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Highlights 

• Simulated clandestine burial emplaced using pig cadaver  

• In situ extraction of decompositional fluids for 18 months 

• Inorganic element analysis shows K+, SO42- and Na+ major influence 

• Mirrors temporal conductivity changes in other studies 

• Implications to detect and potentially date discovered clandestine burial 
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Abstract 

In homicide investigations, it is critically important that post-mortem (PMI) and post-burial 

interval (PBI) of buried victims are determined accurately. However, clandestine graves can 

be difficult to locate; and the detection rates for a variety of search methods can be very 

low. This paper presents elemental analysis results of 18 months of decomposition fluids 

from an in situ buried animal cadaver used as a human clandestine burial proxy. Study 

results showed potassium, sulphate and sodium are key detectable elements which mirror 

observed conductivity temporal changes from this and other studies. Seasonal rainfall has a 

strong influence on both fluid generation and subsequent concentration which needs to be 

accounted for. Study implications suggest inorganic elements could provide both detection 

and potential dating of discovered clandestine burials.  

 

Keywords: forensic science; clandestine burial; grave fluid; element concentration; post-

mortem interval 

 

1. Introduction 

Geoscientific methods are being increasingly utilized by forensic search teams for the 

detection and location of clandestine burials [1-3]. Clandestine graves of murder victims are 

usually shallow, less than 3 m and typically 0.5 m below ground level (bgl) [4-5], but current 

detection rates are low and, without locating the victim’s body, obtaining a successful 

conviction is more difficult [6-7]. Search investigators will typically use a variety of methods, 

which include scenario-based, feature-focused, intelligence- led, and systematic standard 
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operating procedures [6-7]. Standard operating procedures require investigators to follow 

sequential workflows, from reviewing case information, sourcing background/intelligence 

information, and remote data analysis. This process occurs before determining search 

strategies, undergoing site reconnaissance and phased site investigations, and then 

intrusively investigating anomalous areas [2, 6, 8]. Geoscientific site investigation methods 

vary depending upon the specific case, search site, and numerous other factors that are 

reviewed elsewhere [2-3], but can include scent-trained human remains detection dogs [8-

9], forensic geomorphology [10], forensic botany [11-12] and entomology [13-14, near-

surface geophysics [15-23], intrusive probing [24-25] and soil geoscience analysis [26-28]. 

 

After a body has been found, it is natural for investigators to focus on determining time 

since death. There has been extensive research on estimating the postmortem interval 

(PMI) of very recently deceased individuals discovered aboveground that has been reviewed 

elsewhere [28], commonly using body cadaver temperatures [29-30], entomology [31], 

entomofauna [32] and thanatochemistry [33]. For longer deceased individuals, other 

common PMI dating methods include tissue decomposition [34], skeletal remains [35] and 

tooth odontology [36]. Below ground decomposition rates of discovered individuals have 

been shown to be highly variable [37], depending on organic content [38], various local 

environmental factors such as soil type [26,39-41] and organism accessibility [42], among 

other factors. These factors complicate the estimation of PMI for buried remains. 

Furthermore, it may be useful to estimate the Post-Burial Interval (PBI) as a guide to the 

PMI. However, the PMI and PBI may be different: A victim might not be buried immediately 

after death. In such cases, the PBI can be used as an estimate of the lower limit of the PMI. 
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The presence of a decomposing cadaver has also been shown to be detectable on the 

surrounding soil. For example, changes in soil chemistry [38, 43-44], such as changes in the 

levels of methane [45], phosphates and nitrates [46], ninhydrin-reactive nitrogen [47-48], 

volatile organic compounds [27,38,43 and pH [46,49] can all be detected. Changes in these 

soil properties can be used to estimate time since death. The decay of other items such as 

materials associated with a grave has also been suggested to allow a PBI to be estimated 

[34,41]. Although relatively poorly understood, grave soil has been shown to be detectable 

by near-surface geophysical search methods, specifically electrical resistivity [19,21,50,51], 

and its reciprocal, bulk ground conductivity [16]. Geophysical research using simulated 

clandestine grave burials can provide critical information, for example, on optimal 

geophysical detection methods and equipment configurations [15,28,52-54], as well as 

providing continuous datasets for comparison with real cases [54-60]. Recent research has 

found that electrical resistivity anomalies over burials are predominantly due to conductive 

fluids in grave soil that vary temporally that may be due to decomposition [28,54,61]. It has 

been shown that it is possible to repeatedly extract in situ decomposition fluids from both a 

buried pig cadaver and background soil water, without the need for repeated disturbance or 

numerous replicate samples as other authors have performed. The resulting fluids can be 

simply analyzed for conductivity using a handheld meter [28]. However, it is uncertain what 

elements are causing these observed temporal changes in conductivity, hence the focus of 

this repeat study. 

 

The aims of this study are to therefore; firstly to sample and present results from an 18 

month monitoring study of a burial pig carcass, analysing the leachate and background soil 
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water for the major inorganic chemical components and secondly, perform a systematic 

statistical analysis of the resulting element parameters to determine the contributions from 

individual inorganic elements responsible. 

 

2. Methodology 

 

2.1 Study test site 

 

The selected burial site was located in a restricted area on Keele University campus, 

approximately 200 m above sea level, close to Newcastle-under-Lyme town in Staffordshire, 

UK (Fig. 1). Part of the study site was initially used for simulated clandestine graves 

monitoring and geophysical investigations (see [54,55,61]. Daily climatic records were 

obtained from a nearby weather observation station within Keele University, with a 

temperate local climate that is typical for the UK [62]. The study site was a small plot of land 

approximately 25 m by 20 m, covered with grasses and surrounded by deciduous trees on 

three sides. The study site scenario is a typical representative of a semi-rural environment. 

 

Information from a nearby borehole records identified the Carboniferous (Westphalian) 

Butterton Sandstone bedrock geology approximately 2.6 m below ground level (bgl). The 

local soil is predominantly a made-ground, due to the presence of demolished greenhouses. 

Initial soil sampling showed a vertical site succession of a shallow (0.01 m) organic-rich, top 

soil (Munsell colour chart colour (mccc): 5 YR/2/2.5), with underlying ‘A’ Horizon (Mccc: 5 
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YR/3/3) comprising largely of a natural sandy loam that contained approximately 5% of 

isolated brick and coal fragments [55]. The natural ground ‘B’ Horizon was located at 

approximately 0.45 m bgl, consisted mainly sandstone fragments from the underlying 

bedrock, which suggested a shallower bedrock depth. Also further investigation on soil 

particle analysis shown that the typical sandy loam soil texture, i.e. approximately 72 % 

sand, 26 % silt and 2 % clay, in combination with slow lateral water flow led to moderately 

high moistness of the soil approximately 34 %. 

 

2.2 Experimental procedures 

The simulated grave was constructed at the eastern part of the site (Fig. 1), which involved 

removal of the turf and then ground excavation, of a hole up to ~0.6 m deep, ~1.5 m length 

and ~ 0.5 m wide. The use of human cadavers was prevented due to the ethical issues 

involved in the use of human cadavers for research in the UK (Human Tissue Act, 2004); 

therefore a pig cadaver of the species Sus scrofa was used as a proxy for a human cadaver, 

whilst not ideal, they are considered to be similar to humans in weight, fat to muscle ratio, 

hair coverage, biochemistry and physiology [15,26,63]. A 90 kg pig of length ~1.5m, sourced 

from a local abattoir, was therefore killed by bolt gun; this prevented excess blood being 

lost as they usually despatched by electrocution and draining. The pig carcass was interred 

on 18th March 2014 and a lysimeter model 1900 inserted inside the made-slurry at the base 

of the hole between the two hind limbs and the grave wall (see Fig. 2). After internment of 

the pig carcass, the grave was backfilled with the same excavated soil, tamped firmly and 

leaving a slight mound to account for later settlement, before the turf was replaced to 

simulate a clandestine grave. A control lysimeter was installed on the same day, 
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approximately 16 m away from the pig grave and uphill to prevent any potential 

contamination (Fig. 2d). For this control lysimeter, a hole of ~0.3 m by ~0.3 m wide and 0.6 

m deep (the same depth as the pig grave) was excavated and refilled. The lysimeters were 

then left in place throughout the monitoring period. Generating a suction pressure within 

the lysimeter causes soil water to be drawn through the ceramic cup and into the PVC tube. 

Leachate and soil samples can then be extracted using a plastic syringe with a narrow tube 

attachment inserted through the stopper assembly (Fig. 2e).  

 

2.3 Sample collection and on-site measurements 

 

Initial sample extraction was conducted two days before the sampling day, to enable a fresh 

accumulation of leachate fluid in the grave which should be representative during the 

sampling period. The lysimeter clamp ring used to fold the neoprene tubing was removed, 

giving access to extract any fluid present in the grave, before a vacuum hand pump was 

employed to generate a vacuum pressure of approximately 65 centibars (kPa) (Fig. 2e). This 

pressure is capable of causing moisture to move from the soil through the porous ceramic 

cup, and into the vacuum sampler [64]. The same extraction procedure was repeated on 

each sampling day. Samples were extracted from both the pig grave and the control once a 

month for a period of 18 months, except for the first month that was sampled fortnightly, to 

enhance and validate the initial soil and leachate conditions.  The samples were transferred 

to 100 ml labelled plastic sample bottles (Fig. 2e) after a portable WTWTM Instrument Multi-

line P4 conductivity meter was used on-site to measure conductivity and temperature 

values (Fig. 2e). These were automatically corrected by the conductivity meter to a 
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reference temperature (25 0C) and are 0.1 0C accurate, thus avoiding any potential 

temperature variation effects when collecting samples. This procedure was repeated to 

check reading repeatability and reliability. Samples pH was also measured onsite in the 

laboratory with standards at pH 4, 7 and 10 before each use. Approximately 10 ml of the 

collected samples were used for the ICP-OES analysis, which was conducted within 1 hour 

after sampling and the remaining portion kept frozen until further Dionex laboratory 

analysis was conducted. 

 

2.4 Climatological data collection 

 

Climatological information was obtained from the closest weather station, ~ 0.2 km from 

the test site managed by the U.K. Meteorological Office. The recorded data include average 

daily rainfall and air temperature reading over the corresponding monitoring periods (see 

Table 1). It measured monthly minimum, maximum, and average total rainfall of 15 mm, 

113 mm, and 66 mm, respectively, over the 549 day monitoring period. Calculated monthly 

total rainfall data of the site were used to correct measured soil water measurements for 

local rainfall variation, in which conductivity values were multiplied by a rainfall correction 

factor, generated by dividing the average monthly rainfall for England in a given year by the 

average monthly rainfall for the local area in the same year (see [28] for background). The 

reason for the correction is to adjust the rainfall value in case of relatively high rainfall rates, 

which could potentially dilute grave soil water and hence reduce the measured values for 

physicochemical parameters, and in case of relatively low rainfall rates would increase the 

concentration of grave soil water and hence increase values for the measured parameters. 
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2.5 Ion Chromatography (IC) Dionex system 

 

Ion Chromatography (IC) is a standard analytical technique used to detect inorganic anions 

and cations in liquid samples down to parts per million (ppm) – see [65] for background.  

Forensic applications include characterisation of gunshot [66] and explosive [67] residues, 

elemental profiling of illegal tobacco [68] and fingerprint analysis [69]. It is also a well 

established regulatory method for this purpose for environmental forensic studies, 

quantifying inorganic contaminants in, for water, wastewater, leachate, soil extracts, surface 

and groundwater, and other environmental sample matrixes [65].  

 

Analysis of the inorganic anion concentrations was performed using a standard Dionex™ ICS-

1000 ion chromatograph with improved suppressed conductivity detection. This machine 

was initially calibrated by running three standards of Fluoride, Nitrate, Phosphate and 

Sulphate of varying concentrations (1ppm – 10ppm) through the equipment and comparing 

linearity of measured results following standard procedures (see [70]).  0.5 ml of fluid from 

both the control and grave soil water samples were prepared and put onto the sample 

loader, before the machine measured and analysed the results.  The standards were also re-

run between each set of samples to avoid cross-contamination and monitor any instrument 

measurement drift. Blanks of deionised water were also used after each sample 

measurement for quality control. 
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2.6 Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) 

 

Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) is similarly a standard 

analytical tool used to measure analyte concentrations in an aquaeous sample, then 

comparing them to known element concentrations in a standard sample and can detect 

metallic elements down to 1 part per billion (ppb). Forensic applications include analysis of 

evidentiary materials [71], discriminating glass analysis [72] and determining fatal mercury 

poisoning [73]. 

 

Elemental ICP-OES metal analysis used a Varian™ Vista MPX ICP-OES instrument (Agilent 

Technologies, Santa Clara, CA).  Samples were centrifuged at 5000 rpm for 10 mins and then 

7 mL of each sample was transferred into 10 mL auto sampler tubes following standard 

methodologies [74]. The commercial cyclonic spray chamber (#98301) was used with a 

Seaspray concentric nebuliser (#86779). Operating parameters of this instrument are listed 

in the appendix. Sample calibration against approved standard reference materials (P, S, V 

and Si) was undertaken and serial dilutions were prepared, dissolved in 5% (v/v) HNO3 and 

used to produce calibration curves from which respective sample amounts were calculated. 

Between each measurement, blank samples were analysed to reduce/eliminate 

measurement drift. The known standards were also periodically run between samples to 

check for measurement accuracy. 
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3. Results 

The observed sinusoidal seasonal temperature variation was typical for northern latitudes, 

with broadly typical wetter winter and dryer summer months.  Monthly local temperature 

variations greatly affect decomposition rates [4]; these could be corrected for by converting 

post-burial (day) interval (PBI) to Accumulated Degree Days (ADD), as detailed in the 

methodology. 

However, there were notable variations between the first and second year monthly rainfall, 

which could result in a significant variation in the concentration of grave soil water if not 

properly accounted for, as relative higher rainfall rates will reduce measured conductivities 

and concentrations of other element parameters.  

The control soil water measurements from the Keele test site (Fig. 4) evidenced consistent 

background conductivity values over the 549-day study period, averaging 367 (± 0.1) mS/cm 

(Table 2). This compared well with the 411 (± 0.)1 mS/cm averages of previous studies [28].  

The grave soil water (leachate) evidenced a steady increase in conductivity values to 2,850 ± 

0.1 mS/cm (58 days) before a consistent increase up to 34,400 ± 0.1 mS/cm (272 days).  

After this time, conductivity values then steadily decreased until the end of the monitoring 

period  to 13,830 ± 0.1 mS/cm (549 days)- see Fig. 4a.   

Climatic variations were able to be adjusted for by converting Post-Burial Days (PBI) to 

calculate Accumulated Degree Days (ADD) to correct for temperature, these results 

compared favourably with previous studies [28]– see Fig. 4b.  Monthly rainfall variations 

were also able to be taken into account by using a correction factor for each conductivity, 
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using the percentage difference of individual months compared to the total study average 

rainfall – see Table 2 and Fig. 4b. 

The grave soil water element analysis averages showed Calcium element concentrations to 

rapidly increase from 171 ± 0.1 mg/l at 14 PBD up to a maximum of 1,620 ± 0.1 mg/l at 150 

PBD before declining back to ~303 ± 0.1 mg/l at the end of the monitoring period (Table 3). 

The control soil water values average 82 ± 0.1 mg/l. Grave soil water Potassium and Sodium 

element concentrations showed similar trends to Calcium, increasing from 11 ± 0.1 mg/l and 

58 ± 0.1 mg/l at 14 PBD up to 1,230 ± 0.1 mg/l and 536 ± 0.1 mg/l at 212 PBD before 

declining back to 338 ± 0.1  mg/l and 119 ± 0.1 mg/l respectively (Table 3). Their respective 

control soil water element concentrations were not detectable.  Grave soil water chloride, 

sulphate, nitrate and phosphate element concentrations also showed similar trends, albeit 

at lower concentrations (Table 3) with their control soil water element concentrations 

mostly not detectable (Table 3).  

 

After the respective control element concentration values were subtracted from the ‘grave’ 

soilwater element concentrations, the resulting concentration element variations Pig 

decomposition leachate and corresponding background soil water chemistry results are 

shown in Tables 3 and 4 respectively. A combined graph of elemental concentration against 

the post burial days (PBD) is presented in Figure 5. The removal of soil water effect from 

leachate water was conducted by subtracting the corresponding concentration of elements 

in soil water from the values obtained in leachate water in order to obtain the concentration 

of a pure leachate sample used for further analysis (see Figure 4c).  
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Generally, there was a notably high correlation between the concentrations of inorganic 

elements and the electrical conductivity temporal variations in the leachate sample (Fig. 4). 

The degree of linear association between any two of the parameters were measured by 

simple correlation coefficient (R) values for the leachate and background soil water samples 

respectively (Tables 4-6). 

 

 

 

Significance tests were undertaken of the correlation coefficients of fluid conductivity 

against measured element concentrations in both the grave (Table 5) and control (Table 6) 

soil water samples. Results showed potassium, sulphate, sodium and phosphate elements to 

have significant correlation coefficients in the grave soil water samples (Table 4), although 

phosphate was also significant in the control soil water samples (cf. Tables 4-5). 

 

Finally two variable least-square approaches were used to investigate the relationship 

between fluid conductivity as an independent variable and the main measured elements as 

dependent variables. Linear regression analysis were carried out and evidenced that 

electrical fluid conductivity was the controlling variable (Table 6). Regression results for 

potassium, sulphate, sodium and phosphate were significant at 1% (≤ 0.001), whilst the 

equation of nitrate is significant at 10% level of confidence (Table 6). A F test (ratio of 

regression mean square : error mean square) also showed high values.  Phosphate was the 

only significant measured element at 1% level of confidence in control soil water (Table 7).  

ACCEPTED M
ANUSCRIP

T



14 
 

Multiple R2 values (0.88) indicated that 88% of the variability could be associated to the 

combined effect of potassium (24%), sulphate (25%), sodium (20%) and phosphate (31%) 

respectively (Table 7). However, the variability of fluid conductivity values in background soil 

water was mainly caused by the combined effect of phosphate and chlorate (Table 6). The 

combined multiple R2 value (0.73) indicates that 73% of the variability in EC of soil water 

could be linked to the presence of phosphate (56%) and chlorate (44%) respectively (Table 

7). 

 

4. Discussion 

 

Although each search for buried murder victim will be unique, the burial will always lead to 

changes in soil composition and the accumulation of substances and elements [75].  This 

section will discuss the paper aims and objectives. 

 

Study aims were firstly; to sample and present results from an 18 month monitoring study of 

a burial pig carcass, analysing the leachate and background soil water for the major 

inorganic chemical components. This study has demonstrated that, using an animal pig 

cadaver as a human proxy, that over time, grave soil water could be differentiated from 

background soil water by measuring element parameters, in particular, by potassium, 

sulphate and sodium elements.  The observed electrical conductivity temporal changes 

corresponded with these elements, with the measured conductivity changes having a good 

similarity with previous studies (see [28,38]) and thus giving confidence that results were 
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replicable.  Temporal variations of these elements post-burial, after correcting for 

temperature and rainfall, all increased up to 220 PBI before declining, with a small increase 

and decrease again until the end of the monitoring period which mirrors [38], which may 

also be able to date a discovered clandestine burial of a murder victim, as others have 

shown with fluid conductivity studies [76].  An interesting observation was the trend of 

element values immediately after values peaked (Fig. 5), which other authors have also 

reported (e.g. [47,77]).  

 

The second study aim was to perform a systematic statistical analysis of the resulting 

element parameters to determine the contributions from individual inorganic ions 

responsible. In this study, analysis of correlation coefficients (Table 4) showed statistically 

significant positive correlation between fluid conductivity and potassium, sulphate, sodium 

and phosphate, although phosphate was also statistically significant with the control soil 

water (Table 5). This suggests that fluid conductivity depends on dissolved salts [78]. The 

choice of dependent and independent variables in a regression model was crucial. The 

dependent variable is a variable to be explained, while the independent variable is a moving 

force [79]. Two variable least squares approach were used here to quantify the relationship 

between fluid conductivity as an independent variable and different inorganic elements 

(Table 6). Different dependent characteristics of grave soil water were calculated using a 

regression equation and by substituting the values for the independent parameter in the 

equations. Results for potassium, sulphate, sodium and phosphate evidenced that electrical 

conductivity was significant at 1% level of confidence, while nitrate was significant at 10% 

level, although phosphate was also significant in the control soil water. The significance of 
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the relationship was also validated by an F-test (Table 7) evidencing that independent 

variables were significant in predicting changes in fluid conductivity values.  

 

5. Conclusions  

This study has importantly shown why observed grave soil water conductivity changes over 

time as others have observed (see [28,76]); this is primarily due to inorganic ion element 

changes, specifically potassium, sulphate and sodium, when compared to control values. 

Forensic soilwater surveys could therefore be undertaken by initial soil sampling of 

suspected burial sites, careful sample storage, and then centrifuging to extract soil water 

[47], before measuring their respective inorganic element concentrations. This would not be 

recommended as an initial search method; rather, it should be undertaken when a search 

area has been narrowed down to an appropriate size. This does, however, have promise as 

other studies have shown decomposition fluids to be retained in the local soil environment 

and to be electrically detectable, even when physical remains have decayed [80].  

 

Further work should firstly test this potential post-burial interval method in a real forensic 

case of a discovered clandestine grave to determine its usefulness for forensic investigation. 

Secondly this study should be repeated with different burial patterns and contrasting soil 

types, possibly, in a mass burial scenario. Thirdly the repeat studies should look at organic 

element temporal changes to determine if these affect conductivity results. Finally it should 

be investigated if multi-elemental concentrations in soil could be detected, either using 

hand-held X-ray or laser-induced breakdown spectrometers onsite for a quick 

reconnaissance survey to potentially locate a potential clandestine burial site.  
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Fig. 1. Schematic diagram (above) and photograph (below) of the study site, showing the 

surveyed area with pig grave (yellow dot) and control (green dot) positions approximately 

indicated and location map (inset).  Survey tapes indicate area used for the [54-55] Pringle 

et al., (2012b/2016) long-term geophysical monitoring studies. 
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Fig. 2. Study site. a. pig lysimeter grave, b/c. pig carcass, d. control site with lysimeter only 

and e. control soil water measurements with instruments. 
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Fig. 3. Graphical climate summary of rainfall (bars) and temperature (line) data from Keele 

University weather station over the monitoring period. 
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Fig. 4. (A) Measured soil water fluid conductivities over the 18 month (shown as post-burial 

days) study period, with (B) corrections for temperature (Accumulated Degree Days) and 

varying monthly rainfall (see text for details and data shown in Table 2). 
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Fig. 5. Combined plots of measured element concentrations elements against: a. Post-Burial 

Days (PBD) and b. Accumulated Degree Days (ADD), with the control element 

concentrations subtracted from respective grave element concentrations (see text). Fluid 

conductivity also plotted (black) on right y axis for comparison. 
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Table 1. Summary of measured monthly local average temperature and total rainfall data 

from the study site over the 18 months monitoring period. Stated measurements are 

averages with ± 0.1 0C and 0.1 mm accuracy. ADD – Accumulated Degree Days, see [28] for 

more information. Bgl – below ground level. 

 

Sampling 
Date 

Sample 
Day After 
Burial 

Monthly 
ADD 0.3 
m bgl 

Monthly Average Temperature (0C) Monthly 
Total Rainfall 
(mm) 

0.3 m 
bgl 

1.0 m bgl Average 

18/03/14 0 0 0 0 0 0 
01/04/14 14 111 7 7 7 54.8 
16/04/14 29 406 10 9 9.5 50.6 
15/05/14 58 818 13 11 12 96 
17/06/14 91 1,314 17 14 15.5 65 
17/07/14 121 1,878 18 16 17 67.4 
15/08/14 150 2,398 17 16 16.5 99.8 
17/09/14 183 2,870 16 15 15.5 15 
16/10/14 212 3,269 13 14 13.5 86.4 
17/11/14 244 3,566 10 12 11 98 
15/12/14 272 3,776 7 9 8 76.4 
16/01/15 304 3,930 5 7 6 62 
18/02/15 337 4,049 4 6 5 30.8 
18/03/15 367 4,228 6 6 6 71.6 
18/04/15 398 4,513 10 8 9 28.4 
15/05/15 425 4,873 12 10 11 90 
18/06/15 459 5,309 15 12 13.5 48.6 
17/07/15 488 5,819 16 15 15.5 57 
18/08/15 519 6,316 16 15 15.5 112.6 
18/09/15 549 6,742 14 14 14 44.8 
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Table 2. On-site measured (± 0.1) in situ grave soilwater (leachate) and control soil water 

samples over the 18 month monitoring period, with temperature (ADD) and rainfall 

corrections also undertaken (see text). NS = No Sample. 

Sampling 
Date 

Accumulated 
Degree Days 
(ADD) 

Accumulated 
Degree Days 
(ADD) 

Field-
measured 
Grave 
Conductivity 
(μS/cm) 

Rainfall-
corrected 
"Grave" 
Conductivity 
(μS/cm) 

Field-
measured 
Control 
Conductivity 
(μS/cm) 

01/04/2014 111 111 1,157 878 195 

16/04/2014 406 406 816 619 200 

15/05/2014 818 818 2,180 3,138 344 

17/06/2014 1,314 1,314 2,850 2,778 228 

17/07/2014 1,878 1,878 15,740 15,908 162 

15/08/2014 2,398 2,398 18,520 27,715 319 

17/09/2014 2,870 2,870 29,900 6,725 
 

16/10/2014 3,269 3,269 35,900 46,511 
 

17/11/2014 3,566 3,566 33,300 48,935 750 

15/12/2014 3,776 3,776 34,400 39,409 396 

16/01/2015 3,930 3,930 21,700 20,174 484 

18/02/2015 4,049 4,049 27,400 12,655 573 

18/03/2015 4,228 4,228 17,530 18,821 425 

18/04/2015 4,513 4,513 24,900 10,604 477 

15/05/2015 4,873 4,873 20,800 28,071 310 

18/06/2015 5,309 5,309 21,100 15,377 316 

17/07/2015 5,819 5,819 20,000 17,094 313 

18/08/2015 6,316 6,316 13,830 23,351 
 

18/09/2015 6,742 6,742 18,330 12,314 384 
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Table 3. Analysed elements from grave soil (Leachate) and control soil water samples 

measured during the monitoring period (see text). ND = Not Detected and NS = No Sample 

Sampl
ing 
Date 

Accumu
lated 
Degree 
Days 
(ADD) 

Grave soil water (Leachate) ± 0.1 
(mg/l) 

Control Soil water ± 0.1 (mg/l) 

Ca2

+ 
K+ 

N
a+ 

Cl2- 
SO

4
2- 

NO3

- 
PO

4
3- 

Ca
2+ 

K+ 
Na
+ 

Cl2- 
SO

4
2- 

NO
3- 

PO

4
3- 

01/04
/14 

111 
17
1 

10
.9 

57
.7 

28
7.1 

29.
9 

36.
7 

ND 78.
3 ND ND 3.4 4.7 4.7 

2.
7 

16/04
/14 

406 
17
6 

30
.2 

78
.3 

11
9.1 

35.
4 

26.
3 

ND 69.
6 ND ND 3.3 3.9 2.4 

1.
7 

15/05
/14 

818 
39
0 

19
5 

13
5 

28.
1 9.5 

12.
7 

ND 97.
8 ND ND 3.3 3.3 2.8 

2.
6 

17/06
/14 

1,314 
44
0 

21
1 

12
7 

28
9.0 

47.
7 

23.
4 

ND 80.
6 ND ND 2.8 3.7 4.6 

3.
2 

17/07
/14 

1,878 
1,3
90 

80
0 

30
7 

32
8.4 

41.
3 

55.
1 

90.
8 

60.
5 ND ND 2.3 3.0 2.1 

2.
9 

15/08
/14 2,398 1,6

20 

1,
00
0 

39
4 

59
1.9 

55.
2 

50.
8 

18
4.7 

13
0 ND ND 

11.
1 3.7 

14.
8 

4.
7 

17/09
/14 2,870 1,5

40 

1,
19
0 

51
3 

34
2.2 

17
5.0 

88.
1 

35
6.1 

NS NS NS 

NS 

NS NS NS 

16/10
/14 3,269 1,0

50 

1,
23
0 

53
6 

37
9.6 

15
3.5 

151
.6 

62
7.9 

NS NS NS 

NS NS 

NS NS 

17/11
/14 

3,566 
66
4 

88
2 

34
7 

28
6.3 

15
8.2 

132
.4 

56
3.2 

80.
1 

13.
7 ND 

14.
2 2.3 

20.
7 

6.
2 

15/12
/14 

3,776 
40
9 

79
7 

30
8 

17
5.5 

13
9.3 9.6 

46
9.3 

82.
4 ND ND 4.2 

21.
6 3.7 

4.
1 

16/01
/15 

3,930 
40
2 

55
9 

18
5 

19
8.3 

70.
6 2.2 

26
7.5 

10
4 

3.5
8 ND 

13.
3 

24.
9 1.2 

6.
0 

18/02
/15 

4,049 
42
8 

65
2 

25
7 

40
5.9 

92.
3 

28.
7 

34
1.0 

11
5 ND ND 

23.
4 

22.
9 1.2 

6.
2 

18/03
/15 

4,228 
35
4 

38
0 

13
3 

23
5.1 

46.
3 3.1 

18
3.5 

86.
7 ND ND 5.7 

19.
3 0.8 

3.
8 

18/04
/15 

4,513 
11
0 

62
3 

22
8 

15
9.9 

56.
0 2.1 

29
7.7 

56.
1 ND ND 6.1 

11.
8 1.4 

2.
7 

15/05
/15 

4,873 
30
5 

46
3 

16
4 

17
6.3 

35.
2 2.1 

20
6.7 69 ND ND 1.2 

10.
7 0.8 

3.
3 

18/06
/15 

5,309 
12
5 

49
8 

18
3 

15
6.3 

33.
2 1.9 

22
5.3 

57.
6 ND ND 1.6 9.5 0.1 

3.
2 

17/07
/15 

5,819 
32
7 

45
3 

17
7 

11
8.9 

19.
7 3.2 

16
5.4 

73.
2 

5.5
4 ND 1.2 

10.
0 0.1 

3.
3 

18/08
/15 

6,316 
31
7 

29
7 

11
1 

19
4.1 0 0 

10
5.4 

NS NS NS 
NS 

NS NS NS 

18/09 6,742 30 33 11 12 14. 4.0 20 77 ND ND 1.2 5.0 0.5 4.
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/15 3 8 9 1.6 9 6.1 1 
averages 

55
3.7 

55
8.
4 

22
9.
5 

24
1.8 

63.
8 

33.
4 

28
6 

82.
4 

- - 6.1 
10.
0 

3.9 
3.
8 

 

Table 4: Correlation coefficients among the different measured grave soil water parameters 

with those deemed moderately statistically significant (r > 0.525) shown in bold. 

  

parameters EC(μS/cm) K+ SO4
2- Na+ PO4

3- NO3
- Cl- Ca2+ 

Fluid 
conductivity 1.000 

       K+ 0.833 1.000 
      SO4

2- 0.710 0.731 1.000 
     Na+ 0.750 0.953 0.846 1.000     

PO4
3- 0.947 0.761 0.808 0.749 1.000 

   NO3
- 0.452 0.597 0.807 0.775 0.613 1.000 

  Cl2- 0.286 0.615 0.446 0.623 0.277 0.525 1.000 
 Ca2+ 0.321 0.759 0.533 0.799 0.263 0.616 0.740 1.000 

NB: Except for fluid Electrical Conductivity (EC), all other parameters are in mg/l 

Table 5: Correlation coefficients among the different measured control soil water 

parameters with those deemed moderately statistically significant (r > 0.525) shown in bold. 

 

 

NB: Except for fluid Electrical Conductivity (EC), all other parameters are in mg/l 
  

parameters EC (μS/cm) SO4
2- PO4

3- NO3
- Cl- Ca2+ 

Fluid 
conductivity 1.000 

     SO4
2- 0.393 1.000 

    PO4
3- 0.790 0.468 1.000 

   
NO3

- 0.423 
-
0.400 0.436 1.000 

  Cl2- 0.706 0.447 0.823 0.380 1.000 
 Ca2+ 0.279 0.265 0.596 0.349 0.664 1.000 
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Table 6: Quantified statistical correlation between fluid conductivity as the dependent 

variable and independent elements in grave soil water samples (see text). 

 
NB: * indicates significant at 10% level, ** indicates significant at 1% level of confidence 
 

Table 7: Quantified statistical correlation between fluid conductivity as the dependent 

variable and independent elements in control soil water samples (see text). 

 

 
NB: ** indicates significant at 1% level of confidence 
  

Measured elements Regression equation R2 t Value P Value F Value 

Potassium 79.8 + 0.024EC 0.69 6.199 0.000** 38.428 
Sulphate -9.7 + 0.003EC 0.71 4.161 0.001** 17.315 
Sodium 53.1 + 0.009EC  0.56 4.674 0.000** 21.843 
Phosphate -72.1 + 0.016EC 0.90 12.000 0.000** 146.412 
Nitrate -2.7 +0.002EC 0.20 2.090 0.052* 4.369 
Chlorate 174.2 + 0.003EC 0.08 1.230 0.235 1.514 
Calcium 215.5 + 0.014EC 0.10 1.396 0.181 1.950 

Measured elements Regression equation R2 t Value P Value F Value 

Sulphate 2.6 + 0.020EC 0.15 1.599 0.132 2.556 
Phosphate 1.2 + 0.007EC 0.62 4.817 0.000** 23.207 
Nitrate -1.9 +0.016EC 0.18 1.744 0.103 3.043 
Chlorate -4.5 + 0.029EC 0.50 3.726 0.002** 13.882 
Calcium 68.6 + 0.037EC 0.08 1.085 0.296 1.177 
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Appendix1. Operating conditions of the Varian Vista MPX ICP-OEX 

Instrument conditions 

Plasma power (kW) 1.0 

Plasma gas flow (L min-1) 15.0 

Aux gas fow (L min-1) 1.5 

Nebuliser gas flow (L min-1) 0.75 

Viewing height (mm) 10 

Replicates 3 

Replicate read time (s) 15 

Monitored wavelengths (nm) 

Al 396.152 

Ca 422.673 

Cu 327.395 

Fe 238.204 

K 766.491 

Mg 279.553 

Mn 257.610 

Na 589.592 

P 213.618 

S 181.972 

Si 251.611 

Sr 215.283 
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V 389.310 
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