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HIGHLIGHTS 
 
 

 Land application of Water treatment residuals (WTRs) offers environmental benefits 

 Leachability of elements from WTRs was very low 

 Al was only released from WTRs when the pH was lowered to 4.4 

 Earthworms did not avoid soil amended with WTRs up to 10% w/w 

 Earthworms accumulated marginally higher tissue concentrations of some elements   
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Abstract 
Drinking water treatment residuals (WTRs), the by-product of water clarification processes, are 

routinely disposed of via landfill however there is a growing body of research that demonstrates 

the material has great potential for beneficial use in environmental applications. Application to 

agricultural land is one option showing great promise (i.e. a low cost disposal route that provides 

organic matter input to soils and other potential benefits), however questions remain as to the 

impact such applications may have on earthworm survival and behaviour and also on the potential 

effects it may have on soil porewater chemistry. This study examined the leachability of elements 

within two types of WTRs (one Al- and one Fe- based) from England via 0.001 M CaCl2 solution, 

at varying pH, and via the Community Bureau of Reference (BCR) sequential extraction scheme. 

Earthworm avoidance, survival, growth, reproduction and element concentrations were examined 

in WTR-amended sandy soils (0%, 5%, 10%, 20% w/w), while soil porewaters were also 

recovered from experimental units and examined for element concentrations. The results 

revealed leachable element concentrations to be very low in both types of WTRs tested and so 

element leaching from these WTRs would be unlikely to pose any threat to ecosystems under 

typical agricultural soil conditions. However, when the pH was lowered to 4.4 there was a 

substantial release of Al from the Al-WTRs (382 mg/kg). Soil porewater element concentrations 

were influenced to some degree by WTR addition, warranting further examination in terms of any 

potential implications for nutrient supply or limitation. Earthworm avoidance of WTR-amended soil 

was only observed for Al-WTRs and only at the maximum applied rate (20% w/w), while survival 

of earthworms was not affected by either WTR type at any application rate. Earthworm growth 

and reproduction (cocoon production) were not affected at a statistically significant level but this 

needs further examination over a longer period of exposure. Increased assimilation of Al and Fe 

into earthworm tissues was observed at some WTR application rates (maximum fresh weight 

concentrations of 42 mg/kg for Al and 167 mg/kg for Fe), but these were not at levels likely to 

pose environmental concerns.        
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1. Introduction 

Clarification of drinking water supplies is commonly achieved by treatment with aluminium (Al) or 

iron (Fe) salts, which remove impurities through coagulation and co-precipitation into a sludge 

like material referred to as drinking water residuals (WTRs). Thus WTRs are primarily composed 

of Al(OH)3 or Fe(OH)3 plus organic matter, clay particles and other components (e.g. nutrients, 

contaminant metals and other impurities) removed from the raw water (Bugbee and Frink, 1985; 

Graveland et al., 1993). Vast quantities (i.e. millions of tons) of WTRs are produced globally 

(Babatunde and Zhao, 2007), with the majority disposed of via landfill. However, landfill disposal 

is increasingly expensive and may be wasting a potentially useable material; an increasing array 

of potential beneficial uses of WTRs have been researched and demonstrated over the last two 

decades, including use in constructed reedbeds or as a soil amendment to manage phosphorus 

(P) mobility within catchments (Babatunde et al., 2011; Ippolito, 2015; Oliver et al., 2011), land 

application to increase organic matter and water holding capacity and related soil parameters 

(e.g. Ahmed et al., 1998; Bugbee and Frink, 1985), and most recently as a way of remediating 

polluted soils through immobilization of contaminants by WTRs (Garau et al., 2014; Garau et al., 

2017; Wang et al., 2012). Beneficial use of WTRs is therefore an attractive option that offers 

financial advantages and facilitates development of a more circular economy with greater levels 

of materials recycling. However, while land applications of WTRs can be beneficial there are 

uncertainties that remain, including the mobility of elements within WTRs (particularly Al) and any 

ecotoxicological impacts on soil ecosystems linked to that or other changes brought about by 

WTR addition. For this reason there are still tight controls on where WTRs can be applied (e.g. in 

the UK it is only permitted on soils with pH>6.0). Some studies have found no negative impacts 

on plants or plant yield increases following WTR application to ‘clean’ agricultural soils (Ahmed et 

al., 1998; Geertsema et al., 1994), while others have noted plant yield reductions that were 

attributed to restrictions in bioavailable P (Lombi et al., 2010; Oladeji et al., 2007). While a number 

of studies have investigated the effects on microbes following soil amendment with WTRs (e.g. 

Garau et al., 2017), very few, if any, have examined the influence of WTR application on 

earthworms. This is a major gap in current understanding of the risks and benefits of using these 

materials in agricultural soils, especially considering that earthworms are widely recognized as 

essential ecosystem engineers that provide a host of advantages for soil health and development 

(e.g. creation of pore channels, improved aeration and hydraulic conductivity, nutrient cycling, 

etc). The aims of the present study were to fill this gap, and to further scientific understanding of 

the behavior and ecological effects of WTR components when the materials are applied to soils, 

by examining two WTR types from central England, UK, and determining i) the leachability of 
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elements via single solution extraction at varying pH, ii) the fractionation of key elements within 

WTRs, iii) the influence of WTRs on the survival, growth and reproduction of the earthworm 

Eisenia fetida, and iv) the influence of WTR application on soil porewater element concentrations 

(because the majority of soil biota assimilate nutrients and contaminants via the soil porewater).                 

 
2. Methods 

2.1 Water treatment residuals and soil 

Partially dewatered WTRs from two water treatment plants in Staffordshire, England, one of which 

primarily uses Al salts (producing Al-WTRs; once dry, pH 7.34±0.06, OM 28.0±0.1%, Al 

11.64±1.08%, Fe 0.91±0.08%, w/w) and the other primarily Fe salts (producing Fe-WTR; pH 

7.37±0.01, OM 25.9±0.2%, Al 0.71±0.12%, Fe 17.69±0.19%) in their respective water treatment 

processes, were supplied by Severn Trent Water. The original ‘as received’ water content was 

high (~80% of total mass, determined on subsamples oven dried at 105°C) so the WTRs were 

air-dried with the assistance of an oven set at 30°C. During the ~2 week drying period required to 

reach stable mass, the WTRs were broken down to small pieces by hand on a daily basis to avoid 

large clods forming that, once dried, would present difficulties for hand crushing using a pestle 

and mortar. Once dried, the WTRs were crushed to pass a 2 mm sieve. Organic matter content 

was determined by loss on ignition at 450°C, pH was determined in 0.001 M CaCl2 extracts using 

a Jenway 3510 pH meter and probe, and pseudo total element concentrations were determined 

via microwave (CEM Mars 6) assisted mineral acid digestion (0.3-0.5 g solid; 9 ml HCl + 3 ml 

HNO3, i.e. aqua-regia, n=3) and analysis via ICP-OES (Optima 5300 DV instrument, Perkin Elmer, 

UK) as per USEPA method 3052 (see Supplementary Information Table 1). Due to the high 

organic matter content, samples were combusted for 4h at 450°C prior to digestion. All acids used 

in the digestions were trace analysis grade (e.g. Aristar and Primar plus) and a certified reference 

material (CRM033 Loamy Sand; Trace Metals - Loamy Sand 10, Sigma-Aldrich) was digested 

and analysed alongside samples for quality assurance purposes. Measured values for relevant 

elements in the CRM closely matched certified values (e.g. 97-117% for Fe, Pb and Zn).       

 

A sandy soil from Sevenoaks, Kent, UK, provided by a commercial supplier (Bourne Amenity) and 

known to be free from contaminants, was used in the experiments. A sandy soil was selected 

because this would maximize the likelihood of identifying elements that leach from the WTRs into 

the soil and therefore into soil porewater. Organic matter content (1.1%) and pH (6.78±0.1) were 

determined while particle size distribution (1% clay, 2% silt and 97% sand) was determined by 

first combusting at 450°C, soaking in calgon solution and then analysing on a Coulter LS230 
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optical laser particle size analyser. Water holding capacity (WHC) was determined as 0.37±0.02 

mL/g by fully saturating 100 g, allowing to drain and then measuring retained water.  

  

2.2 pH buffering capacity and element leachability 

The pH buffering capacity of WTRs and their extractable element contents were determined in 

0.001 M CaCl2 (3 g solid; 30 mL solution; n=3) extracts (Degryse et al., 2007; Hamels et al., 2014) 

that had been adjusted to varying acid levels. For Fe-WTR samples, the solutions were adjusted 

to four acid levels using high purity HCl (0, 0.013, 0.032 and 0.064 M HCl), while for Al-WTRs 

three acid levels were imposed (0, 0.013 and 0.064 M HCl). Once solutions were added samples 

were sealed, shaken by hand for 30 s, then shaken for 48 h on an end-over-end shaker, 

centrifuged and then a portion used for pH measurement and the remainder filtered (0.45 µm 

cellulose acetate syringe filter) before analysis by ICP-OES and ICP-MS (Agilent 7500ce).           

 

2.3 Element fractionation (BCR sequential extraction) 

Many sequential extraction schemes have been devised that attempt to identify fractions within 

soils and sediments with which elements of interest are associated. All have limitations and all 

generate operationally defined fractions (see review by (Bacon and Davidson, 2008), but they are 

nonetheless useful for identifying easily extractable vs recalcitrant element contents and for 

comparative purposes. The scheme devised by the Community Bureau of Reference (BCR) (Ure 

et al., 1993) has been employed extensively to examine metal fractionation in river sediments 

(Martinez-Santos et al., 2015; Pulford et al., 2009), aquaculture sludges (Nemati et al., 2011), 

sewage sludge (Scancar et al., 2000), urban soils (Gál et al., 2008; Madrid et al., 2007), 

agricultural soils (Kosolsaksakul et al., 2014), upland peat soils (Bacon et al., 2006), battlefield 

soils (Oliver et al., 2008) and in soils were pollution remediation trials (e.g. immobilisation with 

biochar or by zeolite formation) have been conducted (Belviso et al., 2010; Ippolito et al., 2017), 

hence it was chosen for this study. In the BCR procedure, 1.0 g oven dry equivalent samples are 

subjected to the following extraction regime. Step 1 (targeting the 'exchangeable' fraction): 40 ml 

0.11 M acetic acid, shaken over-night, centrifuged, supernatant removed and filtered (0.45 µm 

cellulose acetate syringe filter) before analysis by ICP-OES. Step 2 (targeting the 'reducible 

fraction', indicative of Fe/Mn oxide-bound): 40 ml 0.1 M hydroxyl ammonium chloride adjusted to 

pH 2.0 with concentrated (15.8 M) HNO3 is added to the residue from step 1, shaken over-night, 

then centrifuged, with the solution removed, filtered and analysed as in step 1. Step 3 (oxidisable 

fraction, indicative of organic matter bound): residues from step 2 were treated with 10 ml 

hydrogen peroxide (>30% w/v, added as supplied), left to stand at room temperature for 1 h, 
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heated in a water bath at 85°C for 1 h then reduced to near dryness (<1 ml volume). Each sample 

then received 40 ml 1.0 M ammonium acetate (adjusted to pH 2.0 with 15.8 M HNO3) and was 

shaken over-night followed by extraction, filtration and analysis performed as above. Step 4 

(residual fraction): this additional recommended (Rauret et al., 1999), and widely adopted, step 

to the original BCR procedure enables assessment of element mass balances (i.e. sample 

recoveries). Here, residues from the above 3-step sequence were digested in aqua-regia as 

described in section 2.1 and analysed by ICP-OES. Analyses of BCR fractions were conducted 

using matrix-matched standards (range 0.1 – 100 mg/L).       

 

2.4 Earthworm avoidance tests 

Earthworms (Eisenia fetida) originally obtained from Wormery UK (Hertfordshire, England) were 

maintained in a bonsai compost and coir substrate and fed with oatmeal for several weeks to 

allow acclimitisation to the laboratory prior to avoidance and survival/ reproduction tests. Only 

adult earthworms with well-developed clitellum were employed in the ecotoxicology assays. The 

avoidance tests were conducted according to ISO guideline 17512-1:2008 (avoidance test for 

determining the quality of soils) using the two-chamber method, where plastic vessels of 

dimensions 15x10x15 cm (length x width x depth) are divided into two chambers using a 

removable plastic partition. One side of the vessel was filled with 500 g of unamended (or control) 

soil and the other with 500 g of soil amended with either Al- or Fe-WTRs at rates of 0%, 5%, 10% 

or 20% (w/w). A 5% WTR (w/w) amendment rate was selected to represent the upper range of 

what is likely to be practical in a typical field application scenario, with the 10% and 20% rates 

selected as extreme worse case scenarios that have been tested and discussed in the literature 

(Nagar et al., 2014; Sarkar et al., 2007). The soil-WTR mixtures were thoroughly homogenized 

via hand mixing. Prior to placement in vessels, soils were moistened with de-ionised water to 50-

60% WHC. To commence the avoidance test the plastic partition was removed and 10 

earthworms were placed in the centre of the vessel. The vessels were covered with cling film into 

which holes were pierced to allow air movement. The vessels were then left for 48 h under 

conditions of 20°C ±2°C and the natural photoperiod for March/April in England, after which 

covers were removed, partitions replaced and the locations of earthworms determined by hand-

sorting the soil from each chamber. Any earthworm divided by the partition was counted as being 

in both chambers. Three replicates were conducted for each treatment. 

 

Percent avoidance was calculated according to Equation 1.  

(C-T)/n * 100      (Eq. 1) 
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where C = number of earthworms in the un-amended control chamber, T = number of earthworms 

in the treatment chamber and n = number of earthworms in the test (Amorim et al., 2005). A 

positive percentage indicates avoidance of the treated soil, zero indicates no avoidance, while a 

negative percentage indicates an attraction to the treated soil (Amorim et al., 2005). 

 

For quality control purposes a preliminary avoidance test experiment was first conducted, in which 

un-amended control soil was placed in both halves of the test vessels (n=4). Results confirmed 

no avoidance or attraction bias was apparent within the experimental setup (see Supplementary 

Information Fig. 1), and that the avoidance tests met the validity criteria of the protocol.   

 

2.5 Earthworm survival, growth and reproduction tests 

Tests were conducted in large (1 L) plastic beakers following OECD protocol 222 and included 

six control replicates (500 g un-amended soil) and three replicates of each WTR treatment (5%, 

10% and 20% (w/w) for each of Al- and Fe-WTRs; each treatment was thoroughly homogenized 

via hand mixing). The soils were moistened to 50-60% WHC with de-ionised water and then 10 

adult earthworms were weighed and added to each vessel. Oatmeal (~2 g) was added as a food 

source and then each vessel was covered with cling film that was pierced to facilitate air flow. The 

mass of each vessel was monitored and de-ionised water added to compensate for any moisture 

loss. Additional oatmeal was provided on day 7 and after 14 days the earthworms were recovered 

by hand sorting. Survival/mortality was determined and living earthworms were weighed and 

allowed to depurate for 24h in petri dishes lined with moistened filter paper, after which they were 

rinsed with deionized water, patted dry with paper towel, re-weighed and frozen to euthanize and 

preserve prior to digestion in concentrated HNO3 (Primar plus) and analysis for element content 

via ICP-MS. The soil was returned to the test vessels, any moisture loss replaced with deionized 

water, and the vessels were then maintained for a further 7 days after which each vessel was 

emptied into a plastic tray and the number of cocoons present determined by careful hand sorting. 

A portion of the recovered soil from each treatment was then used to determine the pH that had 

become established after 21 days of equilibration, with the outcome being that the soil pH of 6.78 

was elevated to above 7.15 in all WTR treatments and that a maximum pH of 7.48±0.03 was 

observed in the 20% Al-WTR treatment.   

 

2.6 Soil porewater extraction 

Following recovery of cocoons (section 2.5) soil solution (soil porewater) was obtained from each 

treatment by centrifugation, following the double chamber method described by Smolders et al. 
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(Smolders et al., 1999). This involved removing the plunger from 20 mL disposable plastic 

syringes, placing a small plug of cotton wool into the bottom and then filling with ~50 g moist soil. 

Four syringes were filled for each treatment, which were then centifuged for 20 minutes at 3500 

rpm and the resulting extracted solutions pooled, filtered at 0.45 µm and acidified with 0.1 mL 

concentrated HNO3 (16 M, Primar Plus, Trace Metal Analysis grade). 

 

2.7 Statistical assessment 

Statistical assessment of differences amongst treatments and controls were conducted via t-tests 

and ANOVA, when underlying assumptions of the tests were met (i.e. normality of distribution), 

or via Mann-Whitney tests. All statistical assessments were conducted using Minitab-17 and 

Sigmaplot-10 software. 

 

3. Results and discussion 

3.1 pH buffering capacity and element leachability 

Although the initial pH of the two WTRs were similar (~7.3), their response to acid addition and 

resulting pH buffering capacities varied (Fig. 1). The Fe-WTR had a consistent buffering capacity 

across the range of acid concentrations applied, such that a linear model described the data 

suitably (R2 0.9741, Fig. 1) and a buffering capacity of 0.34 moles H+/kg Fe-WTR/ pH unit was 

determined. The Al-WTR showed a varying buffering capacity across the pH range imposed, with 

a much lower initial buffering capacity of just 0.065 moles H+/kg Al-WTR/ pH unit calculated 

between the initial pH of 7.3 and the pH of 5.5 observed after equilibration with the 0.013 mol H+/ 

L solution. However, below pH 5.5 the Al-WTR had a buffering capacity of 0.45 moles H+/kg Al-

WTR/ pH unit, similar to that of Fe-WTR (Fig. 1). 

 

The extractability of Fe, As, Cd, Cr and Pb in 0.001 M CaCl2 solutions was extremely low or nil 

for both Al-WTRs and Fe-WTRs at all pH levels (Fig. 2). The extractability of Zn was very low in 

Fe-WTRs at all pH levels (<1 mg/kg) and slightly higher in Al-WTRs in which it rose from 1.4 

mg/kg at natural (un-amended) pH to 3.8 mg/kg at pH 4.4 (Fig. 2). The extractability of Al from 

Fe-WTRs was modest, rising from ~3 mg/kg at un-amended pH to 4.5 mg/kg at pH 5.5. The 

extractability of Al from Al-WTRs was similar to that of Fe-WTRs across the pH range 5.5-7.5 (i.e. 

~5 mg/kg), but at the lower pH of 4.4 realised in the Al-WTR samples extracted with 0.001 M 

CaCl2 in 0.064 mol H+/ L solution the extractable Al rose markedly to 382 mg/kg (Fig. 2). The 

results are in line with observations by Lombi and co-workers (Lombi et al., 2010) who found that 

CaCl2 extractable Al in two Al based WTRs from South Australia rose to ~400 mg/kg or greater 
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when the pH was lowered to <4.5. They also found that WTR application rates equivalent to 

between 5 and 500 t/ha produced CaCl2 extractable Al concentrations that were always <0.5 

mg/kg in the sandy soil (pH 6.3) tested. That study also tested an acidic clay soil (39% clay, pH 

4.3) and found that with no WTRs applied the extractable Al was 39 mg/kg, rising to a maximum 

of 53 mg/kg at a WTR application rate equivalent to 5 t/ha and then falling below 25 mg/kg for 

applications equivalent to 50 t/ha and above (where the pH had risen to > 5.0) (Lombi et al., 2010). 

One of the main reasons for the current restrictions on where WTRs can be used as amendments 

in agricultural soils is the concern that Al may become mobilized. The results of the present study, 

when added to those from previous works, indicate that above pH 5.5 Al is not released from 

either Al- or Fe-WTRs at levels that would raise any ecological issues. The higher pH buffering 

capacity of Fe-WTRs assessed in the present study also indicates that they may offer greater 

protection than Al-WTRs in terms of preventing soil pH from dipping to undesirable levels in the 

event of acidic inputs, though this needs further examination to determine whether it is universally 

so. The protection offered by the pH raising or ‘liming’ capacity of both Al- and Fe-WTRs shown 

here (section 2.5) and in other studies also needs to be considered in this context.   

 
3.2 Element fractionation (BCR sequential extraction) 

Particularly considering the potential heterogeneity of the material, the mass balances observed 

for the BCR procedures (i.e. sum of recoveries in BCR fractions/ total digest) were good for the 

majority of elements examined (Fig. 4; Sup Inf Table 1). An exception was the recovery of Cr in 

Fe-WTR fractions and the consequent mass balance for that element. Other studies have similarly 

noted the difficulty in achieving a reliable mass balance for Cr in BCR fractionation procedures 

(Bacon and Davidson, 2008), thus this is not uncommon.     

   

The BCR fractionation results (Fig. 3) support the CaCl2 extract data in that very few elements 

were found to be readily extracted from either type of WTR. For Fe-WTRs, <0.1% of the total Fe 

and total Al were found to be in the acetic acid extractable fraction (65.0±0.7 mg/kg for Fe and 

6.6±0.4 mg/kg for Al; Fig. 3 and SI Table 1) while only 6% (13.1±0.8 mg/kg) of the total Zn was in 

this fraction. For Fe-WTRs much of the Zn was in the ‘organic’ BCR step 3 fraction (52%, or 109±8 

mg/kg) and in the ‘reducible’ BCR step 2 fraction (19%, or 40±0.3 mg/kg) while all of the Cd and 

Cr was in the residual phase, along with the great majority of the Pb (Fig. 3). For Al-WTRs 8% of 

the recovered Al was in the acetic acid extractable fraction, somewhat matching the results of the 

CaCl2 solution extracts where acidification of the solution led to release of a portion of the Al in 

Al-WTRs. The fractionation of Zn in Al-WTRs was similar to that in Fe-WTRs, except that a larger 
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proportion was in the residual (BCR 4) phase. All of the Cr and Pb in the Al-WTRs was in the 

residual phase which, together with the results for the Fe-WTR fractionation, indicates that any 

Cd, Cr and Pb in these WTRs are unlikely to have any ecological significance when applied to 

soils. In a study of six WTRs from China, Wang et al. (Wang et al., 2014) similarly found that the 

majority of metals and metalloids within WTRs were typically in the residual phase according to a 

BCR protocol (e.g. 63% of the Al and 81% of the Fe) and moreover that according to the toxicity 

characteristic leaching procedure (TCLP) employed by the USEPA those materials could be 

classified as non-hazardous. However, in that Chinese study the amount of Cd in the acetic acid-

soluble fraction (BCR 1) ranged from 5% to ~45% of the total in some WTRs tested, which 

contrasts sharply with the results of the present study where Cd was entirely in the residual phase 

when present at all. This indicates that local and regional variation can occur in terms of element 

fractionation and extractability and emphasizes the need to examine WTRs before application in 

the field.   

             
3.3 Earthworm avoidance tests 

There was no avoidance behavior in the dual control soil treatments (i.e. having un-amended soil 

on both sides of the partition), again confirming validation of the avoidance test (Fig. 4). An 

attraction to the 5% Fe-WTR treatment and a mild avoidance of the 10% and 20% Fe-WTR 

treatments seemed apparent (Fig. 4), but none of these constituted statistically significant 

variation from the controls (t-tests p > 0.05). A significant avoidance was observed for the Al-WTR 

at the 20% amendment rate (53.3±6.7% avoidance, Fig. 4). Li et al. (2011) found significant 

avoidance by Eisenia fetida of soils amended with 10% and 20% biochar produced from apple 

wood sawdust and concluded that increased desiccation, induced by the high water holding 

capacity of the biochar, may have been responsible. It is feasible that a similar issue, or possibly 

something linked to alteration in texture, caused the avoidance observed in the 20% Al-WTR 

treatment of the present study, however why this did not occur equally in the 20% Fe-WTR 

treatment requires further investigation. 

   

3.4 Earthworm survival, growth and reproduction tests 

Survival of earthworms was very high in all controls (98.3 ±1.7%) and all treatments (93.3±3.3% 

for 20% Fe-WTR treatment, and >96% for all other treatments), with no significant differences 

(ANOVA, p > 0.05) observed between survival rates in treatments and controls. However, while 

it cannot be quantified, the earthworms in treatments with 20% WTRs (both Al- and Fe-) did 

appear less active (i.e. moved more slowly) than those in other treatments at the time of recovery. 
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The mean mass gain per earthworm was very similar between the controls (0.23±0.08 g) and 

most of the treatments (Table 1). A lower mean mass gain was seemingly observed in the Al-

WTR treatments (range 0.06±0.06 g to 0.17±0.14 g) and a mean mass loss was observed in the 

20% Fe-WTR treatments (-0.17±0.14 g), however these mean mass gains/losses were not 

significantly different from the control for any of the treatments (ANOVA, p > 0.05), possibly 

reflecting the variability of this parameter in the control group (i.e. 34% relative standard error, 

RSE). The number of cocoons produced was also similar across all treatments and controls, with 

a single exception for the 10%Al-WTR treatment where the number was lower (Table 1). While 

an ANOVA test found no significant differences (p > 0.05) amongst treatments and controls in 

relation to cocoon production, a t-test of the control vs. Al-WTR 10% did identify a significant 

difference for that treatment if no correction for multiple comparisons is made (p = 0.034). This 

may indicate an effect at the borderline of significance that warrants further examination, although 

it must be acknowledged that higher rates of Al-WTR addition (20%) did not induce any reduction 

in cocoon development (Table 1). Future studies can examine this point and also probe for 

evidence of any more subtle effects of WTR amendment on earthworm fitness and function, such 

as any changes to earthworm protein content and enzyme function as has been investigated in 

relation to other soil amendments/contaminants (e.g. Li et al., 2011; Zhang et al., 2013a). It is 

also important that future studies examine any impacts on earthworms over a longer period of 

exposure. The results do however suggest that earthworms may be less sensitive to WTR 

addition than certain plant species, at least in the short term, as some studies have reported plant 

yield decreases that may be linked to restricted phosphorus availability; for example Lombi et al. 

(2010)  found lettuce (Lactuca Sativa) yield in a 4-week study decreased at WTR application rates 

of <1% by dry mass (e.g. EC50s of 0.3 and 8.5 t/ha in two contrasting soils), while Oladeji et al. 

(2007) determined in glasshouse trials that WTR amendment had to be balanced with 

supplemental fertiliser to maintain optimal yields of Bahiagrass (paspalum notatum).  

Table 1. Average mass gain per earthworm and number of cocoons produced (mean ± standard error) 

Treatment Mean mass gain, g Mean number of cocoons 

Control 0.23±0.08 2.5±0.7 

5% Fe-WTR 0.25±0.03 2.7±0.7 

10% Fe-WTR 0.25±0.06 3.7±1.8 

20% Fe-WTR -0.17±0.15 2.0±0.0 

5% Al-WTR 0.17±0.14 3.7±0.7 

10% Al-WTR 0.06±0.06 0.3±0.3* 

20% Al-WTR 0.09±0.11 2.0±0.6 

* Significantly different from control 
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Acid digestion of earthworms revealed that the 10% and 20% Al-WTR treatments produced 

significantly higher (ANOVA, p < 0.05) tissue Al concentrations, viz. 3-5 fold greater than controls, 

but none of the other treatments generated significant increases in earthworm Al (Table 2 and 

sup. Inf. Table 2). The highest Al concentration was recorded in the 10%Al-WTR treatment, being 

42 mg/kg fresh weight (fw) or 212 mg/kg dry weight (dw). The body burden at which Al becomes 

toxic for earthworms is unknown, however the concentrations observed here were all below the 

concentrations reported by Hartenstein (1980) for E. fetida in control soils (i.e. 437 mg/kg dw for 

unexposed earthworms, which rose to 940 mg/kg for earthworms that had been living for 2 weeks 

in sewage-sludge dressed soil), and were similar to concentrations reported by Bilalis et al (2013) 

for earthworms (Octodrilus complanatus; ~140 mg/kg dw) kept in untreated agricultural soils of 

similar pH. In terms of wider food-web considerations, a review by Scheuhammer (1987) reported 

that dietary Al at rates up to 1500 mg/kg had no negative impacts on ring doves (Streptopelia 

risoria), a passerine bird species, suggesting that Al concentrations observed in earthworms in 

the present study are of little environmental concern. The high pH buffering capacity of the WTRs 

and the resulting pH of the amended soils (>7), together with the widely understood low toxicity 

of Al at neutral pH, also support the notion that Al levels observed here are unlikely to be of 

concern. 

 
Table 2. Element concentrations in Eisenia fetida earthworm tissues (mg/kg fresh weight) 

 Al Cd Cr Fe Mg  Mn Ni Pb Zn P 

Control 8.59±1.09 0.15±0.01 0.52±0.05 54.6±5.4 9.32±0.24 9.33±0.66 0.47±0.03 0.24±0.02 16.08±0.16 103.2±1.4 

5% Fe 8.93±0.80 0.13±0.01 0.50±0.06 92.2±5.0* 9.21±0.13 12.81±1.14 0.51±0.05 0.25±0.03 15.26±0.78 93.7±2.6 

10% Fe 5.20±1.39 0.11±0.01 0.37±0.08 81.3±25.7 6.49±1.40 11.57±2.52 0.42±0.08 0.19±0.04 14.33±0.65 73.1±19.5 

20% Fe 7.23±0.88 0.13±0.01 0.47±0.02 167.3±13.3* 7.91±0.29 17.25±0.90* 0.56±0.02 0.26±0.01 14.53±0.36 97.0±1.6 

5% Al 14.38±4.02 0.14±0.00 0.38±0.09 36.2±9.3 7.84±1.12 9.58±1.18 0.39±0.04 0.19±0.02 14.28±0.64 83.2±11.7 

10% Al 42.44±11.61* 0.13±0.01 0.40±0.08 34.5±7.9 8.58±0.82 10.53±1.61 0.41±0.06 0.27±0.05 14.54±1.08 94.4±7.5 

20% Al 28.41±8.35* 0.12±0.02 0.32±0.01 26.6±2.0 6.70±1.19 8.57±0.36 0.33±0.00 0.21±0.01 13.82±1.26 81.0±17.6 

* Significantly different from control (α 0.05) 

 
Addition of Fe-WTR significantly increased earthworm Fe concentrations at the 5% and 20% 

addition rate (Table 2), with concentrations of 167 mg/kg fw (equating to 837 mg/kg dw) recorded 

at the higher rate. The Al-WTR treatments all had lower mean Fe concentrations than the controls, 

and for the 20% Al-WTR treatment the difference was statistically significant (ANOVA, p < 0.05). 

The Fe concentrations observed in the 5% and 20% Fe-WTR treatments approximate those 

reported for E. fetida by Hartenstein (1980), who reported 684 mg/kg dw in control specimens 

rising to 1069 mg/kg in earthworms after 2 weeks of exposure to sewage sludge dressed soil. 

Similarly, Rida (1996) observed Fe concentrations in Lumbricus terrestris controls of 418 mg/kg 
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dw, rising to 1066 mg/kg dw after 1 week in a metal contaminated soil. Importantly, in that study 

Rida (1996) found that even at the higher concentrations observed there were no correlations 

between earthworm Fe levels and either mass or relative growth rate. This suggests that the Fe 

concentrations observed in the present study would not be problematic for earthworms. The only 

treatment with Mn concentrations significantly different from controls was the 20% Fe-WTR 

treatment, but the difference was less than a factor of two (Table 2). With regards to Pb, none of 

the treatments resulted in concentrations that differed from controls, having all been <0.3 mg/kg 

fw (or <1.4 mg/kg dw equivalent). Langdon et al (2005) found earthworms living in un-amended 

control soil (i.e. no added metals) to have dw Pb concentrations ranging 0.43 mg/kg for 

Aporrectodea caliginosa to 16.43 mg/kg for Eseinia andrei (a closely related species to E. fetida), 

indicating that the Pb concentrations observed in all treatments of the present study with E. fetida 

can be considered normal for uncontaminated soils. It is worth noting that no significant 

differences were observed in terms of earthworm P concentration in any of the treatments, which 

contrasts with the studies mentioned above (e.g. Lombi et al 2010) that reported reduced P 

availability in WTR treated soils (albeit that the cited studies concerned plants rather than 

earthworms and so any differences in assimilation pathways also need to be considered).      

 
3.5 Soil porewater extraction 

Porewater Cd and Cr were at very low levels in all controls and treatments (Table 3). Amendment 

with Al-WTRs at 10% and 20% application rates decreased the soil porewater concentrations of 

Mg, Ni, Zn and, notably, P (by a factor of ~2), which accords with the P-sorbing capacity of WTRs 

noted previously (Lombi et al., 2010; Oliver et al., 2011). At all amendment rates Al-WTR addition 

increased the porewater Al concentration (Table 3), however it always remained below 40 µg/L 

which is still low by comparison with values reported for soils elsewhere (e.g. Graham et al., 

2008). The pH values of the soil and the buffering capacity of the WTRs makes it very unlikely 

that this marginal increase in porewater Al will have any ecological significance.       

 

While the porewater Zn concentrations were decreased by ~half in the 10% and 20% Al-WTR 

treatments, they were increased 5-8 fold in the Fe-WTR treatments (Table 3). This may be worth 

further consideration in terms of Zn nutrient supply capacity of Fe-WTRs, while noting that the 

higher concentrations observed in the Fe-WTR treatments were below negative impact thresholds 

reported elsewhere for Zn porewater concentrations (i.e. EC10 values for soil microbial processes 

(Smolders et al., 2004). Interestingly, the highest Fe-WTR application rate increased the 

porewater P concentration above that of the control, showing a clear difference to the Al-WTR 
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treatments. The Fe-WTR treatments also increased the porewater Ni concentrations and, at the 

highest application rate, the Mg concentration, however the Ni concentrations were all below 

porewater toxicity thresholds previously reported (i.e. EC10 for root elongation >> 200 µg/L, 

Zhang et al., 2013b) while the Mg concentrations were at or below typical background soil 

porewater concentrations (e.g. Zhang et al., 2013b).         

 
Table 3. Mean soil porewater concentrations (n=3, ± standard error; mg/L for Mg and µg/L for other 
elements) 

 Mg Al P Cr Mn Fe Ni Zn Cd 

Control 3.60±0.20 5.4±0.9 323.9±45.7 <0.65 54.97±6.6 16.3±1.2 22.3±0.4 6.8±0.6 <0.2 

Al-5% 2.72±0.50 13.1±0.9* 301.2±127.7 <0.65 33.43±4.5 22.8±9.2 18.2±0.9* 7.7±4.6 <0.2 

Al-10% 1.56±0.26* 28.8±1.8* 174.8±21.1* <0.65 37.16±11.8 15.2±1.5 15.8±0.2* 3.2±0.4* <0.2 

Al-20% 1.11±0.04* 39.3±3.7* 141.6±45.6* <0.65 19.04±2.6* 10.4±1.2* 13.2±0.1* 2.9±0.4* <0.2 

Fe-5% 5.74±0.61 11.31±3.0 445.8±114.7 <0.65 44.00±3.8 29.3±5.7 34.6±5.9* 45.3±37.3 <0.2 

Fe-10% 6.12±3.1 17.5±2.8^ 469.9±95.9 <0.65 59.71±8.9 34.4±1.8^ 39.8±2.4* 59.0±33.5* <0.2 

Fe-20% 16.18±1.3* 15.3±3.1* 835.8±172.1* <0.65 70.97±8.0 36.8±5.6* 52.1±1.7* 31.2±7.7* <0.2 

^N = 2 only; * significantly different from control at α 0.05. 

 
4. Conclusions 

The principal conclusions from the present study were that element leachability was low in the 

WTRs examined and would likely pose no threat to the soil ecosystem under most conditions 

observed in typical agricultural soils, however when the pH was lowered to 4.4 there was a 

substantial release of Al from the Al-WTRs. When applied to a sandy soil, WTR addition 

influenced soil porewaters to some degree and this warrants further examination in terms of any 

potential implications for nutrient supply or limitation. Earthworm avoidance of the WTR-amended 

soil was only observed for Al-WTRs and only at the maximum rate of 20% (w/w) applied, while 

survival of earthworms was not affected by either WTR type at any application rate. Earthworm 

growth and reproduction (cocoon production) were not affected at a statistically significant level 

but this should be examined over a longer period of exposure and, as with all the assessments 

conducted here, in a wider set of soil types. Increased assimilation of some elements (Al and Fe) 

into earthworm tissues was observed but not at levels likely to pose environmental concerns.        
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Figure 1. Applied acid vs pH plot for Al- and Fe- Water Treatment Residuals (WTR) in 0.001 M CaCl2 
extracts. Data points show mean (n =3) and error bars, where they exceed symbol margins, indicate 
standard error.  
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Figure 2. 0.001 M CaCl2 extractable element concentrations in Al-WTR (a) and Fe-WTR (b) at varying 
solution pH (adjusted with HCl). Error bars indicate standard errors about mean, n=3 (note extractability 
of As, Cd, Cr and Pb was ≤1 mg/kg at all pH levels and so are not depicted).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Element fractionation in aluminium (a) and iron (b) based water treatment residuals according 
to the BCR sequential extraction scheme (BCR 1= 0.11 M acetic acid; BCR 2= 0.1 M hydroxyl ammonium 
chloride at pH 2.0; BCR 3= hydrogen peroxide treatment followed by heating and then 1.0 M ammonium 
acetate at pH 2.0; BCR 4 = aqua-regia digestion of residues). Percentages for each fraction are relative to 
the sum of all fractions for a given element. The numeric values above the columns indicate the element 
mass balance, i.e. 100 x sum of BCR fractions/original total digest.     
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Figure 4. Earthworm avoidance test (48h) at 0, 5, 10 and 20% WTR addition rate (note slight off-set for 
ease of viewing). The asterisk (*) indicates significantly different avoidance value in the 20% Al-WTR 
treatment compared with the dual control (i.e. un-amended soil on each side of test vessel). Error bars 
indicate standard error about mean (n=3).     
 
 
 
 
SUPPLEMENTARY INFORMATION 
 

 
SI Figure 1. Preliminary experiment verifying that the avoidance test setup met all validity criteria in 
terms of no avoidance or attraction bias.   
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SI Table 1. BCR element fractionation (mg/kg, mean ± standard error SE) and mass balances (sum of 
fractions / total digest) 

Al-WTR Al SE Cd SE Cr SE Fe SE Pb SE Zn SE 

BCR1 11998 173 b/d - b/d - 65 1 b/d - 14.7 1.6 

BCR2 6173 73 b/d - b/d - 317 3 b/d - 15.3 0.4 

BCR3 105251 743 b/d - b/d - 1189 56 b/d - 14.1 0.4 

BCR4 23488 903 b/d - 9.3 0.3 11121 360 5.00 0.19 59.8 2.2 

Fraction Sum 146909   - 9.3  12692  5.00  104.0  

Total digest 116400   - 10.3  9110  5.80  84.2  

Sum/total 1.26    0.90  1.39  0.86  1.23  

             

Fe-WTR Al SE Cd SE Cr SE Fe SE Pb SE Zn SE 

BCR1 6.6 0.4 b/d - b/d - 65 1 0 0 13 0.8 

BCR2 25.0 0.4 b/d - b/d - 9980 203 0 0 40 0.3 

BCR3 410 6.6 b/d - b/d - 98730 751 9.0 0.10 109 8.2 

BCR4 6416 1483 12.4 0.9 1.53 0.72 119389 5003 16.3 0.83 48 2.1 

Fraction Sum 6857  12.4  1.53  228165  25.3  210  

Total digest 7135  29.3  4.87  176850  34.0  147  

Sum/total 0.96  0.42  0.31  1.29  0.74  1.4  

 
 
 
 
 
SI Table 2. Element concentrations in Eisenia fetida earthworm tissues converted to dry mass 
equivalents (mg/kg ± standard error) 

 Al Cd Cr Fe Mg Mn Ni Pb Zn P 

Control 43.0±5.5 0.75±0.05 2.6±0.3 273.2±27.1 46.6±1.2 46.6±3.3 2.4±0.2 1.21±0.12 80.4±0.8 516.1±7.0 

5% Fe 44.7±4.0 0.63±0.05 2.5±0.3 460.8±24.9 46.1±0.6 64.1±5.7 2.5±0.2 1.24±0.13 76.3±3.9 468.5±12.9 

10% Fe 26.0±6.9 0.57±0.05 1.9±0.4 406.2±128.7 32.4±7.0 57.9±12.6 2.1±0.4 0.94±0.20 71.6±3.3 365.3±97.6 

20% Fe 36.1±4.4 0.66±0.03 2.4±0.1 836.6±66.3 39.6±1.5 86.2±4.5 2.8±0.1 1.30±0.05 72.6±1.8 484.8±8.0 

5% Al 71.9±20.0 0.70±0.02 1.9±0.4 180.7±46.5 39.2±5.6 47.9±5.9 1.9±0.2 0.97±0.12 71.4±3.2 415.9±58.4 

10% Al 212.2±58.1 0.66±0.04 2.0±0.4 172.6±39.7 42.9±4.1 52.7±8.0 2.1±0.3 1.37±0.26 72.7±5.4 471.7±37.6 

20% Al 142.0±41.8 0.60±0.08 1.6±0.1 132.7±10.0 33.5±6.0 42.8±1.8 1.6±0.0 1.05±0.05 69.1±6.3 405.0±87.7 

 
 

 


