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Abstract 

Surfactant crystallisation is important in many applications in the food, consumer product and 

medical sectors. However, these processes are not well understood. In particular, surfactant 

crystallisation can be detrimental to the stability of detergent formulations, such as dish liquid 

products, resulting in a turbid solution that fails appearance criteria. With the rising global 

demand for detergent products, understanding the factors that influence formulation stability 

is of increasing importance. To enable industry to build more robust formulations, it is 

important to understand the underlying chemistry of the crystallisation process. Here, a model 

system containing anionic (sodium dodecyl sulfate, SDS) and amphoteric (N,N-

dimethyldodecylamine N-oxide, DDAO) surfactants, at concentrations typical of dish liquid 

products, is studied. Variable temperature 
1
H nuclear magnetic resonance (NMR) 

spectroscopy and small-angle X-ray scattering (SAXS) is used to probe the compositional 

and structural properties of this system, as a function of pH. On cooling, at pH 9, a mixture of 

hydrated crystals, predominately composed of SDS, and micelles containing both surfactants, 
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have been observed prior to complete freezing. At pH 2, both surfactants appear to undergo a 

simultaneous phase transition, resulting in the removal of micelles and the formation of 

hydrated crystals of mixed composition.  
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Sodium dodecyl sulfate; N,N-dimethyldodecylamine N-oxide; Low temperature; 

Crystallization, Nuclear magnetic resonance, X-ray scattering 

Introduction 

Surfactants are important components in many applications, including the manufacture of 

food products, jet fuels, medical treatments and consumer products.
1
 At low temperatures, 

such surfactants can crystallise, which may be either essential or detrimental to their 

performance in a given application.
2
 Despite this importance, there remain relatively few 

studies on surfactant crystallisation, in particular the kinetics, crystal composition and 

structure.  Of significant interest is surfactant crystallisation at low temperatures, which 

causes stability issues for liquid detergents. While this process is reversible, it is considered a 

failure in those products. Such failures can occur at any point during the product lifecycle, 

especially during transport and shelf-life stages. Hence, it is important to enhance the 

understanding of surfactant crystallisation in order to improve the stability of these 

formulations. Such knowledge will also be of significant interest in other applications of 

surfactants in food, biomedical and consumer product applications.    

Common liquid detergents typically contain a mixture of anionic and amphoteric surfactants 

in an aqueous formulation
3
 to optimise soil removal and foaming characteristics. Anionic 

surfactants are the major surfactant component and are cheap, efficient at removing soils and 

are largely responsible for the high foaming characteristics of the detergent.
4
 The most 
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commonly used anionic surfactant in liquid detergents is sodium dodecyl sulfate (SDS).
5
  

While amphoteric surfactants comprise the minor surfactant component, they also play an 

important role by increasing the tolerance of the detergent to increased water hardness.
6
 

Common amphoteric surfactants found in liquid detergents are those based around the amine 

oxide functional group. One example of this is N,N-dimethyldodecylamine N-oxide 

(DDAO). At pH < 5, DDAO is protonated and behaves as a cationic surfactant, whereas at 

pH > 5 it is non-ionic.
7-8

 In hand-dishwashing detergent products, commonly referred to as 

dish liquid, the typical pH is sufficiently high that amine oxide-based surfactants exhibit non-

ionic surfactant-like behaviour. 

In mixed micelles containing SDS and DDAO, the surfactant headgroups strongly interact, 

leading to a reduction in the critical micelle concentration, CMC, versus that of either 

surfactant alone.
9
 Ion pairs form between the two surfactants which stabilise the mixed 

micelles through a shielding of the electrostatic repulsion between the SDS headgroups by 

those of DDAO.
9
 Moreover, it is believed that the presence of SDS causes DDAO 

protonation to occur at a higher pH than that of pure DDAO.
9-10

 Combining these surfactants 

is also expected to lower the Krafft temperature, T
K
, in comparison to a pure SDS solution. 

This drop in T
K
 can be attributed to the lower CMC

11
 of the system and the formation of non-

ideal mixed micelles.
12

 With DDAO present, there is expected to be a decrease in the 

concentration of SDS monomers and unbound counter-ions, and consequently a decreased 

tendency for precipitation. 

Studies into the precipitation of mixed surfactant systems have been carried out to some 

extent, but there remains limited literature reporting the nature of the precipitate.
6, 13

 For 

example, HPLC was used to determine the composition of the precipitate formed when the 

non-ionic surfactant nonylphenol ethoxylate (NPE) was added to SDS and found that NPE 

was not present in the precipitate.
6
 Furthermore, the composition of the precipitant from a bi-
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anionic surfactant system containing the surfactants SDS and sodium octylbenzene sulfonate 

(SOBS) has also been investigated via X-ray diffraction (XRD).
13

 In the mixed sample, two 

sets of peaks were observed with 2θ values corresponding to pure SDS and SOBS crystals, 

suggesting that mixed crystals were not formed. Aside from these studies, there are few 

reports regarding the composition of the precipitant formed from mixed surfactant systems 

below T
K
.  

Two techniques which can provide further compositional and structural insight into the 

crystallisation of mixed surfactant systems are temperature-resolved nuclear magnetic 

resonance (NMR) and small-angle X-ray scattering (SAXS). While there are few NMR 

studies of surfactant crystallisation from micelles, it has been used to follow the nucleation 

and freezing of individual components during the crystallisation of some emulsions
14

 and 

food materials
15-16

 by monitoring the change in individual NMR signals as a function of time. 

On the other hand, several studies have used SAXS or small-angle neutron scattering (SANS) 

to provide structural insight into various phase transitions,
17-19

 and to probe the structure and 

composition of micelles in dilute systems of both pure and mixed SDS and DDAO.
20-21

  

In this paper, NMR has been used to observe the crystallisation of a mixed micelle system, 

comprising SDS and DDAO surfactants, in water. NMR parameters for the two surfactants 

were monitored as the solution was cooled from 25 °C to –3 °C, at pH 9. By comparing the 

change in relative peak intensity for the two surfactants, it was possible to identify the crystal 

composition formed in this mixed micelle system. SAXS was used to probe the structure of 

the systems at room temperature and at 0 °C. Furthermore, a difference in the behaviour was 

observed upon lowing the pH of the system. By combining results from these complementary 

techniques, it has been possible to build a clearer picture of both the structure and 

composition of the phases that form in these systems under both pH environments.   
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Materials and methods 

Materials 

Surfactant solutions were prepared from DDAO (Sigma Aldrich, 30 wt. % in water) and SDS 

(Fisher Scientific, 97.5 %) which were used without further purification. Binary surfactant 

solutions were prepared with 20 wt. % SDS and 3 wt. % DDAO in distilled water, for SAXS 

and WAXS measurements, and in D
2
O (Sigma Aldrich, 99.9 %), for NMR measurements. A 

correction has been made to account for the densities differences between D
2
O and H

2
O so 

that the molar surfactant concentration remains the same.  A pure solution of 20 wt. % SDS 

solution was also prepared. Solutions were stirred for 15 minutes at ambient temperature and 

then left for 24 hours. The pH of both the 20 wt. % SDS + 3 wt. % DDAO solution and 20 

wt. % SDS solution were approximately pH 9. A second binary solution of 20 wt. % SDS + 3 

wt. % DDAO solution was also prepared at pH 2 using a solution of 35 wt. % DCl in D
2
O, for 

NMR measurements, or 0.5 M HCl in H
2
O, for SAXS measurements. The pH was measured 

using a Meter Toledo pH meter.   

Methods 

Variable temperature NMR 

NMR measurements were performed using Wilmad Precision 5 mm NMR tubes and a Bruker 

AVANCE NEO spectrometer equipped with a 11.74 T vertical bore magnet, operating at a 
1
H 

resonance frequency of 500.07 MHz and fitted with a 5 mm nitrogen-cooled BBFO probe. 

Sample temperature was controlled using compressed air going through a chiller BCU-II unit 

and the probe heater. Samples were allowed to equilibrate at each temperature for a minimum 

of 15 minutes. Spectra at each temperature were acquired using a pulse acquire sequence, 

[90˚-acq]. A spectral width of 15 kHz was used and 100k complex data points were acquired. 
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Sixteen signal averages were acquired with a repetition time of 15 s. The repetition time used 

was greater than 5T1 for the protons in the SDS and DDAO surfactants. T1 values are 

provided in the supplementary information (Table S2). 

At pH 9, 
1
H NMR spectra were acquired at the following temperatures: 25 °C, 20 °C, 15 °C, 

13 °C, 10 °C, 5 °C, 0 °C and 3 °C. Under a pH 2 environment 
1
H NMR spectra were 

acquired at 7.5 °C, 5 °C, 0 °C, 3 °C, 5 °C, 8 °C and 10 °C, corresponding to the range 

over which the phase transition occurs. Spectra were processed using TopSpin (v3.5). The 

NMR spectra for the individual SDS and DDAO systems, at pH 9, were acquired at 25 °C 

and the respective 
1
H NMR signals assigned to the proton environments of the two 

surfactants (see supporting information Figures S1 and S2 and Table S1). H
1
 (SDS) was set at 

3.7 ppm at 25 °C, determined from SDS
22
 in DMSO-d

6
,

 
and remaining spectra were adjusted 

with respect to this. The NMR signals for the SDS and DDAO surfactants were determined 

using the peak intensities for the H
1
 and H

a
 protons, respectively. Each peak was normalised 

with respect to its intensity at 25 ˚C, to enable the direct comparison of the changes between 

the peaks to be made. Peak intensities are used, rather than integrals, to enable the 

observation of changes in molecular mobility through its effects on the line width, and hence 

intensity, as well as avoiding unwanted influences from overlapping, but unrelated, peaks (an 

effect which increases as the peaks become broader at lower temperatures). Error bars were 

determined from repeated measurements. 

Small angle X-ray scattering 

Small angle scattering (SAXS) data was obtained using the I22 beamline at Diamond Light 

Source. Samples were loaded into 1.8 mm (internal diameter) and 2.0 mm (external diameter) 

polycarbonate capillaries and mounted in the beam within the Linkam DSC600 capillary 

stage, which also provided temperature control (at 24 °C and 0 °C, with an applied cooling 
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rate = 19 °C/min). A 12.3989 keV (λ = 0.099987 nm) beam was used with a sample-detector 

distance of 6702.56 mm, providing a detectable Q-range on the SAXS detector of order 0.02 

– 2.5 nm
−1

 and 1.51 – 60.57 nm
-1
 on the WAXS detector. Data processing was performed 

using the DAWN package,
23-24

 and a set of pipelines developed at Diamond Light Source. 

Before processing, uncertainty estimates based on Poisson counting statistics are added to all 

measurement data, which are subsequently propagated through the image correction steps. 

Each raw background measurement was corrected for the following in order: masking pixels, 

time, incident beam flux, and transmission. Each sample file was corrected for the following 

in order: masking pixels, time, incident beam flux, transmission, background, thickness, and 

scaled to absolute units. The scaling factor for scaling to absolute units was determined using 

a calibrated glassy carbon sample.
25

 After this correction, the data was azimuthally averaged, 

with the resulting uncertainty assuming the largest of: 1) the propagated uncertainties, 2) the 

standard error of the mean for the data points comprising a bin, or 3) 1% of the mean 

intensity in the bin.  

The data at 24 °C was analysed using the SASfit software package.
26

 There is some 

discussion in the literature concerning whether SDS micelles are oblate or prolate 

ellipsoids.
20-21, 27-29

 The two options are difficult to distinguish using scattering techniques, but 

the prolate model is considered to be more appropriate in denser systems.
28

 Several small-

angle scattering studies, including one that focused on mixed micelles comprising SDS and 

DDAO,
20

 have favoured the prolate shape. Consequently, a model comprising a delta 

distribution of charged core-shell prolate ellipsoids, as outlined in the supporting information, 

was used to analyse the data. A breakdown of the S(Q) and P(Q) contributions to the overall 

fit is shown in Figure S3 and the analysis parameters are provided in Table S3. 

The data at 0 °C for both the pure SDS solution and the mixed SDS + DDAO system was 

also analysed using SASfit,
26
 in both cases using a simple model comprising contributions 
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from one or more Bragg peak(s), the power law and the background scattering (see details in 

SI). For the 20 wt. % SDS + 3 wt. % DDAO sample, an additional contribution of delta 

distribution of charged core-shell prolate ellipsoids was added, to account for the increased 

I(Q) at high Q.  

Results and discussion 

Figure 1 displays a series of 
1
H NMR spectra acquired from 25 °C to – 3 °C, with an 

expansion of the region between 2.6 – 4.0 ppm, for the mixed SDS + DDAO system at pH 9. 

The change in peak intensity as a function of temperature for the protons H
1
 (SDS) and H

a
 

(DDAO) under this pH environment is presented in Figure 2. At pH 9, there is a significant 

drop in the peak intensity of the 
1
H NMR signal of H

1
 (SDS) between 10 ˚C and 13 ˚C. A 

similar trend is not observed for H
a
 in DDAO. Although the peak intensity of the H

a
 (DDAO) 

also exhibits a reduction in peak intensity, the drop between 10 °C and 13 °C is not as 

significant as H
1
 (SDS).  Instead, the intensity decreases at a consistent rate.  
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Figure 1. 
1
H NMR spectra at 500MHz of the 20 wt. % SDS + 3 wt. % DDAO system upon 

cooling at pH 9 across the chemical shift range (a) 0 – 5 ppm and (b) 2.3 – 4.0 ppm. The 
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boxed area in (a) corresponds to the chemical shift range presented in (b). Proton resonance 

H
1
 (SDS) is at 3.67 ppm and H

a
 (DDAO) is at 2.83 ppm. A full spectral assignment can be 

found in the SI. 

 

Figure 2. Plot of the peak intensity for H
1
 (SDS) and H

a
 (DDAO) upon cooling at pH 9. Each 

peak has been normalised, with respect to the intensity of that peak at 25 ˚C, and includes a 

slight baseline offset. 

In contrast, at pH 2, both surfactants display a sharp drop intensity between 5 °C and 3 °C 

(Figure 3). There is a change in the chemical shifts for the H
a
 (DDAO) peak, compared to the 

H
1
 (SDS) peak at pH 2, because of the change in environment experienced by these protons 

when the headgroup is protonated.
30-32

 In addition, at pH 2, there are a greater number of 

peaks in the region of interest, attributed to interaction between the two charged surfactant 

species resulting in further proton environments. 
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Figure 3. 
1
H NMR spectra at 500MHz of the 20 wt. % SDS + 3 wt. % DDAO system upon 

cooling at pH 2 across the chemical shift range (a) 0 - 6 ppm and (b) 3.0 - 4.0 ppm. The 
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boxed area in (a) corresponds to the chemical shift range presented in (b). Proton resonance 

H
1
 (SDS) is at 3.67 ppm and H

a
 (DDAO) is at 3.35 ppm. 

In Figure 4, the SAXS profiles, at 24 ˚C and 0 ˚C, for the mixed system are compared to the 

corresponding profiles for a pure SDS system. In Figure 4(a), a cropped Q-range is shown 

due to the high error in the low Q (< 0.8 nm
−1

) part of the data arising from the weak sample 

scattering versus background compounded by a high sample volume fraction. The data, 

collected at 24 °C, is characterised by two merged maxima resulting from a form factor, P(Q) 

corresponding to the electron-dense micelle shell and a structure factor, S(Q) arising from the 

micelle charge. The addition of DDAO causes a shift in the low Q maxima to a lower Q. 

Cooling both samples to 0 ˚C results in a notable change in the SAXS data, shown in Figure 

4(b). For the 20 wt. % SDS sample, an increase in I(Q) at low Q is observed followed by a 

region over which I(Q) ∝ Q
−4

 and a Bragg peak at Q = 1.9 nm
−1

 The 20 wt. % SDS + 3 wt. % 

DDAO data at 0 °C is similar to that for the pure SDS sample, except for an increased I(Q) in 

the region 0.7 < Q < 2.5 nm
−1

, which has a similar shape to that presented in Figure 4(a). 
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Figure 4. SAXS data for 20 wt. % SDS and 20 wt. % SDS + 3 wt. % DDAO samples at (a) 

24 °C and (b) 0 °C. In both cases, the solid lines are fits to the data as described in the text 

and supplementary information.  

At pH 2, the profile acquired at 0 °C exhibits two Bragg peaks (Figure 5) with neither peak 

matching the Bragg peak previously observed (Figure (4b)) in the pure SDS and mixed SDS 

+ DDAO systems at pH 9. The corresponding peak shift values for the three systems (20 wt. 

% SDS, 20 wt. % SDS + DDAO (pH 9) and 20 wt. % + 3 wt. % DDAO (pH 2)) at 0 °C are 

provided in the supplementary information. Further comparisons regarding the crystal 

structure can also be drawn from the WAXS for the three different systems, as depicted in 

Figure 6. 
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Figure 5. SAXS data for 20 wt. % SDS and 20 wt. % SDS + 3 wt. % DDAO samples at pH 

2. The solid lines are fits to the data as described in the text and supplementary information.  

 

Figure 6. WAXS data for the three samples as noted at 0 °C. Concentrations of SDS and 

DDAO, where present, are 20 wt. % and 3 wt. % respectively. The peak at 3.15 nm
−1

 is from 

the polycarbonate capillary used to mount samples in the beam. All other peaks arise from the 

samples. From these, significant peaks are listed in Table S5 (supplementary).   

At pH 9, the 
1
H NMR data suggests that SDS crystallises first, before the system fully 

solidifies. The drop in NMR signal for the SDS and DDAO protons is expected to be 

associated with an increase in viscosity and a reduction in the mobility of the monomers and 

micelles, leading to a reduction in their T
2

*
 NMR relaxation time and an increase in the width 
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of their peaks.
33
 There is a sudden drop in SDS signal between 10 °C and 13 °C, which 

indicates SDS is undergoing a phase transition. However, not all of the SDS signal disappears 

at the lower temperature, indicating a proportion of the SDS remains in solution. The DDAO 

does not display a sudden drop in the signal, suggesting it is not residing in the crystal itself, 

yet, there is a decrease indicating that the DDAO surfactant is affected by the SDS crystal 

formation between 10 °C and 13 °C.  In a previous study, confocal Raman microscopy 

indicated a tendency for DDAO to surround the SDS hydrated crystals and, therefore, is 

influenced by their formation, which potentially explains the decrease in the DDAO signal.
34

 

SAXS data at 24 °C suggests that pure SDS micelles and mixed SDS + DDAO micelles co-

exist in in the system. The differences between profiles obtained for a pure SDS and a mixed 

SDS + DDAO system indicate there is an increase in micelle size when DDAO is present, 

which is in line with previous observations.
20

 By adding 3 wt. % DDAO, to a solution of 

SDS, the micelle aggregation number, Nagg, increases from 170 to 190 and the ellipsoid 

aspect ratio, a/b, from 1.8 to 2.2. Conversely, the proportional charge per headgroup, Z/Nagg 

falls from 0.12 to 0.11. This reduction in charge is in agreement with the literature,
20
 and is 

expected to reduce repulsions between the SDS head-groups in the interphase. Consequently, 

the shell curvature is able to decrease, allowing a more elongated structure to form. 

The formation of a Bragg peak in the pure SDS system at 0 °C indicates the growth of SDS 

crystallites.
21

 The calculated d-spacing, d = 3.3 nm, is closer to the values expected for the 

mono- or hemi-hydrated crystal forms (2.9 or 3.1 nm respectively), but lower than that of the 

1/8 hydrate (3.9 nm).
35
 For the mixed SDS + DDAO system, the Bragg peak position is the 

same as the pure SDS system, indicating SDS is the dominant component of the crystals in 

both samples. This is in agreement with the drop in intensity of NMR signal observed for the 

SDS protons (H
1
) (Figure 2). Aside from the Bragg peak, there is an additional contribution in 
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the SAXS profile for the mixed system, which can be fitted to the remaining micelle phase. 

For the remaining micelles, Nagg = 240 and a/b = 2.4, which is more in line with data reported 

for mixed SDS + DDAO micelles than that for DDAO micelles alone.
20
 Moreover, the 

micelles remain charged, albeit with a lower Z/Nagg than the values reported at 24 °C.  Put 

together, the scattering data and associated analysis provides compelling evidence that the 

crystallites formed in the mixed SDS + DDAO system contain predominantly SDS, in 

agreement with NMR data. Unlike in the pure SDS system, not all SDS crystallises and some 

remains within a mixed micelle population, as is also observed in the NMR data. Thus, the 

remaining NMR signal originates from micelles containing DDAO and SDS. By adding 

DDAO, the energy to form micelles is reduced, consequently diminishing the energetic 

driving force for crystallisation, consequently leading to a shift in the equilibrium towards 

micelles remaining in solution.  

At pH 2, both SAXS and NMR studies suggest a simultaneous change in the phase behaviour 

of each surfactant. The NMR data shows the SDS and DDAO surfactants crystallise at the 

same time. This observation is expected to be because of the formation of the protonated 

form of DDAO, which can ion pair with SDS and counter-ions.
9, 36

 This is further supported 

by peaks at differing shifts in the corresponding SAXS profile, compared to that of the pure 

SDS and the mixed pH 9 system. 

Further detail into the structure of the SDS crystallites can be drawn from WAXS data 

(Figure 6), with comparisons for notable peaks given in Table S5 (supplementary). After 

holding at 0 °C for 45 minutes, at pH 9, the peaks in the mixed system can be matched, within 

error, to those observed in the pure SDS system, further indicating the formation of the same 

SDS phase. Peaks at 1.87, 3.76, 5.68 and 11.35 nm
1 

 are assigned as first, second, third and 

sixth-order lamellar d-spacings (d = 3.34 nm) while peaks at higher Q (e.g. at 13.9, 14.9, 15.6 
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and 17.9 nm
1

) may arise from the head-head and alkyl peaks.
37

 In the pure SDS system, more 

peaks are apparent in this region. However, as the peak intensities for this sample are 

approximately 2-3 times more intense, over the entire Q-range, this is more likely to be an 

observational artefact arising from a low peak intensity versus background. In contrast, at pH 

2, a different structure forms, with first, second and third order lamellar d-spacings shifted to 

higher Q (at 2.13, 4.33 and 6.52 nm
1

 respectively) giving d = 2.95 nm. This suggests the 

formation of crystals containing both surfactants.  

Conclusions 

By combining variable temperature 
1
H NMR and SAXS measurements it has been possible, 

for the first time, to determine the compositional and structural changes in a mixed SDS and 

DDAO surfactant system, which is of particular interest in the fast moving consumer goods 

(FMCG) industry.
38
 Crystals formed as the mixed SDS + DDAO system is cooled, a pH 9, are 

observed to be predominately SDS hydrated crystals, with little or no DDAO. At pH 2, the 

protonated DDAO, and its subsequent ion pairing behaviour, results in both surfactants 

crystallising simultaneously. While dish liquid is a highly complex system, this research 

provides important insight into the crystallisation process of liquid detergent systems upon 

exposure to cold climates. In turn, this understanding will assist in building more robust 

formulations and improvements to their accompanying test methods. 
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