
1 

 

Synthesis and Activity of a Novel Autotaxin Inhibitor-Icodextrin Conjugate 

Natalie Fisher,a,b Michael G. Edwards,b Ryan Hemming,c Steven M. Allin,c John D. Wallis,c 

Philip C. Bulman Page,d Michael J. Mckenzie,e Stefanie M Jones,a Mark R. J. Elsegood,f 

John King-Underwoodg and Alan Richardsona* 

 

a School of Pharmacy, Keele University, Keele, ST5 5BG, UK 

b Keele Molecular Chemistry Group, Lennard-Jones Laboratories, School of Chemical and 

Physical Sciences, Keele University, Keele, ST5 5BG, UK 

c School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, 

UK 

d School of Chemistry, University of East Anglia, Norwich NR4 7TJ 

e Charnwood Molecular Ltd., The Heritage Building, Prince William Road, Loughborough 

LE11 5DA, UK 

f Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK 

g Computational Chemistry Resource, Old Cottage Hospital, Ledbury, HR8 1ED, UK 

 

  

Page 1 of 39

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2 

 

 

ORCHID 

Alan Richardson 0000-0003-1825-3375 

 

*Corresponding author: a.richardson1@keele.ac.uk 

 

Page 2 of 39

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3 

 

ABSTRACT 

Autotaxin is an extracellular phospholipase D that catalyses the hydrolysis of 

lysophosphatidyl choline (LPC) to generate the bioactive lipid lysophosphatidic acid (LPA).  

Autotaxin has been implicated in many pathological processes relevant to cancer. 

Intraperitoneal administration of an autotaxin inhibitor may benefit patients with ovarian 

cancer, however low molecular mass compounds are known to be rapidly cleared from the 

peritoneal cavity. Icodextrin is a polymer that is already in clinical use because it is slowly 

eliminated from the peritoneal cavity. Herein we report conjugation of the autotaxin inhibitor 

HA-155 to icodextrin. The conjugate inhibits autotaxin activity (IC50 = 0.86 ± 0.13 µg mL−1) 

and reduces cell migration. Conjugation of the inhibitor increased its solubility, decreased its 

membrane permeability and improved its intraperitoneal retention in mice. These 

observations demonstrate the first application of icodextrin as a covalently-bonded drug 

delivery platform with potential use in the treatment of ovarian cancer. 

 

Page 3 of 39

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4 

 

INTRODUCTION 

Autotaxin is an extracellular phospholipase D1 that hydrolyses lysophosphatidyl choline 

(LPC) to the bioactive lipid lysophosphatidic acid (LPA) and choline.2 LPA acts via G 

protein coupled receptors located on the cell surface to activate a variety of signaling 

pathways.3 LPA-induced signaling pathways are implicated in a number of biological 

processes including cell migration, proliferation and survival.4 Patients with ovarian cancer 

often present with an accumulation of ascites fluid in the intraperitoneal cavity which 

contains LPA at concentrations up to 80 µM.5 Autotaxin, also found in the ascites fluid of 

patients with ovarian cancer,6 is over-expressed in ovarian cancers that are resistant to 

chemotherapy,7 and has been shown to delay apoptosis induced by carboplatin in ovarian 

cancer cells.8 Autotaxin is known to catalyse the production of LPA in many biological 

fluids2b and LPA has a well-established role in cancer cell migration and invasion.9  

Inhibition of autotaxin has been shown to increase the sensitivity of ovarian cancer cells to 

carboplatin10 and breast cancer cells to paclitaxel.11 Reducing the high levels of LPA present 

in ascites could therefore be expected to delay relapse after chemotherapy and reduce drug 

resistance, suggesting that a strategy involving inhibition of autotaxin within the peritoneal 

cavity has therapeutic potential for the treatment of ovarian cancer. Several small molecule 

inhibitors of autotaxin have been described12 which might be used to achieve this. Maintaining a 

high local concentration of an autotaxin inhibitor within the peritoneal cavity is likely to be 

important in order to ensure sufficient and prolonged inhibition of this enzyme.13 However, 

the residence time of small molecule drugs within the peritoneal cavity is usually relatively 

short because low molecular mass compounds are quickly absorbed through the peritoneal 

capillaries into the systemic circulation. In contrast, high molecular mass compounds are 

generally cleared more slowly from the peritoneal cavity, suggesting that coupling of a drug 

to a polymer offers a potential strategy to increase the residence time of the therapeutic agent. 
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Polymers are becoming an increasingly useful tool in the delivery of drugs and have the 

potential to improve the desired therapeutic properties of bioactive small molecules. We have 

previously described the successful synthesis and attachment of the known autotaxin inhibitor 

S32826 to a 3rd generation PAMAM dendrimer whilst retaining pharmacological activity, 

demonstrating the feasibility of conjugating autotaxin inhibitors to a polymeric delivery 

system. 14 

 

In the related studies described in this paper, our attention was drawn to the potential 

application of icodextrin as an alternative polymeric support. Icodextrin is the main 

constituent of Extraneal™, which has a history of safe clinical use for peritoneal dialysis. 

Icodextrin is a water-soluble polymer derived from maltodextrin containing α-1,4-glycosidic 

bonds and approximately 10% α-1,6-glycosidic bonds, and an average molecular weight of 

13 - 19 kDa. The prolonged retention of icodextrin in the intraperitoneal cavity has been well 

characterized in clinical trials and is the basis for its clinical use in peritoneal dialysis, with 

approximately 60% of the icodextrin administered to the intraperitoneal cavity remaining 

after 12 hours.15 Higher molecular weight icodextrin fractions are anticipated to be eliminated 

even more slowly. There have been several studies which have evaluated the co-

administration of non-covalently coupled icodextrin, as a carrier solution to increase the 

retention of drug molecules in the peritoneal cavity16 but to our knowledge there have been 

no reports detailing the use of icodextrin as a support to form a covalently-bound drug 

conjugate. Given the many advantages noted above, we reasoned that icodextrin could be 

investigated as a novel drug delivery system for intraperitoneal administration and targeting 

of the autotaxin-LPC system in the peritoneal cavity. Herein we describe our progress, and 

report the synthesis and activity of a novel autotaxin inhibitor-icodextrin conjugate based on 

the autotaxin inhibitor HA-155.17 
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RESULTS AND DISCUSSION 

The publication18 of the crystal structure of autotaxin in complex with the small-molecule 

inhibitor HA155 enabled us to perform structure-based drug design of a drug-polymer 

conjugate. Inspection of the molecular structure suggested that the 3-position on the central 

benzylidene moiety was accessible to solvent and might provide an appropriate locus to 

cross-link the drug to a polymer without interfering with the drug binding to the enzyme (Fig 

1).16 Furthermore, structurally related compounds described by Albers17 contained a methoxy 

group at this position, suggesting substitution was tolerated at this position. We chose to 

replace the boronic acid moiety in HA155 with a carboxylic acid because this was previously 

shown to be tolerated 17 and because boronic acid is found in relatively few marketed drugs. 

 

Figure  1. Crystal structure of HA155 bound to autotaxin (adapted from ref 18).  The 

structure of HA155 is shown in the inset. The proposed attachment point for the polymer is 

shown (arrow). 
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A convenient and convergent synthetic approach based on the modification of a route 

previously used to synthesise HA15517 was pursued (Scheme 1). Thiazolidine-2,4-dione was 

N-benzylated with 4-fluorobenzyl chloride to yield intermediate 1. Selective O-benzylation of 

3,4-dihydroxybenzaldehyde with methyl-4-(bromomethyl)-benzoate following a method 

described by Plourde and Spaetzel19 using Finkelstein conditions (NaHCO3, NaI, DMF, 40 

°C)  allowed benzylation of the C4-hydroxyl group; the structure of compound 2 was 

confirmed by single crystal X-Ray diffraction (Figure 2).   

 

Our initial studies evaluated the direct attachment of 2 to the polymer via the remaining C3-

phenolic hydroxyl group, however inconsistent coupling at this stage prompted us to 

incorporate a spacer group in the form of a bis-ethylene glycol linker. This was accomplished 

by alkylation of the C3-hydroxyl group in 2 with 2-(2-chloroethoxy)-ethanol. Saponification 

of the resulting methyl ester with sodium hydroxide gave intermediate 3. Finally, a 

Knoevenagel-like condensation of the thiazolane-2,4-dione 1 with aldehyde 3 delivered the 

novel, functionalized autotaxin inhibitor, 4. 
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Scheme 1. Synthesis of functionalized autotaxin inhibitor, 4: i. NaH, DMF, 0 °C to rt, 22 h (75%); ii. 

NaHCO3, NaI, DMF, 40 °C, 24 h (70%); iii. 2-(2-chloroethoxy)-ethanol, DMF, K2CO3, KI, 70 °C, 18 

h (58%); iv. NaOH, DMSO/H2O 70 °C, 2 h (98%); v. piperidine, EtOH, reflux, 16 h (93%). 

 

 

Figure 2: X-Ray structure of the selectively benzylated intermediate 2. Displacement ellipsoids are at 

the 50% probability level. Intramolecular H-bond shown with a dashed line. 

In order to investigate its potential for supporting an appropriately derivatised autotaxin 

inhibitor molecule, icodextrin solid was isolated from Extraneal™ by dialysis against water 

to remove electrolytes, small organic molecule contaminants and icodextrin chains smaller 

than 20 kDa.20 

Page 8 of 39

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



9 

 

To facilitate the attachment of the inhibitor derivative 4 to icodextrin it was necessary to 

introduce an appropriate electrophilic functional group, capable of allowing alkylation of the 

primary alcohol at the C6 position of the glucose units in icodextrin. Thus the carboxylic acid 

group in 4 was first protected as the TIPS silyl ester 5, before activation of the terminal 

hydroxyl group of the linker moiety within 5 as the tosylate 6.  Icodextrin is poorly soluble in 

organic solvents due to extensive hydrogen bonding and incorporated water, but can be 

dissolved in N,N-dimethylacetamide (DMAc) with added LiCl to displace water. 21 Once 

icodextrin had been dissolved in the DMAc/LiCl mixture, the coupling of icodextrin and 6 

was achieved through deprotonation of icodextrin using sodium hydride, followed by 

addition of tosylate 6. The novel icodextrin-inhibitor conjugate 7 was finally isolated by 

dialysis of the reaction mixture against methanol. This synthetic procedure was found to lead 

to in situ removal of the TIPS ptotecting group from the conjugate. The structure of conjugate 

7 was supported by NMR, IR and TGA analysis (Figure 3). An unconjugated analogue of 7 

was also prepared (8) in order to allow comparisons to be drawn on the effect of the 

icodextrin coupling on the activity of the supported compound. Table 1 summarizes some 

chemical and pharmaceutical properties of conjugate 7. 
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Scheme 2. Synthesis of icodextrin-inhibitor conjugate: i. TIPS-Cl, Et3N, THF, rt, 15 min (76%); ii. 

p-TsCl, CH2Cl2, Et3N, rt, 20 h (61%); iii. Icodextrin, NaH, LiCl, DMAc, rt, 4 h (43%). 
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Figure 3: Analysis of icodextrin-inhibitor conjugate 7: A) 300 MHz 1H NMR analysis of 

conjugate 7; B) IR analysis of free inhibitor 8 and conjugate 7; C) TGA analysis of free 

inhibitor 8, icodextrin, and icodextrin-inhibitor conjugate 7.  

 

To establish the amount of inhibitor attached to the conjugate, the inherent fluorescence of 

the immobilized inhibitor was measured in a solution of 7 and compared with the 

fluorescence of known concentrations of non-conjugated, free inhibitor 8. Knowing the 

concentration of dissolved polymer allowed us to determine that approximately 0.09 g of the 

inhibitor molecule was attached per g of polymer (0.19 mmol g −1).   

The aqueous solubility of the compounds in PBS (pH 7.4) was tested using a miniaturized 

shake flask method, and conjugation to icodextrin was observed to increase the solubility of 

the pharmacophore compared with the free inhibitor 8 (Table 1).  

It was hypothesized that conjugation to icodextrin would increase the retention time of the 

autotaxin inhibitor in the intraperitoneal cavity (due to the substantial increase in size slowing 

down its absorption). The effect of conjugation on the membrane permeability of the 

56-20-07-MGE-TP.010.001.1r.esp
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compounds was tested in two assays: (i) in a PAMPA assay measuring diffusion across an 

artificial bilayer and (ii) using a Caco-2 cell monolayer.  In the PAMPA assay, the 

unconjugated inhibitor 8 was observed to be moderately permeable across the membrane but 

once the inhibitor was conjugated to icodextrin there was a marked decrease in permeability 

(i.e. of conjugate 7). In the Caco-2 assay, conjugate 7 also showed poor permeability (Papp = 

7.4 × 10−6) when compared with a freely permeable drug, paracetamol (Papp = 38 × 10−6). 

 

Compound 

Degree of incorporation 

of inhibitor 

(mmol g
–1

) 

Solubility 

(g L
–1

) 

Permeability 

(Log Pe) 

Free inhibitor 8 n/a 0.08 ± 0.02 –5.5 ± 0.2 

Conjugate 7 0.19 0.22 ± 0.02 –6.4 ± 0.1 

Table 1: Chemical and Pharmaceutical Properties of Conjugate 7 and Free Inhibitor 8: 

Solubility was measured using a miniaturised shake flask method. (Results are expressed as 

mean ± S.D. n = 3); Permeability was measured in PAMPA assay. Permeability (mean +S.D., 

n = 2–3) of the free inhibitor 8 and conjugate 7 were determined using furosemide (log Pe = 

−6.4 ± 0.3) and propranolol (log Pe = −5.3 ± 0.1) as controls for low and high permeable 

drugs respectively. 
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AUTOTAXIN ACTIVITY ASSAYS 

The ability of the novel conjugate 7 to inhibit autotaxin was assessed in two autotaxin 

enzymatic activity assays measuring the hydrolysis of two different substrates, FS-322 and Bis 

p-NPP. 22, 23 Using FS-3 as the substrate, both conjugate 7 and the free inhibitor 8 inhibited 

the activity of autotaxin. When  the potency of conjugate 7 was expressed in terms of the 

concentration of pharmacophore attached to the polymer, conjugation appeared have had 

minimal effect on the drug potency (Table 2). Using bis-pNPP as the substrate, the free 

inhibitor 8 showed a slightly lower potency to that measured in the FS-3 assay (Table 2) but 

the potency of the conjugate 7 was comparable in both assays. Unconjugated icodextrin itself 

(100 µg mL−1) had no measureable effect in either assay. 

 

Compound 

IC50 

FS-3 assay Bis-pNPP assay 

Free inhibitor 8 290 ± 160 nM (n=5) 620 ± 160  nM(n=2) 

Conjugate 7 

0.86 ± 0.13 µg mL−1 (n=4) 

 {pharmacophore IC50 = 160 ± 20 nM} 

0.94± 0.12 µg mL−1 (n=3) 

{pharmacophore IC50 = 170 ± 20 nM} 

 

Table 2: Inhibition of autotaxin enzymatic activity by the free inhibitor 8 and conjugate 7, 

tested in FS-3 and Bis-pNPP assay. IC50 values (mean ± S.D., number (n) of experiments 

shown in parentheses)) are shown as either the concentration of conjugate (µg mL−1) or the 

concentration of the free inhibitor (nM). To allow comparision, the IC50 of the conjugate is 

also expressed in terms of the concentration of the pharmacophore present, determined by 

taking into account the amount of drug conjugated to the icodextrin. 

Page 13 of 39

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14 

 

INHIBITION OF CELL MIGRATION 

Autotaxin and LPA have been shown to regulate the migration of cancer cells. To further 

invetigate the biological activity of conjugate 7, its effect on wound healing was evaluated 

using 3E3 ovarian cancer cells; these cells were previously derived from OVCAR-3 cells to 

over-express autotaxin. 10 OVCAR-3 cells transfected with the vector 3V5, were used as a 

control and express low levels of autotaxin. 10 Once an even monolayer of cells had formed a 

wound was inflicted and the migration of the cells was measured. Both the free autotaxin 

inhibitor 8 and the icodextrin-drug conjugate 7 were observed to reduce wound closure by 

approximately 50% compared with cells exposed to vehicle alone (DMSO), (Figure 4). 

Neither the free autotaxin inhibitor 8 nor the conjugate 7 had a significant effect on the 

percentage wound closure in the control 3V5 cells.  

Figure 4: Comparison of autotaxin inhibition by the free inhibitor 8 or conjugate 7 on wound 

closure. 3E3 cells were grown to confluence, a wound was created and serum free media 
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containing vehicle (DMSO), the free inhibitor 8 (100 nM), or conjugate 7 (10 µg mL−1, 

equivalent to 1.9 µM pharmacophore) was added and wound closure was measured after 16 

h. The percentage wound closure was measured (mean + S.D., n = 5) and was significantly 

different from wound closure in cells treated with vehicle where shown (*, P < 0.001; **, P < 

0.005, vs. control (paired t-test)). 

 

INTRAPERITONEAL RETENTION 

We next evaluated whether conjugation of the inhibitor to icodextrin promoted retention in 

the peritoneal cavity of nu/nu mice. The compounds were separately administered by the i.p. 

route to mice. After 24 h the peritoneal cavity was washed and the amount of compound 

present in the wash was measured. Whilst 30% of conjugate 7 was recovered from the 

peritoneal cavity after 24 h, in comparison only 0.1% of the free inhibitor 8 was recovered 

(Figure 5).  

 

Figure 5: Peritoneal Retention of Conjugate 7 and Free Inhibitor 8.  24 h after intraperitoneal 

administration of the conjugate (80 µg) or the free drug, the mice were sacrificed, their 

peritoneal cavities washed and the amount of compound recovered was determined. The 
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results show the recovery expressed as a percentage of the administered compound (mean ± 

S.D. of n = 3). For comparison, when the drug was collected immediately after 

administration, 40% of the drug was recovered. To confirm the specificity of the assay, no 

drug was detected in the peritoneal cavity of mice injected with PBS instead of the drug. 

 

The increased levels of autotaxin and high levels of LPA that are found within the ascites 

fluid of patients with ovarian cancer, together with the relatively rapid clearance of low 

molecular mass compounds from the peritoneal cavity,13 presents a challenge to provide 

continual inhibition of autotaxin in the peritoneal cavity. Our study begins to address these 

challenges by preparing a novel conjugated equivalent from a previously described autotaxin 

inhibitor series. Our choice of icodextrin as the polymeric support was guided by the 

established history of safe and effective clinical use of icodextrin for peritoneal dialysis, and 

thus its pharmacokinetic properties have been well characterized.15 The relatively high 

molecular mass of icodextrin results in prolonged retention in the peritoneal cavity in patients 

and, consequently, it is highly likely that drugs that are covalently conjugated to icodextrin 

will be retained within the peritoneal cavity of patients, potentially leading to prolonged 

enzyme inhibition when compared with a free drug equivalent. Our new intraperitoneal 

delivery approach was shown to improve the pharmacokinetic properties of an autotaxin 

inhibitor, as well as increasing its solubility without substantial detrimental effects on its 

ability to inhibit autotaxin.  

Our previous work evaluating PAMAM dendrimer conjugates of autotaxin inhibitors was not 

guided by knowledge of the structure of the autotaxin-drug complex, and thus resulted in an 

inhibitor conjugate with substantially reduced potency. 14 In this present study, we have made 

use of the published crystal structure of the complex18 to guide our design and were able to 
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successfully identify an appropriate attachment point on the inhibitor molecule. Conjugate 7 

showed minimal reduction in potency compared with the free inhibitor 8 (expressed in terms 

of the amount of pharmacophore present).  This suggests that conjugation to icodextrin had at 

worst a minor affect on the affinity of the pharmacophore for autotaxin. Since we anticipate 

administration of an icodextrin-inhibitor conjugate into the peritoneal cavity, such a minor 

reduction in potency is not likely to be a substantial limitation on its use.  

The attachment of the pharmacophore to icodextrin also resulted in two desirable 

improvements in physicochemical properties. Firstly, the membrane permeability of the drug 

was reduced, potentially increasing the duration of its residence in the peritoneal cavity. 

Secondly, the solubility of the drug was also increased. One key goal of this study was to 

increase the retention time of the drug in the peritoneal cavity and we have established that 

24 hours after intraperitoneal administration, 30% of the inhibitor conjugate was recovered 

from the intraperitoneal cavity. In contrast, a negligible amount of the free inhibitor was 

recovered. These results provide proof-of-principle that the attachment of autotaxin inhibitors 

to icodextrin can improve their retention time in the peritoneal cavity. That the conjugate was 

cleared more rapidly from mice than we anticipated, compared with the known clearance of 

icodextrin from human subjects, may be explained by the fact that rodents are known to have 

an increased amount of α-amylase present in the peritoneal cavity compared to man, which is 

known to degrade icodextrin.24 Indeed, the half-life of icodextrin in rodents is known to be 

significantly less than in humans. 24 This presents a potential issue when planning for 

oncology preclinical studies, since the relatively rapid clearance of icodextrin from mice 

makes it difficult to conduct preclinical pharmacodynamic and xenograft studies with this 

species. Consequently, we consider that rodents do not provide a suitable model in which the 

pharmacodynamic activity of inhibitor-icodextrin conjugates can be evaluated, and other 

model systems, or indeed human clinical trials, may be more appropriate. In contrast, clinical 
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studies with icodextrin conjugates in human patients seem feasible because of the long dwell 

time of icodextrin in the human peritoneal cavity and the existing and safe therapeutic 

application of this polymer. 15 Indeed, the higher molecular weight fractions of icodextrin that 

we have used in these studies are anticipated to be eliminated even more slowly than 

unfractionated icodextrin. 

 

The strategy for intraperitoneal drug delivery that we have described herein should not be 

limited to autotaxin inhibitors and may be applied to other drugs where it is desirable to 

retain drugs in the peritoneal cavity or to alter their physicochemical properties.  

Intraperitoneal administration of chemotherapy is being evaluated for the treatment of 

ovarian cancer because it offers the potential for increased efficacy, although toxicity remains 

an issue with some drugs. 25 Using icodextrin as a basis for drug conjugation may also be 

more widely applicable, for example where it is desirable to retain a drug within other body 

compartments. The prolonged retention of drugs in the peritoneal cavity, and potentially in 

other body compartments, may also allow for a relatively infrequent dosing regime to be 

developed. 

 

CONCLUSIONS 

In this paper we report the design and synthesis of a novel autotaxin inhibitor-icodextrin 

conjugate and its subsequent biological evaluation. To our knowledge, this represents the first 

reported use of icodextrin as a suitable polymer for the formation of covalently-bound drug 

conjugates. Our novel icodextrin conjugate was found to inhibit autotaxin activity using two 

different substrates and two different sources of autotaxin. Furthermore, the conjugate was 

found to reduce migration of an ovarian cell line modified to over-express autotaxin. 
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Conjugation of the inhibitor to icodextrin led to an increase in solubility and a decrease in 

membrane permeability when compared with the free drug equivalent. Finally, when the 

icodextrin-inhibitor conjugate was administered to the peritoneal cavity of mice, 30% of the 

drug was still detected after 24 hours. These observations demonstrate that autotaxin 

inhibitor-icodextrin conjugates have significant potential as a new approach for the treatment 

of ovarian cancer.  

 

EXPERIMENTAL SECTION 

Chemistry. Reagents and solvents were obtained from commercial suppliers and were not 

further purified before use unless stated. Icodextrin was obtained as EXTRANEAL™ 

peritoneal dialysis solution (7.5% w/v icodextrin in an electrolyte solution, (Baxter)). 

Icodextrin was isolated from Extraneal peritoneal dialysis solution following dialysis against 

water for 3 days, changing the solvent 3 times per day, followed by freeze-drying to remove 

excess water.  

Solvents were removed under reduced pressure with a Büchi rotary evaporator. Any 

remaining solvent was removed under high vacuum. The progress of the reactions was 

monitored by TLC analysis, using aluminum pre-coated silica gel plates (Merck) visualised 

by UV irradiation at a wavelength of 254 nm. Flash column chromatography was carried out 

on silica gel 60 (43-60 mesh); columns were slurry packed in the appropriate solvent/solvent 

mixture and samples were added as a concentrated solution or pre-absorbed onto silica. 

Dialysis was carried out using 20 kDa and 8 kda MWCO (Biotech) dialysis membrane 

tubing, where stated.  

1H and 13C nuclear magnetic resonance (NMR) were measured on a Bruker DPX300 Fourier 

transform spectrometer, or a Jeol eclipse 400 MHz Fourier transform spectrometer using D6-
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DMSO, CDCl3, D2O, D6-Acetone or MeOD solvents. Chemical shifts are quoted in ppm 

downfield from TMS; coupling constants (J) are quoted in Hertz (Hz). TMS was defined as 0 

in 1H NMR and the residual chloroform triplet as 77.10ppm in 13C NMR. The following 

abbreviations were used in analysis; broad (br), singlet (s), doublet (d), triplet (t), quartet (q) 

and multiplet (m). 

Infra-red (IR) spectra were recorded in their natural state on a Thermo Scientific GladiATR 

spectrometer or a Perkin Elmer spectrum 100 FT-IR spectrometer and the vibrational 

frequencies were recorded in cm-1.  

Mass spectra were obtained from the EPSRC UK National Mass Spectrometry Facility at 

Swansea University, using electron spray ionisation (ESI) or atmospheric pressure chemical 

ionisation (APCI).  

Melting points were measured on a Stuart SMP10 melting point apparatus. 

The purity of all compounds was determined by elemental analysis that was performed by the 

elemental analysis service at London Metropolitan University, and was greater than 95%.    

Thermogravimetric analysis (TGA) was performed using a SDT Q 600 TA instrument, with a 

constant nitrogen flow of 100 mL/min, heating rate of 20 °C/min, heating was held stable at 

100 °C for 10 min to remove any residual solvent. Results were obtained for greater than 10 

mg per sample between 20 and 600 °C.  

 

3-(4-Fluorobenzyl)thiazolidine-2,4-dione (1).
26

  

A solution of thiazolidine-2,4-dione (2.93 g, 25.00 mmol, 1.50 equiv.) in DMF (anhydrous, 

50 mL), under N2, was cooled to 0 °C and sodium hydride (60% mineral oil dispersion, 0.92 

g, 23.00 mmol, 1.35 equiv.) and a solution of 4-fluorobenzyl chloride (2.04 mL, 17.00 mmol, 
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1.00 equiv.) in DMF (anhydrous, 10 mL) were added. The reaction mixture was allowed to 

warm to room temperature over 4 h.  The reaction mixture was then poured over crushed ice 

(100 mL), hexane (50 mL) was then added, and the product allowed to crystallise overnight 

at 4 °C. 3-(4-Fluorobenzyl)thiazolidine-2,4-dione was then collected via vacuum filtration to 

yield 2.87 g, (12.75 mmol, 75%) as colourless needles; mp 78–80 °C. 1H NMR (400 MHz, 

CDCl3) δ 7.42–7.38 (m, 2H) 7.03–6.99 (m, 2H), 4.73 (s, 2H), 3.95 (s, 2H). HRMS (APCI) 

m/z calculated for C10H9O2NFS [M + H]+: 226.0333. Found 226.0333.   

 

Methyl 4-((4-formyl-2-hydroxyphenoxy)methyl)benzoate (2). 

3,4-Dihydroxybenzaldehyde (0.15 g, 1.10 mmol, 1.0 equiv.) was dissolved in DMF (5 mL) 

and sodium bicarbonate (0.14 g, 1.65 mmol, 1.5 equiv.), methyl-4-(bromomethyl)-benzoate 

(0.50 g, 2.20 mmol, 2.0 equiv.) and sodium iodide (0.05 g, 0.33 mmol, 0.3 equiv.) were 

added. The reaction mixture was heated at 40 °C for 24 h. The reaction was then quenched 

with 10% aqueous HCl (10 mL), extracted with ethyl acetate (3 × 10 mL), washed with brine 

(3 × 10 mL), dried over anhydrous MgSO4 and the solvent was evaporated under reduced 

pressure to obtain a light brown oil. The crude product was purified by column 

chromatography eluting with ethyl acetate/hexane (1:4) to yield the target compound as a 

colourless solid (0.22 g, 0.77 mmol, 70%); mp 151–153 °C. 1H NMR (300 MHz, [D6] 

DMSO) δ  13.02 (br. s, 1H), 9.84 (s, 1H), 7.98 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 8.0 Hz, 2H), 

7.54 (d, J = 8.2 Hz, 1H), 7.43 (s, 1H), 7.26 (d, J = 8.2 Hz, 1H), 5.31 (s, 2H), 3.85 (s, 3H). 13C 

NMR (75 MHz, [D6]DMSO): 191.21, 166.30, 152.23, 148.40, 145.97, 129.14, 128.91, 

127.98, 126.39, 124.64, 115.59, 114.37, 62.43, 52.12. ��	= 3672, 2902, 1709, 1672, 1606, 

1582 cm−1. HRMS (ESI) m/z calculated for C16H15O5 [M + H]+: 287.0914. Found 287.0916. 
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Elemental analysis calculated (%) for C16H14O5 requires: C 67.13; H 4.93, found: C 67.04; H 

5.05. 

 

X-ray Crystallography for 2. 

A suitable crystal was obtained by recrystallization from EtOAc/hexane. Diffraction data 

(26152 total reflections with Rint = 0.038) were collected on a Bruker APEX 2 CCD 

diffractometer at T = 150 K using graphite-monochromated Mo-Kα radiation. Crystal data: 

C16H14O5, Mr = 286.27 g mol–1, orthorhombic, Pbca, a = 7.6024(6), b = 16.1869(13), c = 

21.5409(17) Å, V = 2650.8(4) Å3, Z = 8, R[F2 > 2σ(F2)] = 0.069 for 2900 reflections with I > 

2σ(I), wR(F2) = 0.143 for all 3422 independent data, GOF = 1.19, 253 refined parameters. 

CCDC 1559541 contains the supplementary crystallographic data for this paper. These data 

can be obtained free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. Full details of the refinement and atomic positons are 

found in the supplementary information. 

 

Methyl 4-((4-formyl-2-(2-(2-hydroxyethoxy)ethoxy)phenoxy)methyl)benzoate (3 ester). 

Methyl 4-((4-formyl-2-hydroxyphenoxy)methyl)benzoate, 2, (0.18 g, 0.63 mmol, 1.0 equiv.) 

was stirred in DMF (5 mL) and potassium carbonate (0.17 g, 1.25 mmol, 2.0 equiv.), 

potassium iodide (0.10 g, 0.63 mmol, 1.0 equiv.) and 2-(2-chloro-ethoxy)-ethanol (0.2 mL, 

1.88 mmol, 2.9 equiv.) were added and the reaction heated to 70 °C for 18 h. The solution 

was then diluted with water (50 mL) and extracted with ethyl acetate (3 ×  20 mL) and 

washed with water (3 × 20 mL) and brine (3 × 20 mL), and dried over anhydrous MgSO4. 
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The solvent was then removed by evaporation under reduced pressure to yield the crude 

product which was purified via column chromatography (hexane/EtOAc (1:3)) to yield the 

target compound as a pale yellow powder (0.14  g, 0.36 mmol, 58%); mp 56–59 °C. 1H NMR 

(400 MHz, CDCl3) δ 10.46 (s, 1H), 8.25 (d, J = 7.9 Hz, 2H), 7.57, (d, J = 7.9 Hz, 2H), 7.53 

(d J = 1.7 Hz, 1H), 7.43 (dd, J = 7.9, 1.7 Hz, 1H), 6.88 (d, J = 7.9 Hz, 1H), 4.77 (s, 2H), 

3.52–3.49 (m, 2H), 3.12–3.09 (m, 2H), 3.07 (s, 3H), 2.78–2.74 (m, 4H).  13 C NMR (100 

MHz, CDCl3) δ 190.97, 166.84, 153.67, 149.36, 141.33, 130.63, 130.08, 130.00, 127.08, 

126.93, 112.91, 111.50, 72.79, 70.29, 69.53, 68.84, 61.91, 52.31. �̅	= 3671, 3504, 3442, 3407, 

2908, 1722, 1685, 1584 cm−1. HRMS (ESI) m/z calculated for C20H23O7 
 [M + H]+: 375.1438. 

Found 375.1441.  

 

4-((4-Formyl-2-(2-(2-hydroxyethoxy)ethoxy)phenoxy)methyl)benzoic acid (3). 

Methyl 4-((4-formyl-2-(2-(2-hydroxyethoxy)ethoxy)phenoxy)methyl)benzoate (0.13 g, 0.34 

mmol) was dissolved in DMSO (1 mL) and water (5 mL), and the reaction heated to 70 °C 

for 2 h. 1 M NaOH (aq.,1 mL) was added and reaction was heated at 70 °C until the solution 

became clear. The reaction mixture was diluted with water (10 mL) and acidified to pH 2 

with 1 M HCl (aq.), and the resulting precipitate was collected by filtration to yield the target 

compound as a pale yellow powder (0.12 g, 0.33 mmol, 98%); mp 116–119 °C. 1H NMR 

(400 MHz, CDCl3) δ 10.47 (s, 1H), 8.29 (d, J = 7.9 Hz, 2H), 7.60 (d, J = 7.9 Hz, 2H), 7.55 (d 

J = 1.7 Hz, 1H), 7.46 (dd, J = 7.9, 1.7 Hz, 1H), 6.89 (d, J 7.9 Hz, 1H), 4.80 (s, 2H), 3.55–3.52 

(m, 2H), 3.15–3.12 (m, 2H), 2.89–2.81 (m, 4H). 13 C NMR (100 MHz, CDCl3) δ 191.06, 

170.60, 153.64, 149.34, 142.09, 130.68, 130.11, 129.32, 127.02, 126.98, 112.88, 111.45, 

72.79, 70.27, 69.54, 68.78, 61.88. �̅	 = 3347, 2861, 1678, 1584, 1508 cm−1. HRMS (ESI) m/z 

calculated for C19H21O7 [M + H]+: 361.1282. Found 361.1286.  
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(Z)-4-((4-((3-(4-fluorobenzyl)-2,4-dioxothiazolidin-5-ylidene)methyl)-2-(2-(2-

hydroxyethoxy)ethoxy)phenoxy)methyl)benzoic acid (4). 

3-(4-Fluorobenzyl)-1,3-thiazolane-2,4-dione, 1, (0.51 g, 2.25 mmol, 1.0 equiv.) was 

dissolved in ethanol (10 mL). Piperidine (0.22 mL, 2.25 mmol, 1.0 equiv.) and 4-((4-formyl-

2-(2-(2-hydroxyethoxy)ethoxy)phenoxy)methyl)benzoic acid, 3, (0.81 g, 2.25 mmol, 1.0 

equiv.) were added and the solution was heated at reflux for 24 h. The mixture was cooled to 

room temperature and the resulting precipitate was collected via filtration to yield the target 

compound as a yellow powder (1.19 g, 2.09 mmol, 93%); mp 188–191 °C. 1H NMR (400 

MHz, [D6]DMSO) δ 7.97 (d, J = 8.2 Hz, 2H), 7.86 (s, 1H), 7.57 (d, J = 8.2 Hz, 2H), 7.38–

7.33 (m, 2H), 7.25 (s, 1H), 7.19–7.13 (m, 4H), 5.27 (s, 2H), 4.79 (s, 2H), 4.67 (br. s, 1H), 

4.18–4.16 (m, 2H), 3.80–3.78 (m, 2H), 3.53 (br. s, 4H). 13C NMR (100 MHz, [D6]DMSO) δ 

167.43 (s), 167.18 (s), 165.58 (s), 161.76 (d, 1J(C,F) = 244 Hz), 150.09 (s), 148.63 (s), 141.78 

(s), 133.79 (s), 131.84 (d, 4J(C,F)  = 3.5 Hz), 130.33 (s), 130.04 (d, 3J(C,F)  = 8.1 Hz), 129.58 

(s), 127.30 (s), 126.18 (s), 124.07 (s), 118.33 (s), 115.63 (s)*, 115.52 (d, 2
J(C,F)  = 21.9 Hz), 

114.27 (s), 72.69 (s), 69.42 (s), 68.86 (s), 68.46 (s), 60.37 (s), 43.93 (s). *This peak is 

obscured at 25 °C but can be observed when the temperature is increased to 70 °C. �̅	= 3672, 

3448, 2972,2902, 1729, 1678, 1509. HRMS (ESI) m/z (MH+) calcd for C29H26FNO8S 

568.1436, found 568.1430. Elemental analysis calculated (%) for C29H26FNO8S requires: C 

61.37; H 4.62; N 2.47%, found: C 61.15; H 4.73; N 2.61.  
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Triisopropylsilyl-(Z)-4-((4-((3-(4-fluorobenzyl)-2,4-dioxothiazolidin-5-ylidene)methyl)-

2-(2-(2-hydroxyethoxy)ethoxy)phenoxy)methyl)benzoate (5). 

 (Z)-4-((4-((3-(4-Fluorobenzyl)-2,4-dioxothiazolidin-5-ylidene)methyl)-2-(2-(2-

hydroxyethoxy)ethoxy)phenoxy)methyl)benzoic acid, 4, (5.96 g, 10.5 mmol, 1.0 equiv.) and 

triisopropylsilyl chloride (3.19 mL, 14.91 mmol, 1.42 equiv.) were stirred under nitrogen in 

anhydrous THF (200 mL). Triethylamine (1.61 mL, 11.55 mmol, 1.1 equiv.) was added and 

the reaction mixture was stirred for 15 min at room temperature. The resulting mixture was 

diluted with diethyl ether (200 mL) and then evaporated to yield the crude product as an oily 

yellow solid. The crude material was purified by column chromatography (hexane/EtOAc 

(1:1)) to yield the target compound as a bright yellow powder (5.78 g, 7.98 mmol, 76%). Mp 

107-109 °C. 1H NMR (400 MHz, CDCl3) δ 8.07 (d, J = 8.3, 2H), 7.80 (s, 1H), 7.51 (d, J = 

8.3, 2H), 7.46 –7.41 (m, 2H), 7.07–7.06 (m, 2H), 7.03–6.98 (m, 2H), 6.92 (d, J = 9.0 Hz, 

1H), 5.26 (s, 2H), 4.85 (s, 2H), 4.25–4.22 (m, 2H), 3.94 (dd, J = 4.0, 5.3 Hz, 2H), 3.74–3.69 

(m, 4H), 2.29 (br. s, 1H), 1.42 (septet, J = 7.5 Hz, 3H), 1.14 (d, J = 7.5 Hz, 18H). 13C NMR 

(100 MHz, CDCl3) δ 167.89 (s), 166.26 (s), 166.03 (s), 162.75 (d, J1(C,F) = 247 Hz), 150.66 

(s), 149.19 (s), 141.52 (s), 134.15 (s), 131.39 (s), 131.19 (d, 4
J(C,F) = 3.0 Hz), 131.02 (d, 

3
J(C,F) = 8.1 Hz), 130.67 (s), 126.90 (s), 126.79 (s), 125.24 (s), 119.10 (s), 115.76 (d, 2J(C,F) 

= 21.4 Hz), 115.27 (s), 114.14 (s), 72.79 (s), 70.36 (s), 69.57 (s), 69.05 (s), 61.92 (s), 44.59 

(s), 17.99 (s), 12.18 (s). �̅ = 3536,2944, 2868, 1728, 1669, 1510 cm−1. HRMS (ESI) m/z 

calculated for C38H47FNO8SSi [M + H]+: 724.2770. Found 724.2774. Elemental analysis 

calculated (%) for C38H46FNO8SSi: C 63.05, H 6.41, N 1.93. Found: C 62.96, H 6.53, N 2.04.  
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Triisopropylsilyl (Z)-4-((4-((3-(4-fluorobenzyl)-2,4-dioxothiazolidin-5-ylidene)methyl)-2-

(2-(2-(tosyloxy)ethoxy)ethoxy)phenoxy)methyl)benzoate (6). 

Triisopropylsilyl (Z)-4-((4-((3-(4-fluorobenzyl)-2,4-dioxothiazolidin-5-ylidene)methyl)-2-(2-

(2-hydroxyethoxy)ethoxy)phenoxy)methyl)benzoate, 5, (0.40 g, 0.55 mmol, 1.0 equiv.), was 

stirred in dichloromethane (12 mL). Tosyl chloride (0.21 g, 1.10 mmol, 2.0 equiv.) and 

triethylamine (0.15 mL, 1.10 mmol, 2.0 equiv.) were added and the reaction mixture was 

stirred at room temperature for 36 h. The reaction mixture was then evaporated to yield a 

yellow residue which was purified by column chromatography (50:50 ethyl acetate/petroleum 

ether (40-60)). Evaporation of the desired fractions afforded the target compound as a yellow 

crystalline solid (0.30 g, 0.34 mmol, 61%); mp 72–75 °C. 1H NMR (400 MHz, [D6]acetone) δ 

8.09 (d, J = 8.2 Hz, 2H), 7.85 (s, 1H), 7.77 (d, J = 8.2 Hz, 2H), 7.65 (d, J = 8.2 Hz, 2H), 

7.47–7.43 (m, 2H), 7.38 (d, J = 8.2 Hz, 2H), 7.24–7.21 (m, 3H), 7.14–7.09 (m, 2H), 5.34 (s, 

2H), 4.88 (s, 2H), 4.22–4.17 (m, 4H), 3.80–3.77 (m, 2H), 3.84–3.82 (m, 2H), 2.37 (s, 3H), 

1.44 (septet, J = 7.4 Hz, 3H), 1.15 (d, J = 7.4 Hz, 18H). 1H NMR (100 MHz, [D6]acetone) δ 

168.15 (s), 166.59 (s), 166.39 (s), 163.26 (d, 1
J(C,F) = 247 Hz), 151.52 (s), 150.22 (s), 

145.66 (s), 143.43 (s), 134.31 (s), 134.2 (s), 132.99 (d, 4
J(C,F) = 2.9 Hz), 131.74 (s), 131.36 

(d, 3
J(C,F) = 8.4 Hz), 131.03 (s), 130.73 (s), 128.69 (s), 128.21 (s), 127.67 (s), 125.29 (s), 

119.87 (s), 116.32 (s), 116.17 (d, 2
J(C,F) = 21.3 Hz), 115.41 (s), 70.74 (s), 70.67 (s), 70.21 

(s), 69.73 (s), 69.59 (s), 44.93 (s), 21.50 (s), 18.20 (s), 12.76 (s). �̅  = 2926, 2867, 2667, 1731, 

1681, 1592 cm−1. HRMS (ESI) m/z calculated for C45H56FN2O10S2Si [M + NH4]
+: 896.3124. 

Found 896.3123. Elemental analysis calculated (%) for C45H52FNO8SSi: C 61.55, H 5.97, N 

1.60. Found: C 61.44, H 5.79, N 1.71.  
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Synthesis of conjugate (7). 

Icodextrin (0.25 g, approx. 0.16 mmol, 1.00 equiv.) was suspended in DMAc (anhydrous, 5 

mL) with LiCl (anhydrous, 0.25 g, 5.90 mmol, 3.85 equiv.) under nitrogen, and heated to 132 

°C with stirring until dissolved. The solution was then cooled to room temperature and 

sodium hydride (60% mineral oil dispersion, 0.04 g, 1.00 mmol, 0.67 equiv.) was added and 

the reaction mixture stirred for 4 h. Triisopropylsilyl-(Z)-4-((4-((3-(4-fluorobenzyl)-2,4-

dioxothiazolidin-5-ylidene)methyl)-2-(2-(2-

(tosyloxy)ethoxy)ethoxy)phenoxy)methyl)benzoate, 6, (0.45 g, 0.51 mmol, 0.33 equiv.) was 

dissolved in DMAc (anhydrous, 1 mL) and added dropwise to the reaction mixture. The 

reaction was monitored by TLC (hexane/EtOAc (4:2)) and stirred at room temperature for 4 

h. The reaction mixture was then transferred into a dialysis membrane (8000 da. MWCO) and 

dialyzed against methanol (1 L), with the solvent being changed 3 times per day for 3 days. 

The contents of the dialysis membrane were then evaporated to yield an off-white solid 

which was precipitated from methanol (3 mL) and the liquid carefully decanted, and the 

retained solid washed twice more with methanol and once more with dichloromethane (3 

mL). The remaining solid was then dried under vacuum to yield conjugate 7 directly, no 

additional step was required to remove the TIPS protecting group. (0.40 g, 43%). 	�̅	= 3362, 

1507, 1146, 2361, 2342, 1078, 1019 cm−1. 

 

Degree of substitution of IDX-conjugate. 

The degree of substitution of was determined by measuring the inherent fluorescence of the 

inhibitor molecule, (λEx = 360 nm, λEm = 440 nm) using a Synergy 2 microplate reader 

(BioTek instruments, Inc.). A calibration curve for fluorescence against concentration was 
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generated by dissolving a known concentration of the molecule in DMSO and creating a 

dilution series with PBS (pH 7.4). Fluorescence was then measured for the test compound 

and compared with the standard curve and the inhibitor. The amount of inhibitor present 

could then be determined as a mol/w or w/w ratio. 

 

Biology. 

Cell culture. 

Human ovarian cancer cells were maintained at 37 °C and 5% CO2 in RPMI supplemented 

with 10% FCS, Penicillin/Streptomycin (50 U mL−1) and glutamine (2 mM). 3E3 ovarian 

cancer cells were previously engineered to express autotaxin8 while 3V3 cells were 

transfected with the empty vector. 

 

Purification of autotaxin. 

3E3 cells were seeded in a T75 flask and when 50% confluent the medium was replaced with 

serum free medium (10 mL). The next day the supernatant was collected and centrifuged 

(3000 rpm, 4 °C, 15 min). The supernatant was applied to a HiTrap Con A sepharose column 

(GE healthcare) and recirculated for 1 h. The column was washed with 20 mL tris buffered 

saline (TBS; 20mM tris, 0.5 M NaCl, pH 7.4) and autotaxin eluted with 2 mL α-

methylmannoside (0.5M) in TBS overnight. The eluate was dialysed against TBS and used as 

the source of autotaxin for the bis pNPP assay. 

 

FS-3 assay. 

FS-3 is a fluorescence-quenched analogue of lysophosphatidylcholine (Echelon Biosciences, 

Inc. Salt Lake City, UT). Compounds to be tested were prepared as stock solutions in DMSO 
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(10 µM). The drug (10 µL) was incubated with 80 µL reaction buffer containing autotaxin for 

10 min at 37 °C  before addition of 10 µL FS-3 substrate. The rate of increase in fluorescence 

was measured at 37 °C every minute for 30 min using a Synergy2 multi-mode microplate 

reader (BioTek instruments, Inc.) (λ=528 nm). Data was analysed using GraphPad Prism 

software.  

 

Bis-pNPP Assay. 

Inhibition of autotaxin activity was measured using the autotaxin substrate bis-para-

nitrophenylphosphate (bis-pNPP). 20 µL 5X reaction buffer (250 mM Tris HCl, 25 mM KCl, 

5 mM CaCl2, 5 mM MgCl2.6H2O, NaCl 700 mM, pH 7.8), 10 µL bis-pNPP (1 mM), 20 µL 

inhibitor was added to each well of an opaque 96 well plate, followed by the addition of 50 

µL autotaxin purified from 3E3 cells. After incubation (37 °C, 4 h) A405 was determined and 

data was analysed using graph pad prism software to fit a 4 parameter Hill equation. 

 

Wound healing assay. 

3V5 and 3E3 cells (100,000 cells/ml) were plated in 6 well plates in RPMI supplemented 

with FCS (10%). When the cells had reached confluence the medium was removed and a 

plastic pipette tip used to produce a clean wound area. The wells were washed with PBS and 

serum free medium added containing lysophosphatidyl choline (0.5 µM), and either the 

inhibitor or solvent. The cells were viewed by phase contrast microscopy immediately after 

wounding. After 16 h the cells were stained and fixed with methylene blue (200 µL, Sigma 

M9140; 0.5% w/v in 50% H2O, 50% EtOH). Images of the wound were captured by light 

microscopy and wound closure measured (µm) using imageJ software. The area of a section 

of the wound pre- and post-migration was then measured and the percentage wound closure 

was calculated as described. 14 
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PAMPA. 

The free inhibitor 8 (1 mM) and conjugate 7 (10 mg mL−1) were prepared as stock solutions 

in DMSO, and icodextrin (10 mg mL−1) in water. Membranes were wetted with dodecane 

containing PC (5 mg mL−1) 5 µL per well. Immediately after wetting 150 µL of either 

furosemide (10 µM, poorly permeable), propranolol (10 µM, highly permeable), free 

inhibitor (10 µM), or conjugate (100 µg mL−1), was added to the appropriate donor well, and 

the donor compartment was placed in the acceptor plate, each acceptor well containing 

300 µL of PBS (2% DMSO). The plates were incubated in a moist environment at room 

temperature for 48 h. The amount of compound present in the donor and acceptor 

compartments was measured by UV/VIS or fluorescence spectroscopy.  

Caco-2 permeability assay. 

Caco-2 100,000 cell/cm2 were plated in transwells (surface area 0.33 cm2, 0.4 µm pore size, 

Greiner Bio-One) in 24-well plates containing 500 µL medium per well and cultured for 28 

days changing the medium every three days. Medium was changed to serum free medium in 

both the apical and basolateral side. After incubation with serum free medium for 3 h, 

washing twice with hepes-buffered sterile saline (HBSS), 500 µL of HBSS was placed in the 

basolateral side and 500 µL of HBSS containing either the free inhibitor (10 µg mL−1) or 

conjugate (100 µg mL−1) was added to the apical side. The cells were incubated for 2 h, after 

which the supernatant was collected from both the apical and basolateral side. The 

concentration of the analysed compounds was measured by fluorescence as described above. 

 

In vivo experiments. 
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Animal experiments were performed under the guidelines and were approved by the animal 

welfare commission of Keele University. Female NCR Nu/Nu mice weighing between 5 and 

7 weeks were used and allowed to acclimatise for 1 week after arrival. Before use, the 

icodextrin drug conjugate was sterilised by suspending a known amount in 70% ethanol 

followed by freeze-drying (Edwards Modulo), for 4 h to remove all traces of solvent. The 

residue was then dissolved in sterile PBS and diluted to concentrations of 0.22 mg mL−1, 0.1 

mg mL−1 and 0.03 mg mL−1. Mice were injected with 0.4 mL of drug into the peritoneal 

cavity with a 26G syringe in the lower left quadrant. 3 mice per time point were euthanized 

by cervical dislocation at 1 min, 30 min, 60 min, 3 h, 6 h and 24 h after injection. 0.4 mL 

PBS was used as a control for background fluorescence (see below) and mice in this group 

were euthanized after 1 min by cervical dislocation. Ventral skin was removed and 0.5 mL 

sterile PBS was added to the peritoneal cavity, the wash was collected after gentle massage 

with the blunt end of forceps. The washes were immediately centrifuged (6000 rpm, 10 min) 

and the supernatant was transferred to a new microcentrifuge tube. The volume collected was 

measured and the fluorescence, (λEx. = 360 nm, λEm. = 440 nm) of 100 µL of each wash was 

measured using a Synergy 2 multimode microplate reader. The amount of drug present was 

calculated from the standard curve to determine drug concentration and from the sample 

volume. The data was analysed using GraphPad software to fit an exponential decay to 

calculate the half-life. The drug recovery by peritoneal lavage was estimated by comparison 

of the mass of drug injected with the mass recovered 1 minute after injection. 
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