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Abstract 27 

28 

We compare Ethiopian glaciogenic sandstone of the Late Ordovician 29 

and Carboniferous–Permian Gondwana glaciations petrographically 30 

and geochemically to provide insight into provenance, transport, and 31 

weathering characteristics. Although several studies deal with the 32 

glacial deposits in northern Africa and Arabia, the distribution of ice 33 

sheets and continent-wide glacier dynamics during the two 34 

glaciations remain unclear. Provenance data on Ethiopian Palaeozoic 35 

sedimentary rocks are scarce. The sandstones of the Late Ordovician 36 

glaciation are highly mature with an average quartz content of 95% 37 
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and an average chemical index of alteration of 85, pointing to intense 38 

weathering and reworking prior to deposition. No evidence for 39 

sediment recycling was found. In contrast, the Carboniferous–40 

Permian glaciogenic sandstones are less mature with an average 41 

quartz content of 75%, higher amounts of feldspar and rock 42 

fragments and a chemical index of alteration of 62. Trace and rare 43 

earth element concentrations indicate a higher input of juvenile 44 

material, most probably from proximal sources. Comparison with 45 

stratigraphically corresponding formations in Saudi Arabia shows 46 

similar geochemical patterns for the Upper Ordovician, but major 47 

differences in the Carboniferous–Permian. This supports previous 48 

assumptions of a large, uniform sediment dispersal system during the 49 

Late Ordovician glaciation, in which a combination of long transport 50 

paths and exceptionally strong weathering prior to the glaciation 51 

produced mature sandstone. During the Carboniferous–Permian, the 52 

glacial systems seem to have been more localised and glacial 53 

abrasion exposed fresh basement material. 54 

Keywords: Ethiopia, Palaeozoic, glacial sediments, geochemistry, 55 

petrography, maturity 56 

 57 

1. Introduction 58 
 59 

During the amalgamation of the Gondwana supercontinent in the 60 

Neoproterozoic (between 650 Ma and 600 Ma before present), the 61 

East African Orogen was formed – one of the largest accretionary 62 

orogens in Earth’s history (Stern, 1994; Collins and Pisarevsky, 63 

2005; Squire et al., 2006). In Northeast Africa, a stable platform 64 

developed after the consolidation of the newly formed continent, on 65 
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which a vast blanket of Palaeozoic sand was deposited (Garfunkel, 66 

2002; Avigad et al., 2005). The sediment transport direction is 67 

generally assumed to have been towards the margin of northern 68 

Gondwana (e.g., Kumpulainen et al., 2006; Meinhold et al., 2011; 69 

Morag et al., 2011). However, the exact provenance of the sediment 70 

and its pathways are still poorly understood. Palaeozoic sedimentary 71 

rocks in Ethiopia are related to the two major Gondwana glaciations: 72 

1) the Late Ordovician glaciation and the following transgression, 73 

probably up to early Silurian and 2) the Carboniferous–Permian 74 

glaciation (Saxena and Assefa, 1983; Kumpulainen et al., 2006; 75 

Kumpulainen, 2007; Bussert and Schrank, 2007; Bussert, 2010) with 76 

a large hiatus between them. Although several studies deal with the 77 

glacial deposits in northern Africa and Arabia (Ghienne, 2003; Le 78 

Heron et al., 2009; Bussert, 2010; Keller et al., 2011), the distribution 79 

of ice sheets and continent-wide glacier dynamics remain unclear. 80 

For the Late Ordovician glaciation, a scenario of a large ice sheet 81 

covering the whole Sahara region or even whole central Gondwana is 82 

proposed (e.g., Ghienne et al., 2007; Le Heron and Craig, 2008). 83 

During the Carboniferous–Permian glaciation, a more complex 84 

spatial and temporal pattern of ice sheets is likely. Different authors 85 

propose a system of several local ice centres, which developed 86 

asynchronously across Gondwana (e.g., Eyles, 1993; Fielding et al., 87 

2008). The late Palaeozoic topography in northern Gondwana was 88 

influenced by the Hercynian tectonic event and by thermal uplift 89 

prior to the formation of the Zagros rift zone that later formed the 90 

Neo-Tethys ocean (Sharland et al., 2001). In such elevated areas 91 

mountain glaciers may have formed in the Carboniferous–Permian 92 

(Konert et al., 2001; Bussert and Schrank, 2007; Le Heron et al., 93 
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2009). In southern Libya (Morton et al., 2011) and Saudi Arabia 94 

(Knox et al., 2007; Bassis et al., 2016a), provenance changes were 95 

identified during the Carboniferous based on heavy minerals, 96 

pointing to re-organisation of the sediment dispersal system. A 97 

comparative field study on deposits of both Gondwana glaciations in 98 

Saudi Arabia was carried out by Keller et al. (2011); detailed 99 

petrographic and bulk-rock geochemical data on these formations 100 

were provided by Bassis et al. (2016b). Though, in these studies, 101 

common glacial and proglacial sedimentary features can be found in 102 

both formations, the sedimentary rocks of the Late Ordovician 103 

glaciation are significantly more quartzose than those of the late 104 

Palaeozoic glaciation. The high maturity of lower Palaeozoic 105 

sedimentary rocks of northern Gondwana – untypical for post-106 

orogenic sediment – was also discussed by Garfunkel (2002) and 107 

Avigad et al. (2005). Recycling of older sedimentary units cannot be 108 

ruled out, but Avigad et al. (2005) suggested strong chemical 109 

weathering under a corrosive Cambrian–Ordovician atmosphere in a 110 

vegetation-free landscape to be the reason for this high sandstone 111 

maturity. Strong chemical weathering is indicated by the highest 112 

marine 
87

Sr/
86

Sr level in Earth’s history during that time (e.g., Squire 113 

et al., 2006) and may have been enhanced by acidic precipitation due 114 

to Ordovician volcanism (Keller and Lehnert, 2010). Morag et al. 115 

(2011) assumed a far distant sediment source for lower Palaeozoic 116 

sedimentary rocks in Israel and Jordan based on pre-Pan-African 117 

detrital zircon ages. In Ethiopia, sedimentological and palynological 118 

studies on Palaeozoic glacial successions have been carried out by 119 

Dow et al. (1971), Beyth (1972a, b), Saxena and Assefa (1983), 120 

Bussert and Schrank (2007), Bussert and Dawit (2009) and Bussert 121 
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(2010, 2014), providing evidence that two different glaciations are 122 

recorded. Geochemical and heavy mineral data to assess the 123 

provenance of these sedimentary rocks are lacking so far. A likely 124 

proximal source area is the Arabian–Nubian Shield, which forms the 125 

northernmost part of the East African Orogen, and reaches south to 126 

the northern Ethiopian basement (Fig. 1). It consists of 127 

Neoproterozoic juvenile arcs, younger sedimentary and volcanic 128 

basins, voluminous granitoid intrusions, and minor remobilised pre-129 

Neoproterozoic crust and further contains ophiolite (Stern, 1994; 130 

Meert, 2003; Johnson et al., 2011; Stern et al., 2012). Potential distal 131 

source areas are the Archean cratons and the Proterozoic mobile belts 132 

in the centre of Gondwana (Fig. 1). 133 

In this study, we provide petrographic and geochemical data for the 134 

two Palaeozoic glaciogenic successions in Ethiopia in order to: 135 

 Differentiate both formations based on petrography and136 

geochemistry making it possible to assign unknown samples 137 

to one of them, 138 

 Show that different weathering and transport conditions139 

prevailed during both glacial periods, 140 

 Point out a change in regional correlation with Saudi Arabia141 

(Keller et al., 2011; Bassis et al., 2016a, b) between the two 142 

glaciations, reflecting different extents of the palaeo-ice 143 

sheets. 144 

145 

146 

147 
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2. Geological setting 148 

Palaeozoic sedimentary rocks crop out in the northern Ethiopian 149 

province Tigray around the Mekelle Basin and to a minor extent in 150 

the Blue Nile region in the west of the country (Fig. 2; Kazmin, 151 

1972; Garland, 1978; Tsige and Hailu, 2007). The Palaeozoic units 152 

comprise sediments of the two major Gondwana glaciations in the 153 

Upper Ordovician and the Carboniferous–Permian (Saxena and 154 

Assefa, 1983; Kumpulainen et al., 2006; Kumpulainen, 2007; Bussert 155 

and Schrank, 2007; Bussert, 2010). They overlie Neoproterozoic 156 

basement rocks and are in turn overlain by Mesozoic clastic and 157 

carbonate sediments (Fig. 2; Beyth, 1972a; Tefera et al., 1996; 158 

Dawit, 2010).   159 

The basement in Ethiopia represents the junction of the Mozambique 160 

Belt in the south and the Arabian–Nubian Shield in the north (Fig. 1; 161 

Kazmin et al., 1978; Tefera et al., 1996; Stern et al., 2012). In the 162 

southern part of the Ethiopian basement, Neoproterozoic low-grade 163 

metavolcanic and metasedimentary rocks record submarine 164 

volcanism and marine sedimentation at the northern rim of the 165 

closing Mozambique Ocean (Kazmin et al., 1978; Miller et al., 2003, 166 

2009). In northern Ethiopia, the basement comprises two main units: 167 

the metavolcanic/metavolcaniclastic Tsaliet Group and the overlying 168 

Tambien Group, a slate and metacarbonate succession, both of up to 169 

greenschist facies (Beyth, 1972b; Alene et al., 2006). Syn- and post-170 

tectonic granites and diorites intruded both units (Beyth, 1972b; 171 

Kazmin et al., 1978; Tefera et al., 1996).  172 

The Palaeozoic glacial deposits of Ethiopia were first described by 173 

Dow et al. (1971) and Beyth (1972a, b) as two facies (tillite facies – 174 
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Edaga Arbi Glacials and sandstone facies – Enticho Sandstone), 175 

which interfinger laterally and both, in places, lie unconformably on 176 

the basement. They assigned both facies to one glacial episode. Later, 177 

early Palaeozoic trace fossils (e.g., Arthrophycus alleghaniensis) 178 

were found in the upper part of the Enticho Sandstone and gave a 179 

minimum age for the underlying glaciogenic deposits (Saxena and 180 

Assefa, 1983; Kumpulainen et al., 2006; Bussert and Dawit, 2009). 181 

In the Edaga Arbi Glacials, Carboniferous–Permian palynomorphs 182 

provide age control (Bussert and Schrank, 2007; Bussert, 2014).  183 

The Enticho Sandstone unconformably overlies the Neoproterozoic 184 

basement and has a thickness of up to 200 m (Saxena and Assefa, 185 

1983; Dawit, 2010). Bussert and Dawit (2009) provide detailed facies 186 

descriptions. It consists of basal tillite, a lower glaciogenic sandstone 187 

unit and an upper shallow marine sandstone unit. The tillite is 188 

exposed only in the area east of Wukro (Fig. 2). Its matrix is red 189 

medium sand. Clasts are angular boulders of metavolcanics, 190 

metapelites and conglomerates, probably from the local basement, 191 

and well-rounded quartz pebbles, which may be recycled (Fig. 3g). 192 

Since large volumes of sandstone are not present in the local 193 

basement, the matrix material may have been transported from 194 

further away. Associated with the tillite are soft sediment 195 

deformation structures in underlying sandstone (Fig. 3h) and in the 196 

tillite itself, which may represent shallow marine push-moraine or 197 

grounding line complexes (Dawit, 2010). The glaciogenic unit 198 

consists mainly of massive, partly large-scale cross-bedded fine- to 199 

medium-grained sandstone, with intercalated gravel beds (Fig. 3f) 200 

interpreted to represent pulses of glacial outwash (Bussert and Dawit, 201 
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2009). The shallow marine unit comprises well-sorted sandstones 202 

with bipolar cross-bed sets and rhythmic mud drapes suggesting a 203 

tide-dominated shallow marine depositional setting (Fig. 3d, e; 204 

Bussert and Dawit, 2009; Dawit, 2010). The Enticho Sandstone 205 

occurs along the eastern rim of the Mekelle Basin (Fig. 2a).  206 

The Edaga Arbi Glacials unconformably overlie the Enticho 207 

Sandstone and, in places, lie directly on the basement (e.g., Beyth, 208 

1972b). They crop out along the western and south-western margin 209 

of the Mekelle Basin and to a minor extent in the Blue Nile region in 210 

western Ethiopia (Fig. 2). Their thickness is approximately 200 m in 211 

northern Ethiopia, but significant lateral thickness variations occur 212 

(Bussert, 2010). Bussert and Dawit (2009) and Bussert (2014) give 213 

detailed descriptions of the sediment facies. The Edaga Arbi Glacials 214 

consist of tillite at the base overlain by laminated clay- and siltstones, 215 

which contain scattered out-sized clasts and lenses of sandstone 216 

(Fig. 3a; Beyth, 1972b; Bussert and Dawit, 2009; Bussert, 2014). In 217 

the tillite, mostly rounded boulders of granitoid, metabasic and 218 

metasedimentary rocks are found and often exhibit striated surfaces 219 

(Fig. 3c). Outsized clasts in rhythmic lamination of sandstone and 220 

silt- to claystone (Fig. 3b) are interpreted as dropstones (Bussert and 221 

Dawit, 2009; Bussert, 2014). The sandstone lenses may represent 222 

channelized glacial outwash deposits or hyperpycnal sediment flows 223 

(Bussert and Dawit, 2009; Bussert, 2014). Bussert (2014) proposed a 224 

model for the generation of this succession with initial glacier 225 

advance and the deposition of tillites, followed by the formation of 226 

subaerial and subaqueous outwash fans during the glacier retreat and 227 

the final suspension settling of silt and clay in calm water of a 228 
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proglacial lake or fjord. Periodic hyperpycnal sediment flows and the 229 

deposition of dropstones interrupted the suspension settling. The 230 

association of the Edaga Arbi Glacials with glacial landforms on the 231 

basement surface, such as roche moutonnées, rock drumlins, as well 232 

as glacial striae, confirms a glacial origin (Bussert, 2010). In the Blue 233 

Nile region (Fig. 2b) Permian–Triassic continental sandstones partly 234 

overlie the Edaga Arbi Glacials (Dawit, 2014). 235 

The Palaeozoic succession is – unconformably in northern Ethiopia – 236 

overlain by the Mesozoic Adigrat Sandstone, the Antalo Limestone, 237 

Agula Shale and Amba Aradam Formation (Beyth, 1972b; Dawit, 238 

2010). 239 

 240 

3. Sampling and methods 241 

 242 

Thirty-two sandstone samples were taken from surface outcrops, 19 243 

from the Enticho Sandstone and 13 from the Edaga Arbi Glacials. 244 

The focus of the sampling campaign was on northern Ethiopia since 245 

Palaeozoic glacial sediments are more abundant there. In the Blue 246 

Nile region in the west of the country, glacial sediments could be 247 

identified at only one locality (Fig. 2b). In addition to the 248 

sedimentary rocks, seven samples from the local basement of 249 

northern Ethiopia were studied, as well as 11 samples from boulders 250 

in tillite of the Edaga Arbi Glacials. Fig. 2 shows the sample 251 

locations; Table 1 provides the corresponding coordinates. Sampling 252 

sites were chosen in order to cover a laterally extensive area based on 253 

previous stratigraphic and sedimentological work of R. Bussert and 254 

E. L. Dawit (Bussert and Schrank, 2007; Bussert and Dawit, 2009). 255 
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We paid attention to select sampling sites where there is 256 

biostratigraphic control on the sediments. Furthermore, we 257 

distinguished the Enticho Sandstone and Edaga Arbi Glacials based 258 

on homo-/heterogeneity in grain size and mineralogy, and on 259 

sedimentary structures: The outcrops of the Enticho Sandstone – 260 

apart from the tillite at the base of one outcrop (see Section 2 in this 261 

paper) – appear uniform in grain size and mineralogy (highly 262 

quartzose). The Edaga Arbi Glacials are much more heterogeneous 263 

(see Section 2). In the Edaga Arbi Glacials, we mainly sampled from 264 

the sandy lenses. Three samples are from the tillite matrix (Table 1). 265 

One sample was taken with highly uncertain stratigraphic assignment 266 

(sample Eda-5, Table 1). For reasons of comparability, we focused 267 

on the fine-grained parts of the sandstones during sampling, i.e. a 268 

dominating grain size of 63–250 µm, using the grain-size comparator 269 

chart for field work by Stow (2005). 270 

 271 

3.1. Petrography 272 

Thin sections were prepared from all samples. The samples from the 273 

basement and the tillite boulders were studied only qualitatively to 274 

determine the rock type. The framework composition of the 275 

sandstone samples was assessed by point-counting of 300 grains per 276 

sample using the “traditional” counting method (e.g., Decker and 277 

Helmold, 1985). In contrast to the Gazzi-Dickinson method (e.g., 278 

Ingersoll et al., 1984; Zuffa, 1985), minerals within lithic fragments 279 

are counted as the type of fragment they occur in. We used this 280 

method to make sure that information conveyed by the type of lithic 281 

fragment is not lost. However, only few lithic fragments are present 282 
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in the samples so that the choice of the counting method does not 283 

have a significant effect on the result. The matrix content was 284 

estimated based on the comparison chart of Folk (1951) with an 285 

upper grain-size limit for the matrix of 30 µm. Sorting and roundness 286 

of the framework grains were estimated according to Powers (1953). 287 

For sandstone classification, we used the scheme of McBride (1963; 288 

Fig. 4). We did not use the scheme of Dott (1964) that includes 289 

wackes, even though many samples have a high matrix content 290 

(Table 2). This is, because in many cases it cannot be decided 291 

whether the matrix is primary or secondary.  292 

 293 

 3.2. Major and trace element geochemistry 294 

For geochemical analysis, ~50 g of each of the 50 samples were 295 

pulverised to a particle size <63 µm using an agate vibratory disc 296 

mill. Geochemical analyses were carried out at the Geoscience 297 

Centre at the University of Göttingen, Germany. Concentrations of 298 

major elements and selected trace elements were determined by X-299 

ray fluorescence analysis (XRF) on fusion tablets. For each sample, 300 

2.8 g of rock powder were mixed with 5.6 g of a di-lithium 301 

tetraborate/lithium metaborate fluxing agent (Spectromelt® A12, 302 

Merck) and 0.64 g lithium fluoride and fused in platinum crucibles at 303 

1250 °C. XRF analysis was performed using a PANalytical AXIOS 304 

Advanced sequential X-ray fluorescence spectrometer equipped with 305 

a rhodium target tube for sample excitation and the software 306 

SuperQ 4 for data processing. Further trace elements, including rare 307 

earth elements (REE), were quantified using inductively coupled 308 

plasma mass spectrometry (ICP-MS) on the dissolved sample. For 309 
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each sample, 100 mg of rock powder were digested in the following 310 

steps using a PicoTrace® acid sample digestion system: (1) pre-311 

reaction with 2 ml HNO3 at 50 °C overnight, (2) first pressure phase 312 

with 3 ml HF (40%) and 3 ml HClO4 (70%) at 150 °C for 8 hours, (3) 313 

evaporation at 180 °C for 16 hours, (4) second pressure phase with 314 

10 ml double de-ionised water, 2 ml HNO3 and 0.5 ml HCl at 150 °C 315 

for 4 hours. The resulting solution was diluted to 100 ml with 316 

ultrapure water. Analysis was performed using a ThermoElectron VG 317 

PlasmaQuad 2 quadrupole ICP-MS. Measurements were calibrated to 318 

the standard JA-2 of the Geological Survey of Japan.  319 

The Eu anomaly of the sandstone samples was calculated as 320 

suggested by McLennan (1989): 321 

  

   
  

   

            
 

The subscript N indicates chondrite-normalised values (see Fig. 6). 322 

To put the degree of weathering and leaching into numbers, we 323 

calculated the frequently used chemical index of alteration, as 324 

proposed by Nesbitt and Young (1982):  325 

     
     

                      
    . 326 

The molecular proportions of the respective oxides are used. CaO* is 327 

the amount of CaO incorporated in silicates. Therefore, out of the 328 

Edaga Arbi Glacials only five samples without carbonate 329 

cementation are considered. To get an idea of the tectonic signature 330 

of the sandstones we used the tectonic setting discrimination 331 

diagrams of Verma and Armstrong-Altrin (2013, 2016) based on 332 

discriminant functions employing major oxides and trace elements. 333 
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For statistical analysis of the data, their compositional nature – 334 

vectors of non-negative values summing up to a whole – was taken 335 

into account. Standard multivariate statistical methods are designed 336 

for data in the real space whereas the sample space of compositional 337 

data is the simplex with the respective dimension (Aitchison, 1982; 338 

Egozcue et al., 2011). To transform compositional data from the 339 

simplex to the real space, Aitchison (1986) introduced the principle 340 

of log-ratio transformation, that is, taking the logarithms of ratios of 341 

components. In this study, we used the centred log-ratio (clr) 342 

transformation to perform a principal component analysis (PCA) of 343 

the major and trace element data. This means that parts of a 344 

composition (e.g., element concentrations of a sample) are 345 

transformed by taking the natural logarithm of the ratio of the 346 

respective part and the geometric mean of the whole composition 347 

(Aitchison, 2003). We performed a second PCA not considering the 348 

highly mobile elements K, Rb, Ba, Sr, Mn, and Na. The high 349 

variability of these elements masks the provenance signal. Moreover, 350 

Ca and Mg are excluded, because they are probably influenced by 351 

carbonate cement. The major and trace element data of the local 352 

basement and tillite boulders were used for comparison. For the use 353 

of log-ratios, the data set must not contain any zeros. Therefore, those 354 

have to be replaced by small values. We chose a multiplicative zero 355 

replacement using 0.65 times the detection limit, as suggested by 356 

Martín-Fernández et al. (2003), since only very few values are below 357 

the detection limits of the XRF and ICP-MS. 358 

 359 

 360 
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4. Results 361 

4.1. Petrography 362 

According to the classification scheme of McBride (1963; Fig. 4) the 363 

glaciogenic facies of the Enticho Sandstone is quartzarenite to  364 

subarkose with an average composition of 90.5% quartz, 7.4% 365 

feldspar and 1.4% lithic fragments. The marine facies is quartzarenite 366 

with an average composition of 99.0% quartz, 0.2% feldspar and 367 

0.3% lithic fragments (Fig. 4, Table 2). The lithic fragments are 368 

mostly plutonic or sedimentary. The sedimentary lithoclasts are fine 369 

sand- to siltstone, sometimes with metamorphic overprint, indicated 370 

by foliation. As expected, grain size and roundness are more variable 371 

in the glaciogenic than in the marine unit (Fig. 5b, c, Table 2). The 372 

average matrix content is 16% with an average in the glaciogenic unit 373 

of 20% and 11% in the marine unit. Accessory minerals are mostly 374 

zircon, tourmaline, rutile, and some opaque phases. The sandstones 375 

in the Edaga Arbi Glacials are subarkose to arkose with an average 376 

composition of 74.8% quartz, 18.9% feldspar and 3.3% lithic 377 

fragments (Fig. 4, Table 2). Most lithic fragments are plutonic or 378 

sedimentary, as in the Enticho Sandstone, but few volcanic lithics 379 

were also counted (Table 2). Apart from zircon, tourmaline, rutile, 380 

and opaque phases, garnet is an additional accessory mineral. The 381 

sandstones in the Edaga Arbi Glacials are generally heterogeneous in 382 

composition and texture with variable roundness and moderate 383 

sorting (Fig. 5a, Table 2). The average matrix content is 20%. Four 384 

of 13 analysed samples of the Edaga Arbi Glacials are strongly 385 

cemented with calcite with 20–25% of the thin section area, four 386 

samples contain up to 5% calcite cement and the remaining five 387 
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samples contain almost no calcite. No indicators for significant 388 

sediment recycling, such as abraded quartz overgrowths or abundant 389 

sedimentary lithoclasts, were found in either of the two formations. 390 

The samples taken from the basement include two metagreywackes, 391 

one metatillite, one metapelite, one metabasite, and two granites. The 392 

boulders sampled from the tillite at the base of the Edaga Arbi 393 

Glacials are classified as six granitoids, two diorites/gabbros, two 394 

metabasites, and one paragneiss (Table 1). 395 

 396 

4.2. Bulk-rock geochemistry 397 

The Enticho Sandstone, especially the marine unit, is depleted in the 398 

mobile elements Rb, Ba, K, and Sr but enriched in Th and Zr 399 

compared to the average upper continental crust (Fig. 6). Its 400 

elemental composition is highly variable, especially in the mobile 401 

elements. The REE pattern is typical for sedimentary rocks of upper 402 

crustal origin (Fig. 6; McLennan et al., 1993). The chondrite-403 

normalised LaN/YbN, which quantifies the LREE enrichment, is on 404 

average 10.7 (Appendix). The Eu anomaly is pronounced (i.e. <1) in 405 

the Enticho Sandstone with a mean Eu/Eu* for the glaciogenic facies 406 

of 0.8 and 0.7 for the marine facies. The CIA is on average 92 for 407 

marine facies and 78 for the glaciogenic facies (Appendix). The 408 

elemental composition of the Edaga Arbi Glacials is more uniform. 409 

The depletion in mobile elements and the Zr enrichment is less than 410 

for the Enticho Sandstone. The chondrite-normalised LaN/YbN is on 411 

average 5.9 and the mean Eu/Eu* 0.9. The average CIA is 62 412 

(Appendix). Sample Eda-5, with uncertain stratigraphic assignment, 413 
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differs from the Edaga Arbi Glacials sandstone by high depletion in 414 

mobile elements, Zr enrichment, and a high CIA of 95 (Fig. 6; 415 

Appendix).  416 

In the PCA biplot of major and trace elements (Fig. 7a), a clear 417 

separation between the two formations as well as between the 418 

glaciogenic and the marine facies becomes obvious: along the rays of 419 

Ni and Th (enriched in Enticho Sandstone) versus Ca, Mg, and Na 420 

(enriched in Edaga Arbi Glacials) the two formations can be 421 

distinguished. Along the rays of K, Rb, Ba, and Sr (enriched in 422 

glaciogenic) versus P, Y, V, Sc, and HREE (enriched in marine), 423 

different facies separate. Sample Eda-5 has a similar composition to 424 

the Enticho Sandstone. The first three principal components (Fig. 7b, 425 

c) of the PCA excluding mobile elements and carbonate cement 426 

influence together explain 74% of the total variability. Again, a 427 

separation of the two formations is possible with the Enticho 428 

Sandstone being enriched in Th, Zr, Hf, U, and Si and depleted in P 429 

and Al compared to the Edaga Arbi Glacials. This separation is 430 

facies-independent since no clustering of marine and glaciogenic 431 

Enticho Sandstone is visible. No patterns related to stratigraphic or 432 

geographic sampling position were detected (not shown in Fig. 7).  433 

In the tectonic setting discrimination diagram of Verma and 434 

Armstrong-Altrin (2013) based on major oxide concentrations, the 435 

Enticho Sandstone plots in the “continental rift” field, the Edaga Arbi 436 

Glacials in the “continental rift” and “collision” fields (Fig. 8a). In 437 

the active versus passive margin diagram of Verma and Armstrong-438 

Altrin (2016; Fig. 8b) based on major oxides and selected trace 439 

elements, the Enticho Sandstone is assigned to a passive margin 440 
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setting whereas the Edaga Arbi Glacials plot partly in the active and 441 

partly in the passive margin field. The Th/Sc and Zr/Sc ratios are 442 

generally higher for the Enticho Sandstone than for the Edaga Arbi 443 

Glacials (Fig. 9). Significant Zr enrichment that would lead to a 444 

deviation from the compositional trend is not clearly visible for either 445 

of the formations. A plot of the Th/Sc versus Zr/Sc ratios of the 446 

samples grouped geographically into north, centre, and south 447 

(Fig. 9b) reveals a trend towards higher Th/Sc and higher Zr/Sc ratios 448 

along the assumed transport direction from south to north for both 449 

formations.  450 

Of the basement samples, the granites are enriched in Nb, HREE, and 451 

Y and depleted in Cr and Ni compared to the centre of the data set 452 

plotted in Fig. 10. The metasediments are enriched in V, Sc, Fe, Ni, 453 

and Cr and depleted in Zr, Th, Hf, and U, similar to the metabasite 454 

(Fig. 10). The overall composition of the basement samples 455 

resembles that of the Edaga Arbi Glacials (Fig. 10). Of the boulders 456 

sampled from tillite at the base of the Edaga Arbi Glacials, the 457 

granitoids have similar compositions to the granites in the basement 458 

(Fig. 10a). The diorites/gabbros have variable compositions, one 459 

being rich in P and the other in Fe and Sc (Fig. 10). Of the basalts, 460 

one is enriched in HREE, Nb and Y, the other in V, Sc, and Cr. The 461 

composition of the paragneiss is close to the centre of the data set 462 

with slight enrichment in Fe, Sc, and Cr.  463 

 464 

 465 

 466 



18 
 

5. Discussion 467 

When interpreting bulk-rock geochemical data, grain-size effects 468 

have to be considered (e.g., Rollinson, 1993; von Eynatten et al., 469 

2012). The grain-size distribution of a sediment is influenced by 470 

transport processes, such as hydraulic sorting and comminution (e.g., 471 

Rubey, 1933; Garzanti et al., 2008; von Eynatten et al., 2012), and by 472 

the inherited grain size of the respective mineral in the parent rock 473 

(Morton and Hallsworth, 1994). Even though we collected samples 474 

of the same major grain size, the degree of sorting of framework 475 

grains and the matrix content differ (Section 4; Table 2). Therefore, 476 

for instance, the high contents of Mg, Ca, Na, and K in the glacial 477 

samples (Fig. 7a) are probably not only related to (little) weathering 478 

and (strong) diagenesis but also to the poor sorting and higher matrix 479 

content of the glacial samples as compared to the marine (Table 2). 480 

To account for the facies differences, we plotted the glaciogenic and 481 

marine facies of the Enticho Sandstone separately in the respective 482 

diagrams (Fig. 4, Fig. 6-10). 483 

A clear distinction of the two formations is possible, particularly in 484 

terms of their major and trace element compositions (e.g., Figs. 7, 8). 485 

This makes it possible to assign stratigraphically uncertain samples: 486 

Sample Eda-5 was tentatively assigned to the Edaga Arbi Glacials by 487 

sedimentological characteristics in the field but without 488 

biostratigraphic evidence. Based on the geochemical characteristics it 489 

is likely that it belongs to the Enticho Sandstone instead. 490 

Furthermore, the samples taken from an outcrop in Enticho (samples 491 

Eda-2 and Eda-3; Table 1) – originally the type location of the 492 

Enticho Sandstone – can be assigned to the Edaga Arbi Glacials 493 
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based on their petrography and chemical composition (Table 2, 494 

Appendix).   495 

The high variability in Ca, Mg, Na, K, Rb, and Ba (Fig. 7a) in the 496 

data set reflects the high mobility of these elements, which are 497 

present in the glaciogenic sedimentary rocks but leached from the 498 

marine. The enrichment of Si in the Enticho Sandstone (Fig. 7) 499 

indicates a higher quartz content, which is in agreement with 500 

petrographic observations (Fig. 4, Table 2) and points to high 501 

maturity. The negative correlation of Al and Si (Fig. 7b) indicates 502 

transport processes that remove clay minerals and feldspars and 503 

destroy lithic fragments, and thus relatively enrich quartz in the 504 

Enticho Sandstone. Similarly, the negative correlation of P and Th 505 

(Fig. 7b, c) suggests weathering under acidic conditions, in which 506 

apatite is destroyed and Th persists, and which affected the Enticho 507 

Sandstone more than the Edaga Arbi Glacials. This is supported by 508 

the higher CIA values for the Enticho Sandstone (Appendix). The 509 

correlations of Hf, Th, U, and Nb with Zr and Ti in the Enticho 510 

Sandstone (Fig. 7) suggests that these elements are carried zircon and 511 

rutile. The presence of these stable heavy minerals is an additional 512 

indicator for maturity. The high maturity of the Enticho Sandstone is 513 

probably a consequence of (1) intense chemical weathering in the 514 

source area prior to the glaciation and (2) long transport and/or 515 

marine reworking, in which clay minerals produced during 516 

weathering are removed from the sediment. Intense chemical 517 

weathering in northern Gondwana under a corrosive Neoproterozoic 518 

to pre-glacial Ordovician atmosphere was suggested by, e.g., Avigad 519 

et al. (2005). The assignment of the Enticho Sandstone to 520 
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“continental rift” and “passive margin” settings based on major and 521 

trace element composition (Fig. 8; Verma and Armstrong-Altrin, 522 

2013, 2016) is related to the higher maturity as well.  523 

For the Edaga Arbi Glacials, on the other hand, Al enrichment 524 

indicates a higher content of feldspar and clay minerals and thus a 525 

lower maturity (Fig. 7b, c). Since Eu is enriched in plagioclase, the 526 

less pronounced Eu anomaly in the Edaga Arbi Glacials (Fig. 6) 527 

corresponds to a higher feldspar content as well. This is in 528 

accordance with the petrographic observations (Fig. 4, Table 2). The 529 

higher concentration of HREE in the Edaga Arbi Glacials is probably 530 

related to the presence of garnet. The tendency of the Edaga Arbi 531 

Glacials to “collision” and “active margin” signatures (Fig. 8) points 532 

to fresher, less reworked material deposited in the Carboniferous–533 

Permian and does not have to indicate different tectonic settings.  534 

Neither petrography nor the Th/Sc and Zr/Sc ratios give hints to 535 

sedimentary recycling being an important process for one of the 536 

formations. The few fine-grained and foliated sedimentary lithoclasts 537 

may be due to local erosion of slates from the Neoproterozoic 538 

basement. The south-north trend of Th/Sc and Zr/Sc ratios in both 539 

formations (Fig. 9b) may be due to progressive enrichment of stable 540 

heavy minerals, such as zircon, along the transport path. Zircon is a 541 

major carrier of Zr and Th (Fig. 7). Another possibility would be the 542 

admixture of felsic material.  543 

The enrichment of the Enticho Sandstone in Zr, Hf, Th, U, Nb, and 544 

the light REE (Figs. 6, 7) points to felsic source rocks. The 545 

pronounced negative Eu anomaly (Fig. 6) indicates evolved crustal 546 

material as a source. Possible source areas are the Archean cratons 547 
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(Congo Craton, Tanzania Craton) or the Proterozoic mobile belts 548 

(Kibaran Belt, Irumide Belt, Mozambique Belt) in the inner part of 549 

Gondwana (Fig. 1). A distal source area in central Gondwana was 550 

also proposed for Cambrian–Ordovician sandstone in Israel and 551 

Jordan: Based on detrital zircon ages, Kolodner et al. (2006) inferred 552 

a progressive southward migration of the source area during the 553 

Cambrian–Ordovician. Hf isotopic data of Neoproterozoic zircons 554 

from these formations are incompatible with the local Arabian–555 

Nubian Shield. This led Morag et al. (2011) to the assumption that 556 

the source region might be within the remobilised crustal areas 557 

further south (Fig. 1). If this trend extends to the Upper Ordovician, a 558 

distal source area in the inner part of Gondwana for the Enticho 559 

Sandstone is likely.  560 

In the Edaga Arbi Glacials, the relative enrichment of V and Cr and 561 

the higher proportion of HREE indicates a higher influence of mafic 562 

and garnet-bearing source material (e.g., Bhatia and Crook, 1986; 563 

McLennan et al., 1993). For example, smectite – commonly a 564 

weathering product of mafic precursor minerals – can be rich in Cr 565 

and V (e.g., Chamley et al., 1979). Garnet is a major carrier of HREE 566 

(e.g., Harangi et al., 2001). The poor Eu anomaly (Fig. 6) indicates 567 

contribution of juvenile source material (McLennan et al., 1993). 568 

Similarly, the lower Th/Sc of the Edaga Arbi Glacials compared to 569 

the Enticho Sandstone points to a higher influence of undifferentiated 570 

crustal material (Fig. 9; McLennan et al., 1993). A proximal source 571 

area composed mainly of juvenile crust would be the Arabian–572 

Nubian Shield, which is the northernmost edge of the East African 573 

Orogen (Johnson et al., 2011). Ophiolites in the Arabian–Nubian 574 
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Shield, as described for instance by Meert (2003), Johnson et al. 575 

(2011), and Stern et al. (2012), could be the source for mafic input in 576 

the Edaga Arbi Glacials. Volcanic rock fragments in the Edaga Arbi 577 

Glacials may indicate late Palaeozoic volcanism, as speculated by 578 

Sacchi et al. (2007). However, it cannot be said with certainty that 579 

the rock fragments are not metamorphically overprinted and older. 580 

Metavolcanic rocks are abundant in the Neoproterozoic basement and 581 

are a likely source for these fragments. The similar overall 582 

composition of the local basement samples and the Edaga Arbi 583 

Glacials (Fig. 10) supports the assumption of a local source for these 584 

and a different source area for the Enticho Sandstone.  585 

Petrographic and chemical compositions of glacial successions of 586 

Upper Ordovician and Carboniferous–Permian sandstone in Saudi 587 

Arabia are similar to those obtained in Ethiopia: a signature of old 588 

crustal material in the early Palaeozoic and a higher influence of 589 

juvenile material in the late Palaeozoic (Bassis et al., 2016b). In the 590 

PCA biplot (Fig. 10), however, the Carboniferous–Permian samples 591 

from Saudi Arabia plot far away from the corresponding samples of 592 

this study, whereas the Upper Ordovician samples are grouped with 593 

the corresponding. Therefore, for the early Palaeozoic a common 594 

provenance for the glacial sandstones of both areas is likely, whereas 595 

in the late Palaeozoic the sediments were probably supplied from 596 

different local sources (Fig. 11). This supports the assumption of a 597 

large North Gondwana ice sheet in the Late Ordovician (Ghienne et 598 

al., 2007; Le Heron and Craig, 2008) and more local glacial systems 599 

during the Carboniferous–Permian glaciation (Eyles, 1993; Fielding 600 

et al., 2008). 601 
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Conclusions 602 

The petrographic and geochemical comparison of sandstones 603 

deposited during the two Gondwana glaciations in the Late 604 

Ordovician and the Carboniferous–Permian reveals clear differences. 605 

The Upper Ordovician Enticho Sandstone is highly mature with a 606 

major and trace element composition typical for old differentiated 607 

crustal provenance. In contrast, the sandstone of the Carboniferous–608 

Permian Edaga Arbi Glacials is less mature with a geochemical 609 

signature of more juvenile source material. Its major and trace 610 

element composition resembles that of the local basement. 611 

Stratigraphically equivalent formations in Saudi Arabia show similar 612 

patterns for the Late Ordovician but significant differences for the 613 

Carboniferous–Permian. The distinct petrographic and geochemical 614 

differences between the two formations make it possible to assign 615 

stratigraphically uncertain samples. 616 

The high maturity of the Upper Ordovician Enticho Sandstone is 617 

probably a consequence of strong chemical weathering in the source 618 

area before the glaciation combined with long transport by the 619 

glaciers and reworking in a shallow marine environment after the 620 

glaciation. The material is possibly sourced from Archean cratons 621 

and/or Proterozoic mobile belts in central Gondwana, such as the 622 

Congo and Tanzania cratons or the Kibaran, Irumide or Mozambique 623 

belts. The Edaga Arbi Glacials have a proximal source, most likely 624 

the Arabian–Nubian Shield. These findings support previous models 625 

of a large ice sheet covering northern Gondwana in the Late 626 

Ordovician, leading to a regional mixture and homogenisation of 627 
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source material, and a complex pattern of local glaciers in the 628 

Carboniferous–Permian. 629 
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Tables 941 

 942 

Table 1. Samples, corresponding locations, and geographic 943 
coordinates (WGS84). The stratigraphic assignment is based on 944 
biostratigraphic evidence (B) or lithofacies characteristics (LF) in the 945 
outcrop, or it is uncertain (U). 946 

 947 

Table 2. Results of petrographic point-counting analysis of thin 948 
sections. Values given in %. Qzm = monocrystalline quartz, Qzmu = 949 
monocrystalline quartz with undulose extinction, Qzp = 950 
polycrystalline quartz (subgrain formation), Qzmicr = microcrystalline 951 
quartz, Pl = plagioclase, Kfs = potassium feldspar, Lp = plutonic 952 
lithic fragment, Lv = volcanic lithic fragment (includes metavolcanic 953 
clasts, since oriented texture is rarely visible but metamorphic 954 
overprint is probable), Ls = sedimentary lithic fragments, Lms = 955 
metasedimentary lithic fragments, Lmi = metamorphic igneous lithic 956 
fragment, other = minor components such as accessories, unid. = 957 
unidentified, e.g., strongly altered. Mineral abbreviations of 958 
accessories after Kretz (1983) and Whitney and Evans (2010). Ap = 959 
apatite, Cal = calcite, Chl = chlorite, Grt = garnet, Ms = muscovite, 960 
Op = opaque, Px = pyroxene, Sil = sillimanite, St = staurolite, Tur = 961 
tourmaline, Zrn = zircon. Carbonate cement: 0 = not present, + = up 962 
to 5%, ++ = 20–25%. GS = grain size. Sorting: -- = very poor, - = 963 
poor, 0 = moderate, + = good, ++ = very good. Roundness: -- = 964 
angular, - = subangular, 0 = subrounded, + = rounded, ++ = well 965 
rounded.  966 

 967 

Figure captions 968 

 969 

Fig. 1. Eastern Africa and Arabia with occurrences of Precambrian 970 
rocks and major tectonic units. The outline of Ethiopia and the study 971 
regions are indicated in blue. 972 

 973 

Fig. 2. Geological maps of the study areas showing the sampling 974 
locations. Numbers next to the sampling locations correspond to 975 
those in Table 1. (a) Northern Ethiopia (modified after Arkin et al., 976 
1971; Garland, 1978; Bussert, 2014). (b) Blue Nile region (modified 977 
after Tsige and Hailu, 2007; Dawit, 2014). The term “Fincha 978 
Sandstone” is taken from Dawit (2014).  979 

 980 

Fig. 3. Field photographs. (a) Sandstone lens above tillite with 981 
muddy matrix and rounded clasts of various composition at the base 982 
of the Edaga Arbi Glacials. (b) Dropstones in rhythmically laminated 983 
sandstone and silt- to claystone in Edaga Arbi Glacials. (c) Striated 984 
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boulder in tillite at the base of Edaga Arbi Glacials. (d) Rhythmic 985 
mud drapes on cross-beds in marine part of the Enticho Sandstone 986 
indicating intertidal environment. (e) Herringbone cross-lamination 987 
in marine part of Enticho Sandstone indicating tidal environment. 988 
(f) Alternation of graval bends and sandstone in glaciogenic part of 989 
Enticho Sandstone. (g) Tillite at the base of glaciogenic Enticho 990 
Sandstone. (h) Soft-sediment deformation structures in sandstone 991 
underlying tillite in the basal part of Enticho Sandstone. 992 

993 

Fig. 4. Sandstone classification diagram after McBride (1963). Q = 994 
quartz, F = feldspar, L = lithic fragments (thin section point-995 
counting).  996 

997 

Fig. 5. Thin section photomicrographs of the Edaga Arbi Glacials 998 
and the marine and glaciogenic units of the Enticho Sandstone. Qz = 999 
quartz, Pl = plagioclase, Kfs = potassium feldspar, Lp = plutonic 1000 
lithic fragment, Lv = (meta)volcanic lithic fragment, St = staurolite, 1001 
Ky = kyanite, Zrn = zircon (mineral abbreviations after Kretz, 1983; 1002 
Whitney and Evans, 2010). PPL = plane-polarised light, XPL = 1003 
cross-polarised light. 1004 

1005 

Fig. 6. Selected major and trace element concentrations normalised 1006 
to the average upper continental crust (UCC; normalising values 1007 
from McLennan, 2001) are shown on the left side. Rare earth element 1008 
concentrations normalised to average CI chondrites (normalising 1009 
values from Taylor and McLennan, 1985) are shown on the right 1010 
side.  1011 

1012 

Fig. 7. Compositional biplots of (a) the first two principal 1013 
components of a principal component analysis (PCA) based on the 1014 
clr-transformed concentrations of the major and trace elements 1015 
considered in Fig. 6 with the sum of LREE and HREE, (b) the first 1016 
and second and (c) the first and third principal components of a PCA 1017 
based on the clr-transformed concentrations of a subset of the 1018 
elements considered in Fig. 6, which is assumed to be less affected 1019 
by diagenesis and leaching. 1020 

1021 

Fig. 8. Tectonic setting discrimination diagrams after Verma and 1022 
Armstrong-Altrin (2013, 2016). (a) Discriminant functions (DF) 1023 
based on major oxides (SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, 1024 
Na2O, K2O, P2O5; Verma and Armstrong-Altrin, 2013). (b) 1025 
Discriminant function based on major oxides and selected trace 1026 
elements (SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, 1027 
P2O5, Cr, Nb, Ni, V, Y, Zr; Verma and Armstrong-Altrin, 2016). 1028 
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Fig. 9. Th/Sc versus Zr/Sc diagram after McLennan et al. (1993). (a) 1029 
Samples analysed in this study, stratigraphically equivalent units 1030 
from Saudi Arabia (Bassis et al., 2016b), boulders in tillite of the 1031 
Edaga Arbi Glacials (granitoid, diorite/gabbro, basalt and gneiss) and 1032 
local basement (granite, metabasite and metasedimentary rocks; this 1033 
study). (b) Samples analysed in this study grouped by their 1034 
geographic position. 1035 

 1036 

Fig. 10. Compositional biplots of (a) the first and second and (b) the 1037 
first and third principal components of a principal component 1038 
analysis (PCA) based on the clr-transformed concentrations of the 1039 
major and trace elements in Fig. 7 (b, c) comparing the samples 1040 
analysed in this study with stratigraphically equivalent samples from 1041 
Bassis et al. (2016b), local basement samples and boulders in tillite 1042 
of the Edaga Arbi Glacials (this study). Co is left out, because it was 1043 
not measured by Bassis et al. (2016b). Carb. = Carboniferous, Perm. 1044 
= Permian, Ord. = Ordovician. 1045 

 1046 

Fig. 11. Summary of the main findings of this study for the two 1047 
Gondwana glaciations in Ethiopia. Gondwana palaeogeography and 1048 
south pole positions from Torsvik and Cocks (2013). Ice sheet 1049 
locations and transport directions for the Late Ordovician are after 1050 
Ghienne et al. (2007), Le Heron and Craig (2008), and Torsvik and 1051 
Cocks (2013), and for the Carboniferous–Permian they are after 1052 
Bussert and Schrank (2007), Fielding et al. (2008), and Isbell et al. 1053 
(2012). 1054 
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# Sample Formation Age Location North(°) East(°) Position 

within 

Fm. 

Facies/ 

Lithology 

Strati-

graphic 

assignment 

1 Enti-4 Enticho Upper Ordovician Atsbi south 13.83465 039.71262 Base Tillite matrix U 

2 Enti-5 Enticho Upper Ordovician Atsbi north 13.88828 039.74783 Base  Glacial B 

3 Enti-7 Enticho Upper Ordovician Atsbi north 13.88842 039.74259 Base Glacial B 

4 Enti-9 Enticho Upper Ordovician Wollwello 14.22037 039.65014 Base  Glacial B 

5 Enti-13 Enticho Upper Ordovician Zalambassa 14.49275 039.41911 Base Glacial LF 

6 S1 Enticho Upper Ordovician Sinkata 13.96861 039.61167 Base Glacial B 

7 S2 Enticho Upper Ordovician Sinkata 13.96861 039.61167 Base Glacial B 

8 Nib-1 Enticho Upper Ordovician Adigrat south 14.25194 039.48972 Base Glacial B 

9 Nib-2 Enticho Upper Ordovician Adigrat south 14.25194 039.48972 Base Glacial B 

10 North-1 Enticho Upper Ordovician Adigrat north 14.31333 039.46000 Base Glacial B 

11 North-2 Enticho Upper Ordovician Adigrat north 14.31333 039.46000 Base Glacial B 

12 Enti-6 Enticho Upper Ordovician Atsbi north 13.88842 039.74827 Top Marine B 

13 Enti-10 Enticho Upper Ordovician Wollwello 14.21839 039.64994 Top Marine B 

14 Enti-12 Enticho Upper Ordovician Zalambassa 14.49627 039.41911 Top Marine LF 

15 S3 Enticho Upper Ordovician Sinkata 13.97056 039.61111 Top Marine B 

16 S4 Enticho Upper Ordovician Sinkata 13.97056 039.61111 Top Marine B 

17 Nib-3 Enticho Upper Ordovician Adigrat south 14.25222 039.49583 Top Marine B 

18 Nib-4 Enticho Upper Ordovician Adigrat south 14.25222 039.49583 Top Marine B 

19 North-3 Enticho Upper Ordovician Adigrat north 14.31944 039.45889 Top Marine B 

20 Eda-2 Edaga Arbi Carboniferous-Permian Enticho 14.28166 039.14725 Base Tillite matrix B 

21 Eda-3 Edaga Arbi Carboniferous-Permian Enticho 14.27929 039.14836 Base Sand lens U 

22 Eda-4 Edaga Arbi Carboniferous-Permian Edaga Robi 14.38906 039.18161 Base  Tillite matrix U 

23 Eda-6 Edaga Arbi Carboniferous-Permian Edaga Arbi west 14.05667 039.07095 Base  Sand lens LF 

24 Eda-8 Edaga Arbi Carboniferous-Permian Megab south 13.90944 039.32301 Base  Sand lens B 

25 Eda-10 Edaga Arbi Carboniferous-Permian Dugum 13.84957 039.49003 Base  Sand lens LF 

26 Eda-11 Edaga Arbi Carboniferous-Permian Abi Addi 13.61842 039.00042 Base  Sand lens LF 

27 Hu-1 Edaga Arbi Carboniferous-Permian Bure, Blue Nile 10.31057 037.05068 Base  Sand lens LF 

28 Eda-9 Edaga Arbi Carboniferous-Permian Megab south 13.90915 039.32235 Top  Sand lens B 

29 Eda-12 Edaga Arbi Carboniferous-Permian Samre 13.17844 039.19745 Top  Sand lens B 

30 Hu-2 Edaga Arbi Carboniferous-Permian Bure, Blue Nile 10.31057 037.05068 Top  Sand lens LF 

31 Eda-1 Edaga Arbi Carboniferous-Permian Adigrat west 14.31171 039.40472 Uncertain Tillite matrix LF 

32 Eda-5 Uncertain Uncertain Adwa east 14.19102 038.93957 Uncertain Sand lens U 

33 Bas-1 

Boulders 

in 

Edaga 

Arbi 

tillite 

Unknown Megab 13.93496 039.36520 Metabasite 

34 Bas-2 Unknown Megab 13.93496 039.36520 (Meta)basite 

35 Gn-1 Unknown Megab 13.93496 039.36520 Paragneiss 

36 Gr-3 Unknown Adigrat west 14.31171 039.40472 Granitoid 

37 Gr-4 Unknown Adigrat west 14.31171 039.40472 Granitoid 

38 Gr-5 Unknown Adigrat west 14.31171 039.40472 Granitoid 

39 Gr-6 Unknown Megab 13.93496 039.36520 Granitoid 

40 Gr-7 Unknown Megab 13.93496 039.36520 Granitoid 

41 Gr-8 Unknown Megab 13.93496 039.36520 Granitoid 

42 Gr-9 Unknown Megab 13.93496 039.36520 Diorite/Gabbro 

43 Gr-10 Unknown Megab 13.93496 039.36520 Diorite/Gabbro 

44 Neop-1 Basement Neoproterozoic Atsbi south 13.83374 039.71132 Metagreywacke 

45 Neop-2 Basement Neoproterozoic Negash 13.83561 039.61442 Metatillite 

46 Neop-3 Basement Neoproterozoic near Negash 13.94186 039.59876 Metabasite 

47 Neop-4 Basement Neoproterozoic Zalambassa 14.49276 039.41899 Metapelite 

48 Neop-5 Basement Neoproterozoic Road Debre Damo 

– Enticho 

14.37729 039.27883 Metagreywacke 

49 Gr-1 Basement 

pluton 

Neoproterozoic Negash 

highschool 

13.89164 039.60517 Granitoid 

50 Gr-2 Basement 

pluton 

Neoproterozoic Sebea 14.46629 039.48225 Granitoid 

Table 1
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Sample Formation Qzm 

[%] 

Qzmu 

[%] 

Qzp 

[%] 

Qzmicr 

[%] 

Pl 

[%] 

Kfs 

[%] 

Lp 

[%] 

Lv 

[%] 

Ls 

[%] 

Lms 

[%] 

Lmi 

[%] 

Other 

[%] 

Unid.

[%] 
Counts Accessories Carbo- 

nate  

cement 

Matrix 

[%] 

GS (mm) Sor-

ting 

Round- 

ness 

Enti-4 Enticho 69.3 5.7 9.3 1.0 5.0 5.7 2.3 0.0 1.0 0.0 0.0 0.7 0.0 300 Tur, Zrn 0 40 0.05-4 -- - 

Enti-5 Enticho 69.0 9.7 8.7 0.0 4.0 7.3 0.3 0.0 0.0 0.0 0.0 0.0 1.0 300 0 40 0.05-4 -- -- to ++ 

Enti-7 Enticho 63.7 14.3 5.7 0.7 5.3 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 300 0 10 0.1-1 0 + 

Enti-9 Enticho 68.3 15.7 6.7 0.0 4.0 4.0 0.0 0.0 0.7 0.0 0.0 0.7 0.0 300 Mica, Px (?) 0 35 0.05-2; 0.1-

1 (layers) 

- - to + 

Enti-13 Enticho 62.3 14.7 18.3 0.7 0.3 1.3 0.7 0.0 1.0 0.0 0.0 0.3 0.3 300 Zrn 0 5 0.1-1 0 - to + 

S1 Enticho 48.3 31.0 12.3 0.0 1.3 5.3 1.7 0.0 0.0 0.0 0.0 0.0 0.0 300 0 < 5 0.1-5 -- + to ++ 

S2 Enticho 68.7 15.3 6.3 0.0 3.3 4.3 0.0 0.0 0.0 0.0 0.0 0.7 1.3 300 0 < 5 0.1-1 - - to ++ 

Nib-1 Enticho 80.3 8.7 4.0 0.7 0.3 1.3 0.7 2.0 0.0 0.0 0.0 0.7 1.3 300 Tur 0 < 5 0.1-1 0 - to + 

Nib-2 Enticho 73.3 9.0 5.7 0.0 4.3 7.0 0.3 0.0 0.0 0.0 0.0 0.0 0.3 300 Zrn 0 25 0.05-1.2 - - to ++ 

North-1 Enticho 70.0 21.3 1.3 0.0 2.0 5.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 300 0 5 0.1-0.5 + - to + 

North-2 Enticho 73.3 15.7 6.7 0.0 0.0 0.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0 300 0 50 0.05-7 - - to ++ 

Enti-6 Enticho 78.0 17.7 3.3 0.3 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300 0 5 0.1-1 + - to ++ 

Enti-10 Enticho 85.0 9.3 2.3 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 300 Op+, Px?, Chl, 

Ap 

0 < 5 0.1 ++ - 

Enti-12 Enticho 87.3 8.3 3.7 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.3 0.0 300 Grt 0 10 0.1-1.2 + + 

S3 Enticho 77.3 12.0 9.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 300 Chl, Op 0 < 5 0.1-1 - - to + 

S4 Enticho 79.0 14.7 6.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300 0 55 0.1-1 0 + 

Nib-3 Enticho 84.7 7.7 5.3 0.0 0.3 0.0 1.7 0.0 0.0 0.0 0.0 0.3 0.0 300 Zrn 0 < 5 0.1-1 0 + 

Nib-4 Enticho 70.3 26.3 2.7 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.3 0.0 300 0 < 5 0.1-0.8 + + 

North-3 Enticho 81.7 18.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 300 0 < 5 0.1-0.6 + + to ++ 

Eda-2 Edaga Arbi 63.0 14.3 0.3 3.7 3.3 3.0 0.0 2.7 1.7 0.0 0.0 6.7 1.3 300 Op+, Grt, 

Zrn+, Cal, Ms 

+ 25 0.05-0.2 + + 

Eda-3 Edaga Arbi 76.3 10.7 0.3 0.0 3.3 8.3 0.7 0.0 0.0 0.3 0.0 0.0 0.0 300 + < 5 0.05-0.3 0 0 to + 

Eda-4 Edaga Arbi 68.7 20.0 0.0 0.0 4.0 5.7 0.3 0.7 0.0 0.3 0.0 0.0 0.3 300 Grt 0 15 0.05-0.3 0 0 to + 

Eda-5 Edaga Arbi 84.3 10.3 0.7 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 300 Zrn+ 0 35 0.05-0.5 0 -- to + 

Eda-6 Edaga Arbi 60.7 3.7 1.0 0.3 5.3 21.0 0.0 0.3 3.7 0.0 0.0 3.0 1.0 300 Zrn+, Grt, Sil, 

St 

++ < 5 0.1-0.3 + - 

Eda-8 Edaga Arbi 76.0 10.0 0.0 1.3 5.0 3.3 0.0 0.0 1.3 0.0 0.0 0.0 3.0 300 ++ 25 0.05-0.1 + + 

Eda-10 Edaga Arbi 52.3 4.7 3.0 0.7 6.3 22.3 6.0 1.7 1.0 1.3 0.3 0.3 0.0 300 + 20 0.1-0.7 0 - to 0 

Eda-11 Edaga Arbi 70.7 2.3 2.7 5.3 6.3 6.3 0.0 1.0 1.3 0.0 0.0 1.3 2.7 300 Op, Chl ++ 40 0.05-0.5 0 - 

Hu-1 Edaga Arbi 39.3 5.7 0.7 0.0 12.0 36.7 4.3 0.0 1.0 0.0 0.0 0.3 0.0 300 Op + 5 0.1-3 -- - to 0 

Eda-9 Edaga Arbi 67.7 14.7 2.0 2.0 1.7 3.7 0.0 0.0 0.0 0.0 0.0 7.7 0.7 300 Chl+, Ms 0 35 0.05-0.1 ++ + 

Eda-12 Edaga Arbi 61.3 5.3 1.3 1.3 7.3 16.3 0.0 1.7 0.0 0.0 0.0 1.0 4.3 300 Zrn, Grt, Cal 0 40 0.05-0.2 0 - to 0 

Hu-2 Edaga Arbi 46.0 7.3 0.0 0.0 9.0 37.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 300 Tur, Grt 0 10 0.1-0.3 + 0 to + 

Eda-1 Edaga Arbi 58.3 7.3 3.0 1.3 6.7 8.0 7.0 2.7 1.7 0.3 0.0 1.3 2.3 300 Op, Grt ++ < 5 0.1-0.3 0 + 
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http://ees.elsevier.com/sedgeo/download.aspx?id=328194&guid=7ddf706d-d34d-49de-a192-1b770ed768ad&scheme=1



