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Abstract

Surfactant crystallisation is important in many applications in the food, consumer product and
medical sectors. However, these processes are not well understood. In particular, surfactant
crystallisation can be detrimental to the stability of detergent formulations, such as dish liquid
products, resulting in a turbid solution that fails appearance criteria. With the rising global
demand for detergent products, understanding the factors that influence formulation stability
is of increasing importance. To enable industry to build more robust formulations, it is
important to understand the underlying chemistry of the crystallisation process. Here, a model
system containing anionic (sodium dodecyl sulfate, SDS) and amphoteric (N,N-
dimethyldodecylamine N-oxide, DDAO) surfactants, at concentrations typical of dish liquid
products, is studied. Variable temperature 'H nuclear magnetic resonance (NMR)
spectroscopy and small-angle X-ray scattering (SAXS) is used to probe the compositional
and structural properties of this system, as a function of pH. On cooling, at pH 9, a mixture of

hydrated crystals, predominately composed of SDS, and micelles containing both surfactants,



have been observed prior to complete freezing. At pH 2, both surfactants appear to undergo a
simultaneous phase transition, resulting in the removal of micelles and the formation of

hydrated crystals of mixed composition.
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Introduction

Surfactants are important components in many applications, including the manufacture of
food products, jet fuels, medical treatments and consumer products.’ At low temperatures,
such surfactants can crystallise, which may be either essential or detrimental to their
performance in a given application.” Despite this importance, there remain relatively few
studies on surfactant crystallisation, in particular the kinetics, crystal composition and
structure. Of significant interest is surfactant crystallisation at low temperatures, which
causes stability issues for liquid detergents. While this process is reversible, it is considered a
failure in those products. Such failures can occur at any point during the product lifecycle,
especially during transport and shelf-life stages. Hence, it is important to enhance the
understanding of surfactant crystallisation in order to improve the stability of these
formulations. Such knowledge will also be of significant interest in other applications of

surfactants in food, biomedical and consumer product applications.

Common liquid detergents typically contain a mixture of anionic and amphoteric surfactants
in an aqueous formulation’ to optimise soil removal and foaming characteristics. Anionic
surfactants are the major surfactant component and are cheap, efficient at removing soils and
are largely responsible for the high foaming characteristics of the detergent." The most
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commonly used anionic surfactant in liquid detergents is sodium dodecyl sulfate (SDS).’
While amphoteric surfactants comprise the minor surfactant component, they also play an
important role by increasing the tolerance of the detergent to increased water hardness.’
Common amphoteric surfactants found in liquid detergents are those based around the amine
oxide functional group. One example of this is N,N-dimethyldodecylamine N-oxide
(DDAO). At pH < 5, DDAO is protonated and behaves as a cationic surfactant, whereas at
pH > 5 it is non-ionic.”* In hand-dishwashing detergent products, commonly referred to as
dish liquid, the typical pH is sufficiently high that amine oxide-based surfactants exhibit non-

ionic surfactant-like behaviour.

In mixed micelles containing SDS and DDAO, the surfactant headgroups strongly interact,
leading to a reduction in the critical micelle concentration, CMC, versus that of either
surfactant alone.” Ion pairs form between the two surfactants which stabilise the mixed
micelles through a shielding of the electrostatic repulsion between the SDS headgroups by
those of DDAO.” Moreover, it is believed that the presence of SDS causes DDAO
protonation to occur at a higher pH than that of pure DDAO.”" Combining these surfactants
is also expected to lower the Krafft temperature, 7,, in comparison to a pure SDS solution.
This drop in T, can be attributed to the lower CMC'"' of the system and the formation of non-
ideal mixed micelles.” With DDAO present, there is expected to be a decrease in the
concentration of SDS monomers and unbound counter-ions, and consequently a decreased

tendency for precipitation.

Studies into the precipitation of mixed surfactant systems have been carried out to some
extent, but there remains limited literature reporting the nature of the precipitate.” ” For
example, HPLC was used to determine the composition of the precipitate formed when the
non-ionic surfactant nonylphenol ethoxylate (NPE) was added to SDS and found that NPE

was not present in the precipitate.” Furthermore, the composition of the precipitant from a bi-
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anionic surfactant system containing the surfactants SDS and sodium octylbenzene sulfonate
(SOBS) has also been investigated via X-ray diffraction (XRD)." In the mixed sample, two
sets of peaks were observed with 26 values corresponding to pure SDS and SOBS crystals,
suggesting that mixed crystals were not formed. Aside from these studies, there are few
reports regarding the composition of the precipitant formed from mixed surfactant systems

below 7.

Two techniques which can provide further compositional and structural insight into the
crystallisation of mixed surfactant systems are temperature-resolved nuclear magnetic
resonance (NMR) and small-angle X-ray scattering (SAXS). While there are few NMR
studies of surfactant crystallisation from micelles, it has been used to follow the nucleation
and freezing of individual components during the crystallisation of some emulsions and

15-16

food materials * by monitoring the change in individual NMR signals as a function of time.

On the other hand, several studies have used SAXS or small-angle neutron scattering (SANS)

17-19

to provide structural insight into various phase transitions, = and to probe the structure and

composition of micellesin dilute systems of both pure and mixed SDS and DDAO.*"*

In this paper, NMR has been used to observe the crystallisation of a mixed micelle system,
comprising SDS and DDAO surfactants, in water. NMR parameters for the two surfactants
were monitored as the solution was cooled from 25 °C to -3 °C, at pH 9. By comparing the
change in relative peak intensity for the two surfactants, it was possible to identify the crystal
composition formed in this mixed micelle system. SAXS was used to probe the structure of
the systems at room temperature and at 0 °C. Furthermore, a difference in the behaviour was
observed upon lowing the pH of the system. By combining results from these complementary
techniques, it has been possible to build a clearer picture of both the structure and

composition of the phases that form in these systems under both pH environments.



Materials and methods

Materials

Surfactant solutions were prepared from DDAO (Sigma Aldrich, 30 wt. % in water) and SDS
(Fisher Scientific, 97.5 %) which were used without further purification. Binary surfactant
solutions were prepared with 20 wt. % SDS and 3 wt. % DDAO in distilled water, for SAXS
and WAXS measurements, and in D,O (Sigma Aldrich, 99.9 %), for NMR measurements. A
correction has been made to account for the densities differences between D,O and H,O so
that the molar surfactant concentration remains the same. A pure solution of 20 wt. % SDS
solution was also prepared. Solutions were stirred for 15 minutes at ambient temperature and
then left for 24 hours. The pH of both the 20 wt. % SDS + 3 wt. % DDAO solution and 20
wt. % SDS solution were approximately pH 9. A second binary solution of 20 wt. % SDS + 3
wt. % DDAO solution was also prepared at pH 2 using a solution of 35 wt. % DCI in D,0O, for
NMR measurements, or 0.5 M HCI in H O, for SAXS measurements. The pH was measured

using a Meter Toledo pH meter.

Methods

Variable temperature NMR

NMR measurements were performed using Wilmad Precision 5 mm NMR tubes and a Bruker
AVANCE NEO spectrometer equipped with a 11.74 T vertical bore magnet, operating at a 'H
resonance frequency of 500.07 MHz and fitted with a 5 mm nitrogen-cooled BBFO probe.
Sample temperature was controlled using compressed air going through a chiller BCU-II unit
and the probe heater. Samples were allowed to equilibrate at each temperature for a minimum
of 15 minutes. Spectra at each temperature were acquired using a pulse acquire sequence,

[90°-acq]. A spectral width of 15 kHz was used and 100k complex data points were acquired.



Sixteen signal averages were acquired with a repetition time of 15 s. The repetition time used
was greater than 57, for the protons in the SDS and DDAO surfactants. 7; values are

provided in the supplementary information (Table S2).

At pH 9, 'H NMR spectra were acquired at the following temperatures: 25 °C, 20 °C, 15 °C,
13 °C, 10 °C, 5 °C, 0 °C and -3 °C. Under a pH 2 environment 'H NMR spectra were
acquired at 7.5 °C, 5 °C, 0 °C, -3 °C, -5 °C, -8 °C and —10 °C, corresponding to the range
over which the phase transition occurs. Spectra were processed using TopSpin (v3.5). The
NMR spectra for the individual SDS and DDAO systems, at pH 9, were acquired at 25 °C
and the respective 'H NMR signals assigned to the proton environments of the two
surfactants (see supporting information Figures S1-and S2 and Table S1). H, (SDS) was set at
3.7 ppm at 25 °C, determined from SDS™ in DMSO-d,, and remaining spectra were adjusted
with respect to this. The NMR signals for the SDS and DDAO surfactants were determined
using the peak intensities for the H, and H, protons, respectively. Each peak was normalised
with respect to its intensity-at 25 °C, to enable the direct comparison of the changes between
the peaks to be made. Peak intensities are used, rather than integrals, to enable the
observation of changes in molecular mobility through its effects on the line width, and hence
intensity, as well as avoiding unwanted influences from overlapping, but unrelated, peaks (an
effect which increases as the peaks become broader at lower temperatures). Error bars were

determined from repeated measurements.
Small angle X-ray scattering

Small angle scattering (SAXS) data was obtained using the 122 beamline at Diamond Light
Source. Samples were loaded into 1.8 mm (internal diameter) and 2.0 mm (external diameter)
polycarbonate capillaries and mounted in the beam within the Linkam DSC600 capillary

stage, which also provided temperature control (at 24 °C and 0 °C, with an applied cooling
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rate = 19 °C/min). A 12.3989 keV (A= 0.099987 nm) beam was used with a sample-detector
distance of 6702.56 mm, providing a detectable O-range on the SAXS detector of order 0.02
—2.5nm" and 1.51 — 60.57 nm" on the WAXS detector. Data processing was performed

23-24

using the DAWN package,” ™ and a set of pipelines developed at Diamond Light Source.
Before processing, uncertainty estimates based on Poisson counting statistics are added to all
measurement data, which are subsequently propagated through the image correction steps.
Each raw background measurement was corrected for the following in order: masking pixels,
time, incident beam flux, and transmission. Each sample file was corrected for the following
in order: masking pixels, time, incident beam flux, transmission, background, thickness, and
scaled to absolute units. The scaling factor for scaling to absolute units was determined using
a calibrated glassy carbon sample.” After this correction, the data was azimuthally averaged,
with the resulting uncertainty assuming the largest of: 1) the propagated uncertainties, 2) the

standard error of the mean for the data points comprising a bin, or 3) 1% of the mean

intensity in the bin.

The data at 24 °C was analysed using the SASfit software package.” There is some
discussion in the" literature concerning whether SDS micelles are oblate or prolate

20-21,.27-29

ellipsoids. The two options are difficult to distinguish using scattering techniques, but
the prolate model is considered to be more appropriate in denser systems.” Several small-
angle scattering studies, including one that focused on mixed micelles comprising SDS and
DDAO,” have favoured the prolate shape. Consequently, a model comprising a delta
distribution of charged core-shell prolate ellipsoids, as outlined in the supporting information,

was used to analyse the data. A breakdown of the S(Q) and P(Q) contributions to the overall

fit is shown in Figure S3 and the analysis parameters are provided in Table S3.

The data at 0 °C for both the pure SDS solution and the mixed SDS + DDAO system was

also analysed using SASfit,” in both cases using a simple model comprising contributions
7



from one or more Bragg peak(s), the power law and the background scattering (see details in
SI). For the 20 wt. % SDS + 3 wt. % DDAO sample, an additional contribution of delta

distribution of charged core-shell prolate ellipsoids was added, to account for the increased

1(Q) at high Q.
Results and discussion

Figure 1 displays a series of 'H NMR spectra acquired from 25 °C to = 3 °C, with an
expansion of the region between 2.6 — 4.0 ppm, for the mixed SDS + DDAO system at pH 9.
The change in peak intensity as a function of temperature for the protons H, (SDS) and H,
(DDAO) under this pH environment is presented in Figure 2. At pH 9, there is a significant
drop in the peak intensity of the 'H NMR signal of H, (SDS) between 10 °C and 13 °C. A
similar trend is not observed for H, in DDAO. Although the peak intensity of the H (DDAO)
also exhibits a reduction in peak intensity, the drop between 10 °C and 13 °C is not as

significant as H, (SDS). Instead, the intensity decreases at a consistent rate.
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Figure 1. 'H NMR spectra at 500MHz of the 20 wt. % SDS + 3 wt. % DDAO system upon

cooling at pH 9 across the chemical shift range (a) 0 — 5 ppm and (b) 2.3 — 4.0 ppm. The



boxed area in (a) corresponds to the chemical shift range presented in (b). Proton resonance
H, (SDS) is at 3.67 ppm and H, (DDAO) is at 2.83 ppm. A full spectral assignment can be
found in the SI.
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Figure 2. Plot of the peak intensity for H, (SDS) and H, (DDAO) upon cooling at pH 9. Each
peak has been normalised, with respect to the intensity of that peak at 25 °C, and includes a

slight baseline offset.

In contrast, at pH 2, both surfactants display a sharp drop intensity between —5 °C and -3 °C

(Figure 3). There is a change in the chemical shifts for the H (DDAO) peak, compared to the
H, (SDS) peak at pH 2, because of the change in environment experienced by these protons

when the headgroup is protonated.™

In addition, at pH 2, there are a greater number of
peaks in the region of interest, attributed to interaction between the two charged surfactant

species resulting in further proton environments.
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Figure 3. 'H NMR spectra at 500MHz of the 20 wt. % SDS + 3 wt. % DDAO system upon

cooling at pH 2 across the chemical shift range (a) 0 - 6 ppm and (b) 3.0 - 4.0 ppm. The
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boxed area in (a) corresponds to the chemical shift range presented in (b). Proton resonance

H, (SDS) is at 3.67 ppm and H_ (DDAO) is at 3.35 ppm.

In Figure 4, the SAXS profiles, at 24 “C and 0 “C, for the mixed system are compared to the
corresponding profiles for a pure SDS system. In Figure 4(a), a cropped Q-range is shown
due to the high error in the low O (< 0.8 nm™) part of the data arising from the weak sample
scattering versus background compounded by a high sample volume fraction. The data,
collected at 24 °C, is characterised by two merged maxima resulting from a form factor, P(Q)
corresponding to the electron-dense micelle shell and a structure factor, S(Q) arising from the
micelle charge. The addition of DDAO causes a shift in the low Q maxima to a lower Q.
Cooling both samples to 0 °C results in a notable change in the SAXS data, shown in Figure
4(b). For the 20 wt. % SDS sample, an increase in /(Q) at low Q is observed followed by a
region over which /(Q) & O™ and a Bragg peak at O = 1.9 nm™ The 20 wt. % SDS + 3 wt. %
DDAO data at 0 °C is similar to that for the pure SDS sample, except for an increased /(Q) in

the region 0.7 < Q < 2.5 nm ', which has a similar shape to that presented in Figure 4(a).

12



(a)
E 107
)
- + 20% SDS
— (fit)
20% SDS + 3% DDAO
—(fit)
1 2
Q/nm”’
(b) . + 20% SDS
L — (fit)
. 20% SDS + 3% DDAO
\ — (fit)
10°4 O
S
o
—_ 1
&) 10
1024

0.1 1
Q/nm”’

Figure 4. SAXS data for 20 wt. % SDS and 20 wt. % SDS + 3 wt. % DDAO samples at (a)
24 °C and (b) 0 °C. In both cases, the solid lines are fits to the data as described in the text

and supplementary information.

At pH 2, the profile acquired at 0 °C exhibits two Bragg peaks (Figure 5) with neither peak
matching the Bragg peak previously observed (Figure (4b)) in the pure SDS and mixed SDS
+ DDAO systems at pH 9. The corresponding peak shift values for the three systems (20 wt.
% SDS, 20 wt. % SDS + DDAO (pH 9) and 20 wt. % + 3 wt. % DDAO (pH 2)) at 0 °C are
provided in the supplementary information. Further comparisons regarding the crystal
structure can also be drawn from the WAXS for the three different systems, as depicted in

Figure 6.
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Figure 5. SAXS data for 20 wt. % SDS and 20 wt. % SDS + 3 wt. % DDAO samples at pH

2. The solid lines are fits to the data as described in the text and supplementary information.
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Figure 6. WAXS data for the three samples as noted at 0 °C. Concentrations of SDS and
DDAO, where present, are 20 wt. % and 3 wt. % respectively. The peak at 3.15 nm”' is from
the polycarbonate capillary used to mount samples in the beam. All other peaks arise from the

samples. From these, significant peaks are listed in Table S5 (supplementary).

At pH 9, the 'H NMR data suggests that SDS crystallises first, before the system fully
solidifies. The drop in NMR signal for the SDS and DDAO protons is expected to be
associated with an increase in viscosity and a reduction in the mobility of the monomers and

micelles, leading to a reduction in their 7, NMR relaxation time and an increase in the width

14



of their peaks.” There is a sudden drop in SDS signal between 10 °C and 13 °C, which
indicates SDS is undergoing a phase transition. However, not all of the SDS signal disappears
at the lower temperature, indicating a proportion of the SDS remains in solution. The DDAO
does not display a sudden drop in the signal, suggesting it is not residing in the crystal itself,
yet, there is a decrease indicating that the DDAO surfactant is affected by the SDS ecrystal
formation between 10 °C and 13 °C. In a previous study, confocal Raman microscopy
indicated a tendency for DDAO to surround the SDS hydrated crystals and, therefore, is

influenced by their formation, which potentially explains the decrease in the DDAO signal.*

SAXS data at 24 °C suggests that pure SDS micelles and mixed SDS + DDAO micelles co-
exist in in the system. The differences between profiles obtained for a pure SDS and a mixed
SDS + DDAO system indicate there is an increase in micelle size when DDAO is present,
which is in line with previous observations.” By adding 3 wt. % DDAO, to a solution of
SDS, the micelle aggregation number, N, increases from 170 to 190 and the ellipsoid
aspect ratio, a/b, from 1.8 to 2.2. Conversely, the proportional charge per headgroup, Z/N,g,
falls from 0.12 to 0.11. This reduction in charge is in agreement with the literature,” and is
expected to reduce repulsions between the SDS head-groups in the interphase. Consequently,

the shell curvature is able to decrease, allowing a more elongated structure to form.

The formation of a Bragg peak in the pure SDS system at 0 °C indicates the growth of SDS
crystallites.”’ The calculated d-spacing, d = 3.3 nm, is closer to the values expected for the
mono- or hemi-hydrated crystal forms (2.9 or 3.1 nm respectively), but lower than that of the
1/8 hydrate (3.9 nm).” For the mixed SDS + DDAO system, the Bragg peak position is the
same as the pure SDS system, indicating SDS is the dominant component of the crystals in
both samples. This is in agreement with the drop in intensity of NMR signal observed for the

SDS protons (H,) (Figure 2). Aside from the Bragg peak, there is an additional contribution in
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the SAXS profile for the mixed system, which can be fitted to the remaining micelle phase.
For the remaining micelles, N,g, = 240 and a/b = 2.4, which is more in line with data reported
for mixed SDS + DDAO micelles than that for DDAO micelles alone.” Moreover, the
micelles remain charged, albeit with a lower Z/N,q, than the values reported at 24 °C.. Put
together, the scattering data and associated analysis provides compelling evidence that the
crystallites formed in the mixed SDS + DDAO system contain predominantly SDS, in
agreement with NMR data. Unlike in the pure SDS system, not all SDS crystallises and some
remains within a mixed micelle population, as is also observed in-the NMR data. Thus, the
remaining NMR signal originates from micelles containing DDAO and SDS. By adding
DDAO, the energy to form micelles is reduced, consequently diminishing the energetic
driving force for crystallisation, consequently leading to a shift in the equilibrium towards

micelles remaining in solution.

At pH 2, both SAXS and NMR studies suggest a simultaneous change in the phase behaviour
of each surfactant. The NMR data shows the SDS and DDAO surfactants crystallise at the
same time. This observation is expected to be because of the formation of the protonated

9, 36

form of DDAO, which can ion pair with SDS and counter-ions.” ™ This is further supported

by peaks at differing shifts in the corresponding SAXS profile, compared to that of the pure

SDS and the mixed pH 9 system.

Further detail into the structure of the SDS crystallites can be drawn from WAXS data
(Figure 6), with comparisons for notable peaks given in Table S5 (supplementary). After
holding at 0 °C for 45 minutes, at pH 9, the peaks in the mixed system can be matched, within
error, to those observed in the pure SDS system, further indicating the formation of the same
SDS phase. Peaks at 1.87, 3.76, 5.68 and 11.35 nm™' are assigned as first, second, third and

sixth-order lamellar d-spacings (d = 3.34 nm) while peaks at higher Q (e.g. at 13.9, 14.9, 15.6
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and 17.9 nm™') may arise from the head-head and alkyl peaks.” In the pure SDS system, more
peaks are apparent in this region. However, as the peak intensities for this sample are
approximately 2-3 times more intense, over the entire Q-range, this is more likely to be an
observational artefact arising from a low peak intensity versus background. In contrast, at pH
2, a different structure forms, with first, second and third order lamellar d-spacings shifted to
higher O (at 2.13, 4.33 and 6.52 nm™ respectively) giving d = 2.95 nm. This suggests the

formation of crystals containing both surfactants.

Conclusions

By combining variable temperature 'H NMR and SAXS measurements it has been possible,
for the first time, to determine the compositional and structural changes in a mixed SDS and
DDAO surfactant system, which is of particular interest in the fast moving consumer goods
(FMCG) industry.” Crystals formed as the mixed SDS + DDAO system is cooled, a pH 9, are
observed to be predominately SDS hydrated crystals, with little or no DDAO. At pH 2, the
protonated DDAO, and its subsequent ion pairing behaviour, results in both surfactants
crystallising simultaneously. While dish liquid is a highly complex system, this research
provides important insight into the crystallisation process of liquid detergent systems upon
exposure to cold climates. In turn, this understanding will assist in building more robust

formulations and improvements to their accompanying test methods.
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