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Abstract 

The understanding of location and accessibility of zeolite acid sites is a key issue 

in heterogeneous catalysis. This paper provides a brief overview of FTIR and NMR 

characterisation of acidity in zeolites based on the application of test molecules with a 

diverse range of basicity and kinetic diameters. A number of zeolites, including ZSM-5 

and BEA, have been characterised by monitoring the interaction between the zeolite 

acid sites and the test molecules, such as 1,3,5-triisopropylbenzene, pyridine and 

alkylpyridines, to probe the location, accessibility and strength of the Brønsted acid 

sites. 1,3,5-triisopropylbenzene can be used to distinguish Brønsted acid sites located on 

the external and internal surface in most medium and large pore channels zeolites. 

Brønsted acid sites on the external surface of the medium pore zeolites can also be 

quantified using 2,6-di-ter-butyl-pyridine and 2,4,6-trimethylpyridine. It is concluded 

that using a combination of probe molecules, including co-adsorption experiments, 

affords the differentiation between acid sites located in the channels and cavities of 

different size and on the external and internal surfaces of various zeolitic structures. 
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1. Introduction  

Zeolites are crystalline solids with a well-defined structure consisting of 

molecular scale pores and channels. Their primary units such as, SiO4 and AlO4 

tetrahedra are linked by oxygen atoms at their vertices, creating a variety of 

microporous framework structures (1). The AlO4-units impart a negative charge within 

the framework that must be balanced by cationic species (2). These cationic species are 

retained by steric effects and electrostatic interactions and can be exchanged with other 

cations, making zeolites highly valuable as cation-exchangers (2,3,4).  

Zeolites have been widely utilized by chemical and petrochemical industries as 

heterogeneous catalysts. This is due to their unique set of characteristics such as high 

adsorption capacity, intrinsic acidity, hydrothermal stability and shape selectivity.  

Detailed understanding of the acidic properties is important for the design, 

modification and practical application of zeolite based catalysts. Generally, the most 

important properties for catalytic reactions are the type, strength, distribution, 

concentration and accessibility of acid sites. Whilst the microporous nature of zeolites 

imparts some of their essential properties, such as high surface area, adsorption capacity 

and shape-selectivity, the presence of micropores can also lead to diffusional 

limitations, shorter catalyst lifetime and poor activity (5,6)  

To achieve full potential of a zeolite catalyst, it is important to maximise the 

accessibility of active sites and transport efficiency for both the feed molecules and 

products in catalytic reactions. This can be achieved by employing zeolites with 

different structures and pore systems, and by introducing mesoporocity in addition to 

the existing network of micropores. These materials, the so-called hierarchical zeolites, 

developed, synthesised and modified in numerous ways have received considerable 

attention (7,8,9,10). The aim of this article is to review recent work evaluating acid site 

location and accessibility in zeolites with different pore systems, focusing on the 

understanding of the interactions between acid sites and probe molecules, particularly 

using FTIR and solid-state NMR, and providing examples of characterisation data for 

BEA and MFI zeolites using a variety of probe molecules.  
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2. Location and accessibility of acid sites 

The accessibility and location of acid sites in many ways determine the catalytic 

performance of zeolites. Acid site hosted on the external surface of a zeolite are 

commonly accessible, the accessibility within the microporous system is dependent 

upon the dimensions of the pore space relative to the guest molecule. This relationship 

is closely linked to the local geometry of the acid sites, position of the Al and chemical 

environment (11,12). 

2.1. Infrared spectroscopy 

Infrared spectroscopy studies using adsorption of probe molecules is one of the 

most important tools for comprehensive characterisation, including the nature, strength 

and accessibility, of acid sites in zeolite based catalysts. The nature and the strength of 

the Brønsted (i.e. bridging OH-groups) and Lewis acid sites in zeolites has been 

addressed in detail (11,13,14,15,16,17,18 and references therein); this section is focused 

on the evaluation of the location and accessibility of acid sites. 

Busca and co-authors (19) carried out a range of experiments using pivalonitrile 

as a probe molecule to distinguish acid sites on internal and external surfaces in MCM-

41, FER and MFI type materials (20,21). Other nitriles such as, propionitrile, 

isobuthyronitrile (22), 2,2-diphenylpropionitrile, benzonitrile and ortho-tolunitrile (23) 

were also utilised in order to assess the acid site accessibility in a number of zeolitic 

structures. When compared with other probe molecules, e.g. pyridines and amines, 

nitriles are interacting with acid sites less strongly, creating a relatively weak bond with 

the Brønsted and Lewis acid sites (BAS and LAS).  

A variety of hydrocarbons have also been used (24); their interaction with acid 

sites is relatively weak resulting in the formation of a hydrogen bond between the 

hydrocarbon and a zeolite OH-group. Alkenes and aromatics achieve stronger 

interactions than saturated hydrocarbons, which are still weak in comparison with other 

classes of probe molecules. The location and strength of BAS in ZSM-5 zeolites were 

evaluated by comparing the data obtained for cyclohexane and benzene with those for 

1,3,5-trimethylbenzene. It was concluded that the mesoporosity influences only the 

accessibility of the acid sites by shortening the diffusion pathways, while the strength of 

the interaction with the probes, reflecting the strength of the acid sites, remains 

unaffected.  
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Another approach to understanding the site accessibility in zeolites is co-adsorption of 

probe molecules with different sizes. Adsorption of a small probe molecule (e.g carbon 

monoxide) after pre-adsorption of a larger probe molecule was the subject of several 

studies in mordenite (25,26). This zeolite exhibits two types of channels, 12-membered 

ring main channels and 8-membered ring channels connected by 8-membered ring side 

pockets (27). Pyridine can interact with the acid sites in the main channels of MOR but 

not with those inside the smaller side pockets, whereas CO interacts with all acid sites 

in the pore system. Consequently, by co-adsorbing these two probes, CO provides 

information about the strength of Brønsted acid sites in different locations, and the 

steric hindrance of pyridine gives evidence for the location of the acid sites (26). Co-

adsorption of CO and nonane was also used to examine the spatial distribution of 

platinum in the microspores and mesopores of bi-functional PtH-MFI catalysts (28). 

This technique involves nonane pre-adsorption between two CO successive 

chemisorption experiments. 

Nesterenko et al. (29,30) and Bleken et al. (31) presented a methodology based on 

co-adsorption of alkylpyridines and CO for the analysis of acid site distribution in 

dealuminated mordenites and MFI zeolites. The use of these probe molecules with 

increasing steric hindrance allows discrimination between acid sites located on the 

internal and external surface. Both pyridine and alkylpyridines are protonated by BAS. 

However, due to steric hindrance induced by the bulky substituents, the alkylpyridines 

probes do not interact with LAS (32). Besides, these bulky probe molecules have 

limited access to some micropores and consequently are suitable to obtain information 

about the BAS in different locations (14). 

Many reports have been published on the application of 2,6-di-tert-butylpyridine 

(29,33,34,35) 2,6-dimethylpyridine (29,36,37,38,39) and 2,4,6-trimethylpyridine 

(30,40,41,42) for zeolite characterisation. For instance, adsorption of pyridine and 2,4,6-

trimethylpyridine was used to detect traces of coke in MFI catalysts, and to determine 

which acid sites are specifically perturbed by coke molecules (43). In the latter study, 

the authors found that coke deposits, resulting from ortho-xylene isomerisation, do not 

perturb BAS but perturb non-acidic silanol groups inside the micropore system. Using 

the same approach, Barbera et al. (41) confirmed that the presence of coke could 

influence the catalysts deactivation. Both studies clearly distinguish between internal 

and external silanol groups and show that silanol defects play an important role in the 

coke formation over MFI catalysts. Corma et al. (34) used the 2,6-di-tert-butylpyridine 
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to investigate the external surface of a large number of zeolitic structures. 2,6-di-tert-

butylpyridine can enter into the 12-membered channels of BEA but not 10-membered 

ring channels of ZSM-5 and MCM-22. Therefore, it can be used to identify acid sites 

situated on the external surface of medium pore zeolites.  

2,4,6-trimethylpyridine and 2,6-dimethylpyridine were used in a novel approach 

introduced by Thibault-Starzyk et al. (44), to quantify the accessibility of acid sites in 

ZSM-5 samples prepared with different degrees of intracrystalline mesoporosity. This 

approach is based on the calculation of the accessibility index (ACI), the ratio between 

the number of BAS detected by substituted pyridines and the total number of BAS in 

the zeolite (detected by Py). The results showed that the formation of mesoporosity 

reduces the average length of micropores and leads to an increase in the availability of 

acid sites at the pore mouths. This methodology has been successfully used to evaluate 

the accessibility of acid sites in both nanocrytalline zeolites and in zeolites with 

relatively large crystal size (44,45). 

Recently, this approach was also applied to other probe molecules, e.g. 2,6-di-tert-

butylpyridine was utilised to quantify external BAS in various parent and modified 

zeolites indicating that the extended mesoporosity and decrease in average length of 

micropores resulted in the increasing accessibility of BAS (35). Pivalonitrile adsorption 

was used to quantify both BAS and LAS, including multivalent transition metal cations 

hosted in zeolites, which are considered as active sites in redox reactions (46).  

The quantitative analysis and interpretation of the accessibility studies requires 

careful consideration. Indeed, the key to quantitative measurements is the use of molar 

absorption coefficients (ε). For some test molecules, there is a lack of ε values in the 

literature, and for most, the values reported show a significant degree of variation. 

Furthermore, the interaction of the probe with the zeolite can be complicated by the 

pore blockage as some probe molecules can adsorb at the pore mouth of the zeolite and 

restrict access to the internal pores that once were accessible (47). Also, the strength of 

interaction with some molecules, such as pyridine and acetonitrile, could lead to 

“extraction” of the protons from inaccessible positions, making them accessible (48,49). 

For this reason, some molecules with a relatively large kinetic diameter can access acid 

sites in small pores of a zeolite. For example, Armaroli et al. (39) reported a different 

behaviour using probes of similar size (2,6-dimethylpyridine and m-xylene) in ZSM-5. 

2,6-dimethylpyridine enters the pores of the ZSM-5 zeolite more readily as compared to 
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m-xylene. In addition, Traa et al. (50) suggested that the flexibility and the shape of the 

molecule in relation to the shape of the pore openings should also be taken into account.  

Overall, the optimisation of the experimental procedures and the application of a 

combination of probe molecules are imperative for the successful evaluation of the 

location and strength of acid sites in different zeolite-based materials.  

2.2. MAS-NMR 

Both FTIR and 1H NMR can directly probe the acidic proton, which can be used 

to differentiate BAS and terminal hydroxyls (51). However, the accessibility (location), 

strength and distribution of acid sites cannot be easily measured by NMR. Basic probe 

molecules such as pyridine-d5 and 13C-acetone have been used to adsorb on the acid 

sites and reveal their relative strength (52,53). However, 1H has a small chemical shift 

range giving poor differentiation, and 13C (1.1% naturally abundant) is an insensitive 

nucleus requiring expensive enriched reagents. Thus, an approach involving 31P was 

sought, which has both a large chemical shift range and high sensitivity being 100% 

naturally abundant. 

 Trimethylphosphine (TMP) was first used in 1985 by Lunsford et al. and has 

since been used as a probe molecule for BAS and LAS in a variety of solid-acid 

catalysts (54). TMP can chemisorb on BAS and LAS or physisorb on weakly acidic 

hydroxyls, each giving a distinct chemical shift range for each type of interaction. 

Although TMP is a sensitive probe for Lewis acid characterisation, a small Brønsted 

acid chemical shift range and volatility of the probe molecule has limited the popularity 

of this approach. 

 Trimethylphosphine oxide (TMPO), which is a solid at room temperature not 

susceptible to oxidation, retains the benefits of using 31P NMR and also offers a greater 

chemical shift range for BAS characterisation. The applicability of TMPO probe 

molecules was first shown for zeolites by Rakiewicz et al. in 1998 (55). Over the past 

20 years there have been many 31P NMR studies of phosphorus-containing probe 

molecules, especially for the industrially-relevant zeolites Beta and ZSM-5 shown in 

our examples (56,57,58,59,60,61,62,63,64) 

A typical procedure for loading a zeolite with TMPO is to first dehydrate the 

zeolite, then add TMPO dissolved in CH2Cl2 under an inert atmosphere, before heating 

the sample above the melting point of TMPO (140 °C) (65). However, we and others 

(66) have also had success in a solvent-free method, by just adding TMPO at elevated 
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temperatures, which has the added advantage of avoiding any solvent–zeolite 

interactions. It has been noted that a slight excess of TMPO is crucial in ensuring a 

complete coverage of acid sites during the experiment (67).  

By varying the length of alkyl chain, internal and external acid sites can be 

discriminated (68). The kinetic diameter of TMPO is 0.55 nm (55), whereas the butyl 

equivalent, TBPO, is 0.82 nm (69), which is larger than the pore size in ZSM-5. 

Unlike TMP, the chemical shift ranges for TMPO interacting with Brønsted and 

Lewis sites overlap. However, the TMPO adsorption to Lewis sites is weak and it can 

be readily displaced by water. Thus, acquiring two spectra with and without hydration 

allows one to determine Brønsted versus Lewis acidity (70). 

As NMR is inherently quantitative, by knowing the quantity of TMPO added, a 

deconvolution of spectral peaks directly gives the concentration of acid sites. 

Furthermore, the 31P chemical shift of the peaks is linear with Brønsted acid strength 

(proton affinity), allowing both relative and absolute acid strength to be known (71). 

 

3. Experimental methodology 

Ammonium forms of zeolites BEA (CP814E, BEA framework, Si/Al=12.5) and 

ZSM-5 (CBV8014, MFI framework, Si/Al=40) were obtained from Zeolyst 

International. Prior to FTIR studies, the zeolites were pressed into self-supporting discs 

(~8-10 mg) and pretreated in situ in an IR cell at 450 °C under vacuum (10-5 Torr) for 5 

h. The adsorption experiments with different probe molecules were monitored by 

Thermo iS10 spectrometer equipped with a DSTG detector, at a spectral resolution of 4 

cm-1. An excess of probe molecules was admitted by injection of 1.0 μl into the IR cell. 

Physisorbed molecules were subsequently removed by evacuation at the adsorption 

temperature. Adsorption of 1,3,5-triisopropylbenzene (C15H24, Acros Organics, 95%) 

was performed at room temperature. Pyridine (C5H5N, Acros Organics, 99.5%), 2,6-di-

tert-butyl-pyridine (C13H21N, Sigma-Aldrich, 97%), 2,6-dimethylpyridine (C7H9N, 

Sigma-Aldrich, 99%) and 2,4,6-trimethylpyridine (C8H11N, BDH reagents, 95%) were 

adsorbed at 150 °C. Desorption profiles were obtained by evacuating the sample at 

increasing temperatures in 50 °C steps.  

The obtained infrared spectra were analysed (including integration, subtraction, 

and determination of peak positions) using specialised Thermo software, Omnic. All the 

spectra presented in this work were normalized to 10 mg sample mass. 
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For MAS-NMR experiments, the two zeolite samples were dehydrated at 350 °C 

under vacuum (10-5 Torr) overnight. A slight excess of TMPO was added to the zeolites 

in an argon glovebox, followed by a treatment at 165 °C for a few hours to melt the 

TMPO and distribute it throughout the sample. SSNMR spectra were acquired at a static 

magnetic field strength of 9.4 T on a Bruker Avance III console using TopSpin 3.1 

software. A widebore Bruker 4mm BB/1H WVT MAS probe was used, tuned to 161.98 

MHz and referenced to ammonium dihydrogen phosphate at 0.9 ppm. The samples were 

packed into zirconia MAS rotors with Kel-F caps in an argon glovebox. 

 

 4. Results and discussion  

4.1. Acidity measurements on ZSM-5 and BEA zeolites 

MFI structure is characterised by two types of 10-membered ring channels: 

straight channels with a nearly circular opening of 5.3 Å × 5.6 Å and sinusoidal 

channels with an elliptical opening of 5.1 Å × 5.5 Å. BEA is a large pore size zeolite 

with smaller 12-membered ring channels with a cross-section of 5.6 Å × 5.6 Å and 

larger 12-membered ring channels in with a cross-section of 7.7 Å × 6.6 Å.  

FTIR spectra of zeolites BEA and ZSM-5 show two major peaks at 3745 cm-1, 

with a shoulder at ~3735 cm-1, and 3610 cm-1 (Figure 1a). The band at 3610 cm-1 is 

assigned to acidic bridging Si-OH-Al groups and the bands at 3745 and 3735 cm-1 are 

attributed to external and internal silanol groups (Si-OH), respectively. The separation 

of external and internal silanol groups is more noticeable in the spectra of the BEA 

zeolite. The interaction of pyridine with ZSM-5 and BEA zeolites results in a complete 

disappearance of the band at 3610 cm-1 corresponding to bridging Si-OH-Al groups and 

a decrease in the intensity of the band assigned to Si-OH groups. This means that 

pyridine is able to access all the acid sites of BEA and ZSM-5 providing an overall 

concentration of acid sites.  

In the range of 1400-1700 cm-1, chemisorbed pyridine is revealed by the 

following sets of bands: 1545 and 1637cm-1 is due to pyridinium ion (PyH+), two bands 

assigned to Py coordinated to Lewis acid sites (PyL) at 1456 and 1622 cm-1 and the 

superposition of signals of Lewis and Brønsted acid sites at 1491 cm-1 (Figure 1b). The 

concentrations of Brønsted and Lewis acid sites (Figure 2) have been calculated from 

the intensities of peaks at 1545 cm-1 for BAS and 1456 cm-1 for LAS. The total 

concentrations of acid sites for ZSM-5 and BEA parent zeolites are about 350 μmol/g 
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and 760 μmol/g. ZSM-5 zeolite with Si/Al=40 has less Al in the structure compared to 

BEA with Si/Al=12.5, and consequently, a lower total concentration of acid sites. The 

concentration of LAS in ZSM-5 is ~12% of the total number of acid sites. BEA zeolite 

presents similar amounts of BAS and LAS, 340 μmol/g and 420 μmol/g, respectively. 

These data are corroborated by 27Al MAS NMR experiments indicating a higher amount 

of extra-framework aluminium in BEA compared to the ZSM-5 zeolite. 

The type and concentration of acid sites can be readily determined from FTIR 

spectra of pyridine adsorbed on zeolites. Their strength can be evaluated by the 

temperature programmed desorption of pyridine, ammonia or other probe molecules. 

However, such measurements give only an effective strength as the probe molecules can 

re-adsorb on available acid sites during the desorption process. Clearly, the observed 

apparent strength would be affected by the concentration of acid sites, the size of the 

micropores as well as by a number of experimental parameters. In contrast, 31P MAS 

NMR spectra of TMPO-loaded zeolites provide a direct measure of the strength of acid 

site given by the chemical shift of the phosphorus signal. These data are also 

quantitative, but they do require complete coverage of the zeolite by TMPO, and 

therefore, rely on the appropriate dosing procedure being followed. 

Figure 3a shows 31P MAS NMR spectra of TMPO dosed ZSM-5 by two different 

methods, one where TMPO was first dissolved in dichloromethane (DCM) and the other 

where TMPO was added directly. Both methods produce similar results, whereas the 

solvent-free method avoids any potential solvent-zeolite interaction. A small excess of 

physisorbed TMPO is visible around 46 ppm, giving confidence that the accessible acid 

sites are completely covered. Two types of strong Brønsted site are observed, around 77 

ppm and 69 ppm, along with a weaker Brønsted site at 54 ppm. Lewis acid sites from 

the extra-framework aluminium appeared around 65 ppm. There also appeared to be a 

very strong Lewis acid site at 84 ppm, but at a very low concentration. The assignment 

of BAS and LAS has been based on the literature data (70).  

Figure 3b presents 31P MAS NMR spectra of TMPO dosed BEA zeolite, obtained 

via the solvent-free method. A small quantity of mobile TMPO is visible around 31 

ppm, suggesting physisorbed TMPO is also present around 46 ppm, but overlapping 

with Brønsted or Lewis acid sites. Strong BAS can be clearly seen around 75 ppm, 

along with very strong LAS at 85 ppm. Additional LAS appeared around 65 ppm, as 

seen for ZSM-5. For BEA, the determination of Lewis versus Brønsted has been based 
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on hydrating the sample to observe which peaks disappear. The greater quantity of LAS 

in BEA over ZSM-5 is in agreement with the Py-FTIR and 27Al NMR results. 

Further work would be required to obtain accurate data for the concentration of 

each type of the detected sites. This would involve precise weighing of the samples and 

TMPO dose that was not undertaken for this study. Additionally, a quantitative analysis 

of the acid sites present on the internal and external surface could be performed by 

using bulkier probe molecules such as TBPO. 

 

4.2. Accessibility of acid sites in ZSM-5 and BEA zeolites 

Adsorption of 1,3,5-triisopropylbenzene (kinetic diameter of ~8.5 Å) at 30 °C on 

ZSM-5 and BEA zeolites (Figure 4) leads to a significant reduction in the intensity of 

the Si-OH band at 3745 cm-1. In the case of BEA (Figure 4c) there is a clear separation 

between external SiOH groups at ~3745 cm-1, which are interacting with the 

hydrocarbon molecules, and internal silanols at ~3735 cm-1, which are not. At the same 

time, the Si-OH-Al band at ~3610 cm-1 appears to be almost unchanged. However, the 

difference spectra (Figures 4b and 4d) show a low intensity negative peak at ~3610 cm-1 

detected for both zeolites. This negative peak corresponds to the acidic Si-OH-Al 

groups on the external surface interacting with the probe molecule with the formation of 

a hydrogen bond. These data demonstrate that 1,3,5-triisopropylbenzene, which is too 

large to enter the 10- and 12-membered channels of ZSM-5 and BEA, respectively, can 

be used to quantify the BAS located on the external surface.  

FTIR spectra of ZSM-5 zeolite following adsorption of 2,6-dimethylpyridine, 

2,4,6-trimethylpyridine and 2,6-di-ter-butyl-pyridine at 250 oC are presented in Figure 

5. All the substituted pyridines interact with terminal SiOH groups on the external 

surface reducing the intensity of the band at 3745 cm-1. The band of Si-OH-Al is 

virtually unaffected in the case of 2,4,6-trimethylpyridine and 2,6-di-ter-butyl-pyridine 

adsorption, but does decrease noticeably following adsorption of 2,6-dimethylpyridine 

indicating that the latter probe can access some of the BAS inside the micropore system. 

Whereas, 2,6-di-ter-butyl-pyridine and 2,4,6-methylpyridine are not able to enter the 

micropores of ZSM-5. The difference spectra in the OH region show a low intensity 

negative peak at ~3610 cm-1 after 2,4,6-trimethylpyridine and 2,6-di-ter-butyl-pyridine 

adsorption, which corresponds to the small fraction of bridging OH groups located on 

the external surface of the zeolite or near the pore mouths.  
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Adsorption of 2,6-dimethylpyridine (Figure 5c, spectrum 1) leads to the 

appearance of two bands around 1600-1680 cm-1 (72). 2,4,6-methylpyridine adsorption 

(Figure 5c spectrum 2) gives rise to the band at ~1634 with a shoulder at ~1649 cm-1 

resulting from the interaction with BAS; two low intensity bands at 1619 cm-1 and 1575 

cm-1 are assigned to the probe adsorbed on Si-OH groups (42). The spectra of 2,6-di-ter-

butyl-pyridine (Figure 5c spectrum 3) show a band at 1615 cm-1 attributed to the probe 

bonded to BAS (35). Based on the assignment of these bands and the extinction 

coefficient values available in the literature (30,35,37), the number of BAS accessible to 

these probe molecules and the corresponding accessibility indices have been calculated 

assuming 1:1 interaction with the BAS (Table 1). The total amount of BAS is obtained 

by probing the zeolites with pyridine (44). 2,6-dimethylpyridine being bigger than 

pyridine, probes 47% of the total amount of BAS, 2,4,6-trimethylpyridine can access 

8% and 2,6-di-ter-butyl-pyridine only 5%. These results agree with previously 

published reports on the adsorption of alkylpyridines on ZSM-5 zeolites (35,44). The 

diffusion of 2,6-dimethylpyridine, with the kinetic diameter of 6.7 Å, in the micropores 

of ZSM-5 zeolite (maximum pore size of 5.6 Å) is restricted, depending on the 

temperature and duration of the experiment it can access up to about 50% of the BAS. 

These data confirm that the accessibility of the acid sites in the zeolite micropores is 

controlled by both molecular sieving and strength of interaction between the probe 

molecule and the acid site. The relatively large size of 2,6-di-ter-butyl-pyridine (7.9 Å) 

and 2,4,6-trimethylpyridine (7.4 Å) prevents their access to BAS in the micropores of 

ZSM-5.  

In the case of BEA zeolite, the FTIR spectra demonstrate that all three substituted 

pyridines are protonated on all Si-OH-Al and some Si-OH groups, as they interact with 

all BAS on the external surface and in the micropores of zeolite BEA. Indeed, the size 

of the substituted pyridines is similar to the dimensions of the larger pores in the BEA 

structure (7.7 Å × 6.6 Å) allowing their access to the BAS in the micropore system.  

 

5. Conclusions  

Characterisation of the acidic properties of zeolites has received a great deal of 

attention in the recent decades. FTIR and MAS-NMR are now established as major 

analytical techniques providing detailed information on the type, concentration, 

accessibility and location of acid sites. This work demonstrates several examples of 

FTIR and NMR evaluation of the acidic properties of ZSM-5 and BEA zeolites using a 
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range of test molecules under in situ conditions. For instance, the accessibility and the 

number of acid sites on the internal and external surfaces has been determined utilising 

adsorption of bulky probe molecules monitored by FTIR, hence providing a clear 

methodology for the detailed examination of the acid sites in MFI and BEA structures. 

The application of 31P MAS NMR to the analysis of the interactions between TMPO as 

a probe molecule and the zeolite has provided in-depth information about the type and 

the strength of the acid sites. 

This work can be further extended to include detailed characterisation of new and 

modified zeolite-based catalysts, particularly, utilising a combination of several 

techniques. In addition, the experimental methodology should be optimised in order to 

improve the accuracy of the quantitative analysis under in situ and realistic reaction 

conditions and for cross-validation of the data obtained from different techniques. 
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Table.1. Concentration of Brønsted acid sites and accessibility indices for ZSM-5 

zeolite determined using adsorption of alkylpyridines. 

 

 Py Lu Coll DTBPy 

Concentration of 

accessible BAS (μmol/g) 
305 143* 25 14 

Accessibility index 

(%) 
100 47 8 5 

 

* Depends on the temperature and duration of the adsorption experiment. 



Freitas_06_SC  ACCEPTED MANUSCRIPT  15/02/2018 

Johnson Matthey Technol. Rev., 2018, 62, (3), xxx–yyy 14/27 
https://doi.org/10.1595/205651318X696792 
 

 

 

 

Figure 1. (a) Infrared spectra of the hydroxyl region of BEA (1) and ZSM-5 (2) 

activated at 450 °C. (b) Infrared spectra of the pyridine region folowing pyridine 

adsorption on BEA (1) and ZSM-5 (2). 
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Figure 2. Concentration of acid sites in ZSM-5 and BEA zeolites in quantitative 

experiments using pyridine adsorption monitored by FTIR. 
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Figure 3. 31P solid-state MAS NMR spectra of (a) ZSM-5 dosed with TMPO, with and 

without using CH2Cl2 as a solvent, (b) BEA dosed with TMPO without solvent. 
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Figure 4. (a) FTIR spectra of ZSM-5 before (1) and after (2) 1,3,5-triisopropylbenzene 

adsorption at 30oC. (b) Difference spectrum of ZSM-5 before and after adsorption of 

the probe. (c) FTIR spectra of BEA before (1) and after (2) 1,3,5-tiisopropylbenzene 

adsorption at 30oC. (d) Difference spectrum of BEA before and after adsorption of the 

probe. 
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Figure 5. (a) FTIR spectra of ZSM-5 before (1) and after adsorption of alkylpyridines: 

2,6-dimethylpyridine (2), 2,4,6-trimethylpyridine (3) and 2,6-di-ter-butyl-pyridine (4). 

(b) Difference spectra in the OH region after adsorptio of alkylpyridines: 2,6-

dimethylpyridine (1), 2,4,6-trimethylpyridine (2) and 2,6-di-ter-butyl-pyridine (3). (c) 

Difference spectra in the region of the aromatic ring vibrations of alkylpyridines: 2,6-

dimethylpyridine (1), 2,4,6-trimethylpyridine (2) and 2,6-di-ter-butyl-pyridine (3). 
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Re the data presented in Figure 4, this is an interesting example demonstrating the importance of quantitative data analysis. Although the spectra in 
Figure 4a appear to coincide around 3600 cm-1, there are important differences, which are shown in Figure 4b in the paper and Figure R1 below. Figure 
R1 presents the original experimental FTIR spectra of HZSM-5 zeolite, with the green line corresponding to the quantitative subtraction (equivalent 
to Figure 4b in the paper), which clearly demonstrates the presence of a negative peak attributed to the “removed” bridging OH-groups as they interact 
with the probe molecule.  

 

The fact that the peak intensities of the red and the blue spectra in Figure R1 are almost the same is explained in Figure R2 presenting the deconvolution 
of the red spectrum (HZSM-5 after 1,3,5-triisopropylbenzene adsorption). This shows that the red-coloured band at ~3610 cm-1 is a composite of two 
peaks: one is due to the bridging OH in micropores not interacting with the probe (green-coloured, 3611.7 cm-1), and the second is assigned to the H-
bonded SiOH groups interacting with the benzene ring (brown-coloured, 3595 cm-1). The same explanation applies to the spectra obtained for zeolite 
BEA. These data can be used to quantitatively determine the percentage of the OH-groups on the external surface. 
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Figure R1. FTIR spectra of ZSM-5 before and after 1,3,5-triisopropylbenzene adsorption at 30oC and the difference spectrum. 

ZSM-5 (40) 8.1 mg at RT, Sat Apr 29 11:55:21 2017 (GMT+01:00)
ZSM-5 (40) 8.1 mg + 1.0mkL 1,3,5-triisoproplybenzene at RT after 30min, Sat Apr 29 12:36:47 2017 (GMT+01:00)
Subtraction Result:ZSM-5 (40) 8.1 mg + 1.0mkL 1,3,5-triisoproplybenzene at RT after 30min, Sat Apr 29 12:36:47 2017 (GMT+01:00)
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Figure R2. Deconvolution of the FTIR spectrum of ZSM-5 obtained after 1,3,5-triisopropylbenzene adsorption at 30oC. 
 

Original spectrum: ZSM-5 (40) 8.1 mg + 1.0mkL 1,3,5-triisoproplybenzene at RT after 30min, Sat Apr 29 12:36:47 2017 (GMT+01:00)
Composite result spectrum: ZSM-5 (40) 8.1 mg + 1.0mkL 1,3,5-triisoproplybenzene at RT after 30min, Sat Apr 29 12:36:47 2017 (GMT+01:00)
Bridging OH groups not interacting with 1,3,5-triisoproplybenzene at RT: Component peak centered at 3611.7 cm-1
H-bonded SiOH groups interacting with 1,3,5-triisoproplybenzene at RT: Component peak centered at 3595.0 cm-1
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