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Abstract 

Cooperation and social learning are fundamental mechanisms that maintain social organisation 

among animals and humans. Social institutions can be conceptualised abstractly as cooperation 

games with social learning. In some cases potential cooperation partners may be easily identifiable, 

while in other cases this is difficult. Real world institutions always operate in uncertain 

environments. Here we use agent-based simulation to explore the interaction between social 

learning, cooperation and environmental uncertainty with and without easy to identify cooperation 

partners. Our agents use a communication language to indicate their cooperation intentions. We 

discuss the measurement of communication or language complexity metrics, which may be used as 

correlates of the level of cooperation. The results show that more uncertainty induces more 

cooperation and that social learning increases the level of cooperation. We show that the positive 

impact of social learning is bigger in low uncertainty environments than in high uncertainty 

environments and also in cases where identification of potential cooperation partners is harder. The 

results suggest that environmental uncertainty, social learning and easy identification of cooperation 

partners may play alternating roles in the promotion of cooperation in social institutions and the 

expansion and development of these institutions. 
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environments. Here we use agent-based simulation to explore the interaction between social 

learning, cooperation and environmental uncertainty with and without easy to identify cooperation 

partners. Our agents use a communication language to indicate their cooperation intentions. We 

discuss the measurement of communication or language complexity metrics, which may be used as 

correlates of the level of cooperation. The results show that more uncertainty induces more 

cooperation and that social learning increases the level of cooperation. We show that the positive 

impact of social learning is bigger in low uncertainty environments than in high uncertainty 

environments and also in cases where identification of potential cooperation partners is harder. The 

results suggest that environmental uncertainty, social learning and easy identification of cooperation 

partners may play alternating roles in the promotion of cooperation in social institutions and the 

expansion and development of these institutions. 
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1. Introduction 

Cooperation between individual humans provides the foundation for organisation and functioning of 

societies (Smaldino, 2018; Wu et al, 2015; Pletzer et al, 2018). Cooperation plays also a similar key 

role in animal societies as well (Moehlman, 1986; Moscovice et al, 2017) and is present as a special 

form of interaction between individuals even in communities of non-social animals and plants, which 

do not constitute complex societies (Dugatkin, 1997; Callaway et al, 2002; DeBono et al, 2002). The 

roots of cooperative behaviour, when joint benefits are preferred to potentially larger individual 

benefits, are likely to go deep into the biology of living beings. At the same time cooperative 

behaviour is at odds with the selfish interests of individual organisms. There are a few key theories 

that aim to explain the emergence of cooperation among selfish individuals, e.g. kin selection, 

reciprocal altruism, image scoring (Axelrod, 1997; Rand and Nowak, 2013; Sigmund et al, 2010). 
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Cooperation games, such as the Prisoner’s Dilemma (PD), emerged in the context of formalised 

study of human social decision making behaviour (Axelrod, 1997). These games are typically played 

by two partners, who chose their individual action and then the game delivers a pay-off to both 

partners, depending on a pay-off matrix associated with the combinations of individual actions. 

Most commonly the players can choose between two individual actions that can be conceptualised 

as ‘cooperate’ and ‘defect’. Repeated cooperation games provide a conceptual model for social 

behaviour and in particular for the study of mechanisms for the emergence of cooperation in social 

context (Dugatkin, 1997; Rand and Nowak, 2013). Repeated games allow participants to use their 

past experience to form their decisions and also for the selection of best game playing strategies (i.e. 

rules and patterns of game decision selection) across many rounds of repeated games or even across 

many generations of players.  

Social learning is the process by which individuals copy in some sense and to some extent the 

behaviour of other individuals within their observational range (Bandura, 1971; Boyd and Richerson, 

2009; Flinn, 1997; Heyes, 1994). Social learning in particular relates to copying behaviours that are 

expected to bring benefits to the individual who generates these behaviours. Social learning is 

expected to play an important role in social organisation by facilitating the spreading of behaviours 

beneficial for effective social organisation (Boyd and Richerson, 2009; Pahl-Wostl et al, 2007; 

Sigmund et al, 2011; Wenger, 2000).  

Given that both repeated cooperation games and social learning are assumed to capture important 

aspects of how social organisation emerges in societies, it is important to understand how these two 

mechanisms interact. To what extent does social learning support the emergence of high level of 

cooperation, and to what extent does it reduce the variability and adaptation potential of the 

community? Is there any particular context where social learning is more or less effective in 

supporting the emergence of high level of cooperation? 

Environmental uncertainty captures variability of the social and natural context of social interactions 

(Andras et al, 2003; Andras et al, 2007; Krams et al, 2010; Spinks et al, 2000; Rand et al, 2013; Potts 

and Faith, 2015). Environmental uncertainty can be integrated into the game playing through 

altering the pay-off values, while maintaining the regularities that define the cooperation game (e.g. 

the inequalities between the various pay-off values corresponding to different decision 

combinations). This allows the study of the impact of environmental uncertainty on game playing 

and on strategy selection in repeated games. A further factor influencing the level of cooperation is 

the ease of identification of potential cooperation partners (Andras , 2016; Mitteldorf and Wilson, 

2000). In general, easier identification of prospective cooperators is likely to increase the level of 

cooperation.  Adding in social learning among players allows to investigate the interplay between 

the environmental uncertainty, social learning and identifiability of cooperators in the setting and 

driving the level of cooperation. 

Here we present results from an agent-based simulation study, where the agents play a PD game in 

the context of an uncertain environment. We investigate the effect of adding social learning into the 

agent worlds in terms of the impact of this on the level of cooperation that emerges and is sustained 

in the simulated worlds. Our agents use a probabilistic communication language to reach their 

decisions in the uncertain PD games that they play. The offspring of the agents may cluster together 

or may be spread out, representing the easy and difficult identification of potential cooperation 
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partners. In addition to the level of cooperation we also measure correlates of these, such as the 

length of agent communications and variability of the agent’s communication language. Our analysis 

shows that social learning in all contexts helps to raise significantly the level of cooperation among 

the agents. At the same time it also reduces the variability of the agent’s language and the length of 

agent communications, increasing the conformity in the agent communities. The results are 

interpreted in the context of their relevance for the evolution of social institutions. 

The rest of the paper is structured as follows. First we review briefly the relevant background 

research. Then we discuss social learning in the context of cooperation games. Next we describe the 

methods that we use to measure correlates of cooperation. Next we present the simulation 

environment that we use. This is followed by the presentation of the results and the discussion on 

the margin of these. Finally the paper is closed by the conclusions section. 

 

2. Background 

Cooperation theory aims to explain the puzzle of emergence of cooperation among selfish 

individuals (Axelrod, 1997). One approach explains cooperation on the basis of genetic relatedness 

of individuals, i.e. cooperation supports the combined fitness of the genes that determine the 

individuals (Rand and Nowak, 2013). An alternative approach suggests that cooperation is rooted in 

reciprocal helping, i.e. if one individual provides help to another it can expect help from the other 

one in a different situation (Rand and Nowak, 2013). The indirect reciprocity approach assumes that 

individuals observe other individuals and help those who are seen to help others (Santos et al, 2018). 

There are other theories as well, e.g. explanations based on joint investment of time and effort 

(Roberts and Sherratt, 1998), spatial constraints (Mitteldorf and Wilson, 2000; Rand and Nowak, 

2013), or group selection (Boyd and Richerson, 2009). However, in general, none of these theories is 

sufficient to explain all observed cases of cooperation among humans, animals, plants and microbes. 

Social learning, i.e. the learning of behaviour from other individuals of the same species, has been 

described in one or another form in the context of many animal communities (Heyes, 1994). In 

general, in social learning individuals copy the behaviour of another individual (e.g. the oldest or the 

strongest or the most successful in some particular sense) or the most frequent behaviour across 

many other individuals (Bandura, 1971; Boyd and Richerson, 2009; Csibra and Gergely, 2006; Flinn, 

1997; Mesoudi et al, 2014). The mechanism of social learning in general is the observation of the 

behaviour of other individuals and the copying or imitation of this behaviour (Csibra and Gergely, 

2006; Heyes, 1994; Rendell et al, 2010). The imitation is usually not perfect, but rather approximate 

and partial, giving rise to variations in the imitated behaviour (Csibra and Gergely, 2006; Mesoudi et 

al, 2014). Social learning appears to play a critical role in the emergence and maintenance of social 

norms and social institutions (Pahl-Wostl et al, 2007; Sigmund et al, 2011; Wenger, 2000). 

It has been suggested that social learning contributes importantly to the emergence of cooperation 

(Boyd and Richerson, 2009; Chudek et al, 2013; Rendell et al, 2010; Smaldino, 2018). In a sense social 

institutions can be seen as the frameworks of cooperation games and social institutions emerge and 

are sustained through social learning processes. The scale and speed of emergence and spreading of 

cooperative behaviour among humans in a range of social settings can be explained by considering 

fast social learning that can act much more rapidly that biological selection of best behavioural 
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patterns (Boyd and Richerson, 2009). Thus social learning appears to be a requirement for the 

current scale of widespread cooperation among humans in the context of many social institutions.  

However, there are also studies that question the suggested role of social learning in the evolution 

of human cooperation (Heyes, 2013). 

The evolution of cooperation and the combination of this with social learning and cultural evolution 

has been the subject of intense investigation in the context of social physics research (Szabo and 

Toke, 1998; Szabo and Fath, 2007; Castellano et al, 2009; Perc et al, 2013; Perc et al, 2017). This 

research considers both the case of well-mixed populations, where all individuals may interact with 

any other individual, and the case of structured populations in which individuals can interact only 

according to a neighbourhood network (Szabo and Fath, 2007; Nowak et al, 2010). This line of 

research uses the conceptual framework and analytical tools of statistical physics to explore the 

large-scale dynamics of decision strategies in communities of agents. In models that incorporate 

social learning or cultural evolution the decision strategies may change according to a usually 

probabilistic rule (e.g. adopting the neighbour’s decision strategy with some probability if that is 

more successful according to some criteria – for example gaining resources following repeated 

playing of an abstract game) (Castellano et al, 2009; Perc et al, 2013). However, the models of social 

physics rely typically on simple agents characterised fully by their decision strategy and possibly 

position within the neighbourhood network, which facilitates the application statistical physics 

concepts and tools, but does not allow implementation of inner mechanisms of individual agents 

that may influence and change their individual decision making. While the power of the social 

physics approach is very much appreciated, here in this paper the implementation of such inner 

mechanisms of agents is considered important (see Section 5). 

Environmental uncertainty in general refers to the variability of some aspects of the environment 

that are important for the survival or successful life of the individuals (Andras et al, 2003; Mehta et 

al, 1999). For example, environmental uncertainty may refer to the risk of predation or the 

variability of the available food or water resources or the variability in the availability of sufficiently 

protective shelter (Krams et al, 2010; Spinks et al, 2000; Rand et al, 2013). Often environmental 

uncertainty is triggered by environmental adversity, i.e. the general lack of supporting resources in 

the environment (Andras et al, 2007). For example, an arid or cold environment increases the 

uncertainty of the environment by rendering moderately useful resources insufficient. 

Environmental uncertainty appears to play a major role in the evolution of many species (Callaway 

et al, 2002; DeBono et al, 2002; Popat et al, 2015) and in particular in the social evolution of humans 

(Pahl-Wostl et al, 2007; Mehta et al, 1999; Dequech, 2004). 

There are a number of examples of animals, plants and microbes (Krams et al, 2010; Spinks et al, 

2000; Potts and Faith, 2015; Callaway et al, 2002; DeBono et al, 2002; Popat et al, 2015) which show 

that more adverse or explicitly more uncertain environments are characterised by higher levels of 

cooperation (e.g. increased group size, more time spent on joint activity). It is assumed that the 

acceptable level of experienced environmental uncertainty is in a relatively narrow range for a 

community of individuals characterised by a set of social institutions. Cooperation through social 

institutions reduces the experienced uncertainty. More cooperation is needed for this in more 

uncertain environments. Thus uncertainty of the environment can drive higher the level of 

cooperation in a community of individuals as the experienced uncertainty is reduced through 

cooperation (Andras et al, 2003; Andras et al, 2007; Andras, 2008). 
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Collecting experimental evidence about cooperative behaviour and social learning is complicated 

and expensive in any natural setting. An alternative approach is to use agent-based models and 

simulations to explore the impact of certain features of individual behaviour of the environment on 

the processes of cooperation and social learning (Andras et al, 2003; Axelrod, 1997; Nakahashi et al, 

2012). Many simulation experiments have been conducted to explore mechanisms of social learning  

(Nakahashi et al, 2012; Molleman et al, 2013), cooperation (Pepper, 2007), and the role of social 

learning in the emergence and maintenance of cooperation (Seltzer and Smirnov, 2015). For 

example, it has been shown that social learning among distant individuals increases the level of 

cooperation, while conformism may reduce the level of cooperation (Molleman et al, 2013; Burton-

Chellew et al, 2015). Several agent-based simulation studies have shown the positive impact of 

increased environmental uncertainty on the sustained level of cooperation (Andras et al, 2003; 

Andras et al, 2007; Andras, 2008), while many others looked at the various proposed mechanisms 

responsible for the emergence of cooperation (Axelrod, 1997; Bear and Rand, 2016; Bristow et al, 

2014). Simulation studies also confirm that the clustering of agents ready for cooperation increases 

the level of cooperation in the agent community (Andras, 2016; Mitteldorf and Wilson, 2000). 

 

3. Social learning in cooperation games 

Practical cases show that social learning matters for maintaining cooperation practices among selfish 

individuals. For example, in the case of punishment of defectors in the context of managing and 

using public goods, copying the compliance behaviour avoids the punishment of individuals and at 

the same time increases the likelihood of cooperative behaviour and decreases the likelihood of 

defection behaviour (Sigmund et al, 2010). Social learning has been considered by many 

management researchers as a mechanism to instil behavioural patterns and rules within 

organisations, which in turn help maintain cooperative behaviours and support cooperative decision 

making within the organisation (Pahl-Wostl et al, 2007; Wenger, 2000). Social learning works in 

similar ways in animal communities as well. For example, in some cases when wolves fight the loser 

offers his throat to the winner, which in turn does not kill him, but lets the loser leave. Copying this 

behaviour helps the community of wolves to maintain sufficiently high number of individuals, while 

also allowing them to establish the social hierarchy within the community. Having sufficiently many 

individuals increases the likelihood of success of cooperative hunting of the wolf pack. 

Cooperation games in general can be seen as an abstract conceptualisation of social institutions, 

where social institutions are seen as systematic sets of behavioural rules and patterns that channel 

social decision making processes (Goist and Kern, 2018; Kube et al, 2014). In an abstract sense the 

social institutions are about generating a decision with social impact and participants in the 

institutions follow some rules to reach their own contribution to the decision making process. In the 

simplest form, there are two participants who pick their own decision options and the social decision 

is computed using decision table that indicates the social outcomes of the combinations of the 

individual decision options. For example, individuals may play a resource game, where individual 

contributions to the resource generating effort lead to the combined resource outcome, e.g. 

cooperative hunting or foraging (Lönnstedt et al, 2014). Another example is the defence game, 

where individuals contribute to the defence effort, e.g. vigilant behaviour aimed to detect predators 

(Townsend et al, 2011) or offering alternative target for predators (Rieucau et al, 2015; Seghers, 
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1974), and gain collectively improved chance of survival. A further game is the fighting game, where 

individuals fight for position in the social hierarchy mainly by posturing and vocalisations and 

possibly by limited amount of actual physical fight, however achieving the final outcome usually 

without significant wounds or physical damage (Schilder et al, 2014; van der Borg et al , 2015). 

Human social institution games are typically more complex and involve multiple individuals however, 

conceptually they follow similar patterns of decision making and outcome generation. Institutional 

decision making processes with many components can be conceptualised as simultaneously played 

cooperation games, characterised by distinct communication processes about decision contributions 

and specific decision tables for the generation of decision outcomes. A further factor that influences 

the playing of institutional cooperation games is the clustering or lack of clustering of individuals 

with higher willingness to cooperate (Andras, 2016; Mitteldorf and Wilson, 2000). Here the term 

clustering includes the possibility of easy identification of co-operators, e.g. rank or group 

membership identifiers. Naturally, it is expected that cooperation levels are higher if likely co-

operators can be identified (Andras, 2016). 

Social institutions rely to considerable extent on social learning to maintain themselves (Mesoudi et 

al, 2014; Sigmund et al, 2011; Wenger, 2000). Individuals who get involved in these institutions get 

their initiation though copying and following behavioural patterns of other participants of the 

institutions. For example, consider initiation into religious institutions through learning and copying 

appropriate behaviours, e.g. singing, dancing, participation in processions, chanting, saying or 

shouting specific sequences of words or vocalisations, producing particular postural and behavioural 

patterns, etc. Social institutions provide also channels for social learning, by directing the copying 

behaviour along the components of the institution and facilitating or prizing certain forms of social 

learning. Social learning may be reinforced through provision of punishment or reward (Sigmund et 

al, 2011), e.g. by leaving the individual to the last round of feeding or letting them into one of the 

first rounds depending on their contribution to the hunting. Social learning may rely on observing 

others and gradually producing copied behaviour that increasingly matches the desired behaviour 

(Csibra and Gergely, 2006), e.g. learning to read, write or work with numbers from a teacher. In 

general social learning may rely on close to perfect copying of some behavioural patterns or on 

partial copying of most behavioural patterns and the gradual expansion of the range of the copied 

behavioural patterns or of the extent of precision of copying of the behavioural patterns. The copied 

behaviours may be those of the individuals who are most successful in some appropriate sense (e.g. 

get the most and best food, most successful in fighting or mating) or the behaviours that are most 

frequently produced among other individuals (e.g. singing in the church). 

Given that institutions are conceptualised as cooperation games and institutions rely on social 

learning, it is natural that social learning influences cooperation, as we already indicated through the 

examples noted above. Copying of behaviour of others in the context of formal cooperation games 

equates to the copying of the strategy rules, as much as these can be determined from the observed 

behaviour of individuals. If the strategy is implemented through a set of communication rules (e.g. 

communication of intentions, similar to posturing and vocalisations in fighting games) then copying 

of the behaviour can be implemented by copying of such communication rules. As noted above, 

copying may happen through exact copying of some communication rules or partial copying of most 

(or all) communication rules. Considering the identification of likely partners for cooperation, it is 

expected that if this identification is easy, e.g. signalling of group membership, social learning might 



  

8 
 

have additional mechanisms for members of different cooperation-willingness groups. This is likely 

to increase the impact of social learning in such settings. 

Uncertainty of outcomes or impact of institutional decision making can have significant influence on 

the functioning of the institutions (Dequech, 2004; Mehta et al, 1999; Rosendorff and Milner, 2001). 

For example, the outcomes of management decisions related to common goods may vary depending 

on the variable natural conditions (e.g. impact of cold or hot weather, flooding, wildfires, etc.). In 

general institutions are seen as mechanisms to reduce uncertainty induced by the environment 

(Mehta et al, 1999; Rosendorff and Milner, 2001) (e.g. consider simple forms of insurance or credit 

union associations). This effect is natural, considering institutions conceptualised as cooperation 

games, since cooperation in repeated cooperation games reduces the uncertainty experienced by 

the individuals participating in the games (Andras, 2006). Social learning induced by participation in 

institutions must impact on the playing of the cooperation games in uncertain environments. While 

social learning in principle is likely to increase the level of cooperation, assuming that those who 

cooperate frequently are also the most successful individuals, at the same time social learning may 

lead to excessive conformity as well, which prevents the emergence of alternative solutions of 

decisional problems that may lead to improved impact outcomes. 

In general it is expected that the presence of social learning in repeated cooperation games leads to 

increased level of cooperation. An example of this can be considered the use of communal, 

institutional, management of common goods (e.g. highland meadows) instead of simple one-to-one 

agreements between joint users. The institutional approach induces social learning and more stable 

high level of cooperation than the alternative solution of multiple one-to-one agreements, leading to 

better and more sustainable management of the common goods. However, in general it is difficult to 

find good natural set-ups where the presence or absence of institutional organisation is given and it 

is also easy to measure the level of cooperation. In principle, international comparison of 

institutional environments with more and less cheating (e.g. indicated by level of corruption) is 

possible, however, sufficiently detailed measurement of social learning and cooperation practices is 

likely to be difficult. An alternative way to investigate the relationship between social learning and 

cooperative behaviour is through computational simulations. While these are naturally limited by 

the simplifying assumptions adopted in such simulations, they may offer insight in key aspects of this 

relationship and possibly allow the more valid interpretation of available data about real world 

scenarios and systems. 

 

4. Measuring cooperation and its correlates 

Measuring directly the level of cooperation in real world situations might be difficult. In the context 

of animal communities this may require detailed and long-term observation of many animals such 

that individual animals can be clearly identified and their interactions can be clearly classified as 

cooperation or non-cooperation. In the case of humans such observations in real world situations 

are even more complicated due to ethical considerations. One option to measure directly 

cooperation is to set up cooperation experiments with human participants (Sigmund et al, 2011), 

however such experiments are limited by the experimental settings and do not necessarily match 

real world situations. At the same time, the results of such experiments may be influenced by 
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unintended factors brought in by the human participants, which are not or cannot be controlled by 

the experimenters (e.g. cultural background, language, emotional state of the participants). 

As we noted in the previous section cooperation among individuals reduces the experienced 

uncertainty of individuals in the context of cooperation in uncertain environments (Andras, 2006). 

This is because cooperation allows the participants to share their outcome uncertainty, which 

effectively reduces the individually experience uncertainty. In the real world there are many sources 

of environmental uncertainty. These include unequal distribution of food resources, predation risk, 

availability of tools and environmental features that can improve winning chances in fights, 

unpredictable environmental events (e.g. floods, fires, earthquakes), unpredictable responses of 

humans to management decisions, and so on. In principle, measuring the experienced uncertainty of 

individuals could offer an indirect way of measuring the level of cooperation among the individuals. 

Another way to reduce experienced uncertainty is to reduce the uncertainty induced by 

communications involved in the generation of decisions about cooperation and defection (Andras, 

2008). The communication actions (behavioural, vocal or verbal) generated by individuals can be 

measured through an appropriate sample of these (i.e. complete and finely detailed measurement is 

not necessarily required) and the uncertainty induced or represented by these communications can 

be measured. There are two generic ways of measuring communication uncertainty, both are 

inspired by the Kolmogorov complexity (Andras, 2008). One approach is to measure the length of 

communications that lead to the cooperation / defection decision. According to this approach longer 

communications are more complex and more uncertain, so reduction of communication uncertainty 

is represented by a reduction of the average length of communications required for reaching these 

decisions. For example, let us assume that measured communication sequences (e.g. sequences of 

words) are as follows 

     
    

      
              

 
   (1) 

where   is a set of communication symbols (e.g. words),   
 
 are communication symbols and    are 

the communications. Then the length based communication complexity metric for these 

communications is 

  
 

 
    

 

   

 
(2) 

The other approach is to look at probability distributions of consecutive communication actions and 

calculate the variance (or standard deviation) of these distributions. Larger standard deviations 

mean more variability in the possible continuation communication actions and consequently imply 

higher uncertainty produced by the decision making communications. Following this approach 

reduction of uncertainty is represented by reduction of the standard deviations (e.g. the average of 

these standard deviations) of the communication continuation distributions. For example, 

considering a large corpus of communications of the form in equation (1), with                 

being the set of symbols and each communication labelled by the individual who generated it, we 

measure the continuation probabilities of communication symbols for each individual as 

          , where     are the labels of individuals (  being the set of the individuals) and 

        any pair of symbols. Then we measure the variance based communication complexity as 

follows: 
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(3) 

     
 

     
                    

 

   

 
(4) 

   
 

  
  

 

   

     

 

   

 
(5) 

where    is the communication complexity metric. Both measures of language induced uncertainty 

can be calculated using a sufficiently large sample of the communications used by the individuals, 

without requiring an exhaustive measurement of all communications of all individuals. 

In general it is expected that reduction of experienced uncertainty happens through both 

cooperation and through reduction of communication induced uncertainty. Thus measuring the 

language induced uncertainty provides correlates of cooperation in the considered community of 

individuals. Given that measuring these correlates may be easier than measuring the level of 

cooperation itself or measuring the actual level of experienced uncertainty, they provide ways of 

measuring indirectly the level of cooperation. However, the actual relationship between these 

correlates and the effective level of cooperation may be less simple, and more exploration of this 

relationship may be needed for correct interpretation of correlate measurements for the purpose of 

estimating the level of cooperation. 

In the presence of social learning which leads to copying of communication behaviours it is expected 

that language uncertainty correlates of cooperation will be affected. In particular, it is expected that 

the variability of language rules gets reduced and also possibly the length of communications gets 

reduced as well as individuals copy the behaviour of others. This may interfere with the relationship 

between the level of cooperation and the measures of the communication-based correlates, so 

further investigation is needed to establish the extent and direction of this interference. 

Given that measuring cooperation and its communication-based correlates is complicated in real 

world settings an alternative way to address the evaluation of the relationships between these 

measures is to perform simulation experiments. Of course, such simulation experiments have their 

own limitations, however they can be controlled in detail and by implementing communications and 

cooperative games in sufficient detail they allow us to measure the level of cooperation and the 

communication-based correlates to establish their relationships. 

 

5. The simulation environment 

Our simulated world is inhabited by agents that own resources, communicate with each other and 

move around using random Brownian motion. The world of the agents is a 1000 x 1000 size square, 

with opposite edges glued together. The agents make random moves in the range of [-5,5]. The 

agent communications are about the intentions of the agents in the context of playing a Prisoner’s 

Dilemma game. The agents play the game repeatedly with multiple partners. The game playing leads 

to generation of resources and the agents use resources to survive. The resource game that the 

agents play has uncertainty embedded in it, as the amount of generated resources varies. 
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The communication language of the agents is defined using a probabilistic automaton. The language 

rules determine the production of communication symbols, depending on the communication 

symbols that were produced previously by the interacting agents. Thus the language rules have the 

following form: 

       
        

     
    

      
    

        
    

   (6) 

 

where     
  and       

  are the last symbol produced by the agent and its communication partner, 

    
  are the new symbols that the agent may produce using the rule,    is the probability of 

production of this symbol following this rule and    is the number of new symbols that may be 

produced using the rule  . We note that    
  
     . A simplified representation of the rule, 

without the specification of the probabilities, but including the list of possible produced symbols is 

       
        

        
        

    (7) 

In our simulation the symbols used by the agents are: {0, s, y, n, i, t, h} with the following meaning: 0 

– wait, s – start effective communication, y – engage in decision making, n – stop communication 

and return to waiting state, i – continue communication, t – take defection decision, h – take 

cooperation decision. The language rules are as follows:            ;            ;       

     ;              ;              ;                             ;              ; 

             ;              ;              ;              ;          ;          ; 

         ;          ;          ;          ;          ;                     ; 

           ;          ;          ;            ;            . The joint cooperation 

decision is achieved if both interacting agents decide to communicate  . One agent defects and 

takes advantage of the other, if one of the agents communicates  , while the other communicates  . 

Both agents defect and neither of them gains advantage at the cost of the other, if both agents 

communicate  . If both agents do not reach the communication of the symbol   within        

communication steps (         ) the communication ends and neither agents cooperate (i.e. 

equivalent of the final communication of   by both agents). If both agents reached the 

communication of the symbol   within        communication steps, but they cannot reach the 

communication of symbol combinations      ,      ,       or       within         communication 

steps (          ), again the communication stops in the equivalent state of communicating       

by the two agents. The communication symbols are arranged in a positivity order: t, n, 0, s, i, y, h. 

The language rules obey an intention consistency constraint in the sense that if a symbol   can be 

produced immediately following the production of the symbol    with probability    and also 

immediately following of the symbol     with probability    , and    is more positive than    and    

is more positive than    , then       . In other words, the likelihood of communication of 

increasingly positive intentions does not drop as more positive intentions are communicated. All 

agents share the same set of language rules, but each agent has its own setting of the probabilities 

for each language rule such that these probabilities satisfy the intention consistency constraint. 

In each time turn of the world the agents try to find a communication partner. They choose their 

partner from agents which neighbour them in the spatial world of the agents. The agents consider 

the closest            agents (             ) as potential partners. If all potential partners have 

already a partner picked for them, the agent does not have a communication partner in that time 

turn of the simulated world. 
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If two agents are assigned to each other as communication partners in a time turn of the world, they 

use their language to communicate symbols aiming to achieve a decision about cooperation / 

defection. Following the reaching of this decision (as described above) the agents use their resources 

to generate new resources. If they both decide to cooperate, they pool together their resources and 

share equally the extra resources that they obtain in this way. If one agent cooperates and the other 

defects, they pool together their resources, but all extra resource is taken by the one that defects, 

while the cooperating agent does not get any extra resources and even looses a proportion 

(      ) of the resources that they could generate individually. If both agents decide to defect 

then they generate their resources individually without pooling their resources and they do not lose 

any part of their individually generated resources. The new resource amounts are generated by 

sampling a normal distribution, for which the mean value is given as a function of the invested 

resources and the standard deviation is set as the uncertainty that characterises the simulated world 

of the agents. Thus, the new amount of resources may be more or less than the mean value that  

Table 1. The pay-off matrix of the games played by the agents 

  Agent 1 

  Cooperate Defect 

A
ge

n
t 

2
 

Cooperate 
         

Defect 
        

directly depends on the invested resources and the extent to which differs from the mean value and 

the likelihood of such difference depends on the uncertainty of the simulated world. Formally, the 

game is represented by the pay-off matrix shown in Table 1 where         and        

and the pay-off values are the differences between the default amount of resource that the agent 

could generate by itself (i.e. without pooling resources with another agent) and the amount of 

resources that they can generate with the involvement of their partner agent. Thus,    ,    , 

      and        , where    is the amount of the resource that could be generated alone by 

the considered agent and   is the difference in the amount of resource that can be generated jointly 

by the agents and individually by them. The actual values of the generated resource amounts are 

taken as a sample from normal distributions. The mean value of the distribution for the resource 

amount that can be generated by an agent with available resources   is     , while the mean value 

for the distribution for the resources that can be generated jointly by the agents is         , 

where   is a function which is convex for the range of resource values that are considered, i.e. 

                . The standard deviation of the resource distributions is given by the 

product of  , which characterises the uncertainty of the simulated world, and the length of the 

communications that the agents engaged in to reach their cooperation / defection decisions, i.e. the 

longer it takes to reach the decisions more uncertain it gets the new resource generation. If     and 

    are the resource amount samples that the agents could generate alone and            is the 

resource amount sample for the joint resource generation, such that                    (i.e. the 

samples are taken until the samples satisfy this inequality), then                 
    

  . For 

the calculation of the mean values of the distributions we used the function 

     
 

       
 

(8) 
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such that the considered resource amounts are always on the convex part of the function (i.e.   

 ). We note that as the resource game is set up, the Prisoner’s Dilemma game conditions (i.e. 

inequality constraints among the pay-off values) are always satisfied. 

The agents may engage in social learning by considering their best performing neighbour, in terms of 

available resources. If the best performing neighbour has more resources than the agent, then the 

agent may copy fully some of the language rules of the neighbour, i.e. by copying the probabilities 

for the language rule. The likelihood of copying a language rule is given by the extent of practicing 

social learning in the simulated world,  , which is set for the simulated world. After rules are copied 

the satisfaction of the intention consistency constraint is checked and if necessary probabilities for 

language rules are adjusted. We used     for simulations with no social learning and       for 

simulations with social learning enabled. 

The agents spend their resources for their survival in each time turn of the simulated world. Agents 

for which the available resource amount drops below 0, die and no longer continue their existence 

in the simulated world. If an agent reaches the age of         time turns and they have 

accumulated resources, the agent produces a set of offspring and then dies. The offspring is 

produced in asexual manner. The new agents copy the language of their parent and share equally 

between themselves the resources of their parent agent. The number of offspring of an agent 

depends on the amount of resources that they have at the time of their death and it is calculated as 

       
    

  
   

(9) 

where   is the amount of resources of the agent,    is the average amount of resources and    is the 

standard deviation of resources across all live agents,   and   are parameters (      and        

in the implementation of the simulated world), and the actual number of offspring is the integer part 

of     . Only agents for which      are considered for generation of offspring. The offspring start 

with randomly set ages between 1 and             . The location of the offspring may originally 

be clustered at the location of the parent or alternatively the offspring may get spread around 

randomly in the simulated world. We explored both options in order to consider both the cases 

when potential collaborators / defectors can be easily identified (clustered offspring) and when this 

is not easily possible (spread out offspring). 

Cooperation was measured as the proportion of agents that engaged in cooperation by jointly 

choosing the       communication symbols at the end of their communications with their partners. 

We also measured the proportion of defectors and of those who did not engage in joint resource 

generation, i.e. the equivalent of reaching the       communication symbols at the end of their 

communications with their partners or not having partners at all. We also measured correlates of 

cooperation such as the language uncertainty measures proposed above in terms of the average 

length of communications between agents and the standard deviations of distributions of 

communication continuation probabilities. For the latter, we considered all language rules and all 

probability values associated with these and calculated the standard deviations of the probability 

values across all live agents. Then we calculated the average of these standard deviations as a 

measure of the standard deviation of communication continuation probability distributions. 
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Figure 1. Evolution of cooperation in agent communities with clustered offspring and no social 

learning. The horizontal axes show time, while the vertical axes show: A) level of cooperation; B) 

average communication length; C) average standard deviation based language complexity. The levels 

of environmental uncertainty are shown in the legends and with lines with different colours and 

different markers.  

 

6. Results and discussion 

The agent’s world simulations were run with and without social learning and also with clustered 

offspring and spread out offspring. We used three different levels of environmental uncertainty in 

the simulations,                . Each simulation of the agent’s world ran for 2,000 time turns. For 

each simulation setting (i.e. with/without social learning, clustered/spread out offspring, level of 

uncertainty) we ran 20 simulations. The data reported in the paper are average values calculated 

over 20 runs. The standard deviations are considerably smaller than the average values and these 

are not included in the figures to avoid cluttering. The reported results include the proportion of 

cooperating agents (level of cooperation), the average length of communications and the average 

standard deviation of the distributions of the probability values of the communication language 

rules. 

We found in simulations without social learning that more environmental uncertainty is associated 

with significantly higher level of cooperation among the agents (Figures 1A and 3A). In the case of 

presence of social learning and clustered offspring this differentiation is valid only in the earlier stage 

of the simulations, while later all simulations converge to high level of cooperation (Figure 2A).  In 

the case of spread out offspring with social learning we found that the cooperation level associated 

with lower environmental uncertainty is higher than the level of cooperation corresponding to high  
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Figure 2. Evolution of cooperation in agent communities with clustered offspring and with social 

learning. The horizontal axes show time, while the vertical axes show: A) level of cooperation; B) 

average communication length; C) average standard deviation based language complexity. The levels 

of environmental uncertainty are shown in the legends and with lines with different colours and 

different markers. 

 

level of environmental uncertainty (Figure 4A). This is consistent with findings reported in earlier 

papers (Andras et al, 2003; Andras et al, 2006; Andras, 2008; Andras, 2016).  

In terms of average length of communications and average standard deviation of language rule 

probability value distributions our results expand on previously reported results (Andras, 2008; 

Andras, 2016) due to the longer simulation times (i.e. 2,000 time turns compared to previous reports 

based on 400 time turns). Similar to previous reports (Andras, 2008) we found that in the absence of 

social learning there are no significant differences in the evolution of the average length of 

communications due to different levels of environmental uncertainty with or without spreading of 

offspring (Figures 1B and 3B). However, in the presence of social learning the average length of 

communications is significantly higher in the long term in environments with higher uncertainty, 

both with and without spreading of the offspring (Figures 2B and 4B). In terms of the standard 

deviation based language complexity measure we found that in the short term higher environmental 

uncertainty is associated with lower language complexity, if there is no social learning and the 

offspring are clustered (Figure 1C) – this is similar to earlier reports (Andras, 2016). However this 

relationship gets reversed in the longer term and more language complexity is associated with 

higher environmental uncertainty. We found that in the long term, in the absence of social learning, 

the language complexity slowly increases after a rapid drop in the first quarter of the simulations 

(Figure 1C and 3C). In the absence of social learning and with spread out offspring, we found that the 

language complexity is initially higher for environments with high uncertainty, but in the long terms  
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Figure 3. Evolution of cooperation in agent communities with spread-out offspring and no social 

learning. The horizontal axes show time, while the vertical axes show: A) level of cooperation; B) 

average communication length; C) average standard deviation based language complexity. The levels 

of environmental uncertainty are shown in the legends and with lines with different colours and 

different markers. 

the language complexities become comparable for all considered levels of environmental 

uncertainty (Figure 3C). In the presence of social learning, with or without spreading of the offspring, 

the language complexity is higher for higher uncertainty environments and for all levels of 

environmental uncertainty the language complexity does not increase in the long term (Figure 2C 

and 4C). 

Further we calculated the correlations between the level of cooperation, average communication 

length and standard deviation based language complexity for the later evolutionarily more steady 

part of the simulations (i.e. beyond 500 time turns). The results are shown in Table 2. At low levels of 

environmental uncertainty the reported correlations are strongly negative, with the exception of the 

case when the offspring is spread out and there is no social learning. At high level of environmental 

uncertainty some of the correlations are in line with correlations measured at lower levels of 

Table 2. Correlations of the level of cooperation with language complexity based correlates of 
cooperation 

Environment Clustered offspring  
No social learning 

Clustered offspring  
Social learning 

Spread offspring  
No social learning 

Spread offspring  
Social learning 

Uncertainty Comm 
Length 

Lang 
Complex 

Comm 
Length 

Lang 
Complex 

Comm 
Length 

Lang 
Complex 

Comm 
Length 

Lang 
Complex 

0.1 – 0.411 – 0.913 – 0.953 – 0.973 0.483 – 0.229 – 0.982 – 0.997 

0.3 – 0.492 – 0.897 – 0.940 – 0.994 0.834 0.311 – 0.988 – 0.991 

0.7 – 0.422 0.928 0.541 – 0.977 0.641 0.090 0.941 – 0.938 
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Figure 4. Evolution of cooperation in agent communities with spread-out offspring and with social 

learning. The horizontal axes show time, while the vertical axes show: A) level of cooperation; B) 

average communication length; C) average standard deviation based language complexity. The levels 

of environmental uncertainty are shown in the legends and with lines with different colours and 

different markers. 

 

environmental uncertainty, however there are some very significant exceptions, the correlation with 

the standard deviation based language complexity is strongly positive in the case of clustered 

offspring and no social learning and the correlation with the average communication length is 

strongly positive for the cases of social learning both with clustered and spread out offspring. 

To assess the impact of social learning we considered the differences between the evolution 

trajectories of cooperation level, average communication length and standard deviation based 

language complexity for simulations with and without social learning, and separately for the 

simulations with and without spreading of the offspring. We found that social learning increases 

significantly the level of cooperation and this effect is much more pronounced at lower level of 

environmental uncertainty (Figure 5A and 6A). The data shows that this effect increases with time if 

the offspring are spread out (Figure 6A), but in the case of clustered offspring the effect is larger in 

the earlier stage of the simulation and then it gets slightly reduced in the long term (Figure 5A). 

Social learning reduces significantly the average communication length in the early stage of all 

simulations, however, in the longer term this effect gets reduced for all levels of environmental 

uncertainty, and in particular in the case of high environmental uncertainty (Figure 5B and 6B). In 

the case of spread out offspring and high environmental uncertainty the average communication  

length increases in the long term in the presence of social learning (Figure 6B). We found that social 

learning reduces the standard deviation based language complexity measure both for simulations  
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Figure 5. The difference caused by the presence or absence of social learning in the evolution of the 

cooperation in agent communities with clustered offspring. The horizontal axes show time, while the 

vertical axes show: A) level of cooperation; B) average communication length; C) average standard 

deviation based language complexity. The levels of environmental uncertainty are shown in the 

legends and with lines with different colours and different markers. 

 

with clustered and spread out offspring (Figure 5C and 6C). This effect is more significant for lower 

levels of environmental uncertainty. 

Overall we found that at lower levels of environmental uncertainty the language complexity metrics 

correlate strongly negatively with the level of cooperation, with the exception of the case of spread 

out offspring with no social learning. The presence of social learning makes these negative 

correlations more pronounced at low levels of environmental uncertainty. These indicate that if 

social learning is present or if the identification of possible cooperation partners is easier (i.e. 

clustered offspring) the considered language complexity correlates of cooperation are valid 

indicators of the latter in the context low environmental uncertainty. 

Social learning is more effective in promoting cooperation at lower levels of environmental 

uncertainty. Social learning is in particular effective in driving cooperation higher in the context of 

spread out offspring, i.e. in cases when identification of likely cooperation partners is more difficult. 

This suggests that in the context of social institutions in low uncertainty environments social learning 

(copying of other’s behaviour) is likely to contribute very much for the maintenance of cooperative 

behaviour. The results also suggest that the effect of social learning in such institutions may be 

replaced to some extent by the easier identifiability of potential cooperation partners, e.g. 

membership of informal groups, formal or informal associations. Furthermore, the results indicate 

that in the lack of easy identification of possible cooperators and in the absence of common  
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Figure 6. The difference caused by the presence or absence of social learning in the evolution of the 

cooperation in agent communities with spread-out offspring. The horizontal axes show time, while 

the vertical axes show: A) level of cooperation; B) average communication length; C) average 

standard deviation based language complexity. The levels of environmental uncertainty are shown in 

the legends and with lines with different colours and different markers. 

 

practices of social learning the level of cooperation in an institutional environment is likely to be very 

low. This in turn may undermine the existence of the institution. 

In general higher level of environmental uncertainty promotes more cooperation. Interestingly, the 

impact of social learning on the level of cooperation in high uncertainty environments is reduced 

compared to this impact in lower uncertainty environments. We also found that the language 

complexity correlates in high uncertainty environments behave differently from the case of low 

uncertainty environments. Social learning makes the behaviour of the language variability in the 

context of high uncertainty environments similar to the case of low uncertainty environments, 

however in terms of communication length the effect is rather the opposite. This suggests that 

presence of social learning in institutions in high uncertainty environments reduces the variability of 

the ways how language is used within the institution. However, the length of negotiations and 

interactions that lead to cooperative behaviour are likely to get extended, especially in cases where 

the identification of trustworthy cooperation partners is not easy. Lengthier negotiations provide 

more opportunity for the signalling of cooperation intentions and in an institutional environment 

may also lead to the emergence of novel forms of communications, i.e. the equivalent of adding 

symbol innovations to the communication language used to negotiate about cooperation / 

defection. 
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The higher language variability and average communication length in high uncertainty environments 

compared to low uncertainty environments (most of the reported cases) and the positive 

correlations of these with the level of cooperation in some of the reported cases are somewhat 

puzzling. These results suggest that in institutions operating in high uncertainty environments higher 

variability of the language is maintained because successful performance may depend more on 

external uncertainties and thus patterns of behaviour (including institutional language usage) that 

are associated with success are more variable. Thus external uncertainty induces the maintenance of 

internal uncertainty, which may also provide an adaptive advantage, since the institution retains 

variability of practices making it able to respond adaptively to variable external conditions. 

The results presented here suggest that high environmental uncertainty promotes cooperation and 

through this the strengthening of institutions. On the other hand social learning promotes 

strengthening of institutions through cooperation most strongly in low uncertainty environment. 

These imply that institutions may emerge in environments that present high uncertainty in some 

respect. In this context the institution emerges as a cooperation game that can reduce the perceived 

uncertainty of the individuals. As the operating institution reduces the perceived uncertainty social 

learning may take its turn and improve the level of cooperation in the same or other related 

institutions. Mechanisms of identification of likely cooperators may also emerge, replacing to some 

extent the need for generalised social learning for the promotion of cooperation in the institution. 

The stable institutional environment allows exploration of new areas and aspects of the 

environment, where new uncertainties may get discovered triggering further institution emergence. 

Thus environmental uncertainty, social learning and easier identification of cooperation partners 

may work as alternating mechanisms for the triggering and development and expansion of the 

institutional environment. The partial equivalence of the effect of social learning and easy 

identification of cooperators means that these two mechanisms may work in a complementary 

manner. However, expansion of the easy identification of cooperators may actually reduce the 

general social learning within the institution, which in turn may limit the growth potential of the 

institution.  

The above scenario is interesting and seems plausible, however so far neither the simulations 

reported here or other similar simulation based studies managed to actually simulate the emergence 

of new institutions. The work presented here provides the grounds for this next step of research. 

Institutions can be represented abstractly as cooperation games. Then the mechanisms of 

environmental uncertainty, social learning, easy identification of cooperation partners combined 

with the perception of experienced uncertainty and exploration for discovery of new games may 

combine such that the suggested model of institutional emergence and evolution may be 

implemented. In some sense the existence of efficiently working institutions creates the new 

opportunities for institutions formation by creating new potentials for resource generation in 

uncertain environments. However currently it is not clear how this could be incorporated into 

simulations of institutional evolution. 

Another future research direction is the simulation of the expansionary evolution of the language 

though agent-based simulation studies. While various language evolution simulations are based on 

versions of naming games (Centola and Baronchelli, 2015; Steels, 2015), these do not link to studies 

on evolution of cooperation and of the institutional environment. At the same time it is likely that 

language evolution is closely related to the institutional evolution of the environment of the 



  

21 
 

language. In the above note about possible ways to simulate institutional evolution it is assumed 

that any new institutional game is given with an appropriate associated language. An alternative is 

to discover the new institutional game through gradual additions to and evolution of the language 

until it can capture the new institutional game. This has not been done so far, but the work reported 

here may provide the required foundation for this. Language expansion mechanisms may be added, 

e.g. adding of new symbols, splitting of existing symbols, constraining and expanding the set of 

possible follow-on symbols, which may allow to expand initially the language used for playing of a 

given game and then possibly to spin-off a sub-set of the language to play a new institutional game 

(as an example we may consider the elaboration of behavioural fighting games among animals, 

which may lead to the emergence of other collaboration games that may become useful in hunting 

for resources or group-against-group fights). 

 

7. Conclusions 

The paper reports on agent-based modelling experiments aimed to explore the role of social 

learning for the evolution of cooperation in communities of selfish-agents in the context uncertain 

environments. The results show that social learning in general is beneficial for the increase of 

cooperation and this effect is most pronounced in low uncertainty environments. The results also 

show that the other two factors that we have considered through the simulations, the level of 

environmental uncertainty and the clustering / spreading of offspring of agents (considered an 

implementation of the easy / difficult identification of potential cooperation partners), have 

significant influence on how cooperation evolves. 

We conceptualised cooperation games as abstract representations of institutions. The simulation 

environment allowed us to explore language complexity metrics as correlates of the level of 

cooperation. Our results show that the language complexity metrics have a partly different 

relationship with the level of cooperation in low and high uncertainty environments. The results also 

show that social learning leads to relatively higher level language complexity in high uncertainty 

environments compared to low uncertainty environments, and may also support the increase of 

language complexity in the long term, when this is measured as the length of communications 

between agents. In the context of the institutional interpretation of cooperation games, this implies 

lengthier negotiations about cooperation / defection decision choices, more adaptability to address 

uncertain environmental opportunities, and opportunities for the emergence of communication 

language innovations. 

We suggested that environmental uncertainty, social learning and identification of likely cooperation 

partners may act as alternating mechanisms that support increasing levels of cooperation and 

effective operation in institutions. In the first instance the environmental uncertainty experienced in 

the context of an institution representing cooperation game leads to increased cooperation and 

institutional efficiency. Following the reduction of perceived uncertainty social learning and easier 

cooperator identification may lift further up the level of cooperation and institutional efficiency. In 

turn new uncertain games and corresponding institutions may get established, where again 

uncertainty takes its turn to drive up cooperation and institutional efficiency. Naturally, all these are 

expected to apply in competitive settings. 
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We noted that future work may focus on expansion of the current simulation environment in two 

possible directions. One is towards the exploration of language evolution in the setting of 

institutional cooperation games, which may lead to the implicit discovery of novel institutions and 

corresponding cooperation games. The other direction is towards the investigation of institutional 

evolution through the mechanisms considered here combined with expanding experienced 

uncertainty and discovery of new institutional games, where new institutions are assumed to be 

discovered together with their associated communication language.  
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 Uncertainty, social learning and identification of likely cooperation partners contribute in 

turns to maintenance and expansion of social institutions. 

 

 Social learning is most beneficial in the context of low uncertainty environments. 

 

 Language complexity metrics negatively correlate with the level of cooperation in low 

uncertainty environments. 

 

 High uncertainty drives higher the level of cooperation. 

 

 

 


