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Abstract

This paper investigates the hypothesis that noise in the
genotype—phenotype mapping, here called stochastic onto-
genesis (SO), is an important consideration in Evolutionary
Robotics. This is examined in two ways: first, in the context
of seeking to generalise controller performance in an incre-
mental task domain in simulation, and second, in a prelim-
inary study of its effectiveness as a mechanism for crossing
the “reality gap” from simulation to physical robots. The per-
formance of evolved neurocontrollers for a fixed-morphology
simulated robot is evaluated in both the presence and absence
of ontogenic noise, in a task requiring the development of
a walking gait that accommodates a varying environment.
When SO is applied, evolution of controllers is more effec-
tive (replicates achieve higher fitness) and more robust (fewer
replicates fail) than evolution using a deterministic mapping.
This result is found in a variety of incremental scenarios. For
the preliminary study of the utility of SO for moving between
simulation and reality, the capacity of evolved controllers to
handle unforeseen environmental noise is tested by introduc-
ing a stochastic coefficient of friction and evaluating previous
populations in the new problem domain. Controllers evolved
with deterministic ontogenesis fail to accommodate the new
source of noise and show reduced fitness. In contrast, those
which experienced ontogenic noise during evolution are not
significantly disrupted by the additional noise in the environ-
ment. It is argued that SO is a catch-all mechanism for in-
creasing performance of Evolutionary Robotics designs and
may have further more general implications for Evolutionary
Computation.

Introduction

It is well-known in biology literature that identical genomes
do not give rise to identical organisms. Studies of near-exact
DNA copies show that during development (ontogenesis)
small environmental variations cause relatively large pheno-
typic changes (Wong et al., 2005). In some cases there is a
clear advantage conferred to organisms whose developmen-
tal programmes adapt to their environment as they progress,
for example to accommodate differences of temperature or
salinity. In other cases, random noise from either the en-
vironment or the local molecular machinery (Gordon et al.,
2009) nudges the growth process into this or that dynamical
trajectory, shaping the organism differently each time. This
is one outcome of the presence of feedback relationships in

the regulatory architecture. The phenotypic discordance of
monozygous human twins is a good example of these effects
in action (Fogel et al., 1965). It is assumed by practitioners
of Evolutionary Computation (EC) that the uncertainty of
biological ontogenesis is an unavoidable consequence of the
substrate; the possibility that some variation in the transla-
tion from genome to organism has been conserved due to its
utility is often overlooked.

Evolutionary Robotics (ER) aims to use EC principles to
build robots and robot controllers that operate effectively de-
spite environmental perturbations and uncertain information
(Nolfi and Floreano, 2000). Whilst many examples of re-
search in this area focus exclusively on simulation, other at-
tempts have been made to evolve robot controllers that are
competent in real-world implementations. Sometimes the
search takes place entirely in physical reality, but often sim-
ulations are used to accelerate the evaluation of solutions and
thus the evolutionary process, albeit at a cost of accuracy and
real-world performance, see for example Cliff et al. (1993),
Zagal et al. (2004), and Koos et al. (2013).

This disparity between simulation and real robotics is
known as the reality gap, and bridging it is an impor-
tant area of research in ER (Mouret and Chatzilygeroudis,
2017). An evolutionary domain with real-world fidelity and
faster-than-real-time evaluation would be a major achieve-
ment. Various attempts have been made to address this am-
bition: optimisation of simulator parameters based on real-
world experiences (Bongard and Lipson, 2004); interleaving
real-world and simulated evaluations (Goosen et al., 2007);
learning to predict simulator accuracy from behaviour de-
scriptors so that individuals with good predicted “transfer-
ability” can be selected for (Koos et al., 2013); and injecting
noise into the simulation (Jakobi et al., 1995; Jakobi, 1997).

Jakobi proposed the radical envelope-of-noise hypothesis,
a comprehensive account of how the principled addition of
random noise to simulations can improve the performance
of robots evolved in simulation when evaluated in real-world
settings. Jakobi’s approach stipulates two important condi-
tions that together aim to smooth the transition between sim-
ulation and reality. First, that every implementation aspect
of the simulation must be randomly varied from trial to trial
so that reliably fit controllers are base-set exclusive, mean-



ing that the evolved controllers are tuned only to the factors
common to all simulators. Second, that every base-set as-
pect of the simulation is randomly varied from trial to trial
so that reliably fit controllers are base-set robust—meaning
that evolving species cannot exploit idiosyncratic features
of the implementation of base-set aspects in any particular
simulator.

In this paper I examine the hypothesis that noise in the
genotype—phenotype mapping, here called stochastic on-
togenesis (SO), exerts beneficial effects on an evolution-
ary system, in terms of its final fitness within individual
runs and across replicates. I also present evidence that SO
captures some of the essential characteristics of the radi-
cal envelope-of-noise hypothesis whilst significantly reduc-
ing the complexity and problem-specificity of implementing
such a mechanism. To address these points, performance of
simulated evolved robot neurocontrollers is evaluated in the
presence of ontogenic noise. By comparing to a determin-
istic equivalent, it is shown in multiple contexts that evo-
lution in the presence of this noise is more effective and
produces more robust solutions. It is demonstrated that the
improvement in performance is present despite fundamen-
tal differences in the underlying evolutionary schemes em-
ployed. The performance advantage of stochastic ontogene-
sis is lost only when carefully-chosen incremental environ-
mental changes that introduce extrinsic, noise-like variation
in the task are used. In this case, there is no disadvantage to
the presence of stochastic ontogenesis.

The final part of the paper discusses the potential for
stochastic ontogenesis to fulfil the role of an envelope of
noise, delivering the generalising power of that approach
but with a situation-agnostic encoding of the noise in the
genotype—phenotype mapping, rather than explicitly in the
environment. A preliminary empirical demonstration is pre-
sented by using a varying base-set aspect of the simulator
(specifically, the coefficient of friction) as a proxy for a re-
ality gap. The differing performance of controller species
evolved according either to a stochastic or deterministic on-
togenic scheme is observed in these worlds exhibiting previ-
ously unseen noise. Results show that individuals from the
stochastic simulator have significantly better performance in
the novel uncertain environment than those from the deter-
ministic world.

Background

In addition to Jakobi’s work (Jakobi et al., 1995; Jakobi,
1997), other research in ER and the related field of Virtual
Creatures has examined the effectiveness of noise in guiding
evolutionary processes towards more robust solutions. Seth
(1998) added noise to a fitness function to promote better
generalisation, and Miconi and Channon (2005) used a co-
evolutionary approach that effectively adds a similar noise
component to their fitness function. Relatively few inves-
tigations have examined noise in the genotype to phenotype
translation. Branke (2001) explored the use of noise by care-
fully selecting maximally-informative simulation variants to

accelerate robust evolution whilst incurring minimal com-
putational overhead. The variants were defined based on the
addition of noise between the genotype and phenotype. In
this case however, the noise was carefully controlled in order
to deliver the requisite extra exploration of the local solution
space. Fernandez Leon (2011) injected a stochastic compo-
nent into a dynamic leaky integrator network to increase its
robustness and capacity to generalise. Innovative research in
artifical cultural evolution has incorporated stochastic onto-
genesis in order to capitalise on the extra exploration of the
solution space afforded by such a modification. There it is
called transcription error and used as as a mechanism for
“individual learning” (Borg et al., 2011). That work avoids
considering stochastic ontogenesis as exerting a primary ef-
fect on the underlying evolutionary system (despite some re-
sults being suggestive of this effect) and in fact concludes
the opposite: that it is only effective when combined with
cultural (i.e. horizontal) information transmission.

Hypothesis

Noise has been applied to Evolutionary Robotics problems
to increase robustness and performance, by manipulating
simulation parameters to incorporate a stochastic compo-
nent. In this paper, I explore the hypothesis that adding
noise to a genotype when it is expressed as a phenotype
(here called Stochastic Ontogenesis) will improve the per-
formance of the evolutionary search (in terms of fitness of
evolved species across a number of replicates) and improve
robustness by acting as an alternative to the injection of
noise into the environment.

Methods

The evolutionary robotics platform used in this work is a
development of the environments presented in Stanton and
Channon (2013), Moore and Stanton (2017), and Stanton
(2017). The reader is invited to refer to those works for
detailed descriptions of the platform and its development.
However key detail, including any necessary exposition of
algorithmic processes and parameter values, is summarised
below for clarity and completeness.

Robot Platform and Simulation Environment Figure 1
shows the simulated quadrupedal robot (animat) used in this
study. The robot has a cuboid torso and four legs placed at
the corners. Each leg is divided into an upper and lower
segment. The hip is a 2-degree of freedom (DOF) joint
while the knee is a 1 DOF joint; see Table 1 for specific
parameter values. The robot’s joints are actuated using a
Proportional-Derivative (PD) control mechanism (Reil and
Husbands, 2002) that takes a target angle as input and ap-
plies a torque to the joint according to Equation 1, where T’
is the applied torque, ks and k4 are the spring and damper
constants, 0, is the desired angle, 6 the current angle and
0 the angle change since the last timestep. As in previous
work, ks = kg = 0.5 in this study.
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Figure 1: The quadrupedal animat and simulation environ-
ment in this study. The animat is tasked with crossing a wall
and moving towards a target, represented by the box.

Head dimension 0.2x0.2x0.2
Leg section dimension | 0.075 x 0.05 x 0.05
Head mass 2.0
Leg section mass 0.5
Hip joint axis 1 vertical, range [—7, 7]
Hip joint axis 2 horizontal, range [0, 7]
Knee joint axis 1 horizontal, range [0, 7]
Maximum torque 0.125

Table 1: Physical parameters of robot.

T = ke x (04— 0) — kqf 1)

Simulations are conducted in the Open Dynamics En-
gine (ODE) (Smith et al., 2005), a real-time rigid body
physics engine. ODE version 0.15.2 was used. ODE com-
putes the interaction between the different rigid components
of the robot as well as interaction with the environment; Ta-
ble 2 lists key parameters used.

Task Environment Animats are evaluated on their ability
to cross a wall and move towards a target position. Wall
heights vary, from 0.01 up to a maximum value of 1.0in 0.01
increments. Fitness values for animats are negative values,
with a maximum fitness of 0.0 corresponding to an animat
reaching the target.

Controller The controller is a feed-forward ANN with
fixed, fully-connected topology. Inputs comprise a number
of signals from the environment as well as spontaneous ac-
tivity generated by sinusoidal functions. These inputs are
shown in Table 3. The ANN has 12 hidden nodes and 12
outputs mapping to desired angles for each joint at the next

Timestep 0.02 seconds

Gravity —1.2

Friction model | Pyramid; pif = 2.0

Global ERP 0.2

Global CFM 5.0 x 107°

Wall dimension | 0.05 x 5.0 X h; hypge = 0.1
Wall position r=1Ly=0

Target position | z =2;y =0

Start location z=0;y=0

Simulation time | 20 seconds

Table 2: ODE simulation parameters.

timestep within the ranges described in Table 1. tanh func-
tion is used for the transfer function in the hidden layer, and
the logistic function for outputs. The ANN is updated in
lock-step with the dynamics simulation, and inputs are prop-
agated completely through the network at each update.

1 sin(27t)
2 cos(2mt)
3 balance: arccos(H[10])
4| (H|—|H) + Huiaon

5-12 | hip joint angles

13-16 | knee joint angles

Table 3: ANN controller inputs, where H is the ODE ro-
tation matrix of the robot’s head, |H,| is the distance from

each side of the robot’s head to the target and H ;45 is the
width of the head.

Evolutionary Algorithm A generational EA was em-
ployed in this study. A genome specifies a set of floating-
point weights for the ANN controllers. Populations com-
prise 50 individuals, each randomly initialized with values
drawn from U/(—1.0,1.0) based on a starting seed corre-
sponding to the replicate number. Fitness-based selection
is used where the population is ranked and the lower half is
replaced with mutated copies of the upper half, recombined
with a random individual from the upper half using single-
point crossover. The mutation rate used was %, where N is
the length of the genome. If applied, the mutation is drawn
from A(0.0,1.0), and allele values are unbounded. Mor-
phologies of the animats remain fixed throughout evolution.
An animat is evaluated based on its Euclidean distance from
a target at the end of a simulation. High fitnesses are only at-
tained if the animat climbs over an intervening wall of vary-
ing height.

Treatment analysis Each treatment is replicated 20-fold
for statistical validity. In each replicate, after the Evolu-
tionary Algorithm has proceeded for 5000 generations ac-



Changes to the environment (height of

Scenario 5
the wall) at each generation
The environment varies between 0 and
A hmaz according to a uniform random dis-

tribution.

The environment varies between 0 and
B hmaz linearly between O and 4000 gener-
ations, and then remains static at f,,,4z.

C The environment varies sinusoidally be-
tween 0 and A4, every 100 generations.

Table 4: Incremental Scenarios

cording to the schedule outlined above, the final popula-
tion is evaluated to assess its capacity to achieve the wall-
crossing task. 100 evaluations take place for each individ-
ual in each population. Each individual’s proximity to the
target after 20 simulated seconds is recorded for each wall
height from 0 up to (but not including) h,,q. (Where A0
is the maximum height), in increments of 0.01 X h,,qz-
For each replicate in each treatment, the individual with the
highest mean fitness across the 100 evaluations is chosen as
the representative individual. The performances of the 20
“best” individuals across all replicates for each treatment
are then analysed to build a picture of the relative capa-
bility of each treatment to address the wall-climbing prob-
lem. After this preprocessing, treatments are presented as
box-whisker plots and per-treatment heatmaps of raw eval-
uation performance showing replicates and evaluation-stage
fitness. Treatments are compared for significant differences
using the non-parametric Mann-Whitney U test null hypoth-
esis (that it is equally likely that a randomly selected value
from one sample will be less than or greater than a randomly
selected value from the second sample). Where a significant
statistical difference is found and discussed, effect size is
presented with the Common Language Effect Size method-
ology (CLES).

Stochastic Ontogenesis To inject randomness into the
genotype—phenotype transformation, Gaussian noise was
added to the evolved weights of the neural network at con-
struction time, leaving the individual’s genome unchanged
in the EA. The mean p of this noise is zero and the spread
o2 is varied according to the scheme outlined below. When
0% = 0, ontogenesis is deterministic. This process occurs
each time an individual is generated from its genome, mean-
ing network weights are modified a) for each evolutionary
trial, and b) for each of the 100 tests in the evaluation stage.

Treatments Treatments compare stochastic ontogenesis
with deterministic ontogenesis (DO) in three different incre-
mental evolutionary scenarios (see Table 4; refer to Stanton
and Channon (2013) for expanded details on these scenar-
i0s). Where not otherwise specified, Scenario A is used.
In the deterministic ontogenic model, neural weights are

read directly from the genome and used in the robot’s con-
troller without modification (Treatment I). In the stochas-
tic ontogenic model, neural weights read from the genome
are subject to Gaussian noise with 02 = 0.05, 02 = 0.1,
02 = 0.15, and ¢® = 0.2 (Treatments IIa, IIb, IIc, and
IId). Additionally, a distinction is made between evolution-
ary time and evaluation time. Two additional treatments are
examined: first, where only the evaluation phase incorpo-
rates noise (during the evolutionary phase, the mapping be-
tween genotype and phenotype is deterministic; Treatment
IIT). Second, the reverse, where the evolutionary phase in-
corporates ontogenic noise but the evaluation phase does not
(Treatment IV). Finally, the other combinations of scenario
and stochasticity are considered: Scenario B, deterministic
versus stochastic (Treatments V and VI), and Scenario C,
deterministic versus stochastic (Treatments VII and VIII).
Treatments IIL, IV, VI and VIII all use 02 = 0.1.

Additional treatments In order to establish the
environment-agnostic effect that stochastic ontogenesis
exerts, two additional treatments were conducted with the
objective of varying the environment and at the same time
eliminating noise in the genotype—phenotype mapping. In
this way, the degree to which stochastic solutions generalise
beyond their immediate simulation environment can be as-
sessed, and a judgement made as to whether this method of
introducing noise is effective in the ambition to make evolv-
ing species, in the parlance of Jakobi, base-set robust. To
this end, the simulation was adapted to include noise in the
friction coefficient that governs the robots’ interaction with
the ground, effectively making the environment stochastic.
When applied, the friction parameter of the simulator was
drawn from a normal distribution N'(2.0,1.0). In standard
environments, this parameter is fixed at 2.0-see Table 2.
Treatments IXa (Scenario A; deterministic ontogenesis
in a stochastic environment), IXb (Scenario A; stochastic
ontogenesis in a stochastic environment), Xa (Scenario C;
deterministic ontogenesis in a stochastic environment), and
Xb (Scenario C; stochastic ontogenesis in a stochastic en-
vironment) are thus undertaken and compared. Treatments
IXb and Xb both use o2 = 0.1.

Results

e When stochastic ontogenesis is used in scenario A, there
is a significant (p < 1.0 x 107199) increase in perfor-
mance for all examined o compared to the determinis-
tic mapping, with a very large effect size of 0.752 when
0% = 0.1 (c.f. Figure 2, I vs. Ila-d and Figure 3, I vs IIb).

e The increased performance is not an artefact of the evalua-
tion mechanism. When individuals evolved in a determin-
stic ontogenic environment are evaluated in a stochastic
world, the worst performance of all is observed (Figures
2 and 3, III). In contrast, when individuals evolved using
stochastic ontogenesis are evaluated using deterministic
ontogenesis, the highest performance of all is observed
(Figures 2 and 3, IV).
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Figure 2: Box-whisker plot (where diamonds indicate means
and whiskers indicate 1.5xIQR, or population extremes
where there are no outliers) showing differences between
treatments that involve a stochastic ontogenic element dur-
ing evolution, evaluation, neither, or both. Adding noise
during evolution significantly improves performance on the
given task, whereas adding it only at evaluation time signif-
icantly lowers the quality of results.

e The advantage of stochastic ontogeny is not limited to a
particular incremental evolutionary scheme. It is shown
that stochastic ontogeny significantly improves perfor-
mance in both the uniform random presentation scheme
(Scenario A; Figures 2 and 3, I and Ila-d) and the lin-
ear presentation scheme (Scenario B; Figure 2, V and VI,
p < 1.0 x 107190y,

e Species evolved with SO show an improvement in the ab-
solute fitness achieved by the highest-scoring replicates,
as well as a general improvement in the quality of all
replicates (Figure 6).

e Neither a positive nor negative effect is observed when
stochastic ontogenesis is applied in the sinusoidal presen-
tation scheme (Scenario C; Figure 2, VII and VIII).

e When evolved species are evaluated in an uncertain envi-
ronment (where friction changes for each evaluation), in-
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Figure 3: Heatmaps showing fitnesses at evaluation time for:
(I) deterministic ontogenesis during evolution and at evalu-
ation; (IIb) stochastic ontogenesis during evolution and at
evaluation; (III) stochastic ontogenesis only at evaluation
time; and (IV) stochastic ontogenesis only during evolution.
Blue areas indicate poor performance; yellow areas indicate
strong performance. Replicates are presented in increasing
order of successful (reach target) evaluations across the hor-
izontal axis; wall heights are presented on the vertical axis.
It is notable that performance is extremely suppressed in the
case where noise is introduced only during the evaluation
phase (III).

dividuals evolved with stochastic ontogeny perform sig-
nificantly better than those evolved with deterministic
ontogeny (Figure 4, IXb vs IXa; p < 1.0 x 107100,
ES =0.759).

e There is no significant difference between evaluations in
deterministic or stochastic environments for individuals
evolved with stochastic ontogeny (Figure 4, IXb vs IIb),
but those evolved with deterministic ontogeny show a sig-
nificant decrease in performance in these worlds (Figure
4 IXavsI;p < 1.0 x 1072°, ES = 0.355).

e When species evolved with deterministic ontogeny and
a sinusoidal presentation (Scenario C) are evaluated in
a simulation with an unpredictable friction coefficient,
performance decreases (Figure 4, Xa vs. Figure 2, VII;
p < 1.0 x 1072%, ES = 0.390). In contrast, where SO
is used, performance is maintained and no significant dif-
ference is observed (Figure 4, Xb vs Figure 2, VIII).

o Aggregate performance changes in the simulation with an
unpredictable friction coefficient are driven by an increase
in the number of successful runs (more replicates achieve
some competency in the task), and an increase in the max-
imum performance achieved by individual runs (Figure



5). In the Scenario C version of this treatment, the im-
provement is driven more by the increase in successful
runs and less by the increase in maximum performance
(Figure 5, Xa vs Xb).
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stochastic friction (Xa)
Stochastic with
deterministic friction (IIb)

Figure 4: Box-whisker plot (where diamonds indicate means
and whiskers indicate 1.5xIQR, or population extremes
where there are no outliers) showing differences between
treatments when the physical environment is noisy, mani-
fest in this case in the form of unpredictable friction coef-
ficients (yf). Populations evolved with deterministic onto-
genesis show decreased performance, including populations
evolved in a sinusoidal environment which have equivalent
performance in the predictable world to those evolved with
stochastic ontogenesis. In contrast, populations evolved
with stochastic ontogenesis are able to accommodate the ad-
ditional environmental noise and do not exhibit decreased
performance.

Conclusions

The main conclusion drawn from this work is that the perfor-
mance of the evolutionary system is significantly improved
when SO is applied in the translation from evolving geno-
type to expressed phenotype. This improvement arises from
an increase in the performance of high-scoring replicates (as
shown in Figures 2 and 4), and also from a general increase

Figure 5: Heatmaps showing fitnesses at evaluation time
in an uncertain world for: (IXa) deterministic ontogenesis;
(IXb) stochastic ontogenesis; (Xa) deterministic ontogenesis
in incremental Scenario C; and (Xb) stochastic ontogenesis
in incremental Scenario C. Blue areas indicate poor perfor-
mance; yellow areas indicate strong performance. Repli-
cates are presented in increasing order of successful (reach
target) evaluations across the horizontal axis; wall heights
are presented on the vertical axis. Treatment Xa shows re-
duced performance for some replicates (darker columns on
left-hand side); this is evidence of compromise due to the
uncertain world. Treatment Xb, where species have evolved
with SO, show robustness to this change.

in the number of runs performing well (shown in Figure 6).
The possibility that there is an artefact in the method of eval-
uation arising from the inclusion of SO has been eliminated
by looking at performance when DO is used during evolu-
tion and SO in evaluation. Since in this case performance
is comparatively poor, the improvements in fitness with SO
point to a general change in evolutionary pressure, from
favouring brittle solutions early on (that cause suboptimal
species to arise and persist), towards solutions that colonise
broader areas of the evolutionary space and thus fare better
in a broader range of task configurations. Stochasticity in
the genotype—phenotype mapping is modulating the evolu-
tionary system itself.

It is also shown that the effects of SO transcend specific
instances of the evolutionary system. The increased perfor-
mance of species evolved in both Scenario A (where sub-
task presentation is random) and Scenario B (where sub-
task presentation changes monotonically) points to a gen-
eral mechanism at work when SO is applied. The lack of
observable effects in Scenario C implies that this incremen-
tal evolutionary technique has captured some of the advan-
tages of SO. However, since this technique is the best from
a broader sweep of parameters in this problem (i.e. itis a



strongly task-specific formulation), the SO method is still
advantageous since it is situation-agnostic. In other words,
the naive SO algorithm performs as well as the task-specific
Scenario C treatment, so should be preferred.

Last, SO species handle unseen environmental uncer-
tainty better than DO species. Where DO species evolved
in Scenario C perform well in the initial problem, their ad-
vantage is lost in the more difficult Uncertain World prob-
lem, used here as a proxy for crossing the reality gap. Since
species evolved with SO do not show the same performance
drop, there is an implication that SO is a general mechanism
for handling uncertainty. In other words, the important re-
sult that the sinusoidal treatment performs poorly in the de-
terministic ontogeny/stochastic environment world but well
in the deterministic ontogeny/deterministic environment and
stochastic ontogeny/stochastic environment implies that al-
though the sinusoidal environment has some effect on the
evolutionary system, much less robustness is incorporated
into the final populations than with the SO scheme. The in-
creased robustness is evident in Figure 5, Xa vs Xb, where
absolute performance does not show significant improve-
ment, but the overall number of successful replicates (where
some progress is made in the task) increases.

To put this result in terms of Jakobi’s radical envelope-
of-noise hypothesis, Stochastic Ontogenesis appears to be
a workable alternative to this scheme, at least for base-set
robustness. A noisy coefficient of friction has been used
as a proxy for a difference between simulation and the real
world. Although only a preliminary demonstration in sim-
ulation, it has been shown that species evolved with SO are
able to perform well even in environments in which they
have had no prior experience at all: environments where a
base-set aspect, friction, is varied as if moving from simula-
tion to reality. SO populations show robustness to this varia-
tion; indeed, this robustness stems from SO. Unlike Jakobi’s
scheme, the environmental noise was not present during evo-
Iution so SO in that respect fulfils the role of the envelope of
noise. It has not been conclusively shown that it is an al-
ternative for base-set exclusivity, nor that the results found
in simulation will translate effectively to a real reality-gap
problem. However, this interesting question will be the fo-
cus of immediate future work.

In other further work, the extent to which this result
will generalise across different neuroevolutionary problems,
both inside and beyond Evolutionary Robotics, should be
the first point of investigation. In addition, the relationship
between the complexity (or sensitivity) of the evolutionary
problem in question and the degree to which ontogenic noise
can be applied should be elucidated. No decrease in perfor-
mance was observed in the present work for even the most
noisy genotype—phenotype mapping (where o2 = 0.2); un-
derstanding the limits in particular problem instances will
shed light on the complexity of the task itself.

Finally, since it is relatively cost-free to add an SO mecha-
nism into existing neuroevolutionary platforms, researchers
may wish to consider exploring this dimension alongside

others in their own work.
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Figure 6: Histograms showing distribution of final fitnesses
of individuals for treatments that involve ontogenic noise
during evolution, evaluation, neither, or both. Treatments
using deterministic ontogenesis are shown in the left-hand
column; treatments using stochastic ontogenesis are shown
in the right-hand column. A clear shift towards higher fit-
nesses (distances from target) in all runs, as well as many
more high-scoring runs, can be seen in the stochastic treat-
ments. A clear suppression of fitness is observed in treat-
ments with uncertain friction coefficients (noisy p) and de-
terministic ontogenesis.
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