1 2 3 4 5 6 7	Provenance of sandstones in Ethiopia during Late Ordovician and Carboniferous–Permian Gondwana glaciations: petrography and geochemistry of the Enticho Sandstone and the Edaga Arbi Glacials Anna Lewin ^{a,*} , Guido Meinhold ^{b,c} , Matthias Hinderer ^a , Enkurie L. Dawit ^d , Robert Bussert ^e
8	
9 10 11	^a Institut für Angewandte Geowissenschaften, Fachgebiet Angewandte Sedimentologie, Technische Universität Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
12 13 14	^b Abteilung Sedimentologie / Umweltgeologie, Geowissenschaftliches Zentrum Göttingen, Universität Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
15 16	^c School of Geography, Geology and the Environment, Keele University, Keele, Staffordshire, ST5 5BG, UK
17 18	^d Department of Geology, University of Gondar, P.O. Box 196, Gondar, Ethiopia
19 20 21	^e Institut für Angewandte Geowissenschaften, Fachgebiet Explorationsgeologie, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
22	
23	*corresponding author. Tel. +49 6151 1620634
24	E-mail address: <u>alewin@geo.tu-darmstadt.de</u> (A. Lewin).
25	
26	
27	Abstract
28	
29	We compare Ethiopian glaciogenic sandstone of the Late Ordovician
30	and Carboniferous-Permian Gondwana glaciations petrographically
31	and geochemically to provide insight into provenance, transport, and
32	weathering characteristics. Although several studies deal with the
33	glacial deposits in northern Africa and Arabia, the distribution of ice
34	sheets and continent-wide glacier dynamics during the two
35	glaciations remain unclear. Provenance data on Ethiopian Palaeozoic
36	sedimentary rocks are scarce. The sandstones of the Late Ordovician
37	glaciation are highly mature with an average quartz content of 95%

38	and an average chemical index of alteration of 85, pointing to intense
39	weathering and reworking prior to deposition. No evidence for
40	sediment recycling was found. In contrast, the Carboniferous-
41	Permian glaciogenic sandstones are less mature with an average
42	quartz content of 75%, higher amounts of feldspar and rock
43	fragments and a chemical index of alteration of 62. Trace and rare
44	earth element concentrations indicate a higher input of juvenile
45	material, most probably from proximal sources. Comparison with
46	stratigraphically corresponding formations in Saudi Arabia shows
47	similar geochemical patterns for the Upper Ordovician, but major
48	differences in the Carboniferous-Permian. This supports previous
49	assumptions of a large, uniform sediment dispersal system during the
50	Late Ordovician glaciation, in which a combination of long transport
51	paths and exceptionally strong weathering prior to the glaciation
52	produced mature sandstone. During the Carboniferous-Permian, the
53	glacial systems seem to have been more localised and glacial
54	abrasion exposed fresh basement material.
55	Keywords: Ethiopia, Palaeozoic, glacial sediments, geochemistry,
56	petrography, maturity
57	
58	1. Introduction
59	
60	During the amalgamation of the Gondwana supercontinent in the
61	Neoproterozoic (between 650 Ma and 600 Ma before present), the
62	East African Orogen was formed – one of the largest accretionary
63	orogens in Earth's history (Stern, 1994; Collins and Pisarevsky,
64	2005; Squire et al., 2006). In Northeast Africa, a stable platform
65	developed after the consolidation of the newly formed continent, on

66	which a vast blanket of Palaeozoic sand was deposited (Garfunkel,
67	2002; Avigad et al., 2005). The sediment transport direction is
68	generally assumed to have been towards the margin of northern
69	Gondwana (e.g., Kumpulainen et al., 2006; Meinhold et al., 2011;
70	Morag et al., 2011). However, the exact provenance of the sediment
71	and its pathways are still poorly understood. Palaeozoic sedimentary
72	rocks in Ethiopia are related to the two major Gondwana glaciations:
73	1) the Late Ordovician glaciation and the following transgression,
74	probably up to early Silurian and 2) the Carboniferous-Permian
75	glaciation (Saxena and Assefa, 1983; Kumpulainen et al., 2006;
76	Kumpulainen, 2007; Bussert and Schrank, 2007; Bussert, 2010) with
77	a large hiatus between them. Although several studies deal with the
78	glacial deposits in northern Africa and Arabia (Ghienne, 2003; Le
79	Heron et al., 2009; Bussert, 2010; Keller et al., 2011), the distribution
80	of ice sheets and continent-wide glacier dynamics remain unclear.
81	For the Late Ordovician glaciation, a scenario of a large ice sheet
82	covering the whole Sahara region or even whole central Gondwana is
83	proposed (e.g., Ghienne et al., 2007; Le Heron and Craig, 2008).
84	During the Carboniferous-Permian glaciation, a more complex
85	spatial and temporal pattern of ice sheets is likely. Different authors
86	propose a system of several local ice centres, which developed
87	asynchronously across Gondwana (e.g., Eyles, 1993; Fielding et al.,
88	2008). The late Palaeozoic topography in northern Gondwana was
89	influenced by the Hercynian tectonic event and by thermal uplift
90	prior to the formation of the Zagros rift zone that later formed the
91	Neo-Tethys ocean (Sharland et al., 2001). In such elevated areas
92	mountain glaciers may have formed in the Carboniferous-Permian
93	(Konert et al., 2001; Bussert and Schrank, 2007; Le Heron et al.,

94	2009). In southern Libya (Morton et al., 2011) and Saudi Arabia
95	(Knox et al., 2007; Bassis et al., 2016a), provenance changes were
96	identified during the Carboniferous based on heavy minerals,
97	pointing to re-organisation of the sediment dispersal system. A
98	comparative field study on deposits of both Gondwana glaciations in
99	Saudi Arabia was carried out by Keller et al. (2011); detailed
100	petrographic and bulk-rock geochemical data on these formations
101	were provided by Bassis et al. (2016b). Though, in these studies,
102	common glacial and proglacial sedimentary features can be found in
103	both formations, the sedimentary rocks of the Late Ordovician
104	glaciation are significantly more quartzose than those of the late
105	Palaeozoic glaciation. The high maturity of lower Palaeozoic
106	sedimentary rocks of northern Gondwana – untypical for post-
107	orogenic sediment - was also discussed by Garfunkel (2002) and
108	Avigad et al. (2005). Recycling of older sedimentary units cannot be
109	ruled out, but Avigad et al. (2005) suggested strong chemical
110	weathering under a corrosive Cambrian–Ordovician atmosphere in a
111	vegetation-free landscape to be the reason for this high sandstone
112	maturity. Strong chemical weathering is indicated by the highest
113	marine ⁸⁷ Sr/ ⁸⁶ Sr level in Earth's history during that time (e.g., Squire
114	et al., 2006) and may have been enhanced by acidic precipitation due
115	to Ordovician volcanism (Keller and Lehnert, 2010). Morag et al.
116	(2011) assumed a far distant sediment source for lower Palaeozoic
117	sedimentary rocks in Israel and Jordan based on pre-Pan-African
118	detrital zircon ages. In Ethiopia, sedimentological and palynological
119	studies on Palaeozoic glacial successions have been carried out by
120	Dow et al. (1971), Beyth (1972a, b), Saxena and Assefa (1983),
121	Bussert and Schrank (2007), Bussert and Dawit (2009) and Bussert

122	(2010, 2014), providing evidence that two different glaciations are
123	recorded. Geochemical and heavy mineral data to assess the
124	provenance of these sedimentary rocks are lacking so far. A likely
125	proximal source area is the Arabian-Nubian Shield, which forms the
126	northernmost part of the East African Orogen, and reaches south to
127	the northern Ethiopian basement (Fig. 1). It consists of
128	Neoproterozoic juvenile arcs, younger sedimentary and volcanic
129	basins, voluminous granitoid intrusions, and minor remobilised pre-
130	Neoproterozoic crust and further contains ophiolite (Stern, 1994;
131	Meert, 2003; Johnson et al., 2011; Stern et al., 2012). Potential distal
132	source areas are the Archean cratons and the Proterozoic mobile belts
133	in the centre of Gondwana (Fig. 1).
134	In this study, we provide petrographic and geochemical data for the
135	two Palaeozoic glaciogenic successions in Ethiopia in order to:
136	• Differentiate both formations based on petrography and
137	geochemistry making it possible to assign unknown samples
138	to one of them,
139	• Show that different weathering and transport conditions
140	prevailed during both glacial periods,
141	• Point out a change in regional correlation with Saudi Arabia
142	(Keller et al., 2011; Bassis et al., 2016a, b) between the two
143	glaciations, reflecting different extents of the palaeo-ice
144	sheets.
145	
146	
147	

2. Geological setting

149	Palaeozoic sedimentary rocks crop out in the northern Ethiopian
150	province Tigray around the Mekelle Basin and to a minor extent in
151	the Blue Nile region in the west of the country (Fig. 2; Kazmin,
152	1972; Garland, 1978; Tsige and Hailu, 2007). The Palaeozoic units
153	comprise sediments of the two major Gondwana glaciations in the
154	Upper Ordovician and the Carboniferous-Permian (Saxena and
155	Assefa, 1983; Kumpulainen et al., 2006; Kumpulainen, 2007; Bussert
156	and Schrank, 2007; Bussert, 2010). They overlie Neoproterozoic
157	basement rocks and are in turn overlain by Mesozoic clastic and
158	carbonate sediments (Fig. 2; Beyth, 1972a; Tefera et al., 1996;
159	Dawit, 2010).
160	The basement in Ethiopia represents the junction of the Mozambique
161	Belt in the south and the Arabian–Nubian Shield in the north (Fig. 1;
162	Kazmin et al., 1978; Tefera et al., 1996; Stern et al., 2012). In the
163	southern part of the Ethiopian basement, Neoproterozoic low-grade
164	metavolcanic and metasedimentary rocks record submarine
165	volcanism and marine sedimentation at the northern rim of the
166	closing Mozambique Ocean (Kazmin et al., 1978; Miller et al., 2003,
167	2009). In northern Ethiopia, the basement comprises two main units:
168	the metavolcanic/metavolcaniclastic Tsaliet Group and the overlying
169	Tambien Group, a slate and metacarbonate succession, both of up to
170	greenschist facies (Beyth, 1972b; Alene et al., 2006). Syn- and post-
171	tectonic granites and diorites intruded both units (Beyth, 1972b;
172	Kazmin et al., 1978; Tefera et al., 1996).
173	The Palaeozoic glacial deposits of Ethiopia were first described by

174 Dow et al. (1971) and Beyth (1972a, b) as two facies (tillite facies –

175	Edaga Arbi Glacials and sandstone facies – Enticho Sandstone),
176	which interfinger laterally and both, in places, lie unconformably on
177	the basement. They assigned both facies to one glacial episode. Later,
178	early Palaeozoic trace fossils (e.g., Arthrophycus alleghaniensis)
179	were found in the upper part of the Enticho Sandstone and gave a
180	minimum age for the underlying glaciogenic deposits (Saxena and
181	Assefa, 1983; Kumpulainen et al., 2006; Bussert and Dawit, 2009).
182	In the Edaga Arbi Glacials, Carboniferous–Permian palynomorphs
183	provide age control (Bussert and Schrank, 2007; Bussert, 2014).
184	The Enticho Sandstone unconformably overlies the Neoproterozoic
185	basement and has a thickness of up to 200 m (Saxena and Assefa,
186	1983; Dawit, 2010). Bussert and Dawit (2009) provide detailed facies
187	descriptions. It consists of basal tillite, a lower glaciogenic sandstone
188	unit and an upper shallow marine sandstone unit. The tillite is
189	exposed only in the area east of Wukro (Fig. 2). Its matrix is red
190	medium sand. Clasts are angular boulders of metavolcanics,
191	metapelites and conglomerates, probably from the local basement,
192	and well-rounded quartz pebbles, which may be recycled (Fig. 3g).
193	Since large volumes of sandstone are not present in the local
194	basement, the matrix material may have been transported from
195	further away. Associated with the tillite are soft sediment
196	deformation structures in underlying sandstone (Fig. 3h) and in the
197	tillite itself, which may represent shallow marine push-moraine or
198	grounding line complexes (Dawit, 2010). The glaciogenic unit
199	consists mainly of massive, partly large-scale cross-bedded fine- to
200	medium-grained sandstone, with intercalated gravel beds (Fig. 3f)
201	interpreted to represent pulses of glacial outwash (Bussert and Dawit,

202	2009). The shallow marine unit comprises well-sorted sandstones
203	with bipolar cross-bed sets and rhythmic mud drapes suggesting a
204	tide-dominated shallow marine depositional setting (Fig. 3d, e;
205	Bussert and Dawit, 2009; Dawit, 2010). The Enticho Sandstone
206	occurs along the eastern rim of the Mekelle Basin (Fig. 2a).
207	The Edaga Arbi Glacials unconformably overlie the Enticho
208	Sandstone and, in places, lie directly on the basement (e.g., Beyth,
209	1972b). They crop out along the western and south-western margin
210	of the Mekelle Basin and to a minor extent in the Blue Nile region in
211	western Ethiopia (Fig. 2). Their thickness is approximately 200 m in
212	northern Ethiopia, but significant lateral thickness variations occur
213	(Bussert, 2010). Bussert and Dawit (2009) and Bussert (2014) give
214	detailed descriptions of the sediment facies. The Edaga Arbi Glacials
215	consist of tillite at the base overlain by laminated clay- and siltstones,
216	which contain scattered out-sized clasts and lenses of sandstone
217	(Fig. 3a; Beyth, 1972b; Bussert and Dawit, 2009; Bussert, 2014). In
218	the tillite, mostly rounded boulders of granitoid, metabasic and
219	metasedimentary rocks are found and often exhibit striated surfaces
220	(Fig. 3c). Outsized clasts in rhythmic lamination of sandstone and
221	silt- to claystone (Fig. 3b) are interpreted as dropstones (Bussert and
222	Dawit, 2009; Bussert, 2014). The sandstone lenses may represent
223	channelized glacial outwash deposits or hyperpycnal sediment flows
224	(Bussert and Dawit, 2009; Bussert, 2014). Bussert (2014) proposed a
225	model for the generation of this succession with initial glacier
226	advance and the deposition of tillites, followed by the formation of
227	subaerial and subaqueous outwash fans during the glacier retreat and
228	the final suspension settling of silt and clay in calm water of a

229	proglacial lake or fjord. Periodic hyperpycnal sediment flows and the
230	deposition of dropstones interrupted the suspension settling. The
231	association of the Edaga Arbi Glacials with glacial landforms on the
232	basement surface, such as roche moutonnées, rock drumlins, as well
233	as glacial striae, confirms a glacial origin (Bussert, 2010). In the Blue
234	Nile region (Fig. 2b) Permian–Triassic continental sandstones partly
235	overlie the Edaga Arbi Glacials (Dawit, 2014).
236	The Palaeozoic succession is – unconformably in northern Ethiopia –
237	overlain by the Mesozoic Adigrat Sandstone, the Antalo Limestone,
238	Agula Shale and Amba Aradam Formation (Beyth, 1972b; Dawit,
239	2010).
240	
241	3. Sampling and methods
242	
243	Thirty-two sandstone samples were taken from surface outcrops, 19
244	from the Enticho Sandstone and 13 from the Edaga Arbi Glacials.
245	The focus of the sampling campaign was on northern Ethiopia since
246	Palaeozoic glacial sediments are more abundant there. In the Blue
247	Nile region in the west of the country, glacial sediments could be

248 identified at only one locality (Fig. 2b). In addition to the

sedimentary rocks, seven samples from the local basement of

250 northern Ethiopia were studied, as well as 11 samples from boulders

251 in tillite of the Edaga Arbi Glacials. Fig. 2 shows the sample

252 locations; Table 1 provides the corresponding coordinates. Sampling

sites were chosen in order to cover a laterally extensive area based on

254 previous stratigraphic and sedimentological work of R. Bussert and

E. L. Dawit (Bussert and Schrank, 2007; Bussert and Dawit, 2009).

256	We paid attention to select sampling sites where there is
257	biostratigraphic control on the sediments. Furthermore, we
258	distinguished the Enticho Sandstone and Edaga Arbi Glacials based
259	on homo-/heterogeneity in grain size and mineralogy, and on
260	sedimentary structures: The outcrops of the Enticho Sandstone -
261	apart from the tillite at the base of one outcrop (see Section 2 in this
262	paper) – appear uniform in grain size and mineralogy (highly
263	quartzose). The Edaga Arbi Glacials are much more heterogeneous
264	(see Section 2). In the Edaga Arbi Glacials, we mainly sampled from
265	the sandy lenses. Three samples are from the tillite matrix (Table 1).
266	One sample was taken with highly uncertain stratigraphic assignment
267	(sample Eda-5, Table 1). For reasons of comparability, we focused
268	on the fine-grained parts of the sandstones during sampling, i.e. a
269	dominating grain size of 63–250 $\mu\text{m},$ using the grain-size comparator
270	chart for field work by Stow (2005).

272 *3.1. Petrography*

273 Thin sections were prepared from all samples. The samples from the 274 basement and the tillite boulders were studied only qualitatively to 275 determine the rock type. The framework composition of the 276 sandstone samples was assessed by point-counting of 300 grains per 277 sample using the "traditional" counting method (e.g., Decker and 278 Helmold, 1985). In contrast to the Gazzi-Dickinson method (e.g., 279 Ingersoll et al., 1984; Zuffa, 1985), minerals within lithic fragments 280 are counted as the type of fragment they occur in. We used this 281 method to make sure that information conveyed by the type of lithic fragment is not lost. However, only few lithic fragments are present 282

283	in the samples so that the choice of the counting method does not
284	have a significant effect on the result. The matrix content was
285	estimated based on the comparison chart of Folk (1951) with an
286	upper grain-size limit for the matrix of 30 μ m. Sorting and roundness
287	of the framework grains were estimated according to Powers (1953).
288	For sandstone classification, we used the scheme of McBride (1963;
289	Fig. 4). We did not use the scheme of Dott (1964) that includes
290	wackes, even though many samples have a high matrix content
291	(Table 2). This is, because in many cases it cannot be decided
292	whether the matrix is primary or secondary.

3.2. Major and trace element geochemistry 294

295	For geochemical analysis, ~50 g of each of the 50 samples were
296	pulverised to a particle size $<63 \ \mu m$ using an agate vibratory disc
297	mill. Geochemical analyses were carried out at the Geoscience
298	Centre at the University of Göttingen, Germany. Concentrations of
299	major elements and selected trace elements were determined by X-
300	ray fluorescence analysis (XRF) on fusion tablets. For each sample,
301	2.8 g of rock powder were mixed with 5.6 g of a di-lithium
302	tetraborate/lithium metaborate fluxing agent (Spectromelt® A12,
303	Merck) and 0.64 g lithium fluoride and fused in platinum crucibles at
304	1250 °C. XRF analysis was performed using a PANalytical AXIOS
305	Advanced sequential X-ray fluorescence spectrometer equipped with
306	a rhodium target tube for sample excitation and the software
307	SuperQ 4 for data processing. Further trace elements, including rare
308	earth elements (REE), were quantified using inductively coupled
309	plasma mass spectrometry (ICP-MS) on the dissolved sample. For

at

310	each sample, 100 mg of rock powder were digested in the following
311	steps using a PicoTrace® acid sample digestion system: (1) pre-
312	reaction with 2 ml HNO ₃ at 50 °C overnight, (2) first pressure phase
313	with 3 ml HF (40%) and 3 ml HClO ₄ (70%) at 150 °C for 8 hours, (3)
314	evaporation at 180 $^{\circ}$ C for 16 hours, (4) second pressure phase with
315	10 ml double de-ionised water, 2 ml HNO3 and 0.5 ml HCl at 150 $^{\circ}\mathrm{C}$
316	for 4 hours. The resulting solution was diluted to 100 ml with
317	ultrapure water. Analysis was performed using a ThermoElectron VG
318	PlasmaQuad 2 quadrupole ICP-MS. Measurements were calibrated to
319	the standard JA-2 of the Geological Survey of Japan.

320 The Eu anomaly of the sandstone samples was calculated as

321 suggested by McLennan (1989):

$$\frac{Eu}{Eu^*} = \frac{Eu_N}{(Sm_N * Gd_N)^{0.5}}$$

322 The subscript *N* indicates chondrite-normalised values (see Fig. 6).

323 To put the degree of weathering and leaching into numbers, we

324 calculated the frequently used chemical index of alteration, as

325 proposed by Nesbitt and Young (1982):

326
$$CIA = \frac{Al_2O_3}{(Al_2O_3 + CaO^* + Na_2O + K_2O)} * 100.$$

327 The molecular proportions of the respective oxides are used. CaO* is

328 the amount of CaO incorporated in silicates. Therefore, out of the

- 329 Edaga Arbi Glacials only five samples without carbonate
- cementation are considered. To get an idea of the tectonic signature
- 331 of the sandstones we used the tectonic setting discrimination
- diagrams of Verma and Armstrong-Altrin (2013, 2016) based on
- discriminant functions employing major oxides and trace elements.

334	For statistical analysis of the data, their compositional nature –
335	vectors of non-negative values summing up to a whole – was taken
336	into account. Standard multivariate statistical methods are designed
337	for data in the real space whereas the sample space of compositional
338	data is the simplex with the respective dimension (Aitchison, 1982;
339	Egozcue et al., 2011). To transform compositional data from the
340	simplex to the real space, Aitchison (1986) introduced the principle
341	of log-ratio transformation, that is, taking the logarithms of ratios of
342	components. In this study, we used the centred log-ratio (clr)
343	transformation to perform a principal component analysis (PCA) of
344	the major and trace element data. This means that parts of a
345	composition (e.g., element concentrations of a sample) are
346	transformed by taking the natural logarithm of the ratio of the
347	respective part and the geometric mean of the whole composition
348	(Aitchison, 2003). We performed a second PCA not considering the
349	highly mobile elements K, Rb, Ba, Sr, Mn, and Na. The high
350	variability of these elements masks the provenance signal. Moreover,
351	Ca and Mg are excluded, because they are probably influenced by
352	carbonate cement. The major and trace element data of the local
353	basement and tillite boulders were used for comparison. For the use
354	of log-ratios, the data set must not contain any zeros. Therefore, those
355	have to be replaced by small values. We chose a multiplicative zero
356	replacement using 0.65 times the detection limit, as suggested by
357	Martín-Fernández et al. (2003), since only very few values are below
358	the detection limits of the XRF and ICP-MS.
359	

4. Results

4.1. Petrography

363	According to the classification scheme of McBride (1963; Fig. 4) the
364	glaciogenic facies of the Enticho Sandstone is quartzarenite to
365	subarkose with an average composition of 90.5% quartz, 7.4%
366	feldspar and 1.4% lithic fragments. The marine facies is quartzarenite
367	with an average composition of 99.0% quartz, 0.2% feldspar and
368	0.3% lithic fragments (Fig. 4, Table 2). The lithic fragments are
369	mostly plutonic or sedimentary. The sedimentary lithoclasts are fine
370	sand- to siltstone, sometimes with metamorphic overprint, indicated
371	by foliation. As expected, grain size and roundness are more variable
372	in the glaciogenic than in the marine unit (Fig. 5b, c, Table 2). The
373	average matrix content is 16% with an average in the glaciogenic unit
374	of 20% and 11% in the marine unit. Accessory minerals are mostly
375	zircon, tourmaline, rutile, and some opaque phases. The sandstones
376	in the Edaga Arbi Glacials are subarkose to arkose with an average
377	composition of 74.8% quartz, 18.9% feldspar and 3.3% lithic
378	fragments (Fig. 4, Table 2). Most lithic fragments are plutonic or
379	sedimentary, as in the Enticho Sandstone, but few volcanic lithics
380	were also counted (Table 2). Apart from zircon, tourmaline, rutile,
381	and opaque phases, garnet is an additional accessory mineral. The
382	sandstones in the Edaga Arbi Glacials are generally heterogeneous in
383	composition and texture with variable roundness and moderate
384	sorting (Fig. 5a, Table 2). The average matrix content is 20%. Four
385	of 13 analysed samples of the Edaga Arbi Glacials are strongly
386	cemented with calcite with 20-25% of the thin section area, four
387	samples contain up to 5% calcite cement and the remaining five

388	samples contain almost no calcite. No indicators for significant
389	sediment recycling, such as abraded quartz overgrowths or abundant
390	sedimentary lithoclasts, were found in either of the two formations.
391	The samples taken from the basement include two metagreywackes,
392	one metatillite, one metapelite, one metabasite, and two granites. The
393	boulders sampled from the tillite at the base of the Edaga Arbi
394	Glacials are classified as six granitoids, two diorites/gabbros, two
395	metabasites, and one paragneiss (Table 1).
396	
397	4.2. Bulk-rock geochemistry
398	The Enticho Sandstone, especially the marine unit, is depleted in the
399	mobile elements Rb, Ba, K, and Sr but enriched in Th and Zr
400	compared to the average upper continental crust (Fig. 6). Its
401	elemental composition is highly variable, especially in the mobile
402	elements. The REE pattern is typical for sedimentary rocks of upper
403	crustal origin (Fig. 6; McLennan et al., 1993). The chondrite-
404	normalised La_N/Yb_N , which quantifies the LREE enrichment, is on

- 405 average 10.7 (Appendix). The Eu anomaly is pronounced (i.e. <1) in
- 406 the Enticho Sandstone with a mean Eu/Eu* for the glaciogenic facies
- 407 of 0.8 and 0.7 for the marine facies. The CIA is on average 92 for
- 408 marine facies and 78 for the glaciogenic facies (Appendix). The
- 409 elemental composition of the Edaga Arbi Glacials is more uniform.
- 410 The depletion in mobile elements and the Zr enrichment is less than
- 411 for the Enticho Sandstone. The chondrite-normalised La_N/Yb_N is on
- 412 average 5.9 and the mean Eu/Eu* 0.9. The average CIA is 62
- 413 (Appendix). Sample Eda-5, with uncertain stratigraphic assignment,

414	differs from the Edaga Arbi Glacials sandstone by high depletion in
415	mobile elements, Zr enrichment, and a high CIA of 95 (Fig. 6;
416	Appendix).

417	In the PCA biplot of major and trace elements (Fig. 7a), a clear
418	separation between the two formations as well as between the
419	glaciogenic and the marine facies becomes obvious: along the rays of
420	Ni and Th (enriched in Enticho Sandstone) versus Ca, Mg, and Na
421	(enriched in Edaga Arbi Glacials) the two formations can be
422	distinguished. Along the rays of K, Rb, Ba, and Sr (enriched in
423	glaciogenic) versus P, Y, V, Sc, and HREE (enriched in marine),
424	different facies separate. Sample Eda-5 has a similar composition to
425	the Enticho Sandstone. The first three principal components (Fig. 7b,
426	c) of the PCA excluding mobile elements and carbonate cement
427	influence together explain 74% of the total variability. Again, a
428	separation of the two formations is possible with the Enticho
429	Sandstone being enriched in Th, Zr, Hf, U, and Si and depleted in P
430	and Al compared to the Edaga Arbi Glacials. This separation is
431	facies-independent since no clustering of marine and glaciogenic
432	Enticho Sandstone is visible. No patterns related to stratigraphic or
433	geographic sampling position were detected (not shown in Fig. 7).
434	In the tectonic setting discrimination diagram of Verma and
435	Armstrong-Altrin (2013) based on major oxide concentrations, the
436	Enticho Sandstone plots in the "continental rift" field, the Edaga Arbi
437	Glacials in the "continental rift" and "collision" fields (Fig. 8a). In
438	the active versus passive margin diagram of Verma and Armstrong-
439	Altrin (2016; Fig. 8b) based on major oxides and selected trace
440	elements, the Enticho Sandstone is assigned to a passive margin

441	setting whereas the Edaga Arbi Glacials plot partly in the active and
442	partly in the passive margin field. The Th/Sc and Zr/Sc ratios are
443	generally higher for the Enticho Sandstone than for the Edaga Arbi
444	Glacials (Fig. 9). Significant Zr enrichment that would lead to a
445	deviation from the compositional trend is not clearly visible for either
446	of the formations. A plot of the Th/Sc versus Zr/Sc ratios of the
447	samples grouped geographically into north, centre, and south
448	(Fig. 9b) reveals a trend towards higher Th/Sc and higher Zr/Sc ratios
449	along the assumed transport direction from south to north for both
450	formations.
451	Of the basement samples, the granites are enriched in Nb, HREE, and
452	Y and depleted in Cr and Ni compared to the centre of the data set
453	plotted in Fig. 10. The metasediments are enriched in V, Sc, Fe, Ni,
454	and Cr and depleted in Zr, Th, Hf, and U, similar to the metabasite
455	(Fig. 10). The overall composition of the basement samples
456	resembles that of the Edaga Arbi Glacials (Fig. 10). Of the boulders
457	sampled from tillite at the base of the Edaga Arbi Glacials, the
458	granitoids have similar compositions to the granites in the basement
459	(Fig. 10a). The diorites/gabbros have variable compositions, one
460	being rich in P and the other in Fe and Sc (Fig. 10). Of the basalts,
461	one is enriched in HREE, Nb and Y, the other in V, Sc, and Cr. The
462	composition of the paragneiss is close to the centre of the data set
463	with slight enrichment in Fe, Sc, and Cr.
464	
465	

5. Discussion

468	When interpreting bulk-rock geochemical data, grain-size effects
469	have to be considered (e.g., Rollinson, 1993; von Eynatten et al.,
470	2012). The grain-size distribution of a sediment is influenced by
471	transport processes, such as hydraulic sorting and comminution (e.g.,
472	Rubey, 1933; Garzanti et al., 2008; von Eynatten et al., 2012), and by
473	the inherited grain size of the respective mineral in the parent rock
474	(Morton and Hallsworth, 1994). Even though we collected samples
475	of the same major grain size, the degree of sorting of framework
476	grains and the matrix content differ (Section 4; Table 2). Therefore,
477	for instance, the high contents of Mg, Ca, Na, and K in the glacial
478	samples (Fig. 7a) are probably not only related to (little) weathering
479	and (strong) diagenesis but also to the poor sorting and higher matrix
480	content of the glacial samples as compared to the marine (Table 2).
481	To account for the facies differences, we plotted the glaciogenic and
482	marine facies of the Enticho Sandstone separately in the respective
483	diagrams (Fig. 4, Fig. 6-10).
484	A clear distinction of the two formations is possible, particularly in
485	terms of their major and trace element compositions (e.g., Figs. 7, 8).
486	This makes it possible to assign stratigraphically uncertain samples:
487	Sample Eda-5 was tentatively assigned to the Edaga Arbi Glacials by
488	sedimentological characteristics in the field but without
489	biostratigraphic evidence. Based on the geochemical characteristics it
490	is likely that it belongs to the Enticho Sandstone instead.
491	Furthermore, the samples taken from an outcrop in Enticho (samples
492	Eda-2 and Eda-3; Table 1) – originally the type location of the
493	Enticho Sandstone – can be assigned to the Edaga Arbi Glacials

494 based on their petrography and chemical composition (Table 2,495 Appendix).

496	The high variability in Ca, Mg, Na, K, Rb, and Ba (Fig. 7a) in the
497	data set reflects the high mobility of these elements, which are
498	present in the glaciogenic sedimentary rocks but leached from the
499	marine. The enrichment of Si in the Enticho Sandstone (Fig. 7)
500	indicates a higher quartz content, which is in agreement with
501	petrographic observations (Fig. 4, Table 2) and points to high
502	maturity. The negative correlation of Al and Si (Fig. 7b) indicates
503	transport processes that remove clay minerals and feldspars and
504	destroy lithic fragments, and thus relatively enrich quartz in the
505	Enticho Sandstone. Similarly, the negative correlation of P and Th
506	(Fig. 7b, c) suggests weathering under acidic conditions, in which
507	apatite is destroyed and Th persists, and which affected the Enticho
508	Sandstone more than the Edaga Arbi Glacials. This is supported by
509	the higher CIA values for the Enticho Sandstone (Appendix). The
510	correlations of Hf, Th, U, and Nb with Zr and Ti in the Enticho
511	Sandstone (Fig. 7) suggests that these elements are carried zircon and
512	rutile. The presence of these stable heavy minerals is an additional
513	indicator for maturity. The high maturity of the Enticho Sandstone is
514	probably a consequence of (1) intense chemical weathering in the
515	source area prior to the glaciation and (2) long transport and/or
516	marine reworking, in which clay minerals produced during
517	weathering are removed from the sediment. Intense chemical
518	weathering in northern Gondwana under a corrosive Neoproterozoic
519	to pre-glacial Ordovician atmosphere was suggested by, e.g., Avigad
520	et al. (2005). The assignment of the Enticho Sandstone to

521	"continental rift" and "passive margin" settings based on major and
522	trace element composition (Fig. 8; Verma and Armstrong-Altrin,
523	2013, 2016) is related to the higher maturity as well.
524	For the Edaga Arbi Glacials, on the other hand, Al enrichment
525	indicates a higher content of feldspar and clay minerals and thus a
526	lower maturity (Fig. 7b, c). Since Eu is enriched in plagioclase, the
527	less pronounced Eu anomaly in the Edaga Arbi Glacials (Fig. 6)
528	corresponds to a higher feldspar content as well. This is in
529	accordance with the petrographic observations (Fig. 4, Table 2). The
530	higher concentration of HREE in the Edaga Arbi Glacials is probably
531	related to the presence of garnet. The tendency of the Edaga Arbi
532	Glacials to "collision" and "active margin" signatures (Fig. 8) points
533	to fresher, less reworked material deposited in the Carboniferous-
534	Permian and does not have to indicate different tectonic settings.
535	Neither petrography nor the Th/Sc and Zr/Sc ratios give hints to
536	sedimentary recycling being an important process for one of the
537	formations. The few fine-grained and foliated sedimentary lithoclasts
538	may be due to local erosion of slates from the Neoproterozoic
539	basement. The south-north trend of Th/Sc and Zr/Sc ratios in both
540	formations (Fig. 9b) may be due to progressive enrichment of stable
541	heavy minerals, such as zircon, along the transport path. Zircon is a
542	major carrier of Zr and Th (Fig. 7). Another possibility would be the
543	admixture of felsic material.
544	The enrichment of the Enticho Sandstone in Zr, Hf, Th, U, Nb, and
545	the light REE (Figs. 6, 7) points to felsic source rocks. The
546	pronounced negative Eu anomaly (Fig. 6) indicates evolved crustal
547	material as a source. Possible source areas are the Archean cratons

548	(Congo Craton, Tanzania Craton) or the Proterozoic mobile belts
549	(Kibaran Belt, Irumide Belt, Mozambique Belt) in the inner part of
550	Gondwana (Fig. 1). A distal source area in central Gondwana was
551	also proposed for Cambrian–Ordovician sandstone in Israel and
552	Jordan: Based on detrital zircon ages, Kolodner et al. (2006) inferred
553	a progressive southward migration of the source area during the
554	Cambrian–Ordovician. Hf isotopic data of Neoproterozoic zircons
555	from these formations are incompatible with the local Arabian-
556	Nubian Shield. This led Morag et al. (2011) to the assumption that
557	the source region might be within the remobilised crustal areas
558	further south (Fig. 1). If this trend extends to the Upper Ordovician, a
559	distal source area in the inner part of Gondwana for the Enticho
560	Sandstone is likely.
561	In the Edaga Arbi Glacials, the relative enrichment of V and Cr and
562	the higher proportion of HREE indicates a higher influence of mafic
563	and garnet-bearing source material (e.g., Bhatia and Crook, 1986;
564	McLennan et al., 1993). For example, smectite – commonly a
565	weathering product of mafic precursor minerals – can be rich in Cr
566	and V (e.g., Chamley et al., 1979). Garnet is a major carrier of HREE
567	(e.g., Harangi et al., 2001). The poor Eu anomaly (Fig. 6) indicates
568	contribution of juvenile source material (McLennan et al., 1993).
569	Similarly, the lower Th/Sc of the Edaga Arbi Glacials compared to
570	the Enticho Sandstone points to a higher influence of undifferentiated
571	crustal material (Fig. 9; McLennan et al., 1993). A proximal source
572	area composed mainly of juvenile crust would be the Arabian-
573	Nubian Shield, which is the northernmost edge of the East African
574	Orogen (Johnson et al., 2011). Ophiolites in the Arabian–Nubian

575	Shield, as described for instance by Meert (2003), Johnson et al.
576	(2011), and Stern et al. (2012), could be the source for mafic input in
577	the Edaga Arbi Glacials. Volcanic rock fragments in the Edaga Arbi
578	Glacials may indicate late Palaeozoic volcanism, as speculated by
579	Sacchi et al. (2007). However, it cannot be said with certainty that
580	the rock fragments are not metamorphically overprinted and older.
581	Metavolcanic rocks are abundant in the Neoproterozoic basement and
582	are a likely source for these fragments. The similar overall
583	composition of the local basement samples and the Edaga Arbi
584	Glacials (Fig. 10) supports the assumption of a local source for these
585	and a different source area for the Enticho Sandstone.
586	Petrographic and chemical compositions of glacial successions of
587	Upper Ordovician and Carboniferous-Permian sandstone in Saudi
588	Arabia are similar to those obtained in Ethiopia: a signature of old
589	crustal material in the early Palaeozoic and a higher influence of
590	juvenile material in the late Palaeozoic (Bassis et al., 2016b). In the
591	PCA biplot (Fig. 10), however, the Carboniferous-Permian samples
592	from Saudi Arabia plot far away from the corresponding samples of
593	this study, whereas the Upper Ordovician samples are grouped with
594	the corresponding. Therefore, for the early Palaeozoic a common
595	provenance for the glacial sandstones of both areas is likely, whereas
596	in the late Palaeozoic the sediments were probably supplied from
597	different local sources (Fig. 11). This supports the assumption of a
598	large North Gondwana ice sheet in the Late Ordovician (Ghienne et
599	al., 2007; Le Heron and Craig, 2008) and more local glacial systems
600	during the Carboniferous-Permian glaciation (Eyles, 1993; Fielding
601	et al., 2008).

602 Conclusions

603	The petrographic and geochemical comparison of sandstones
604	deposited during the two Gondwana glaciations in the Late
605	Ordovician and the Carboniferous–Permian reveals clear differences.
606	The Upper Ordovician Enticho Sandstone is highly mature with a
607	major and trace element composition typical for old differentiated
608	crustal provenance. In contrast, the sandstone of the Carboniferous-
609	Permian Edaga Arbi Glacials is less mature with a geochemical
610	signature of more juvenile source material. Its major and trace
611	element composition resembles that of the local basement.
612	Stratigraphically equivalent formations in Saudi Arabia show similar
613	patterns for the Late Ordovician but significant differences for the
614	Carboniferous-Permian. The distinct petrographic and geochemical
615	differences between the two formations make it possible to assign
616	stratigraphically uncertain samples.
617	The high maturity of the Upper Ordovician Enticho Sandstone is
618	probably a consequence of strong chemical weathering in the source
619	area before the glaciation combined with long transport by the
620	glaciers and reworking in a shallow marine environment after the
621	glaciation. The material is possibly sourced from Archean cratons
622	and/or Proterozoic mobile belts in central Gondwana, such as the
623	Congo and Tanzania cratons or the Kibaran, Irumide or Mozambique
624	belts. The Edaga Arbi Glacials have a proximal source, most likely
625	the Arabian–Nubian Shield. These findings support previous models
626	of a large ice sheet covering northern Gondwana in the Late
627	Ordovician, leading to a regional mixture and homogenisation of

- 628 source material, and a complex pattern of local glaciers in the
- 629 Carboniferous–Permian.
- 630

631 Acknowledgements

- 632 This project was funded by the German Research Foundation (DFG
- 633 grants HI 643/13-1, ME 3882/4-1). We thank Gerald Hartmann for
- 634 XRF analysis and Klaus Simon for ICP-MS analysis. Careful and
- 635 constructive reviews by Carita Augustsson and Martin Keller are
- 636 greatly appreciated
- 637

638 Appendix. Supplementary data

- 639 Supplementary data associated with this article can be found in the
- 640 online version at <u>http://xxxxxx</u>
- 641

642 References

643	Aitchison, J., 1982. The Statistical Analysis of Compositional Data.
644	Journal of the Royal Statistical Society. Series B
645	(Methodological) 44, 139–177.
646	Aitchison, J., 1986. The Statistical Analysis of Compositional Data.
647	Chapman & Hall, London/New York.
648	Aitchison, J., 2003. A Concise Guide to Compositional Data
649	Analysis, University of Glasgow, Department of Statistics.
650	Alene, M., Jenkin, G.R.T., Leng, M.J., Darbyshire, D.P.F., 2006. The
651	Tambien Group, Ethiopia: An early Cryogenian (ca. 800–735
652	Ma) Neoproterozoic sequence in the Arabian–Nubian Shield.
653	Precambrian Research 147, 79–99.
654	Arkin, Y., Beyth, M., Dow, D.B., Levitte, D., Temesgen, H.,
655	Tsegaye, H., 1971. Geological Map of Mekele Area, Sheet
656	ND 37-11, Geological Survey of Ethipia, Addis Abeba,
657	Scale: 1:250,000
658	Avigad, D., Sandler, A., Kolodner, K., Stern, R., McWilliams, M.,
659	Miller, N., Beyth, M., 2005. Mass-production of Cambro-
660	Ordovician quartz-rich sandstone as a consequence of
661	chemical weathering of Pan-African terranes: Environmental

662	implications. Earth and Planetary Science Letters 240, 818-
663	826.
664	Bassis, A., Hinderer, M., Meinhold, G., 2016a. New insights into the
665	provenance of Saudi Arabian Palaeozoic sandstones from
666	heavy mineral analysis and single-grain geochemistry.
667	Sedimentary Geology 333, 100–114.
668	Bassis, A., Hinderer, M., Meinhold, G., 2016b. Petrography and
669	geochemistry of Palaeozoic quartz-rich sandstones from
670	Saudi Arabia: implications for provenance and
671	chemostratigraphy. Arabian Journal of Geosciences 9:400,
672	doi:10.1007/s12517-016-2412-z
673	Beyth, M., 1972a. Paleozoic-Mesozoic sedimentary basin of the
674	Mekele Outlier, Northern Ethiopia. American Association of
675	Petroleum Geologists Bulletin 56, 2426–2439.
676	Beyth, M., 1972b. To the geology of central-western Tigre. PhD
677	thesis, Rheinische Friedrich-Wilhelms-Universität Bonn,
678	159 pp.
679	Bhatia, M.R., Crook, K.A.W., 1986. Trace element characteristics of
680	graywackes and tectonic setting discrimination of
681	sedimentary basins. Contributions to Mineralogy and
682	Petrology 92, 181–193.
683	Bussert, R., 2010. Exhumed erosional landforms of the Late
684	Palaeozoic glaciation in northern Ethiopia: Indicators of ice-
685	flow direction, palaeolandscape and regional ice dynamics.
686	Gondwana Research 18, 356–369.
687	Bussert, R., 2014. Depositional environments during the Late
688	Palaeozoic ice age (LPIA) in northern Ethiopia, NE Africa.
689	Journal of African Earth Sciences 99, 386–407.
690	Bussert, R., Schrank, E., 2007. Palynological evidence for a latest
691	Carboniferous-Early Permian glaciation in Northern
692	Ethiopia. Journal of African Earth Sciences 49, 201–210.
693	Bussert, R., Dawit, E.L., 2009. Unexpected diversity: New results on
694	the stratigraphy and sedimentology of Palaeozoic and
695	Mesozoic siliciclastic sediments in Northern Ethiopia.
696	Zentralblatt für Geologie und Paläontologie Teil I(3/4), 181–
697	198.
698	Chamley, H., Debrabant, P., Foulon, J., d'Argoud, G.G., Latouche,
699	C., Maillet, N., Maillot, H., Sommer, F., 1979. Mineralogy
700	and geochemistry of Cretaceous and Cenozoic Atlantic
701	sediments off the Iberian Peninsula (Site 398, DSDP LEG
702	47B). In: Laughter, F.H. (Ed.), Leg 47, Part 2 of the cruises
703	of the drilling vessel Glomar Challenger, Vigo, Spain to
704	Brest, France; April-May 1976. Initial Reports of the Deep
705	Sea Drilling Project, Vol. 47 (Part 2), Texas A&M
706	University, Ocean Drilling Program, College Station, Texas,
707	United States, pp. 429–449.
708	Collins, A.S., Pisarevsky, S.A., 2005. Amalgamating eastern
709	Gondwana: The evolution of the Circum-Indian Orogens.
710	Earth-Science Reviews 71, 229–270.
/11	Dawit, E.L., 2010. Adigrat Sandstone in Northern and Central
/12	Ethiopia: Stratigraphy, Facies, Depositional Environments
713	and Palynology. PhD thesis, Technical University Berlin,
714	166 pp.

715	Dawit, E.L., 2014. Permian and Triassic microfloral assemblages
716	from the Blue Nile Basin, central Ethiopia. Journal of
717	African Earth Sciences 99, 408–426.
718	Decker, J., Helmold, K.P., 1985. The effect of grain size on detrital
719	modes: a test of the Gazzi-Dickinson point-counting method
720	– discussion. Journal of Sedimentary Petrology 55, 618–620.
721	Dott, R.H., 1964. Wacke, graywacke and matrix; what approach to
722	immature sandstone classification? Journal of Sedimentary
723	Petrology 34, 625–632.
724	Dow, D.B., Beyth, M., Hailu, T., 1971. Palaeozoic glacial rocks
725	recently discovered in northern Ethiopia. Geological
726	Magazine 108, 53–60.
727	Egozcue, J.J., Barceló-Vidal, C., Martín-Fernández, J.A., Jarauta-
728	Bragulat, E., Díaz-Barrero, J.L., Mateu-Figueras, G., 2011.
729	Elements of Simplicial Linear Algebra and Geometry In:
730	Pawlowsky-Glahn V Buccianti A (Eds.) Compositional
731	Data Analysis: Theory and Applications John Wiley & Sons
732	Ltd Chichester West Sussex UK nn 139–157
733	Evles N 1993 Farth's glacial record and its tectonic setting Farth-
734	Science Reviews 35 1–248
735	Fielding C R Frank T D Isbell II. 2008 The late Paleozoic ice
736	age – A review of current understanding and synthesis of
737	global climate natterns. In: Fielding C.R. Frank T.D.
738	Isbell II. (Eds.) Resolving the Late Paleozoic ice age in
739	time and space. Geological Society of America. Special
740	Paper 441 np 343–354
741	Folk R L 1951 A comparison chart for visual percentage
7/2	estimation Journal of Sedimentary Petrology 21, 32-33
7/2	Garfunkel 7 2002 Early Paleozoic sediments of NE Africa and
743 744	Arabia: Products of continental-scale erosion sediment
745	transport and denosition Israel Journal of Farth Sciences 51
746	135–156
740	Garland C.R. 1978. Geology of the Adigrat Area. Ministry of
748	Mines Energy and Water Resources Geological Survey of
749	Ethionia Memoir 1 Addis Abeha 51 nn
750	Garzanti F Andò S Vezzoli G 2008 Settling equivalence of
751	detrital minerals and grain-size dependence of sediment
752	composition Earth and Planetary Science Letters 273 138–
753	151
754	Ghienne I-F 2003 Late Ordovician sedimentary environments
755	glacial cycles and nost-glacial transgression in the Taoudeni
756	Basin West Africa Palaeogeography Palaeoclimatology
757	Palaeoecology 189, 117–145
758	Ghienne L-F Le Heron D.P. Moreau I. Denis M. Devnoux M.
759	2007 The Late Ordovician glacial sedimentary system of the
760	North Gondwana platform In: Hambrey M I
761	Christoffersen P Glasser N F Hubbard B (Eds.) Glacial
762	Sedimentary Processes and Products International
763	Association of Sedimentologists Special Publication 30
764	Malden USA Oxford UK Victoria Australia pp 205–310
765	Harangi Sz Downes H Kósa I. Szabó Cs Thirlwall M F
766	Mason PRD Mattey D 2001 Almandine Garnet in Calc-
767	alkaline Volcanic Rocks of the Northern Pannonian Basin
768	(Eastern-Central Europe): Geochemistry Petrogenesis and
, 50	(Lustern Centur Lutope). Geochennistry, retrogenesis and

769	Geodynamic Implications. Journal of Petrology 42, 1813–
770	1843.
771	Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D.,
772	Sares, S.W., 1984. The effect of grain size on detrital modes:
773	a test of the Gazzi-Dickinson point-counting method. Journal
774	of Sedimentary Petrology 54, 103–116.
775	Isbell, J.L., Henry, L.C., Gulbranson, F.L., Limarino, C.O., Fraiser,
776	M L. Koch Z L. Ciccioli P L. Dineen A A 2012 Glacial
777	paradoxes during the late Paleozoic ice age: Evaluating the
778	equilibrium line altitude as a control on glaciation
770	Gondwana Research 22, 1, 10
773	Johnson D.D. Andreson A. Collins A.S. Fowler A.D. Fritz H
700	Chakrash W. Kushu, T. Starr, D.L. 2011, Late
701	Gneoread, w., Kusky, I., Stern, R.J., 2011. Late
/82	Cryogenian–Ediacaran history of the Arabian–Nubian
/83	Shield: A review of depositional, plutonic, structural, and
/84	tectonic events in the closing stages of the northern East
785	African Orogen. Journal of African Earth Sciences 61, 167–
786	232.
787	Kazmin, V., 1972. Geological Map of Ethiopia. Geological Survey of
788	Ethiopia, Addis Abeba, Scale: 1:2,000,000.
789	Kazmin, V., Shifferaw, A., Balcha, T., 1978. The Ethiopian
790	basement: Stratigraphy and Possible Manner of Evolution.
791	Geologische Rundschau 67, 531–546.
792	Keller, M., Hinderer, M., Al-Ajmi, H., Rausch, R., 2011. Palaeozoic
793	glacial depositional environments of SW Saudi Arabia:
794	process and product, Geological Society, London, Special
795	Publication 354, 129–152.
796	Keller, M., Lehnert, O., 2010. Ordovician paleokarst and quartz sand:
797	Evidence of volcanically triggered extreme climates?
798	Palaeogeography, Palaeoclimatology, Palaeoecology 296,
799	297–309.
800	Knox, R.W.O.B., Franks, S.G., Cocker, J.D., 2007. Stratigraphic
801	evolution of heavy-mineral provenance signatures in the
802	sandstones of the Wajid group (Cambrian to Permian),
803	southwestern Saudi Arabia. GeoArabia 12, 65–96.
804	Kolodner, K., Avigad, D., McWilliams, M., Wooden, J.L.,
805	Weissbrod, T., Feinstein, S., 2006. Provenance of north
806	Gondwana Cambrian–Ordovician sandstone: U–Pb SHRIMP
807	dating of detrital zircons from Israel and Jordan. Geological
808	Magazine 143, 367–391.
809	Konert, G., Afifi, A.M., Al-Hairi, S.A., Droste, H.J., 2001, Paleozoic
810	stratigraphy and hydrocarbon habitat of the Arabian Plate.
811	GeoArabia 6 407–442
812	Kretz R 1983 Symbols of rock-forming minerals American
813	Mineralogist 68 277_279
814	Kumpulainen R A 2007 The Ordovician glaciation in Fritrea and
815	Ethionia In: Hambrey M I Christoffersen P Glasser
816	N F Hubbard B (Eds.) Glacial Sedimentary Processes and
817	Products International Association of Sedimentologists
818	Special Publication 39 Malden USA Ovford UK Victoria
810	Δ ustralia nn 321-342
820	Kumpulainen R & Uchman & Woldehaimanot R Krauser T
820 821	Chirman S 2006 Trace fossil evidence from the Adjorat
877 877	Sandstone for an Ordovician glaciation in Eritrae NE Africa
872	Journal of African Farth Sciences 45, 408–420
525	3000000000000000000000000000000000000

824	Le Heron, D.P., Craig, J., 2008. First-order reconstructions of a Late
825	Ordovician Saharan ice sheet. Journal of the Geological
826	Society of London 165, 19–29.
827	Le Heron, D.P., Craig, J., Etienne, J.L., 2009. Ancient glaciations
828	and hydrocarbon accumulations in North Africa and the
829	Middle East. Earth-Science Reviews 93, 47–76.
830	Martín-Fernández, J.A., Barceló-Vidal, C., Pawlowsky-Glahn, V.,
831	2003. Dealing with zeros and missing values in
832	compositional data sets using nonparametric imputation.
833	Mathematical Geology 35, 253–278.
834	McBride, E.F., 1963, A classification of common sandstones, Journal
835	of Sedimentary Petrology 33, 664–669.
836	McLennan S M 1989 Rare earth elements in sedimentary rocks:
837	influence of provenance and sedimentary processes. In:
838	Linin B.R. McKay, G.A. (Eds.) Reviews in Mineralogy 21
830	The Mineralogical Society of America Washington D.C. nn
840	160 106
040 9/1	McLennan S.M. 2001 Palationshins between the trace element
041	approximation of adjunctory rocks and upper continental
042	composition of seamentary focks and upper continentar
045	MoLennen S.M. Hemming S. McDeniel D.K. Hencen C.N.
044 045	McLennan, S.M., Henning, S., McDanlei, D.K., Hanson, G.N.,
845	1995. Geochemical approaches to sedimentation,
840	provenance, and tectomics. Geological Society of America,
847	Special Paper 284, $21-40$.
848	Meert, J.G., 2003. A synopsis of events related to the assembly of
849	eastern Gondwana. Tectonophysics 362, 1–40.
850	Meinhold, G., Morton, A.C., Fanning, C.M., Frei, D., Howard, J.P.,
851	Phillips, R.J., Strogen, D., Whitham, A.G., 2011. Evidence
852	from detrital zircons for recycling of Mesoproterozoic and
853	Neoproterozoic crust recorded in Paleozoic and Mesozoic
854	sandstones of southern Libya. Earth and Planetary Science
855	Letters 312, 164–175.
856	Miller, N.R., Alene, M., Sacchi, R., Stern, R.J., Conti, A., Kröner, A.,
857	Zuppi, G., 2003. Significance of the Tambien Group (Tigrai,
858	N. Ethiopia) for Snowball Earth events in the Arabian–
859	Nubian Shield. Precambrian Research 121, 263–283.
860	Miller, N.R., Stern, R.J., Avigad, D., Beyth, M., Schilman, B., 2009.
861	Cryogenian slate-carbonate sequences of the Tambien
862	Group, Northern Ethiopia (I): Pre-"Sturtian"
863	chemostratigraphy and regional correlations. Precambrian
864	Research 170, 129–156.
865	Morag, N., Avigad, D., Gerdes, A., Belousova, E., Harlavan, Y.,
866	2011. Detrital zircon Hf isotopic composition indicates long-
867	distance transport of North Gondwana Cambrian-Ordovician
868	sandstones. Geology 39, 955–958.
869	Morton, A.C., Hallsworth, C., 1994. Identifying the provenance-
870	specific features of detrital heavy mineral assemblages in
871	sandstones. Sedimentary Geology 90, 241–256.
872	Morton, A.C., Meinhold, G., Howard, J.P., Phillips, R.J., Strogen, D.,
873	Abutarruma, Y., Elgadry, M., Thusu, B., Whitham, A.G.
874	2011. A heavy mineral study of sandstones from the eastern
875	Murzug Basin, Libva: Constraints on provenance and
876	stratigraphic correlation. Journal of African Earth Sciences
877	61, 308–330.
.	

878	Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and
879	plate motions inferred from major element chemistry of
880	lutites. Nature 299, 715–717.
881	Powers, M.C., 1953. A new roundness scale for sedimentary
882	particles, Journal of Sedimentary Petrology 23, 117-119.
883	Rollinson H.R. 1993 Using geochemical data - evaluation
881	presentation interpretation Longman Harlow UK
004 00E	Pubey W.W. 1023 Sattling valorities of graval and and silt
005	Rubey, W.W., 1955. Setting velocities of graver, sand and shi
000	Particles. American Journal of Science 23, 525–558.
887	Sacchi, R., Alene, M., Barbieri, M., Conti, A., 2007. On the
888	Palaeozoic Tillite of the Adigrat Group (Tigrai, Ethiopia).
889	Periodico di Mineralogia 76, 241–251.
890	Saxena, G.N., Assefa, G., 1983. New evidence on the age of the
891	glacial rocks of northern Ethiopia. Geological Magazine 120,
892	549–554.
893	Sharland, P.R., Archer, R., Casey, D.M., Davies, R.B., Hall, S.H.,
894	Heward, A.P., Horbury, A.D., Simmons, M.D., 2001.
895	Arabian Plate Sequence Stratigraphy. GeoArabia Special
896	Publication 2, Gulf PetroLink, Bahrain.
897	Squire, R.J., Campbell, I.H., Allen, C.M., Wilson, C.J.L., 2006. Did
898	the Transgondwanan Supermountain trigger the explosive
899	radiation of animals on Earth? Earth and Planetary Science
900	Letters 250 116–133
901	Stern R I 1994 Arc assembly and continental collision in the
902	Neoproterozoic Fast African Orogen: Implications for the
902	consolidation of Gondwanaland Annual Review of Farth
903	and Planetary Sciences 22, 310-351
005	Storn P. I. Ali K. A. Abdelselem M.C. Wilde S.A. Zhou O.
905	2012 II Dh zirzon googhronology of the agetern part of the
900	Southern Ethiopion Shield Procembrian Descerch 206, 207
000	150, 167
908	139-107. Store DAV 2005 Sedimenters Beeks in the Field, A Colour
909	Stow, D.A.V., 2005. Sedimentary Rocks in the Field: A Colour
910	Guide. CRC Press Taylor & Francis Group, Boca Raton,
911	
912	Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its
913	Composition and Evolution. Blackwell Scientific
914	Publication, Oxford, UK.
915	Tefera, M., Chernet, T., Haro, W., 1996. Explanation of the
916	geological map of Ethiopia. T.F.D.R.o. Ethiopia Ministry of
917	Mines and Energy Bulletin 3.
918	Torsvik, T.H., Cocks, L.R.M., 2013. Gondwana from top to base in
919	space and time. Gondwana Research 24, 999–1030.
920	Tsige, L., Hailu, F., 2007. Geological Map of the Bure Area,
921	Ministry of Mines and Energy, Geological Survey of
922	Ethiopia Memoir 18, Addis Abeba.
923	Verma, S.P., Armstrong-Altrin, J.S., 2013. New multi-dimensional
924	diagrams for tectonic discrimination of siliciclastic sediments
925	and their application to Precambrian basins. Chemical
926	Geology 355, 117–133.
927	Verma, S.P., Armstrong-Altrin, J.S., 2016, Geochemical
928	discrimination of siliciclastic sediments from active and
929	passive margin settings. Sedimentary Geology 332 1–12
920	von Fynatten H Tolosana-Delgado R Karius V 2012 Sediment
Q21	generation in modern glacial settings: Grain size and source
221	Seneration in modern gracial settings. Oram-size and source-

932	rock control on sediment composition. Sedimentary Geology
933	280, 80–92.
934	Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-
935	forming minerals. American Mineralogist 95, 185–187.
936	Zuffa, G.G., 1985. Optical analyses of arenites: influence of
937	methodology on compositional results. In: Zuffa, G.G. (Ed.),
938	Provenance of Arenites. NATO ASI Series, Series C:
939	Mathematical and Physical Science 148, 165–189.
040	
940	

941 Tables

943 Table 1. Samples, corresponding locations, and geographic
944 coordinates (WGS84). The stratigraphic assignment is based on
945 biostratigraphic evidence (B) or lithofacies characteristics (LF) in the
946 outcrop, or it is uncertain (U).

948	Table 2. Results of petrographic point-counting analysis of thin
949	sections. Values given in %. $Qz_m = monocrystalline quartz, Qz_{mu} =$
950	monocrystalline quartz with undulose extinction, Qz _p =
951	polycrystalline quartz (subgrain formation), Qz_{micr} = microcrystalline
952	quartz, Pl = plagioclase, Kfs = potassium feldspar, Lp = plutonic
953	lithic fragment, Lv = volcanic lithic fragment (includes metavolcanic
954	clasts, since oriented texture is rarely visible but metamorphic
955	overprint is probable), Ls = sedimentary lithic fragments, Lms =
956	metasedimentary lithic fragments, Lmi = metamorphic igneous lithic
957	fragment, other = minor components such as accessories, unid. =
958	unidentified, e.g., strongly altered. Mineral abbreviations of
959	accessories after Kretz (1983) and Whitney and Evans (2010). Ap =
960	apatite, Cal = calcite, Chl = chlorite, Grt = garnet, Ms = muscovite,
961	Op = opaque, Px = pyroxene, Sil = sillimanite, St = staurolite, Tur =
962	tourmaline, $Zrn = zircon$. Carbonate cement: $0 = not present$, $+ = up$
963	to 5%, ++ = 20–25%. GS = grain size. Sorting: = very poor, - =
964	poor, 0 = moderate, + = good, ++ = very good. Roundness: =
965	angular, - = subangular, 0 = subrounded, + = rounded, ++ = well
966	rounded.

Figure captions

970 Fig. 1. Eastern Africa and Arabia with occurrences of Precambrian
971 rocks and major tectonic units. The outline of Ethiopia and the study
972 regions are indicated in blue.

974 Fig. 2. Geological maps of the study areas showing the sampling
975 locations. Numbers next to the sampling locations correspond to
976 those in Table 1. (a) Northern Ethiopia (modified after Arkin et al.,
977 1971; Garland, 1978; Bussert, 2014). (b) Blue Nile region (modified
978 after Tsige and Hailu, 2007; Dawit, 2014). The term "Fincha
979 Sandstone" is taken from Dawit (2014).

981	Fig. 3. Field photographs. (a) Sandstone lens above tillite with
982	muddy matrix and rounded clasts of various composition at the base
983	of the Edaga Arbi Glacials. (b) Dropstones in rhythmically laminated
984	sandstone and silt- to claystone in Edaga Arbi Glacials. (c) Striated

985 986 987 988 989 990 991 992	boulder in tillite at the base of Edaga Arbi Glacials. (d) Rhythmic mud drapes on cross-beds in marine part of the Enticho Sandstone indicating intertidal environment. (e) Herringbone cross-lamination in marine part of Enticho Sandstone indicating tidal environment. (f) Alternation of graval bends and sandstone in glaciogenic part of Enticho Sandstone. (g) Tillite at the base of glaciogenic Enticho Sandstone. (h) Soft-sediment deformation structures in sandstone underlying tillite in the basal part of Enticho Sandstone.
993	
994 995 996	Fig. 4. Sandstone classification diagram after McBride (1963). $Q =$ quartz, $F =$ feldspar, $L =$ lithic fragments (thin section point-counting).
997	
998 999 1000 1001 1002 1003 1004	Fig. 5. Thin section photomicrographs of the Edaga Arbi Glacials and the marine and glaciogenic units of the Enticho Sandstone. $Qz =$ quartz, Pl = plagioclase, Kfs = potassium feldspar, Lp = plutonic lithic fragment, Lv = (meta)volcanic lithic fragment, St = staurolite, Ky = kyanite, Zrn = zircon (mineral abbreviations after Kretz, 1983; Whitney and Evans, 2010). PPL = plane-polarised light, XPL = cross-polarised light.
1005	
1006 1007 1008 1009 1010 1011	Fig. 6. Selected major and trace element concentrations normalised to the average upper continental crust (UCC; normalising values from McLennan, 2001) are shown on the left side. Rare earth element concentrations normalised to average CI chondrites (normalising values from Taylor and McLennan, 1985) are shown on the right side.
1012	
1013 1014 1015 1016 1017 1018 1019 1020	Fig. 7. Compositional biplots of (a) the first two principal components of a principal component analysis (PCA) based on the clr-transformed concentrations of the major and trace elements considered in Fig. 6 with the sum of LREE and HREE, (b) the first and second and (c) the first and third principal components of a PCA based on the clr-transformed concentrations of a subset of the elements considered in Fig. 6, which is assumed to be less affected by diagenesis and leaching.
1021	
1022 1023 1024 1025 1026 1027	Fig. 8. Tectonic setting discrimination diagrams after Verma and Armstrong-Altrin (2013, 2016). (a) Discriminant functions (DF) based on major oxides (SiO ₂ , TiO ₂ , Al ₂ O ₃ , Fe ₂ O ₃ , MnO, MgO, CaO, Na ₂ O, K ₂ O, P ₂ O ₅ ; Verma and Armstrong-Altrin, 2013). (b) Discriminant function based on major oxides and selected trace elements (SiO ₂ , TiO ₂ , Al ₂ O ₃ , Fe ₂ O ₃ , MnO, MgO, CaO, Na ₂ O, K ₂ O,
1028	P ₂ O ₅ , Cr, Nb, Ni, V, Y, Zr; Verma and Armstrong-Altrin, 2016).

1029 Fig. 9. Th/Sc versus Zr/Sc diagram after McLennan et al. (1993). (a) 1030 Samples analysed in this study, stratigraphically equivalent units from Saudi Arabia (Bassis et al., 2016b), boulders in tillite of the 1031 1032 Edaga Arbi Glacials (granitoid, diorite/gabbro, basalt and gneiss) and 1033 local basement (granite, metabasite and metasedimentary rocks; this 1034 study). (b) Samples analysed in this study grouped by their 1035 geographic position. 1036 1037 Fig. 10. Compositional biplots of (a) the first and second and (b) the 1038 first and third principal components of a principal component 1039

analysis (PCA) based on the clr-transformed concentrations of the
major and trace elements in Fig. 7 (b, c) comparing the samples
analysed in this study with stratigraphically equivalent samples from
Bassis et al. (2016b), local basement samples and boulders in tillite
of the Edaga Arbi Glacials (this study). Co is left out, because it was
not measured by Bassis et al. (2016b). Carb. = Carboniferous, Perm.

1045 = Permian, Ord. = Ordovician.

1046

1047 Fig. 11. Summary of the main findings of this study for the two Gondwana glaciations in Ethiopia. Gondwana palaeogeography and 1048 south pole positions from Torsvik and Cocks (2013). Ice sheet 1049 1050 locations and transport directions for the Late Ordovician are after 1051 Ghienne et al. (2007), Le Heron and Craig (2008), and Torsvik and 1052 Cocks (2013), and for the Carboniferous-Permian they are after 1053 Bussert and Schrank (2007), Fielding et al. (2008), and Isbell et al. 1054 (2012).

Figure 3 Click here to download high resolution image

Figure 8

Late Ordovician glaciation

Carboniferous-Permian glaciation

#	Sample	Formation	Age	Location	North(°)	East(°)	Position within Fm.	Facies/ Lithology	Strati- graphic assignment
1	Enti-4	Enticho	Upper Ordovician	Atsbi south	13.83465	039.71262	Base	Tillite matrix	U
2	Enti-5	Enticho	Upper Ordovician	Atsbi north	13.88828	039.74783	Base	Glacial	В
3	Enti-7	Enticho	Upper Ordovician	Atsbi north	13.88842	039.74259	Base	Glacial	В
4	Enti-9	Enticho	Upper Ordovician	Wollwello	14.22037	039.65014	Base	Glacial	В
5	Enti-13	Enticho	Upper Ordovician	Zalambassa	14.49275	039.41911	Base	Glacial	LF
6	S1	Enticho	Upper Ordovician	Sinkata	13.96861	039.61167	Base	Glacial	В
7	S2	Enticho	Upper Ordovician	Sinkata	13.96861	039.61167	Base	Glacial	В
8	Nib-1	Enticho	Upper Ordovician	Adigrat south	14.25194	039.48972	Base	Glacial	В
9	Nib-2	Enticho	Upper Ordovician	Adigrat south	14.25194	039.48972	Base	Glacial	В
10	North-1	Enticho	Upper Ordovician	Adigrat north	14.31333	039.46000	Base	Glacial	В
11	North-2	Enticho	Upper Ordovician	Adigrat north	14.31333	039.46000	Base	Glacial	В
12	Enti-6	Enticho	Upper Ordovician	Atsbi north	13.88842	039.74827	Тор	Marine	В
13	Enti-10	Enticho	Upper Ordovician	Wollwello	14.21839	039.64994	Тор	Marine	В
14	Enti-12	Enticho	Upper Ordovician	Zalambassa	14.49627	039.41911	Тор	Marine	LF
15	S 3	Enticho	Upper Ordovician	Sinkata	13.97056	039.61111	Тор	Marine	В
16	S4	Enticho	Upper Ordovician	Sinkata	13.97056	039.61111	Тор	Marine	В
17	Nib-3	Enticho	Upper Ordovician	Adigrat south	14.25222	039.49583	Тор	Marine	В
18	Nib-4	Enticho	Upper Ordovician	Adigrat south	14.25222	039.49583	Top	Marine	В
19	North-3	Enticho	Upper Ordovician	Adigrat north	14.31944	039.45889	Тор	Marine	В
20	Eda-2	Edaga Arbi	Carboniferous-Permian	Enticho	14.28166	039.14725	Base	Tillite matrix	В
21	Eda-3	Edaga Arbi	Carboniferous-Permian	Enticho	14.27929	039.14836	Base	Sand lens	U
22	Eda-4	Edaga Arbi	Carboniferous-Permian	Edaga Robi	14.38906	039.18161	Base	Tillite matrix	U
23	Eda-6	Edaga Arbi	Carboniferous-Permian	Edaga Arbi west	14.05667	039.07095	Base	Sand lens	LF
24	Eda-8	Edaga Arbi	Carboniferous-Permian	Megab south	13.90944	039.32301	Base	Sand lens	В
25	Eda-10	Edaga Arbi	Carboniferous-Permian	Dugum	13.84957	039.49003	Base	Sand lens	LF
26	Eda-11	Edaga Arbi	Carboniferous-Permian	Abi Addi	13.61842	039.00042	Base	Sand lens	LF
27	Hu-I	Edaga Arbi	Carboniferous-Permian	Bure, Blue Nile	10.31057	037.05068	Base	Sand lens	LF
28	Eda-9	Edaga Arbi	Carboniferous-Permian	Megab south	13.90915	039.32235	Тор	Sand lens	В
29	Eda-12	Edaga Arbi	Carbonilerous-Permian	Samre	13.17844	039.19745	Тор	Sand lens	В
21	Hu-2 Edo 1	Edaga Arbi	Carboniferous-Permian	Adianat weat	10.31057	037.05068	Top	Sand lens	
31	Eda-1	Edaga Arbi	Langertain	Adigrat west	14.311/1	039.40472	Uncertain	Finite matrix	
32	Eda-3	Uncertain	Uncertain	Adwa east	14.19102	038.93937	Uncertain	Sand lens	0
24	Das-1		Unknown	Megab	12.02490	039.30320		(Mata)hasita	
34 25	Bas-2		Unknown	Megab	13.93490	039.30520		(Meta)basite	
26	GII-1 Cr 2	Douldon	Unknown	A dignot woot	13.93490	039.30320		Cromitoid	
27	Gr 4	in	Unknown	Adigrat west	14.31171	039.40472		Granitoid	
38	Gr 5	Edaga	Unknown	Adigrat west	14.31171	039.40472		Granitoid	
30	Gr-6	Arbi	Unknown	Megah	13 93/96	039.36520		Granitoid	
40	Gr 7	tillite	Unknown	Magab	13 03/06	039 36520		Granitoid	
40	Gr-8	unite	Unknown	Megab	13 93496	039 36520		Granitoid	
42	Gr-9		Unknown	Megab	13 93496	039 36520		Diorite/Gabbro	
43	Gr-10		Unknown	Megab	13 93496	039 36520		Diorite/Gabbro	
44	Neon-1	Basement	Neoproterozoic	Atshi south	13 83374	039 71132		Metagreywacke	
45	Neop-2	Basement	Neoproterozoic	Negash	13 83561	039 61442		Metatillite	
46	Neop-3	Basement	Neoproterozoic	near Negash	13.94186	039.59876		Metabasite	
47	Neon-4	Basement	Neoproterozoic	Zalambassa	14,49276	039.41899		Metapelite	
48	Neop-5	Basement	Neoproterozoic	Road Debre Damo – Enticho	14.37729	039.27883		Metagreywacke	
49	Gr-1	Basement pluton	Neoproterozoic	Negash highschool	13.89164	039.60517		Granitoid	
50	Gr-2	Basement pluton	Neoproterozoic	Sebea	14.46629	039.48225		Granitoid	

Sample	Formation	Qz _m [%]	Qz _{mu} [%]	Qz _p [%]	Qz _{micr} [%]	Pl [%]	Kfs [%]	Lp [%]	Lv [%]	Ls [%]	Lms [%]	Lmi [%]	Other [%]	Unid. [%]	Counts	Accessories	Carbo- nate cement	Matrix [%]	GS (mm)	Sor- ting	Round- ness
Enti-4	Enticho	69.3	5.7	9.3	1.0	5.0	5.7	2.3	0.0	1.0	0.0	0.0	0.7	0.0	300	Tur, Zrn	0	40	0.05-4		-
Enti-5	Enticho	69.0	9.7	8.7	0.0	4.0	7.3	0.3	0.0	0.0	0.0	0.0	0.0	1.0	300		0	40	0.05-4		to ++
Enti-7	Enticho	63.7	14.3	5.7	0.7	5.3	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	300		0	10	0.1-1	0	+
Enti-9	Enticho	68.3	15.7	6.7	0.0	4.0	4.0	0.0	0.0	0.7	0.0	0.0	0.7	0.0	300	Mica, Px (?)	0	35	0.05-2; 0.1-	-	- to +
Enti-13	Enticho	62.3	14.7	18.3	0.7	0.3	1.3	0.7	0.0	1.0	0.0	0.0	0.3	0.3	300	Zrn	0	5	0.1-1	0	- to +
S1	Enticho	48.3	31.0	12.3	0.0	1.3	5.3	1.7	0.0	0.0	0.0	0.0	0.0	0.0	300		0	< 5	0.1-5		+ to ++
S2	Enticho	68.7	15.3	6.3	0.0	3.3	4.3	0.0	0.0	0.0	0.0	0.0	0.7	1.3	300		0	< 5	0.1-1	-	- to ++
Nib-1	Enticho	80.3	8.7	4.0	0.7	0.3	1.3	0.7	2.0	0.0	0.0	0.0	0.7	1.3	300	Tur	0	< 5	0.1-1	0	- to +
Nib-2	Enticho	73.3	9.0	5.7	0.0	4.3	7.0	0.3	0.0	0.0	0.0	0.0	0.0	0.3	300	Zrn	0	25	0.05-1.2	-	- to ++
North-1	Enticho	70.0	21.3	1.3	0.0	2.0	5.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	300		0	5	0.1-0.5	+	- to +
North-2	Enticho	73.3	15.7	6.7	0.0	0.0	0.0	0.0	0.0	4.3	0.0	0.0	0.0	0.0	300		0	50	0.05-7	-	- to ++
Enti-6	Enticho	78.0	17.7	3.3	0.3	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	300		0	5	0.1-1	+	- to ++
Enti-10	Enticho	85.0	9.3	2.3	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	300	Op+, Px?, Chl, Ap	0	< 5	0.1	++	-
Enti-12	Enticho	87.3	8.3	3.7	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.3	0.0	300	Grt	0	10	0.1-1.2	+	+
S3	Enticho	77.3	12.0	9.3	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0	300	Chl. Op	Õ	< 5	0.1-1	_	- to +
S 4	Enticho	79.0	14.7	6.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	300	, • _F	Õ	55	0.1-1	0	+
Nib-3	Enticho	84.7	7.7	5.3	0.0	0.3	0.0	1.7	0.0	0.0	0.0	0.0	0.3	0.0	300	Zrn	0	< 5	0.1-1	0	+
Nib-4	Enticho	70.3	26.3	2.7	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.3	0.0	300		0	< 5	0.1-0.8	+	+
North-3	Enticho	81.7	18.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	300		Õ	< 5	0.1-0.6	+	+ to ++
Eda-2	Edaga Arbi	63.0	14.3	0.3	3.7	3.3	3.0	0.0	2.7	1.7	0.0	0.0	6.7	1.3	300	Op+, Grt, Zrn+, Cal, Ms	+	25	0.05-0.2	+	+
Eda-3	Edaga Arbi	76.3	10.7	0.3	0.0	3.3	8.3	0.7	0.0	0.0	0.3	0.0	0.0	0.0	300	,,,	+	< 5	0.05-0.3	0	0 to $+$
Eda-4	Edaga Arbi	68.7	20.0	0.0	0.0	4.0	5.7	0.3	0.7	0.0	0.3	0.0	0.0	0.3	300	Grt	0	15	0.05-0.3	Õ	0 to +
Eda-5	Edaga Arbi	84.3	10.3	0.7	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.3	0.3	300	Zrn+	Õ	35	0.05-0.5	Õ	to +
Eda-6	Edaga Arbi	60.7	3.7	1.0	0.3	5.3	21.0	0.0	0.3	3.7	0.0	0.0	3.0	1.0	300	Zrn+, Grt, Sil, St	++	< 5	0.1-0.3	+	-
Eda-8	Edaga Arbi	76.0	10.0	0.0	1.3	5.0	3.3	0.0	0.0	1.3	0.0	0.0	0.0	3.0	300		++	25	0.05-0.1	+	+
Eda-10	Edaga Arbi	52.3	4.7	3.0	0.7	6.3	22.3	6.0	1.7	1.0	1.3	0.3	0.3	0.0	300		+	20	0.1-0.7	0	- to 0
Eda-11	Edaga Arbi	70.7	2.3	2.7	5.3	6.3	6.3	0.0	1.0	1.3	0.0	0.0	1.3	2.7	300	Op. Chl	++	40	0.05-0.5	Õ	-
Hu-1	Edaga Arbi	39.3	5.7	0.7	0.0	12.0	36.7	4.3	0.0	1.0	0.0	0.0	0.3	0.0	300	Op	+	5	0.1-3		- to 0
Eda-9	Edaga Arbi	67.7	14.7	2.0	2.0	1.7	3.7	0.0	0.0	0.0	0.0	0.0	7.7	0.7	300	Chl+. Ms	0	35	0.05-0.1	++	+
Eda-12	Edaga Arbi	61.3	5.3	1.3	1.3	7.3	16.3	0.0	1.7	0.0	0.0	0.0	1.0	4.3	300	Zrn. Grt. Cal	0	40	0.05-0.2	0	- to 0
Hu-2	Edaga Arbi	46.0	7.3	0.0	0.0	9.0	37.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0	300	Tur. Grt	Ő	10	0.1-0.3	+	0 to +
Eda-1	Edaga Arbi	58.3	7.3	3.0	1.3	6.7	8.0	7.0	2.7	1.7	0.3	0.0	1.3	2.3	300	Op. Grt	++	< 5	0.1-0.3	0	+