dimensionality
where the mixing is largest and increased vertical gradients of ρ are formed by the change
in sign of 〈β̃〉V . This is in stark contrast to the overturning case where mixing has a more
isotropic straining signature with large 〈β̃〉V . As a secondary observation, the higher
frequency oscillations of 〈β̃〉V for UPO-l1 are of the order of N =

√
B the buoyancy

frequency, i.e. the buoyancy period here is TN = 2π/
√

50 ≈ 0.9. This suggests that
internal waves are also playing a role in this dynamical cycle.

5. Discussion and Conclusions

In this paper we have successfully applied recurrent flow analysis to stratified flows for
the first time. As expected, success is restricted to relatively weak turbulence at modest
Reynolds numbers. Nevertheless, the approach has still provided detailed insight into
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Figure 5. Three dimensional rendering of: (top) ρtot = ρ− z; (middle) u; and (bottom) p.d.f.s
of RiG in the entire computational domain at t = 15, 16.5 and 20) (left to right) for UPO-o1.
The p.d.f.s are computed with linear intervals of RiG, while the inset shows the result when
distributing the intervals on a log scale. Vertical lines mark RiG = 1/4.

the sustaining mechanisms and mixing processes at work in these flows. In particular we
have established that mixing can occur from two distinct mechanisms; overturning and
scouring, consistently with the classification presented by Woods et al. (2010). Scouring
is observed when stratification is strong and overturns when the stratification is weak
enough to allow small gradient Richardson numbers. By examining the cycles in space
and time we have demonstrated that the spatial distribution of local gradient RiG is
markedly skewed before high overturning mixing, but remains bounded from below by
1/4 when scouring mixing dominates.

From this analysis it is clear that characterising mixing by appropriate measures
of Richardson number is important from both a statistical and dynamical point of
view, although we have also shown that weak mixing can be controlled by processes
uncorrelated to RiG. Crucially, weaker average mixing may not be simply controlled by
spatiotemporally intermittent shear instability, but by other scouring, straining processes,
which may require other predictive diagnostics. Furthermore, since the bulk measures of
Richardson number and buoyancy Reynolds number are functionally related, the results
of our motivational DNS for horizontally forced, sustained turbulence suggest that an
(RiB , ReB) parameterisation of mixing should be treated with caution, particularly
since it proved difficult to access a strongly stratified, yet strongly turbulent regime,
analogously to the situation arising in stratified plane Couette flow (Zhou et al. 2017).
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of RiG in the entire computational domain at t = 4, 5.5 and 7) (left to right) for UPO-l1.
The p.d.f.s are computed with linear intervals of RiG, while the inset shows the result when
distributing the intervals on a log scale. Vertical lines mark RiG = 1/4.
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Figure 7. Time series of the volume averaged principal strains for UPO-o1 (left) and UPO-l1
(right). For the overturning case, peaks of E are coincident with large positive intermediate

strain 〈β̃〉V , nearer to the values of isotropic turbulence, where as the more layered case (right)

is very anisotropic with small 〈β̃〉V , approximately zero when E is largest.

One open question is the interplay between scouring and overturning. Clearly over-
turning shear instability will overwhelm any background straining or scouring motions,
however it remains a challenge of rationalising spatiotemporal chaos to predict the
switching between these processes. For instance simulation B3 shows that intermittent
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bursts can raise the local (in time) mixing efficiency, despite the majority of the mixing
in this case being controlled by the straining and scouring layered motions characteristic
of class ‘l’. Examination of a segment of the trajectory reaching large E in this case
suggests straining and shear instability, saturating at various finite amplitudes, combine
to populate the distribution of figure 1(b). Furthermore, as already widely discussed,
research into exact coherent structures embedded in turbulent flows faces a serious
challenge in the extension of methods to handle higher Reynolds numbers and spatially
localised dynamics. It remains unclear whether such UPOs can be identified in ‘energetic’
stratified turbulence with ReB & O(100), yet it is of particular interest to understand
whether the observed reduction of mixing efficiency at such high ReB is associated with
a qualitative change in mixing properties.

Acknowledgements. We extend our thanks, for many helpful and enlightening discussions,
to Paul Linden, John Taylor, Stuart Dalziel and the rest of the ‘MUST’ team in
Cambridge and Bristol. We also thank the three anonymous referees whose constructive
comments have significantly improved the clarity of the manuscript. The source code
used in this work is provided at https://bitbucket.org/dan_lucas/psgpu and the
associated data including initialisation files and converged states is found at https://

doi.org/ This work is supported by EPSRC Programme Grant EP/K034529/1 entitled
‘Mathematical Underpinnings of Stratified Turbulence’. The majority of the research
presented here was conducted when DL was a postdoctoral researcher in DAMTP as
part of the MUST programme grant.

REFERENCES

Ashurst, Wm. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of
vorticity and scalar gradient with strain rate in simulated navierstokes turbulence. Phys.
Fluids 30 (8), 2343–2353.

Chandler, G. J. & Kerswell, R. R. 2013 Invariant recurrent solutions embedded in a
turbulent two-dimensional Kolmogorov flow. J. Fluid Mech. 722, 554–595.
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