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Abstract. Southern Hemisphere westerly airflow has a sig-

nificant influence on the ocean–atmosphere system of the

mid- to high latitudes with potentially global climate im-

plications. Unfortunately, historic observations only extend

back to the late 19th century, limiting our understanding of

multi-decadal to centennial change. Here we present a highly

resolved (30-year) record of past westerly wind strength from

a Falkland Islands peat sequence spanning the last 2600

years. Situated within the core latitude of Southern Hemi-

sphere westerly airflow (the so-called furious fifties), we

identify highly variable changes in exotic pollen and charcoal

derived from South America which can be used to inform on

past westerly air strength. We find a period of high charcoal

content between 2000 and 1000 cal. years BP, associated with

increased burning in Patagonia, most probably as a result of

higher temperatures and stronger westerly airflow. Spectral

analysis of the charcoal record identifies a pervasive ca. 250-

year periodicity that is coherent with radiocarbon production

rates, suggesting that solar variability has a modulating influ-

ence on Southern Hemisphere westerly airflow. Our results

have important implications for understanding global climate

change through the late Holocene.

1 Introduction

A major limitation for quantifying the magnitude and impact

of change across the Southern Ocean is the relatively short

duration or low resolution of ocean–atmosphere records.

This is particularly significant with regards to the South-

ern Hemisphere westerly storm belt, which since the mid-

1970s, has undergone a significant intensification and south-

ward shift (Gillett et al., 2008; Messié and Chavez, 2011).

One measure of this change in atmospheric circulation is the

Southern Annular Mode (SAM), described as the pressure

difference between Antarctica (65◦ S) and the latitude band

at around 40◦ S (Karpechko et al., 2009; Marshall, 2003).

Since the mid-1970s, SAM appears to have undergone a pos-

itive shift in the troposphere, which has been associated with

hemispheric-wide changes in the atmosphere–ocean-ice do-

mains, including precipitation patterns and significant sur-

face and subsurface ocean warming (Cook et al., 2010; Del-

worth and Zeng, 2014; Domack et al., 2005; Gille, 2008,

2014; Thompson et al., 2011). This trend is projected to con-

tinue during the 21st century as a result of both ongoing

greenhouse gas emissions and a persistence of the Antarc-

tic ozone hole (Liu and Curry, 2010; Thompson et al., 2011;

Yin, 2005), potentially resulting in reduced Southern Ocean

uptake of anthropogenic CO2 (Ito et al., 2010; Le Quére et
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al., 2009; Lenton et al., 2013; Marshall, 2003; Marshall and

Speer, 2012).

While no observational records for SAM extend beyond

the late 19th century (Fogt et al., 2009; Marshall, 2003; Vis-

beck, 2009), proxy records of past westerly airflow have

been generated on annual-to-centennial timescales through

the Holocene (Abram et al., 2014; Björck et al., 2012; Lamy

et al., 2010; Lisé-Pronovost et al., 2015; McGlone et al.,

2010; Strother et al., 2015; Villalba et al., 2012). Crucially,

the association between proxies and changes in westerly

wind strength and/or latitude is often implied but few pro-

vide a direct measure of past airflow or directly test their

interpretation through time. One possibility is the identifi-

cation of exotic airborne particles preserved in sedimentary

sequences. Ideally, the peat or lake record should be close

enough to the source to have a relatively high input of mate-

rial (e.g. pollen, charcoal) but not so close that the influx is

constant over time. Whilst numerous studies have been un-

dertaken in the Arctic (Fredskild, 1984; Jessen et al., 2011)

and the high latitudes of the Indian and Pacific oceans (Mc-

Glone et al., 2000; Scott and van Zinderen Barker, 1985),

few have been reported from the South Atlantic. Recent work

on a lake core taken from Annekov Island, South Georgia

(Strother et al., 2015) demonstrates the considerable poten-

tial of this approach but the relatively large distance from

the nearest source in South America (Fig. 1) (approximately

2100 km) limits the delivery of pollen, with no charcoal re-

ported.

Here we report a new high-resolution record of westerly

airflow over the past 2600 years from the Falkland Islands.

The Falkland Islands (52◦ S) lie within the main latitudinal

belt of Southern Hemisphere westerly airflow, 500 to 730 km

east of Argentina and 1410 km west of Annekov Island. The

close proximity to South America means that these islands

receive a relatively high input of particles from the continen-

tal mainland (Barrow, 1978; Rose et al., 2012), making them

an ideal location to investigate past changes in westerly air-

flow.

2 Methods

The Falkland Islands are a low-lying archipelago in the South

Atlantic Ocean, situated in the furious fifties wind belt on the

southeast South American continental shelf at 51–52◦ S, 58–

61◦W (Fig. 1). The Falkland Islands experience a cool tem-

perate but relatively dry oceanic climate, dominated by west-

erly winds (Otley et al., 2008). Across the year, the temper-

ature ranges from 2.2 ◦C (July) to 9 ◦C (February), with the

islands receiving a relatively low but variable precipitation

(typically ranging between 500 and 800 mm year−1) lying in

the lee of the Andes. Modern climate records show that the

prevailing wind direction across the Falkland Islands is pre-

dominantly from the west with strong winds throughout the

year, with no significant seasonal variation (Upton and Shaw,

2002).

Climate amelioration following the Last Glacial Maxi-

mum led to the establishment of blanket peat across large

parts of the islands from 16 500 cal. years BP (Wilson et

al., 2002). To investigate past westerly airflow in the late

Holocene, an exposed ericaceous-grass peatland was cored

on Canopus Hill, above Port Stanley Airport (51.691◦ S,

57.785◦W, approximately 30 m above sea level) (Fig. 1). The

one-metre sequence reported here comprises a uniform dark-

brown peat from which the uppermost 90 cm was contigu-

ously sampled for pollen, charcoal and comprehensive dat-

ing.

Pollen samples were prepared using standard palynologi-

cal techniques (Faegri and Iverson, 1975). Volumetric sam-

ples were taken every 1 cm along the core and Lycopodium

spores were added as a “spike”. The samples were defloccu-

lated with hot 10 % NaOH and then sieved through a 106 µm

mesh. The samples then underwent acetolysis, to remove ex-

traneous organic matter before the samples were mounted

in silicon oil. Pollen types/palynomorphs were counted at

400× magnification until a minimum of 300 target grains

were identified. The pollen counts were expressed as per-

centages, with only terrestrial land pollen (TLP) contribut-

ing to the final pollen sum. Pollen/palynomorphs were iden-

tified using standard pollen keys (Barrow, 1978; Macphail

and Cantrill, 2006) and the pollen type slide collection at Ex-

eter University. Past fire activity was assessed using micro-

charcoal counts of fragments (< 106 µm) identified on the

pollen slides (Whitlock and Larsen, 2001). Counts were un-

dertaken at each level until a fixed total of 50 lycopodium

spores were counted and the total expressed as a concentra-

tion (fragments per cm3). More than 99 % of charcoal frag-

ments were less than 50 µm in size, with negligible amounts

identified in the 50–106 µm and > 106 µm fractions.

Terrestrial plant macrofossils (fruits and leaves) were ex-

tracted from the peat sequence and given an acid–base–acid

(ABA) pretreatment and then combusted and graphitised in

the University of Waikato AMS laboratory, with 14C / 12C

measurement by the University of California at Irvine (UCI)

on a NEC compact (1.5SDH) AMS system. The pretreated

samples were converted to CO2 by combustion in sealed pre-

baked quartz tubes, containing Cu and Ag wire. The CO2

was then converted to graphite using H2 and an Fe cata-

lyst, and loaded into aluminium target holders for measure-

ment at UCI. This was supplemented by 137Cs measurements

down the profile to detect the onset of nuclear tests. 137Cs

analysis was undertaken following standard techniques with

measurements made using an ORTEC high-resolution, low-

background coaxial germanium detector. Detectable mea-

surements were obtained down to 8.5 and 9.5 cm and the

lowest depth assigned an age of CE 1963, the time of early

radionuclide fallout at these latitudes (Hancock et al., 2011).

The radiocarbon and 137Cs ages were used to develop an

age model using a P_sequence deposition model in OxCal
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Figure 1. Location of the Falkland Islands in the South Atlantic Ocean with mean locations of the Polar and Southern Boundary fronts

(dashed lines), the continental shelf (grey areas), and prevailing westerly airflow (solid arrows) (a); and Canopus Hill, Port Stanley Airport,

in the east Falkland Islands (b). (a) was modified from Strother et al. (2015) and (b) was obtained from Google Earth.

Table 1. Radiocarbon and modelled calibrated ages using SHCal13

(Hogg et al., 2013) and Bomb04SH (Hua and Barbetti, 2004) using

the P_sequence and Outlier analysis option in OxCal 4.2 (Bronk

Ramsey and Lee, 2013; Ramsey, 2008).

Depth, Wk lab Material % M / 14C Modelled years

cm number (BP± 1σ ) (BP± 1σ )

8–9 34 598 Fruits and leaves 117.0± 0.4 % M −16± 11

11–12 32 994 Fruits and leaves 107.8± 0.4 % M −8± 2

18–19 37 007 Fruits and leaves 107.3± 0.3 % M 3± 31

25–26 35 146 Fruits and leaves 95± 25 94± 66

35–36 37 008 Fruits and leaves 647± 25 603± 29

39–40 33 445 Fruits and leaves 761± 25 661± 28

57–58 32 996 Fruits and leaves 1818± 25 1672± 51

70–71 32 350 Fruits and leaves 2235± 25 2201± 67

97–98 32 997 Fruits and leaves 2749± 25 2802± 32

4.2 (Bronk Ramsey, 2008) with General Outlier analysis de-

tection (probability= 0.05) (Bronk Ramsey, 2011). The 14C

ages were calibrated against the Southern Hemisphere cal-

ibration (SHCal13) data set. Using Bayes’ theorem, the al-

gorithms employed sample possible solutions with a prob-

ability that is the product of the prior and likelihood prob-

abilities. Taking into account the deposition model and the

actual age measurements, the posterior probability densities

quantify the most likely age distributions; the outlier option

was used to detect ages that fall outside the calibration model

for each group, and if necessary, down-weight their contri-

bution to the final age estimates. Modelled ages are reported

here as thousands of calendar years BP or cal. BP (Table 1

and Fig. 2). The pollen sequence reported here spans the last

2600 years with an average 30-year resolution (Fig. 3).

To investigate the periodicities preserved in the palaeoen-

vironmental proxies utilised herein, we undertook Multi-

Taper Method (MTM) analysis using a narrowband signal,

red noise significance and robust noise background estima-

tion (with a resolution of 2 and 3 tapers) (Thomson, 1982).

We also applied single spectrum analysis (SSA), which ap-

plies an empirical orthogonal function (EOF) analysis to the

autovariance matrix on the chronologies. Here we under-

took a Monte Carlo significance test (95 % significance), us-

ing a window of 9, a Burg covariance, and eight compo-

nents. Both analyses used the software kSpectra version 3.4.3

(3.4.5). Wavelet analysis and coherence was undertaken on

the 30-year averaged data using the wt() and wtc() func-

tions respectively in the R package “Biwavelet” (Gouhier,

2013). The Morlet continuous wavelet transform was ap-

plied, and the data were padded with zeros at each end to

reduce wraparound effects (Torrence and Webster, 1999). To

test the robustness of the obtained periodicities, the Lomb–

Scargle algorithm was employed, a spectral decomposition

method that computes the spectral properties of time series

with irregular sampling intervals (Ruf, 1999) – in this in-

stance, the “raw” charcoal values. This method minimises

bias and induced periodicities that may arise from interpolat-

ing missing or unevenly spaced data. The technique was un-

dertaken using the lsp() function within the “lomb” R pack-

age. Periodicities were extracted from data sets using Analy-

series (Paillard et al., 1996).

A measure of solar variability was derived by calculat-

ing the 14C production rate using the IntCal13 atmospheric

radiocarbon data set (Reimer et al., 2013) and an ocean–

atmosphere box diffusion model (Oeschger et al., 1975); the

same as that reported in previous studies (Bond et al., 2001;

Turney et al., 2005). The model consists of one box for the

atmosphere, one for the ocean mixed layer, 37 boxes for

the thermocline, five boxes for the deep ocean and two for

the biosphere (short and long residence time) (Stuiver and

Braziunas, 1993a). The climate-influenced mixing parame-

ters (air-gas sea exchange, eddy diffusivity, and biospheric

www.clim-past.net/12/189/2016/ Clim. Past, 12, 189–200, 2016
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Figure 2. Pollen diagram from Canopus Hill, Port Stanley Airport, plotted against depth and calendar age. The location of 137Cs and 14C

ages are marked by asterisk.
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Figure 3. Age–depth plot for Canopus Hill, Port Stanley Airport,

with 1σ age range (blue envelope) and probability distributions.

uptake and release) were held constant through the run using

the same setup as Marine04 (Table 2) (Hughen et al., 2004).

The model was parametrised to produce a pre-industrial ma-

rine mixed layer 14C of −46.5 ‰ and a deep ocean value of

−190 ‰ at CE 1830 for the 2013 marine calibration data set

Marine13 (Reimer et al., 2013).

3 Results and discussion

Only a limited number of Holocene pollen records have

been reported from the Falkland Islands (Barrow, 1978). The

pollen record in the uppermost 90 cm at Canopus Hill is

dominated by Poaceae and Empetrum, consistent with previ-

ous work and today’s vegetation (Barrow, 1978; Broughton

and McAdam, 2003; Clark et al., 1998). The most signif-

icant change in the pollen taxa is a pronounced shift to

increased representation of Asteroideae (accompanied by a

relative decline in Poaceae) centred on 47 cm (equivalent

to 1100 cal. BP) (Fig. 2). Although undifferentiated in the

counts, the Asteroideae are most likely Chilliotrichum dif-

fusum, common on the island across a range of habitats in-

cluding Empetrum heath (Broughton and McAdam, 2003).

The shift in the pollen diagram therefore most likely reflects

the replacement of upland grasslands by Empetrum heath.

Highly variable charcoal counts were obtained through the

sequence (< 106 µm) (Fig. 2), with negligible macrocharcoal

fragments (> 106 µm) identified, suggesting there was little

or no fire on the site.

The exotic pollen taxa were expressed as concentration

values to explore their changing input onto the site over the

last 2600 years (Fig. 2). Although these data could be re-

expressed as a pollen influx, the interpretation of flux data

in non-annually laminated sequences can be strongly influ-

enced by the choice of age model and the density of dated

points down the core (Davis, 1969; Hicks and Hyvärinen,

1999). Consideration of the radiocarbon and 137Cs ages (Ta-

ble 1) suggests that the depth–age relationship can be de-

Clim. Past, 12, 189–200, 2016 www.clim-past.net/12/189/2016/
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Table 2. Box diffusion model parameters for Marine98 (Bond et al., 2001; Turney et al., 2005) vs. Marine04 (Hughen et al., 2004).

Parameter Marine98 Marine04

Air-gas sea exchange 19 moles m−2 years−1 18.8 moles m−2 years−1

Eddy diffusivity 4000 m2 years−1 4220 m2 years−1

Pre-industrial atmospheric [CO2] 280 ppm 270 ppm

Initial atmospheric 114C 90 ‰ 100 ‰

CH CH

(a) (b)

Figure 4. Correlation of relationship between the hemispherically averaged Southern Annular Mode (SAM) index (Marshall, 2003) with

2–10 m air temperature (a) and wind strength (b) in the ERA-79 Interim reanalysis (Dee et al., 2011) (July–June, 1979–2013). Location of

Canopus Hill, (CH), Falkland Islands, shown. Analyses were made with KNMI Climate Explorer (van Oldenborgh and Burgers, 2005).

scribed by a linear relationship (r2
= 0.98) below a depth of

18 cm (Fig. 3). This means that the pollen (and charcoal) con-

centration data below this depth are equivalent to influx. In

the uppermost section of the core (above 18 cm) a faster rate

of sediment accumulation (or less compaction) means that

the deposition time is reduced.

Importantly, the sequence preserves a record of exotic

pollen delivery into the site, with Nothofagus dominating

the input but with trace amounts of Podocarp, Ephedra frag-

ilis, and Anacardium-type pollen (< 0.5 % total land pollen),

all originating from South America. Whilst the low levels

of most exotic pollen precludes meaningful interpretation,

all samples contain Nothofagus (< 5 % total land pollen), a

taxa not known to have grown on the Falkland Islands since

the Middle Miocene/Early Pliocene (Macphail and Cantrill,

2006) but which has been detected in Lateglacial (Clark

et al., 1998) and Holocene (Barrow, 1978) sequences. Pro-

ducing relatively small pollen grains (20–40 µm in diame-

ter) (Wang et al., 2000), the nearest source of contemporary

Nothofagus is South America which extends from 33◦ S in

central Chile to 56◦ S on Tierra del Fuego (Veblen et al.,

1996). The youngest arboreal macrofossils of the other ex-

otic taxa are dated to late Tertiary deposits on West Point

Island, West Falkland (Birnie and Roberts, 1986).

Whilst exotic pollen values are relatively low, peaks in

Nothofagus coincide with increased amounts of charcoal in

the Canopus Hill sequence. Importantly, negligible amounts

of macro-charcoal (> 106 µm) were identified, suggesting

that the charcoal has been blown to the site from Patagonia.

The aerial delivery of the charcoal to the Falkland Islands is

supported by the close correspondence with charcoal in La-

guna Guanaco in Southwest Patagonia (51◦ S) (Moreno et al.,

2009). Importantly, Nothofagus dominates lowland Patago-

nian vegetation and, in areas away from human activity, was

established by 5000 cal. years BP (Iglesias et al., 2014; Kil-

ian and Lamy, 2012), with a stepped expansion in Nothofa-

gus at Laguna Guanaco centred on 570 cal. BP (Moreno

et al., 2009) and evidence for temporary forest fragmenta-

tion during periods of stronger westerly airflow (Moreno et

al., 2014). In marked contrast to Patagonia, the Falklands

Nothofagus pollen record is highly variable and of sufficient

concentration to recognise similar changes to those in the

charcoal record, with periods of high fire frequency associ-

ated with high input of exotic pollen.

Although charcoal fragments less than 106 µm might re-

flect fire in the local environment, charcoal of this size can

be transported long distances (Clark, 1988). The vast major-

ity of the charcoal fragments are less than 50 µm, compara-

ble in size to exotic Nothofagus (20–40 µm) and Podocar-

pus (40–50 µm in diameter) pollen (Wang et al., 2000; Wil-

son and Owens, 1999). The close correspondence between

the Nothofagus pollen record and charcoal fragments in the

Canopus Hill sequence on the Falkland Islands strongly sug-

gests similar sources, indicating that the higher charcoal

counts provide a more robust measure of the westerly air-

flow. A sustained period of charcoal delivery to the Falk-

www.clim-past.net/12/189/2016/ Clim. Past, 12, 189–200, 2016
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land Islands is observed between 2000 and 1000 cal. BP,

with prominent peaks in Nothofagus and charcoal recog-

nised at approximately 2400, 2100, 1800–1300, 1000, 550,

and 250 cal. BP (Fig. 2) which we interpret here as stronger

westerly wind flow. Our results suggest that reports of pre-

European human activity on the Falkland Islands as inferred

by the presence of charcoal in peat sequences (Buckland and

Edwards, 1998) may be premature.

In contrast to work at Annenkov Island which reported en-

hanced westerly airflow is associated with wetter conditions

(Strother et al., 2015), we observe the reverse on the Falk-

land Islands. Modern comparisons between the SAM (as a

Clim. Past, 12, 189–200, 2016 www.clim-past.net/12/189/2016/
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measure of westerly airflow) (Marshall, 2003) and air tem-

perature suggest a positive correlation (Abram et al., 2014).

Comparing historic observations of SAM with ERA79 In-

terim reanalysis (Dee et al., 2011), we observe a highly sig-

nificant relationship with more positive phases of SAM asso-

ciated with warmer 2–10 m height air temperatures and wind

speeds across much of South America, the Antarctic Penin-

sula, and the Falkland Islands (Fig. 4), supporting our inter-

pretation. The contrasting moisture interpretation to that in

South Georgia may be a result of the rain shadow effect of

the Andes on the Falklands. It should be noted, however, that

the reanalysis product used here is only for the period com-

mencing CE 1979 (the satellite era) and that different atmo-

spheric dynamics may have been involved in the delivery of

exotic pollen and charcoal to the Falkland Islands on centen-

nial timescales.

The MTM analysis identifies two different periodicities in

the charcoal record (< 106 µm) from Canopus Hill significant

above 95 % – 242 and 95 years, with the former exhibiting a

broad multi-decadal peak (Fig. 5a). To test whether the MTM

spectral peak is robust, we undertook SSA on the sequence

chronologies. A Monte Carlo significance test identified a

significant periodicity (above 95 %) at 231 years (Fig. 5b).

Furthermore, the Lomb–Scargle algorithm identified a 268-

year peak (Fig. 5c), indicating that this periodicity is perva-

sive through the record regardless of the sampling method,

and therefore robust.

The existence of a 200–250-year periodicity has been

identified in numerous Holocene records globally (Galloway

et al., 2013; Poore et al., 2004), including Southern Ocean

productivity as recorded in Palmer Deep (Domack et al.,

2001; Leventer et al., 1996) and dust deposition over Antarc-

tica (Delmonte et al., 2005). Furthermore, whilst no spectral

analysis was undertaken, a series of recurring 200-year long

dry/warm periods have recently been reported from Patago-

nia over the last three millennia and linked to positive SAM-

www.clim-past.net/12/189/2016/ Clim. Past, 12, 189–200, 2016
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Figure 7. Charcoal concentration (< 106 µm) (a), Gaussian-filtered

charcoal in the 250-year band (250± 25 years−1) (b), and wavelet

analysis of charcoal concentration (c) from Canopus Hill, Port Stan-

ley Airport (52◦ S). Solid black line in wavelet denotes 95 % con-

fidence in periodicity; white dashed line denotes cone of influ-

ence. (d) Charcoal concentration data from Laguna Guanaco, Chile

(51◦ S) (Moreno et al., 2009); (e) the biogenic carbonate accumu-

lation rate (AR) from Palm2, Chile (53◦ S). Gaussian-filtered 14C

in the 225-year band (225± 22.5 years−1) are plotted in (f), and

wavelet coherence between the 30-year sampled charcoal and 14C

production in (g); white dashed line denotes cone of influence; ar-

rows pointing up indicate that 14C production (solar) leads Falkland

Islands charcoal (proxy of Southern Hemisphere westerly strength).

The dark grey columns define peaks in charcoal 250-year periodic-

ity lagging minima in 14C production rate (high solar irradiance);

the light grey area describes the period of pervasively stronger

winds across the South Atlantic 2000 to 1000 cal. BP.

like conditions (Moreno et al., 2014). The origin of the∼ 250

years periodicity may be linked to postulated centennial-

scale changes in climate modes of variability including the

El Niño Southern Oscillation (ENSO) (Ault et al., 2013)

or Southern Ocean convection (Martin et al., 2013). Impor-

tantly, a 200–250-year periodicity has also been observed in

records of atmospheric 14C and 10Be (Adolphi et al., 2014;

Steinhilber et al., 2012; Stuiver and Braziunas, 1993b; Tur-

ney et al., 2005), suggesting that the so-called de Vries solar

cycle may play a role (Leventer et al., 1996).

The detection of solar forcing in palaeo records is highly

sensitive to the chronological framework being investigated

(Gray et al., 2010). To explore the possible role of solar

variability on Southern Hemisphere westerly airflow we first

analysed the modelled production rate of 14C derived from

5-year resolved tree-ring data (Reimer et al., 2013), a cosmo-

genic radionuclide that is produced in the upper atmosphere

(with 14C increasing with reduced solar activity) (Bond et

al., 2001; Turney et al., 2005). We resampled the 14C data set

at 30-year resolution to mimic the resolution of the Canopus

Hill sequence and compared these data to the Total Solar Irra-

diance (TSI) generated from the polar ice core 10Be which is

reported at a 20–30-year resolution (Steinhilber et al., 2009)

(Fig. 6). Regardless of the data set used, the same pattern is

observed with large amplitude changes in solar irradiance be-

tween 2600 and 2300 years ago and from 1300 cal. years BP

to present day, but with sustained high irradiance between

2300 and 1300 cal. years BP (Fig. 6a, c and e). We find that

the 5-year resolved IntCal13 data set produces a periodicity

comparable to the Falkland Islands record (225 years at 99 %

confidence; Fig. 6a and b). Importantly, when we look at the

downscaled records of solar irradiance, the statistical signifi-

cance decreases in the lower-resolved 14C data set (230 years

at 90 %; Fig. 6c and d) or shifts to a lower frequency in the
10Be record (202 years at 99 %; Fig. 6e and f).

Our results imply that the central Southern Hemi-

sphere westerlies were particularly strong between 2000 and

1000 cal. BP and/or lay close to the latitude of the Falkland

Islands – at least within the South American sector and possi-

bly hemispheric-wide (Turney et al., 2016) (Fig. 7). Records

of comparable latitude and age from South America are

Laguna Guanaco (51◦ S) (Moreno et al., 2014) and Palm2

(53◦ S) (Lamy et al., 2010). The Laguna Guanaco record cap-

tures a remarkably similar fire history as preserved in the

Canopus Hill with a pronounced peak in charcoal over the

same period (Fig. 7d). In Palm2, accumulation rates of bio-

genic carbonate provide a proxy for salinity changes in sur-

face fjord waters off the west coast of Chile with lower salin-

ities associated with strong winds and relatively high precip-

itation, limiting the influence of the open ocean water and

reducing biogenic carbonate production. While the data set

from Palm2 does not have the resolution of the other records,

a similar trend with pervasive lower salinities (stronger west-

erly winds) is recorded between 2000 and 1000 cal. years BP

(Fig. 7e). Whilst the change in the trend may be interpreted

as reflecting either a change in the latitude and/or strength

of the winds, the parallel peaks and troughs in Nothofa-

gus and charcoal from Canopus Hill (in contrast to constant

Nothofagus levels at Laguna Guanaco – Moreno et al., 2009)

imply that the core latitude of the westerly winds has not

changed and instead was particularly strong between 2000

and 1000 cal. years BP, resulting in increased fire frequency

in Patagonia (Holz and Veblen, 2012). This is supported by
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a study on Patagonian Fitzroya cupressoides from 40–42◦ S

(Roig et al., 2001). Whilst a living series spanning 1229 years

did not identify a 200–250-year periodicity, a 245-year cycle

was identified in a floating 50 000-year-old tree ring series

of comparable length, consistent with our record suggest-

ing a suppression of this periodicity across a large latitudinal

range over the last 1000 years. Importantly, the ∼ 250-year

periodicity identified in the charcoal record varies in ampli-

tude over the last 2600 years (Fig. 7a–c). A Gaussian fil-

tered curve and wavelet plot shows the ∼ 250 year periodic-

ity is expressed between 2600 and 1000 cal. BP, and spans the

prominent (sustained) peak in charcoal, with an implied re-

duction in the expression of the ∼ 250-year periodicity over

the last millennium.

The role that changing solar output may have on westerly

airflow is not immediately apparent. The strongest inferred

winds fall within a millennial-duration period of high solar ir-

radiance (Fig. 6). In spite of the relatively muted amplitude of

the 225-year periodicity in the 14C record, wavelet coherence

with the charcoal data sampled at 30-year resolution shows

coherency centred on 1500 cal. years BP (Fig. 7g), with the

proxy of solar irradiance leading westerly wind strength (ar-

rows up). Furthermore, we observe peaks in solar irradiance

leading charcoal by of the order of 20–40 years (Fig. 7f),

suggesting that Southern Hemisphere westerly winds may

be particularly sensitive to the de Vries cycle during periods

of high solar irradiance and less sensitive with reduced so-

lar output. How solar periodicity may influence the strength

of Southern Hemisphere westerly airflow is not precisely

known. One possibility is that the ∼ 250-year periodicity

may change salinity in the North Atlantic (Stuiver and Brazi-

unas, 1993b), driving changes in the Meridional Overturning

Circulation that are transmitted globally. However, the exis-

tence of the same periodicity in the delivery of dust onto the

East Antarctic Ice Sheet (Delmonte et al., 2005) does imply

a direct atmospheric link, either through changing sea ice ex-

tent or sea surface temperatures, or via the westerlies them-

selves (Shindell et al., 1999). Recent work has highlighted

the role of high solar irradiance in increasing troposphere–

stratosphere coupling, extending the seasonal length during

which stronger Southern Hemisphere westerly winds are ex-

perienced at the surface (Kuroda and Yamazaki, 2010), sim-

ilar to that observed in the Northern Hemisphere (Ineson

et al., 2011). Alternatively, recent modelling work suggests

that insolation changes can lead to increased “baroclinicity”

(Fogwill et al., 2015) or a “Split Jet” (Chiang et al., 2014),

strengthening westerly winds. Further work is required to un-

derstand the driving mechanism(s) behind the∼ 250-year pe-

riodicity on global climate.

4 Conclusions

Southern Hemisphere westerly airflow is believed to play a

significant role in precipitation, sea ice extent, sea surface

temperatures and the carbon cycle across the mid- to high lat-

itudes. Unfortunately, the observational record only extends

back to the late 19th century, limiting our understanding of

what drives past changes in westerly winds. Although prox-

ies of westerly airflow can provide long-term perspectives on

past change, few provide a direct (passive) measure of west-

erly winds. Exotic pollen and charcoal fragments sourced

upwind of sedimentary sequences can potentially provide a

valuable insight into past variability. Here we report a new,

comprehensively-dated high-resolution pollen record from a

peat sequence on the Falkland Islands which lies under the

present core of Southern Hemisphere westerly airflow and

spanning the last 2600 years. We observe peaks in taxa from

South America (particularly Nothofagus) and charcoal frag-

ments (< 106 µm) that appear to be linked to warm and windy

conditions. Spectral analysis identifies a robust ∼ 250-year

periodicity, with evidence of stronger westerly airflow be-

tween 2000 and 1000 cal. years BP. In comparison with other

Southern Hemisphere records, the 250-year periodicity sug-

gests that solar forcing plays a role in modulating the strength

of the Southern Hemisphere westerlies, something hitherto

not recognised. This will form the focus of future research.
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