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Abstract 

 

Objectives: Response congruency effects in task switching are the observed slowing of 

response times for incongruent targets which afford more than one response (depending on 

task) in comparison to congruent stimuli that afford just one response regardless of the task. 

These effects are thought to reflect increased ambiguity during response selection for 

incongruent stimuli.  

Methods: The present study presents a meta-analysis of 27 conditions (from 16 separate 

studies) whose designs allowed investigation of age-related differences in response-

congruency effects on response time. 

Results: Multilevel modelling of Brinley plots and state–trace plots showed no age-related 

effect on response congruency beyond that which can be explained by general age-related 

slowing. 

Discussion: The results add to the growing body of evidence of no age-related decline in 

measures of attention and executive functioning. 

 

Keywords: Task switching; congruency effects; response selection; aging; 

meta-analysis 
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The Effect of Aging on Response Congruency in Task Switching: A Meta-Analysis 

 

Humans live in an incredibly rich, multi-task environment, with many stimuli 

competing for our attention. In order to act in a goal-directed manner, it is essential that the 

cognitive system is able to select the most relevant stimulus to act upon. But stimulus 

selection is only half of the battle, as many stimuli are multivalent; that is, there are often 

multiple tasks that can be performed on the same stimulus. For example, there are many tasks 

that can be performed on a computer, so it is essential that the cognitive system is able to 

select the correct task (e.g., check e-mails) in the face of competing alternatives (e.g., check 

the news). Once selected, this task must be represented in a stable manner in the system so 

that task-irrelevant intrusions do not occur. At the same time, this task representation must 

flexible enough so that when our goals change we can switch to a new one. The tension 

between stability on the one hand, and flexibility on the other, has been termed the stability–

flexibility dilemma (Goschke, 2000). 

This stability–flexibility dilemma can be investigated using the task switching 

paradigm, wherein participants are required to rapidly switch between simple cognitive 

operations on multivalent stimuli (see Grange & Houghton, 2014; Kiesel et al., 2010; 

Vandierendonck, Liefooghe, & Verbruggen, 2010, for reviews). For example, participants 

might be presented with numerical stimuli (any digit from the set 1–9, excluding 5) and be 

asked to either make a parity judgement (i.e., odd/even) or a magnitude judgement (i.e., 

lower/higher than 5). The primary finding of interest in this literature has been the “switch 

cost”: Response times (RTs) and error rates are increased on trials where the task switches 

from that of the previous trial (e.g., Parity—Magnitude) compared to task repetitions (e.g., 

Magnitude—Magnitude), and has been proposed as an index of cognitive control (but see 

Logan, 2003). 
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Due to this, the task switching paradigm has been a popular tool to study potential 

age-related decline in cognitive control (Kray & Ferdinand, 2014). In a recent meta-

analysis, Wasylyshyn, Verhaeghen, and Sliwinski (2011) found—after taking into account 

the general slowing typically found in older adults—no age-related decline for RT switch 

costs, suggesting no age-related decline in cognitive control. Wasylyshyn et al. (2011) did 

find clear age-related decline in the ability to sustain focus on a single task in multi-task 

situations, as indexed by the “mixing cost”: Slower RTs to task repetitions in blocks where 

switches are possible (i.e., mixed-blocks) compared to task repetitions within pure-blocks, 

where only one task is required; this cost is thought to be associated with the costs of 

maintaining a task representation within a switching context (see Marí-Beffa & Kirkham, 

2014, for a recent review). 

Much of the task switching literature has focussed on the switch cost as a measure of 

cognitive control. Mirroring this focus, much of the task switching and aging literature—

including the meta-analysis of Wasylyshyn et al. (2011)—has focussed on the switch cost 

together with the mixing cost. However, the switch cost is just one among a constellation of 

task switching phenomena that potentially reflect cognitive control processes; a complete 

model of cognitive control during task switching must go beyond explaining the switch cost 

and outline functional mechanisms that give rise to the whole constellation of effects 

observed (see Altmann & Gray, 2008, for one such attempt). 

The purpose of the present paper is to examine potential age-related decline in the 

response congruency effect in task switching. In the task switching paradigm, stimulus–

response mappings are typically overlapping: In the example outlined above, the responses 

“Odd” and “Lower than 5” might be mapped to a left response key, and the responses “Even” 

and “Higher than 5” might be mapped to a right response key. Congruent stimuli require the 

same response regardless of the task (e.g., a stimulus “1” is both odd and lower than 5, and as 
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such always requires a left response); incongruent stimuli require different responses 

depending on the task (e.g, a stimulus “7” is odd and higher than 5, so the correct response 

depends on what the task currently is). Thus, for incongruent stimuli, there exists ambiguity 

during response selection which must be overcome by the cognitive system to arrive at a 

correct response (e.g., Schneider, 2015b). It is a well-replicated finding that response times 

and error rates are increased for incongruent stimuli compared to congruent stimuli. The 

magnitude of this response congruency effect can be thought of as the degree to which 

stimulus ambiguity interfered with response selection. 

Given that the response congruency effect provides important insight into the 

mechanisms of response selection during task switching (Schneider, 2015a; 2015b; Schneider 

& Logan, 2015), it is perhaps surprising that this has not been the focus of much empirical 

work within cognitive aging research. Such a deficit might be expected, as a prominent 

hypothesis of cognitive decline in healthy ageing is the inhibition-deficit hypothesis of 

Hasher and colleagues (Hasher, Lustig, & Zacks, 2007; Hasher, Zacks, & May, 1999), which 

proposes that cognitive inhibition—and hence the ability to effectively deal with interference 

during response selection—becomes less efficient with age.  

As already stated, many aging and task switching studies have not focussed on the 

response congruency effect, yet many of these studies’ empirical designs afforded such 

analysis. Of the studies we reviewed, only three were directly designed to assess age-related 

differences in response congruency effects. Meiran et al. (2001) found larger response 

congruency effects for older adults compared to younger adults on task switch trials 

compared to task repetition trials. Similar findings were also found by Eich, Rakitin, and 

Stern (2016b) with incongruency increasing error rates more for older adults than younger 

adults in mixed-blocks compared to pure-blocks. Eich et al. (2016a) examined 75 older adults 

and 62 younger adults in a task switching paradigm together with functional magnetic 



RESPONSE CONGRUENCY & AGING  6 

 

resonance imaging (fMRI) to examine age-related effects on response congruency effects in 

pure-blocks and mixed-blocks. Whilst the response time analysis found no interaction 

between age and congruency, the accuracy data showed larger response congruency effects 

for older adults in the mixed-blocks compared to the pure-blocks. The fMRI data revealed 

that “...older adults recruited an additional set of brain areas in the ventral attention network 

to a greater extent than did younger adults to resolve congruency-related response-conflict” 

(Eich et al., 2016a, p.211). 

 

The Current Study 

The purpose of the present study was to assess whether the response congruency effect 

is influenced by healthy aging by conducting a meta-analysis. As stated, although many aging 

and task switching papers have not focussed on the response congruency effect, many of their 

empirical designs afforded such an analysis. Therefore, this meta-analysis provides an 

important—hitherto rather neglected—assessment of response congruency effects in task 

switching during healthy aging. 

 

 

Method 

Study Selection 

Studies were selected after a search using the EBSCO electronic database, which—

among others—searches PsycINFO and MEDLINE databases using the search terms “(task 

switch* OR set switch*) AND (ageing OR aging)”, together with the ancestry approach. The 

literature search ended on 10th April, 2017. A study was only included in the analysis if: (a) 

the response requirements were overlapping (allowing for congruency); (b) the paradigm 

presented was typical of standard task switching designs (for example, the “fade-out” 
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condition of Spieler, Mayr, and LaGrone (2006) was not included); (c) only two tasks were 

presented to participants (defining congruency is more complex with three or more tasks; but 

see Schneider, 2014). 

The above criteria left 40 studies for potential inclusion; these studies (and the 

respective quasi-experiments and/or conditions within these studies) are presented in the 

Supplementary Material (Appendix A). Data were extracted from tables presented within 

the studies, from graphical presentation of response times using the g3data graph 

visualiser (Frantz, n.d.), or by contacting the corresponding author if the data were not 

presented in the paper. The data missing from Appendix A were a consequence of either no 

response from the corresponding author after two separate requests for data, or the data 

being no longer available. The above exclusions and data limitations left 16 studies and a 

total of 27 data points for inclusion in the analysis. 

 

Analytical Approach 

For this study we focussed on response time (RT) as the dependent variable. RT is the 

typical dependent variable in task switching research, but we also chose to focus on RT as 

data for this were more readily available in the studies selected. Data were only collected 

from mixed-blocks, where both possible tasks are relevant. The data were collapsed across 

task repetition and task switch trials, again as this was more readily available in the studies 

selected (we return to the validity of this choice in the General Discussion). 

The “dull” hypothesis (Perfect & Maylor, 2000) is to expect numerically larger 

congruency effects for older adults compared to younger adults, but note that such a finding 

does not allow the conclusion that there are age-related deficits specific to overcoming 

ambiguity in response selection because merely comparing overall RT does not take into 

consideration the ubiquitous age-related slowing (Verhaeghen, 2014). We followed the 
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example of Wasylyshyn et al. (2011) by constructing and analysing Brinley plots, which 

plot—for each quasi-experiment and/or condition within each study in the meta-analysis—

the mean RT for older adults against the mean RT for younger adults for congruent and 

incongruent trials. If—statistically—one regression line sufficiently explains the relationship 

between older and younger adult RT for all data points (which include congruent and 

incongruent performance) then one can assume that performance differs only along a single 

dimension of age-related slowing. If, however, separate regression lines are required (one for 

congruent and one for incongruent conditions) this would provide evidence of specific age-

related impairment in response selection over and above that explained by age-related 

slowing (Verhaeghen, 2014). 

In our analysis, we thus regressed the mean RT of older adults onto the mean RT of 

younger adults using linear mixed effects modelling, which takes into account the nested 

structure of our data (some studies had multiple quasi-experiments and/or conditions). We 

tested whether one regression line was sufficient to describe the relationship, or whether 

separate regression lines for congruent and incongruent trials were required. We 

complemented our Brinley-plot analysis with state–trace analysis, which regressed mean RT 

for incongruent trials on mean RT for congruent trials separately for older and younger 

adults across all of the studies. Similar to Brinley plots, if one regression line explains the 

relationship, then it can be concluded that incongruency impairs older adult performance in a 

similar way to younger adults. However, if separate lines are required (one for older adults, 

one for younger adults), this suggests specific age-related impairment in response selection. 

Verhaeghen (2014) recommends complementing Brinley plots with state–trace analysis 

because “...state traces involve within-study comparisons, and Brinley functions involve both 

within-study and between-study comparisons.” As such, “...state traces then reduce the 

amount of variance due to sampling or individual differences” (Verhaeghen, 2014, pp.36). 
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The second advantage pertains to interpreting any age-related effect found in the Brinley 

analysis (i.e., separate regression lines), which on its own is not diagnostic as to the nature of 

the effect incongruency might be having on older adult performance. If separate lines are 

required, finding parallel lines (i.e., identical regression slopes) for older and younger adults 

suggests the age-related impairment is due to the insertion of an addition process during 

response selection in older adults; finding non-parallel lines (i.e., an interactive effect) 

suggests that aging impairs each stage of response selection, but no additional processes are 

introduced Verhaeghen (see 2014, for a mathematical overview of this rationale). The state–

trace analysis was also analysed using linear mixed effects modelling. 

 

Results 

The raw data are in Appendix A. For younger adults, there was a 99ms response 

congruency effect (Mincongruent = 887ms; Mcongruent = 788ms). For older adults, there was a 

numerically larger response congruency effect of 150ms (Mincongruent = 1367ms; Mcongruent = 

1217ms). 

All analysis was conducted using R statistics (R Core Team, 2015). We modelled the 

data using linear mixed effects modeling with the R package lme4 (Bates, Mächler, Bolker, 

& Walker, 2015). We modeled the data using random intercepts
1
 for each condition

2
 nested 

within each study
3
. All models were fit using maximum likelihood. 

                                                      
1
 We attempted to model the data using random slopes for the effect of congruency within each study but 

experienced convergence issues during the model fit (likely due to the small number of data points from each 

study). Ignoring the warning messages regarding poor convergence produced model fits that were qualitatively 

similar to that reported in the text. 
2
 We use the term “condition” for simplicity to refer to studies with a single quasi-experiment and multiple 

conditions (e.g., manipulating preparation intervals), but we also use this term to refer to studies with multiple 

quasi-experiments (i.e., separated in the paper as “Experiment 1”, “Experiment 2” etc.). Table A1 in the 

Supplementary Material (Appendix A) includes information as to which “conditions” were extracted from each 

study.   
3
 We also fit the data using models where study and condition were not nested (i.e., 

separate random intercepts for condition and study) to rule out shrinkage due to the nested design. The results 

were qualitatively the same as reported in the main body. 
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For both the Brinley and the state–trace analysis we log-transformed the data to 

achieve normally-distributed residuals of model fit, as assessed via visual inspection. Whilst 

linear mixed models are generally robust to violations of this assumption, the fit routine for 

the state–trace analysis in lme4 produced warnings regarding the scale of data. 

Transformation did not change the outcome of the analysis. 

 

Brinley Plot Analysis 

The non-transformed data are shown in Figure 1A. Visual inspection of this plot 

suggests that all data (incongruent and congruent) fall along a single dimension, suggesting 

a single regression line would be sufficient to explain the data. 

We assessed the sufficiency of the number of regression lines required in the Brinley 

analysis using two approaches. In the first, we fit four different models to the data, and 

compared their AIC and BIC statistics. AIC and BIC are assessments of model fit whilst 

penalising models for their complexity. Models with the lowest AIC and BIC statistics are to 

be preferred. In the second stage we used likelihood-ratio tests to statistically compare the 

goodness of fit of the best model to all other models. 

The four models were as follows:  

1. Older adult RT predicted from just random effects (i.e., a ‘null’ model). 

2. Older adult RT predicted from younger adult RT and random effects (i.e., a single-

regression line). 

3. Older adult RT predicted from younger adult RT, a main effect of “congruency”, and 

random effects (i.e., a main effect model). 

4. Older adult RT predicted from younger adult RT, a main effect of “congruency”, an 

interaction of RT-younger and congruency, and random effects (i.e., an interaction 

model). 
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Congruency was centered in the analysis. Centering younger adult RT produced 

numerically-identical fit statistics, so we left it un-centered to aid visual interpretation of the 

model. The model specifications and fit statistics are shown in Table 1; the log-transformed 

data together with the fit of the best model is shown in Figure 1B. The AIC and BIC criteria 

both select the single regression line model (Model 2) as the best fitting model. This was 

confirmed using likelihood-ratio tests. The model with RT-older being predicted from RT-

younger (Model 2) had a better goodness of fit compared to a model with just the random 

effects model (Model 1), χ(1) = 89.05, p < .001. Adding a main effect of congruency (Model 

3) did not improve the goodness of fit, χ(1) = 0.18, p = .67, nor did adding a main effect of 

congruency and its interaction with RT–younger (Model 4), χ(2) = 1.54, p = .46. The best-

fitting model (Model 2) had an intercept of 1.242 (SE = 0.314), and RT-younger coefficient 

of b = 0.878 (SE = 0.046)
4
. 

 

State–Trace Analysis 

The non-transformed data for the state–trace analysis is shown in Figure 2A. 

Visual inspection of the plot suggests that all data (older- and younger-adults) fall along 

a single dimension, suggesting a single regression line would be sufficient to explain the 

data.  

Model assessment used the same two-stage approach as for the Brinley analysis. Again, 

we modelled the data using random intercepts for each condition nested within each study
5
. 

The four models were as follows: 

                                                      
4
 It is usual for the slope of the regression line in Brinley plots to be greater than unity (Verhaeghen, 2014). 

Note, though, that the finding of a slope less than one in this study is due to the log-transformation of response 

times. With untransformed data, the slope of the regression line is larger than unity (intercept = 63.56 [SE = 

117.77]; b = 1.47 [SE = 0.11]). 
5
 We again attempted to model the data using random slopes for the effect of age within each study but 

experienced convergence issues during the model fit. Ignoring the warning messages regarding poor 

convergence produced model fits that were qualitatively similar to that reported in the text. We also fit the data 

using models where study and condition were not nested (i.e., separate random intercepts for condition and 
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1. Incongruent RT predicted from just random effects (i.e., a ‘null’ model). 

2. Incongruent RT predicted from congruent RT and random effects (i.e., a single-

regression line). 

3. Incongruent RT predicted from congruent RT, a main effect of “age”, and random 

effects (i.e., a main effect model). 

4. Incongruent RT predicted from congruent RT, a main effect of “age”, an interaction 

of RT-congruent and age, and random effects (i.e., an interaction model). 

 

Age was centered in the analysis. Centering congruent RT produced numerically-

identical fit statistics, so we left it un-centered to aid visual interpretation of the model. The 

model specifications and fit statistics are shown in Table 2; the fit of the best model is shown 

in Figure 2B. Whilst the BIC statistic clearly prefers a single regression line model (Model 

2), the AIC statistic appears to prefer an interaction model. However, closer inspection of the 

AIC values shows little difference between the full interaction model (Model 4, AIC =  

-127.76) and the single regression line model (Model 2, AIC = -127.49). Visual inspection 

of the two models’ fit to the data (Supplementary Material, Appendix B) shows little effect 

of the interaction, and as such we prefer the simpler model of a single regression line. 

This selection was confirmed using likelihood-ratio tests. The model with RT-

incongruent predicted from RT-congruent (Model 2) had a better goodness of fit compared 

to a model with just the random effects model (Model 1), χ(1) = 170.43, p < .001. Adding a 

main effect of age (Model 3) did not improve the fit, χ(1) = 0.13, p = .72, nor did adding a 

main effect of RT-congruent together with its interaction with age (Model 4), χ(2) = 4.27, p 

                                                                                                                                                                     
study) to rule out shrinkage due to the nested design. The results were qualitatively the same as reported in the 

main body. 
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= .12. The best-fitting model (Model 2) had an intercept = 0.327 (SE = 0.138), and RT-

congruent coefficient b = 0.966 (SE = 0.020)
6
. 

 

General Discussion 

The present study utilised a meta-analytical approach to establish whether there is 

evidence for age-related differences in response congruency effects in task switching, an 

effect that reflects ambiguity during response selection involving recently-learned stimulus–

response mappings. The result of both the Brinley analysis and the state–trace analysis 

provides no clear evidence for age-related effects on response congruency beyond that 

which can be explained by general slowing in older adults. In both analyses, a model with a 

single-regression line was sufficient to explain the data. 

These results are important because the response-congruency effect has been 

somewhat neglected in research investigating age-related effects in task switching designs. 

Despite many published aging and task switching studies having designs capable of 

measuring response congruency effects, only three studies have directly addressed this 

question. Meiran et al. (2001) found larger response congruency effects for older adults 

compared to younger adults on task switch trials compared to task repetition trials, a pattern 

which was also found by Eich et al. (2016b) and Eich et al. (2016a) in accuracy data. It is not 

immediately clear why the three studies that have examined congruency effects explicitly do 

find age-related effects in contrast to the current results. There were no clear divergences 

between the design of the studies that directly assessed response congruency and other 

studies included in the meta-analysis (Supplementary Material, Appendix A). In addition, the 

mean age of the participants in each study, and the degree of practice experienced by 

                                                      
6
 Note that, as with the Brinley-analysis, the finding of a slope less than one in this study is due to the log-

transformation of response times. With untransformed data, the slope of the regression line is larger than unity 

(intercept = 6.93 [SE = 47.09]; b = 1.09 [SE = 0.04]). 
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participants in each study (operationalised as the number of trials in the design) did not 

moderate the effects reported here (see Supplementary Material, Appendix C).  

Below we outline some limitations which should be considered when drawing 

conclusions from our study. 

 

Limitations 

Although—to the best of our knowledge—our meta-analysis included all available data on 

response congruency effects in task switching, the final sample size is rather small, and thus 

has reduced power capable of detecting a true effect of aging on response congruency 

effects. This might be important for the state–trace analysis where a hint of an interaction 

was present (but see Supplementary Material, Appendix B). In addition, of the studies 

included in the analysis, only three explicitly addressed—and hence were designed with the 

intention of measuring—response congruency effects. So, power in the individual studies 

may also be reduced due to the design not being optimised for analysing congruency 

effects. 

Another limitation is that we only entered response time data into our meta-analysis. 

This was a practical decision because response time data were more readily available in 

published work, and data were difficult to obtain when the relevant information was not 

included in the publication. This could be an important limitation because finding no age 

difference in the congruency effect in response time says nothing about whether there are age 

effects in accuracy, as we cannot establish whether accuracy was equated between age groups 

in the studies. In relation to this, of the three studies that have examined age-related effects of 

response congruency, two found no effects in the response time data but an age-related 

difference in the accuracy data. Thus, whilst our analysis suggests no age-related effect on 
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response-congruency in response time data, it remains unclear whether a true effect of aging 

exists in accuracy data. More work will be required to ascertain this.  

Another possible limitation is that we—again due to practical reasons—collapsed our 

data across task sequence manipulations (i.e., task repetitions and task switches). Note 

though that all data were taken from mixed blocks, and not from pure blocks. This decision 

may not be of consequence, because current evidence suggests that response congruency 

effects do not consistently interact with task sequence manipulations (Meiran, 1996; Meiran, 

Chorev, & Sapir, 2000; Monsell, Sumner, & Waters, 2003; Schneider, 2015b). 

Another potential limitation lies in the fact that it cannot be ascertained how response 

selection was achieved in the current studies. Schneider and colleagues (Schneider, 2014, 

2015a, 2015b; Schneider & Logan, 2015) have outlined two routes for response selection in 

task switching which produce response congruency effects. In the mediated route, response 

selection requires forming a representation of the response categories afforded by the 

stimulus (e.g., the stimulus “1” affords the response categories ODD and LOWER); response 

selection then proceeds according to the category–response rules in the study (e.g., ODD 

requires a left response). This route is mediated because the category representation sits 

between the stimulus and response in the processing chain (e.g., 1—ODD—left; Schneider, 

2014). The mediated route produces response congruency effects because for congruent 

stimuli, the intermediate response categories from both tasks both map onto the same 

response key (e.g., the response categories for the stimulus 1 are ODD and LOWER, which 

both require a left response). Incongruent stimuli afford response categories which map onto 

different keys (e.g., the response categories for the stimulus “7” are ODD and HIGHER, 

which map to separate keys). 

In the non-mediated route, response selection does not rely on an intermediate response 

category representation; rather, the target directly retrieves instances from long-term memory 
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of the responses performed on that stimulus (Logan, 1988). This produces response 

congruency effects because for congruent stimuli, the targets are always associated with the 

same response key regardless of the task, so the retrieved instances for these stimuli will 

activate the same response key. For incongruent stimuli, however, the targets are associated 

with different response keys (e.g., left for the parity task, and right for the magnitude task), 

so the retrieved instances will activate different keys; the ambiguity needs to be resolved by 

way of the current trial’s instruction (e.g., the current trial’s cue). 

Ascertaining which route of response selection is used can be achieved using tailored 

experimental manipulations (Schneider, 2015b; Schneider & Logan, 2015), which were not 

employed in any of the studies reported in the meta-analysis. As such, it is likely that both 

routes contributed to response congruency effects in the studies reported here. This is a 

potential limitation because we cannot conclude from our analysis that there is no age-related 

difference in response congruency effects in the separate routes of response selection, 

because we cannot be sure which was in operation. That is, there may exist age-related 

deficits in one route of response selection that are masked because the other route 

compensates during response selection, leading to no observable age-related difference. 

Future work should systematically examine—using the experimental manipulations proposed 

by Schneider and colleagues—whether there are age-related effects when each route of 

response selection is isolated. 

 

Relation to Other Task Switching & Aging Findings 

Our results add to the evidence of a general lack of age-related deficits on task 

switching. In their meta-analysis, Wasylyshyn et al. (2011) found no evidence for age-related 

deficits in the switch cost in task switching designs: the finding of slower RTs to task 

switches than to task repetitions. However, Wasylyshyn et al. (2011) did find evidence for 
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age-related deficits in the mixing cost: slower RTs to blocks containing two different tasks 

compared to blocks containing just one task. There is growing evidence for no age-related 

deficits in other task switching effects, too. For example, successful task switching is thought 

to require the inhibition of recently-performed tasks (Koch, Gade, Schuch, & Philipp, 2010; 

Mayr & Keele, 2000). Evidence for inhibition in task switching comes from the n–2 task 

repetition cost: The observed slowing of RTs for ABA task switching sequences compared to 

CBA sequences. This cost is thought to reflect the persisting inhibition of task A in an ABA 

sequence. Evidence is growing that there are no age-related deficits in this effect: although 

Mayr (2001) found larger n–2 task repetition costs for older adults, subsequent studies have 

found no difference at the behavioural level (Grange & Kowalczyk, under review; Lawo & 

Koch, 2012; Schuch, 2016). 

 

Conclusion 

In summary, we find no evidence for age-related differences in response 

congruency in task switching designs. These findings sit within a wider landscape of 

evidence showing no age-related decline in key measures of attention and executive 

functioning (Verhaeghen, 2011, 2014).  
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Table 1 
 

Fit statistics of the four models for the Brinley analysis. Note: df = degrees of freedom; 

LogLik = log likelihood; RT = response time; RE = “random effects”. All random effects 

were specified (in lme4 syntax) as (1|study/condition). 

 

 

Model df LogLik AIC BIC 

      

(1) RTOlder ~ RE 4 9.89 -11.77 -3.81 

(2) RTOlder ~ RTYounger + RE 5 54.41 -98.83 -88.88 

(3) RTOlder ~ RTYounger + congruency + RE 6 54.50 -97.01 -85.08 

(4) RTOlder ~ RTYounger +  congruency + (RTYounger * 

congruency) + RE 

7 55.18 -96.36 -82.44 
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Table 2 

Fit statistics of the four models for the state–trace analysis. Note: df = degrees of 

freedom; LogLik = log likelihood; RT = response time; RE = “random effects”. All 

random effects were specified (in lme4 syntax) as (1|study/condition). 

 

Model df LogLik AIC BIC 

      

(1) RTIncongruent ~ RE 4 -16.47 40.95 48.90 

(2) RTIncongruent ~ RTCongruent + RE 5 68.74 -127.49 -117.54 

(3) RTIncongruent ~ RTCongruent+ age + RE 6 68.81 -125.62 -113.68 

(4) RTIncongruent ~  RTCongruent +  age + 

(RTCongruent * age) + RE 

7 70.88 -127.76 -113.84 
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Figures 

 

 

Figure 1. Brinley plot showing the relationship between young-adult response time (RT) and 

older-adult response time in milliseconds (ms) as a function of congruency. Panel A. Non-

transformed data. Panel B. Log-transformed data. The regression line shows the fit of the 

best-fitting model from the model selection procedure. 
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Figure 2. State–trace plot showing the relationship between congruent response time (RT) 

and incongruent response time in milliseconds (ms) as a function of age group. Panel A. 

Non-transformed data. Panel B. Log-transformed data. The regression line shows the fit of 

the best-fitting model from the model selection procedure. 
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Appendix A - Study Information & Data Table 

The table containing all study information and congruency data for the meta-analysis can be 

downloaded from the Open Science Framework at https://osf.io/3u9s2/  

 

  

https://osf.io/3u9s2/
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Appendix B - State–Trace Analysis Model Comparison 

Although we prefer the model with a single-regression line in the state–trace analysis 

reported in the main paper, for completeness here we show the interested reader the fit of the full 

interaction model, which was slightly preferred by the AIC statistic. Figure B1 shows the fit of 

the selected model from the main analysis in Panel A (i.e., a single-regression line); for 

comparison, Panel B shows the fit of the interaction model. As can be seen, if present at all, the 

interaction is only slight.# 
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 Figure B1. State–trace plot showing the relationship between log-transformed congruent 

response time (RT) and incongruent response time in milliseconds (ms) as a function of age 

group. Panel A. Best-fitting model from the model selection procedure in the main text. Panel 

B. The interaction model. 
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Appendix C - Additional Moderator Analyses 

In this section, we detail the analysis conducted to explore potential moderators of the effects 

reported in the main body of the text. In particular, we focus on whether the mean age of the 

older adults and the number of trials in the study (i.e., the degree of practice experienced by 

participants) moderated the effects reported. The R code used to conduct these extra analyses are 

a component of the main analysis script available on the Open Science Framework at 

https://osf.io/3u9s2/.   

 

Number of Trials in Study 

For this analysis, we were interested in whether the number of trials in each study 

moderated the effects reported in the main text. We defined the number of trials as the total 

number of trials experienced by the participant, regardless of whether those trials were included 

in the meta-analysis or not. For example, in our meta-analysis, we only included data from so-

called “mixed-blocks”, where more than one task was relevant. However, many studies had so-

called “pure-blocks”, where just one trial was relevant for the duration of the block. Also, all 

studies had practice blocks to allow the participants to become familiar with the task demands. 

The number of trials (hereafter n_trials) was the sum of all of these trial types.   

 We approach this question by adding n_trials as a continuous predictor (just a main 

effect) to each of the four models reported in the main text (separately for the Brinley analysis 

and the state–trace analysis) to see whether adding this predictor alters the model competition 

outcome.  

https://osf.io/3u9s2/
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 Brinley analysis.  N_trials was centered and scaled before being added as a main effect 

to the linear mixed models reported in Table 1 of the main paper. The new model specifications 

and fit statistics are shown in Table C1.  

 

Table C1 
 

Fit statistics of the four models for the Brinley analysis with number of trials (n_trials) added as 

a continuous predictor. Note: df = degrees of freedom; LogLik = log likelihood; RT = response 

time; RE = “random effects”. All random effects were specified (in lme4 syntax) as 

(1|study/experiment). 

 

Model df LogLik AIC BIC 

      

(1) RTOlder + n_trials ~ RE 5 11.26 -12.51 -2.57 

(2) RTOlder ~ RTYounger + n_trials + RE 6 54.43 -96.87 -84.93 

(3) RTOlder ~ RTYounger + congruency + n_trials + RE 7 54.54 -95.07 -81.15 

(4) RTOlder ~ RTYounger +  congruency + n_trials + 

(RTYounger * congruency) + RE 

8 55.20 -94.40 -78.49 

      

 

The AIC and BIC fit-statistics both converge on selecting Model 2 as the best-fitting model, 

which is in agreement with the outcome of the analysis in the main text of the paper (i.e., that 

adding congruency does not improve the model fit).  

This was confirmed with likelihood ratio tests. The model with RT-older being predicted 

from RT-younger and n_trials (Model 2) had a better goodness of fit compared to a model with 

just the random effects and n_trials model (Model 1), χ(1) = 86.35, p < .001. Adding a main 
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effect of congruency (Model 3) did not improve the goodness of fit, χ(1) = 0.21, p = .65, nor did 

adding a main effect of congruency and its interaction with RT–younger (Model 4), χ(2) = 1.53, 

p = .46. The best-fitting model (Model 2) had an intercept of 1.25 (SE = 0.316), and a RT-

younger coefficient of b = 0.877 (SE = 0.047) and n_trials coefficient of b = -0.008 (SE = 0.041). 

The large standard error of the n_trials predictor relative to its coefficient suggests it is not 

adding to the model’s prediction. 

 In a second stage, we were interested in whether adding n_trials to the model (i.e., Model 

2 in Table C1) significantly improved the fit compared to a model without n_trials (i.e., Model 2 

from Table 1 in the main paper). A likelihood ratio test of these two models found no significant 

improvement of fit by adding n_trials to the model,   χ(1) = 0.04, p = .84. These analyses 

converge on the conclusion that the number of trials does not moderate the effect reported in the 

paper for the Brinley analysis.  

 State–trace analysis. N_trials was centered and scaled before being added as a main 

effect to the linear mixed models reported in Table 2 of the main paper. The new model 

specifications and fit statistics are shown in Table C2.  
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Table C2 

Fit statistics of the four models for the state–trace analysis with number of trials (n_trials) 

added as a continuous predictor. Note: age = the age group of the participant (younger vs. 

older); df = degrees of freedom; LogLik = log likelihood; RT = response time; RE = 

“random effects”. All random effects were specified (in lme4 syntax) as 

(1|study/experiment). 

 

Model df LogLik AIC BIC 

      

(1) RTIncongruent + n_trials ~ RE 5 -14.02 38.04 47.98 

(2) RTIncongruent ~ RTCongruent + n_trials RE 6 68.77 -125.53 -113.60 

(3) RTIncongruent ~ RTCongruent+ age + n_trials + 

RE 

7 68.82 -123.64 -109.72 

(4) RTIncongruent ~  RTCongruent +  age + n_trials +  

(RTCongruent * age) + RE 

8 70.89 -125.79 -109.88 

      

 

As in the main paper, the BIC statistic prefers a model without the age group of the participant 

as a predictor (Model 2), and the AIC statistic appears to prefer an interaction model. Inspection 

of the AIC values shows little difference between the full interaction model (Model 4, AIC = -

125.79) and the model without the age group predictor (Model 2, AIC = -125.53). As in the 

main paper, we see no reason to not prefer the simpler Model 2 which does not have age group 

as a predictor.  

 This was confirmed using likelihood ratio tests. The model with RT-incongruent 

predicted from RT-congruent and n_trials (Model 2) had a better goodness of fit compared to a 
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model with just the random effects and n_trials  model (Model 1), χ(1) = 165.57, p < .001. 

Adding a main effect of age (Model 3) did not improve the fit, χ(1) = 0.11, p = .74, nor did 

adding a main effect of RT-congruent together with its interaction with age (Model 4), χ(2) = 

4.26, p = .12. The best-fitting model (Model 2) had an intercept = 0.32 (SE = 0.138), and RT-

congruent coefficient b = 0.967 (SE = 0.020) and n_trials coefficient of b = 0.005 (SE = 0.024). 

The large standard error of the n_trials predictor relative to its coefficient suggests it is not 

adding to the model’s prediction. 

 In a second stage, we were interested in whether adding n_trials to the model (i.e., Model 

2 in Table C2) significantly improved the fit compared to a model without n_trials (i.e., Model 2 

from Table 2 in the main paper). A likelihood ratio test of these two models found no significant 

improvement of fit by adding n_trials to the model,   χ(1) = 0.04, p = .83. These analyses 

converge on the conclusion that the number of trials does not moderate the effect reported in the 

paper for the state–trace analysis.  

 

Mean Age of Older Adults 

 We approach the question of whether age moderates the effects reported in the main body 

of the paper by adding the mean age of the older adults (hereafter mean_age) in each study as a 

continuous predictor (just a main effect) to each of the four models reported in the main text 

(separately for the Brinley analysis and the state–trace analysis) to see whether adding this 

predictor alters the model competition outcome.  

Brinley analysis.  Mean_age was centered before being added as a main effect to the 

linear mixed models reported in Table 1 of the main paper. The new model specifications and fit 

statistics are shown in Table C3.  
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Table C3 
 

Fit statistics of the four models for the Brinley analysis with the average age of the older adults 

(mean_age) added as a continuous predictor. Note: df = degrees of freedom; LogLik = log 

likelihood; RT = response time; RE = “random effects”. All random effects were specified (in 

lme4 syntax) as (1|study/experiment). 

 

Model df LogLik AIC BIC 

      

(1) RTOlder + mean_age ~ RE 5 11.81 -13.61 -3.67 

(2) RTOlder ~ RTYounger + mean_age + RE 6 57.08 -102.17 -90.23 

(3) RTOlder ~ RTYounger + congruency + mean_age + 

RE 

7 57.23 -100.47 -86.55 

(4) RTOlder ~ RTYounger +  congruency + mean_age + 

(RTYounger * congruency) + RE 

8 57.86 -99.73 -83.82 

      

 

The AIC and BIC fit-statistics both converge on selecting Model 2 as the best-fitting 

model, which is in agreement with the outcome of the analysis in the main text of the paper  (i.e., 

that adding congruency does not improve the model fit). This was confirmed with likelihood 

ratio tests. The model with RT-older being predicted from RT-younger and mean_age (Model 2) 

had a better goodness of fit compared to a model with just the random effects and mean_age 

model (Model 1), χ(1) = 90.57, p < .001. Adding a main effect of congruency (Model 3) did not 

improve the goodness of fit, χ(1) = 0.30, p = .58, nor did adding a main effect of congruency and 

its interaction with RT–younger (Model 4), χ(2) = 1.56, p = .46. The best-fitting model (Model 

2) had an intercept of 1.28 (SE = 0.309), and a RT-younger coefficient of b = 0.871 (SE = 0.046) 
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and mean_age  coefficient of b = 0.021 (SE = 0.008). The small standard error of the mean_age 

predictor relative to its coefficient suggests it is adding to the model’s prediction. 

 In a second stage, we were interested in whether adding mean_age to the model (i.e., 

Model 2 in Table C3) significantly improved the fit compared to a model without mean_age (i.e., 

Model 2 from Table 1 in the main paper). A likelihood ratio test of these two models found a 

significant improvement of fit by adding mean_age to the model,   χ(1) = 5.34, p = .02. This 

analysis suggests that—whilst the model fit significantly improves—adding mean_age to the 

model does not change the conclusion that the predictor congruency does not add to the 

predictive fit of the model; this is in line with the conclusions drawn in the main paper.  

State–trace analysis. Mean_age was centered and scaled before being added as a main 

effect to the linear mixed models reported in Table 2 of the main paper. The new model 

specifications and fit statistics are shown in Table C4.  
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Table C4 

Fit statistics of the four models for the state–trace analysis with the average age of the 

older adults (mean_age) added as a continuous predictor. Note: age = the age group of 

the participant (younger vs. older); df = degrees of freedom; LogLik = log likelihood; RT 

= response time; RE = “random effects”. All random effects were specified (in lme4 

syntax) as (1|study/experiment). 

 

Model df LogLik AIC BIC 

      

(1) RTIncongruent + mean_age ~ RE 5 -15.61 41.22 51.16 

(2) RTIncongruent ~ RTCongruent + mean_age + RE 6 68.79 -125.57 -113.64 

(3) RTIncongruent ~ RTCongruent+ age + mean_age 

+RE 

7 68.84 -123.68 -109.76 

(4) RTIncongruent ~  RTCongruent +  age + mean_age +  

(RTCongruent * age) + RE 

8 70.94 -125.87 -109.96 

      

 

As in the main paper, the BIC statistic prefers a model without age group as a predictor 

(Model 2), and the AIC statistic appears to prefer an interaction model. Inspection of the AIC 

values shows little difference between the full interaction model (Model 4, AIC = -125.87) and 

the model without the main effect of age group (Model 2, AIC = -125.57). As in the main paper, 

we see no reason to not prefer the simpler Model 2.  

 This was confirmed using likelihood ratio tests. The model with RT-incongruent 

predicted from RT-congruent and mean_age (Model 2) had a better goodness of fit compared to 

a model with just the random effects and mean_age model (Model 1), χ(1) = 168.79, p < .001. 
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Adding a main effect of age group (Model 3) did not improve the fit, χ(1) = 0.11, p = .74, nor 

did adding a main effect of RT-congruent together with its interaction with age group (Model 

4), χ(2) = 4.30, p = .12. The best-fitting model (Model 2) had an intercept = 0.32 (SE = 0.138), 

and RT-congruent coefficient b = 0.967 (SE = 0.020) and mean_age coefficient of b = -0.001 

(SE = 0.005). The similarity of the standard error of the mean_age predictor and its coefficient 

suggests it is not adding to the model’s prediction. 

 In a second stage, we were interested in whether adding mean_age to the model (i.e., 

Model 2 in Table C4) significantly improved the fit compared to a model without mean_age (i.e., 

Model 2 from Table 2 in the main paper). A likelihood ratio test of these two models found no 

significant improvement of fit by adding mean_age to the model,   χ(1) = 0.09, p = .77. These 

analyses converge on the conclusion that the mean age of older adults does not moderate the 

effect reported in the paper for the state–trace analysis.  

 


