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1. We have successfully applied a r-adaptive moving mesh method based on

MMPDEs and mesh density functions to a two-dimensional fourth order

order parabolic PDE. To our knowledge this is the first attempt to imple-

ment r-adaptive scheme to such a PDE.

2. Numerical experiment on a prototype thin film flow-related PDE with sur-

face tension and a moving contact line shows this technique to accurately

resolve the moving contact line and associated fingering instability.
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Abstract

In this paper, we extend our previous work [A. Alharbi and S. Naire, An
adaptive moving mesh method for thin film flow equations with surface ten-

sion, J. Computational and Applied Mathematics, 319 (2017), pp. 365-384.]
on a one-dimensional r-adaptive moving mesh technique based on a mesh
density function and moving mesh partial differential equations (MMPDEs)
to two dimensions. As a test problem, we consider the gravity-driven thin
film flow down an inclined and pre-wetted plane including surface tension
and a moving contact line. This technique accurately captures and resolves
the moving contact line and associated fingering instability. Moreover, the
computational effort is hugely reduced in comparison to a fixed uniform mesh.

Keywords: Thin film flows; Surface tension; Fingering instability; Adaptive
moving mesh; r-adaptive method; Moving Mesh PDEs (MMPDEs)

1. Introduction

Thin liquid film flows driven by external forces are relevant in a wide range of
applications. They display interesting dynamics, such as wave propagation
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and steepening, finite time singularities leading to film rupture and spatial
“fingering” instabilities. The interested reader is referred to the review arti-
cles by Oron et al. [1] and Craster & Matar [2].

Of particular interest, both in the physical and mathematical context, are
thin film flow problems which include surface tension [3] and involve moving
contact lines [4]. Typically, surface tension is only important in regions of
very short length scales, particularly, near the contact lines, where the film’s
free surface exhibits internal layers. There is a large spatial variation in the
film’s free surface curvature in these internal layers and away from them sur-
face tension is relatively unimportant and the curvature is almost negligible.
In gravity and surface tension gradient-driven flows, the dynamic evolution
of these internal layers have been associated with the onset of a transverse
(in-plane and perpendicular to the flow) spatial fingering instability near the
moving contact line [5–11]. A common example of this is when a sheet of
rain spreading due to gravity on a window pane or car windscreen breaks
up into long fingers. Their accurate resolution is important to understand
the mechanisms behind this instability. From a computational viewpoint,
one can then use a locally refined mesh in the regions of large spatial varia-
tion (near the contact line(s)) and a coarser mesh elsewhere. In contrast, a
uniform mesh would use an unacceptably large number of mesh points espe-
cially due to the relatively large spatial scale and long time scale typical in
the formation of the fingers. The main motivation for this paper is to employ
a moving mesh that locally adapts itself to accurately resolve the internal
layers and the associated fingering instability in a computationally efficient
way compared to a fixed and uniform mesh.

A long wavelength or lubrication approximation based on the smallness of
the film’s aspect ratio is commonly employed to derive the thin film flow
equations [1, 2]. When surface tension is included, this reduces the governing
fluid flow equations and boundary conditions to a fourth order nonlinear
parabolic PDE representing the evolution of the film’s free surface [12]. In
most problems, this may be coupled to a parabolic PDE (usually of second
order), for example, representing the concentration of a chemical, such as
surfactant or a temperature field. In the context of thin film spreading flows,
there have been numerous numerical experiments using the finite difference
method on a fixed uniform or nonuniform mesh ([6–11, 13–21], to name a
few), the finite element method [22, 23] and spectral methods [24] in both
one and two dimensions.
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In comparison, very few numerical studies have considered an adaptive mesh
[8, 9, 16–18, 21]. These studies have used general purpose publicly available
solvers for parabolic PDEs which have built-in adaptive mesh capabilities
(e.g., PDECOL [25] and TOMS731 [26–29]). Sun et al. [30] use a h-adaptive
finite element mesh refinement method based on an optimal interpolation
error estimate for a two dimensional thin film equation of gravity driven flow
down an inclined plane. Li et al. [31] have also developed a h-adaptive fi-
nite difference method for this equation using a fully discrete and nonlinear
multigrid scheme and adaptive mesh refinement method. The above adaptive
mesh schemes were shown to capture and resolve the moving contact line and
the associated fingering instability accurately and computationally efficiently
compared to a fixed uniform grid scheme. In a recent paper, Alharbi & Naire
[32] successfully implemented the r-adaptive moving mesh technique [33, 34]
for a one-dimensional thin film equation with surface tension. This tech-
nique utilises a mesh density function and moving mesh partial differential
equations (MMPDEs) to adapt and move the mesh coupled to the PDE(s)
describing the thin film flow problem. Numerical experiments on two one-
dimensional test problems showed that this technique accurately resolves the
multiple internal layers observed in these problems. Moreover, it reduces the
computational effort in comparison to a fixed uniform mesh. Encouraged by
the success of our earlier work, we now extend it to two dimensions.

The rest of the paper is organized as follows. In section §2, we provide a
brief overview of MMPDEs and state the two-dimensional MMPDEs and
mesh density functions used in our numerical simulations. In §3, we briefly
describe the governing PDE and boundary conditions for two dimensional
gravity-driven thin liquid film flow using a lubrication theory model. In §4,
the spatial discretisation of the governing equation and the MMPDEs using
the finite difference method is presented. In §5, we present the numerical
results. Conclusions are given in §6.

2. Moving Mesh Partial Differential Equations (MMPDEs) and
mesh density functions

The underlying principle behind r-adaptive moving mesh methods is the
the equidistribution principal in which a continuous function defined over
an interval is evenly distributed between the subintervals determined by the
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mesh points. Using this a number of moving mesh equations (MMPDEs)
can be developed for time dependent problems which are continuous forms of
mesh movement strategies formulated in terms of coordinate transformations.
The mesh adapts itself based on a mesh density function which is related to a
specific solution characteristic. The interested reader is referred to the book,
Adaptive Moving Mesh Methods, by Huang & Russell [33] and the review
paper by Budd et al. [34], who have made seminal contributions in this area
over the past twenty years.

In our earlier paper [32], we had listed four of the commonly used one dimen-
sional MMPDEs, the so-called MMPDEs 4, 5 and 6 and modified MMPDE5,
and two mesh density functions based on arc-length and curvature. In this
work, we extend MMPDEs 4 and 5 to two dimensions. The MMPDEs can
be represented as a coordinate transformation:

x = x(ξ, t) : ξ ∈ Ωc × Ωc ≡ [0, 1]× [0, 1] → x ∈ Ωp ≡ [a, b]× [c, d], t > 0,

where x = (x, y) and ξ = (ξ, η) are the spatial variables, t is time, Ωc and
Ωp are referred to as the computational and physical domains, respectively,
and a fixed uniform mesh is used to represent any discretisation of Ωc. Using
this, the two dimensional version of MMPDEs 4 and 5 can be written as

MMPDE4 : τ∇ξ · (ρ̂(x, t)∇ξxt) = −∇ξ · (ρ̂(x, t)∇ξx), (1)

MMPDE5 : τxt = ∇ξ · (ρ̂(x, t)∇ξx) . (2)

Here, ∇ξ =

(

∂

∂ξ
,
∂

∂η

)

, ρ̂(x, t) is a mesh density function (defined below)

and τ > 0 is a user-specified parameter. τ adjusts the response time of mesh
movement to changes in the monitor function ρ̂(x, t) [33]. The smaller τ , the
more quickly the mesh responds to changes in ρ̂(x, t). In the limit of τ → 0,
the mesh relaxes to its quasi-steady state given by the solution of a system
of elliptic partial differential equations: ∇ξ · (ρ̂(x, t)∇ξx) = 0. Likewise, the
mesh moves slowly when a large value of τ is used. MMPDE5 given in Eq.
(2) is generally quite stiff and a regularised form is used in practice,

regularised MMPDE5 : τ(1 − γ1∇
2
ξ)xt = ∇ξ · (ρ̂(x, t)∇ξx) . (3)

Here, the parameter γ1 > 0 is related to the mesh density function ρ̂ (see
[34] and references therein). The boundary conditions for the above second
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order PDEs are

x(0, η, t) = a, x(1, η, t) = b, xη(ξ, 0, t) = xη(ξ, 1, t) = 0, (4)

y(ξ, 0, t) = c, y(ξ, 1, t) = d, yξ(0, η, t) = yξ(1, η, t) = 0. (5)

The initial conditions are

x(ξ, η, 0) = (b− a)ξ + a, y(ξ, η, 0) = (d− c)η + c, (6)

which represents a uniform initial mesh on the physical domain Ωp ≡ [a, b]×
[c, d].

One disadvantage in using the above MMPDEs is that we need to solve two
additional PDEs for the adaptive moving mesh coupled to the underlying
PDE(s) which could make the computational task more intensive. Another
disadvantage in two dimensions is that the coordinate transformation un-
derlying the above MMPDEs cannot ensure existence and uniqueness of the
solution only based on the equidistribution principle. This could result in
mesh tangling and loss of mesh regularity (i.e., mesh elements that have very
small aspect ratio). These can be overcome by mesh generation methods
based on optimal transportation, for example, the so-called optimal trans-
port equations, such as the Monge-Ampère and Parabolic Monge-Ampère
(PMA) equations (see Budd et al. [35, 36]). The advantage of the PMA
equation over the MMPDEs is that there is one equation less to solve in
two dimensions to obtain the mesh and the meshes are generally regular and
there is no mesh tangling. For the test problem considered here the MM-
PDEs have always generated regular meshes and there is no tangling. We do
not consider optimal transport equations in this work.

The choice of the mesh density function ρ̂ is essential for the success of
adaptive moving mesh methods. They can be chosen based on error estimates
(for example, polynomial interpolation or truncation error) or on the solution
characteristics of the underlying PDE (for example, arc length or curvature).
In the latter case, the mesh density function can be defined by the solution
u(x, t) (say) of the underlying PDE and possibly its derivatives. The choices
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of ρ̂ that are commonly used are:

arc length : ρ̂(x, t) =
√

1 + α|∇u(x, t)|2, (7)

curvature : ρ̂(x, t) =
(

α+ β|∇2u(x, t)|2
)1/n

, where n = 2 or 4. (8)

Here, α and β are adaptivity parameters (or weight parameters) of the mesh
density function [33, 37, 38]. These are usually taken to be constant but could
be dependent on the spatial variables if there are multiple regions over which
the solution characteristics vary rapidly (see example in Alharbi & Naire
[32]). The above monitor functions can also be extended to include multiple
solution components (see example in Alharbi & Naire [32]). In addition, it
is common practice in the context of moving mesh methods to smooth the
monitor function in order to obtain a smoother mesh and also to make the
MMPDEs easier to integrate. This is discussed in §4.

3. Two-dimensional thin film equations for gravity-driven spread-
ing down an inclined and pre-wetted plane

We consider the two-dimensional thin liquid film flow of a droplet spreading
down an inclined and pre-wetted substrate due to gravity (see Fig. 1). The

precursor film
drop

inclined substrate
θ

z

x
0

g

y

z = h (x,y,t )

Figure 1: Schmatic of a two-dimensional drop or sheet spreading down an inclined and
pre-wetted substrate.

bulk flow is governed by the Navier-Stokes equations. We assume that the
substrate is pre-wetted with a thin precursor liquid film. Lubrication (or
long wavelength) theory can be applied to reduce the governing equations
and boundary conditions at the free surface to give the evolution equations
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for the film’s free surface. The interested reader can refer to Kondic [7] for
the derivation. This can be written in non-dimensional form as:

ht +∇ ·
[

Ca h3
∇∇2h− D(θ)h3

∇h
]

+
[

h3
]

x
= 0. (9)

Here, h = h(x, y, t), is the film height, x and y are the in-plane spatial
variables along and perpendicular to the flow direction, respectively, and t
is time. The dimensionless parameters D(θ), is the ratio of the size of the
vertical and the horizontal components of gravity, Ca, is an inverse capillary
number (compares surface tension to viscous forces) and θ is the inclination
angle of the substrate. Eq. (9) is a nonlinear parabolic PDE of fourth order
in space. The fourth order term (second term in Eq. (9)) is related to the
curvature of the film’s free surface and is due to surface tension. Typically
Ca ≪ 1, so there exist internal layers where curvature is important; elsewhere
curvature is almost negligible and the film evolution is controlled by the
horizontal component of gravity (fourth term in Eq. (9)). The second order
diffusion term (third term in Eq. (9)) is related to the vertical component
of gravity and is also only important in the internal layers where it has a
smoothing influence on the film evolution there.

The boundary conditions (BCs) for the above PDE are prescribed as follows.

h(±Lx, y, t) = b, hx(±Lx, y, t) = hxxx(±Lx, y, t) = 0,

h(x,−Ly/2, t) = h(x, Ly/2, t), (10)

where Lx and Ly are the lengths of the physical domain in the x and y direc-
tions, respectively. The first three BCs assume that the plane is pre-wetted
with a precursor film of thickness b ≪ 1 (represents ratio of precursor film
thickness to initial drop height) and the drop connects onto a flat precursor
film. We prescribe periodic boundary conditions in the y-direction.

The initial condition for h represents a y-independent droplet with sinusoidal
perturbations imposed on it and is given by:

h(x, y, 0) = h0(x) + h1(x, y),

h0(x) = (1− x2)[H(1− x)−H(−1− x)] + b[H(x− 1) +H(−1− x)]. (11)

The expression for h0(x) (following [9, 17, 39, 40]) represents a parabolic-
shaped drop and x = ±1, is the initial location where it connects to the
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precursor film both upstream and downstream, and H(x) is the Heaviside
function. The form of the sinusoidal perturbation h1(x, y) will be described
in §5.

4. Finite difference semi-discretisation scheme on a moving adap-
tive mesh

The adaptive moving mesh method uses a coordinate transformation from
the computational domain with coordinate ξ = (ξ, η), to the physical do-
main with coordinate x = (x, y): x = x(ξ, t) : Ωc ≡ [0, 1] × [0, 1] → Ωp ≡
[−Lx, Lx] × [−Ly/2, Ly/2], t > 0. Then the solution can be written as
h(x, t) = h(x(ξ, t), t). A uniform mesh on the computational domain is de-
scribed as: J c

h (t) : ξj = (j−1)∆ξ, ηk = (k−1)∆η, for j = 1, . . . ,Mx+1, k =
1, . . . , Ny + 1, and a moving mesh on the physical domain associated with
the solution h(x(ξ, t), t) is described as: J p

h (t) : xj,k(ξ) = x(ξj, ηk, t), j =
1, . . . ,Mx + 1, k = 1, . . . , Ny + 1, where the boundary nodes are given by:
x1,k = −Lx, xMx+1,k = Lx, k = 1, . . . Ny + 1 and yj,1 = −Ly/2, yj,My+1 =

Ly/2, j = 1, . . .Mx + 1. Here, ∆ξ =
1

Mx
and ∆η =

1

Ny
denote the uniform

grid size in the computational domain and Mx, Ny are given positive integers
denoting the number of mesh points in the x and y direction, respectively.

Eq. (9) is reformulated in Lagrangian form and can be written in terms of
the computational coordinates (ξ, η) as:

ht − (hxxt + hyyt) +∇ · [Ca h3
∇∇

2h− D(θ) h3
∇h] +

[

h3
]

x
= 0, (12)

where

hx =
1

J
[(Jξx)hξ − (Jηx)hη] , hy =

1

J
[−(Jξy)hξ + (Jηy)hη] , (13)

[

h3
]

x
=

1

J

[

(Jξx)(h
3)ξ − (Jηx)(h

3)η
]

, J = xξyη − xηyξ, (14)

∇ ·
[

h3
∇h

]

=
1

J

[

(

h3R
)

ξ
+
(

h3S
)

η

]

, (15)
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G = ∇
2h =

1

J
[Rξ + Sη] , (16)

∇ ·
[

h3
∇∇

2h
]

= ∇ ·
[

h3
∇G

]

=
1

J

[

(

h3R1

)

ξ
+
(

h3S1

)

η

]

. (17)

The functions R, S, R1 and S1 are defined as:

R = [a hξ + c hη] , S = [q hη + c hξ] , R1 = [a Gξ + c Gη] ,

S1 = [q Gη + c Gξ] , (18)

where

a =
1

J

[

(Jξx)
2 + (Jξy)

2
]

, q =
1

J

[

(Jηx)
2 + (Jηy)

2
]

,

c =
1

J
[(Jξx)(Jηx) + (Jξy)(Jηy)] ,

ξx =
1

J
yη, ηx = −

1

J
yξ, ξy =

1

J
xη, ηy =

1

J
xξ. (19)

A conservative finite difference semi-discretisation scheme for the spatial
derivatives in Eq. (12) on the uniform mesh J c

h using centred finite dif-
ferences can be written as, keeping the time derivative continuous,

ht,j,k − (hxxt + hyyt)j,k +∇ ·
[

Ca h3
∇∇

2h− D(θ) h3
∇h

]

j,k

+ (h3)x,j,k = 0, ∀ j = 2, . . . ,Mx, k = 1, . . . , Ny + 1. (20)

The finite-difference discretisation scheme used for each of the terms appear-
ing above are given in Eqs. (A.1)-(A.18) in Appendix A. The boundary
conditions h(0, y, t) = 1 and h(Lx, y, t) = b are replaced by their ODE form:
ht,1,k = ht,Mx+1,k = 0, ∀ k = 1, . . . , Ny + 1.

A semi-discretisation scheme to discretise the spatial derivatives in MMPDE4
given in Eq. (1) is as follows, keeping the time derivative continuous:

MMPDE4 :

τ
[

1
∆ξ2

(

ρ̂j+ 1

2
,k∆jxt,j,k − ρ̂j− 1

2
,k∆jxt,j−1,k

)

− 1
∆η2

(

ρ̂j,k+ 1

2

∆kxt,j,k − ρ̂j,k− 1

2

∆jxt,j,k−1

)]

= −Ej,k,

∀ j = 2, . . . ,Mx, k = 2, . . . , Ny,

(21)
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where

Ej,k = τ
[

1
∆ξ2

(

ρ̂j+ 1

2
,k∆jxj,k − ρ̂j− 1

2
,k∆jxj−1,k

)

− 1
∆η2

(

ρ̂j,k+ 1

2

∆kxj,k − ρ̂j,k− 1

2

∆kxj,k−1

)]

.
(22)

In the above, ∆jxt,j,k = xt,j+1,k − xt,j,k, ∆kxt,j,k = xt,j,k+1 − xt,j,k, ∆jxj,k =
xj+1,k − xj,k and ∆kxj,k = xj,k+1 − xj,k. Also, evaluations at half mesh
points are obtained as an average of the neighbouring mesh points. The
semi-discretisation of MMPDE5 given in Eq. (3) is similar to the above
and is provided by Eq. (A.20) in Appendix A. The boundary conditions
x(0, η, t) = 0, x(1, η, t) = Lx, y(ξ, 0, t) = −Ly/2 and y(ξ, 1, t) = Ly/2 are
replaced by their ODE form: xt,1,k = xt,Mx+1,k = 0, ∀ k = 1, . . . , Ny +
1; yt,j,1 = yt,j,Ny+1 = 0, ∀ j = 1, . . . ,Mx + 1.

The curvature mesh density function ρ̂(x, t) given in Eq. (8) is discretised
using finite differences as follows:

ρ̂j,k = (1 + α|(∇2h)j,k|
2)

1

n , ∀ j = 1, . . . ,Mx + 1, k = 1, . . . , Ny + 1, (23)

where (∇2h)j,k is approximated by Eq. (A.5). A smoothing scheme suggested
by Huang [33, 41] and based on weighted averaging is used to smooth the
mesh density function. This is provided in Appendix A.

Eq. (20) and Eqs. (21) or (A.20), form a coupled system of 3(Mx+1)(Ny+1)
ordinary differential equations (ODEs) for the solution h1,1, . . . , hMx+1,Ny+1

and the mesh x1,1, . . . ,xMx+1,Ny+1, with initial conditions for x and h given
by Eqs. (6),(11). These are solved by the Method of Lines using the stiff ODE
solver DASPK [42] which uses Backward Differentiation Formulas (BDF) to
approximate the time derivative. This solver uses an iterative method (based
on preconditioned Krylov subspace method) to solve the linearised system of
equations. DASPK also allows approximating the Jacobian using an Incom-
plete LU factorisation. This has a significant influence on the performance.
However, we need to choose a sufficiently large fill-in for the LU factorisa-
tion of the Jacobian, otherwise the convergence of the iterative solver is very
slow. We use a staggered system for numbering the unknowns, h1,1, x1,1,
y1,1, h1,2, x1,2, y1,2,. . .,hMx+1,Ny+1, xMx+1,Ny+1, yMx+1,Ny+1, which provides a
smaller bandwidth for the Jacobian matrix. This is in comparison to, for
example, the numbering h1,1, h1,2,. . ., hMx+1,Ny+1, x1,1, x1,2, . . ., xMx+1,Ny+1,
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y1,1, y1,2,. . ., yMx+1,Ny+1, which although sparse has a much bigger band-
width. This significantly improves the performance of the ODE solver. We
note here that a non-uniform initial mesh had to be used instead of the initial
mesh in Eq. (6) which had an influence on the solution and the performance
of the solver in comparison to the uniform initial mesh. This nonuniform ini-
tial mesh was obtained by solving in pseudo-time the chosen MMPDE (with
the uniform mesh as the initial condition) with h fixed (hence, the mesh
density function ρ̂ is also fixed) at its initial condition given by Eq. (11).
This mesh was then used to solve the MMPDEs in real time. For the Reg-
ularised MMPDE5 equation, we had to choose the parameter values τ = 1
and γ1 =

√

max(ρ) for the pseudo-time calculation after which τ = 10−2 was
chosen for the solution in real time.

5. Numerical results

In this section, we perform numerical experiments on the two-dimensional
thin film spreading flow problem for the free surface thickness h given by
Eq. (9). In all the results presented below, the system parameter values are:
Ca = 10−3 (indicating smaller surface tension relative to viscous forces),
θ = 90o (representing a vertical substrate; so D(θ) = 0), b = 10−1 (the
precursor film thickness is 1/10 times smaller than the initial drop or sheet
thickness), Lx1

= −2, Lx2
= 18 (the upstream and downstream length of

the computational domain, respectively) and Ly = 2. We only show the
results using MMPDE4; the results using MMPDE5 are similar and hence
not reported here. We are interested in the development of the fingering
instability starting from a y-independent initial condition (given by h0(x) in
Eq. (11)) with sinusoidal perturbations imposed on it (given by h1(x, y) in
Eq. (11)). The form of h1(x, y) is chosen as

h1(x, y, 0) =

m,n
∑

l=1,k=1

ak cos(kπy) e
[−Kl (x−xl)

2], (24)

where k is the wavenumber of each sinusoidal mode with period = 2/k and
amplitude ak, n is the total number of modes imposed, m is the total number
of locations x = xl in the x direction across which the sinusoidal perturba-
tions are applied and Kl controls the width of the localised perturbations at
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xl. In the numerical simulations shown below, a single transverse perturba-
tion (k = n = 1) is applied at two locations: x1 = 0 with amplitude a1 = 0.1
and x2 = 1 (the leading edge of the initial droplet) with amplitude a1 = 0.01.
We choose K1 = 20 and K2 = 100.

Fig. 2(a, b, c) illustrate the surface plots of h(x, y, t) (side view) showing its
evolution in time (the times shown are t = 40, t = 80 and t = 100) using
the adaptive moving mesh scheme with Mx = 400 and Ny = 40 (so, the
initial ∆x = ∆y = 0.05), MMPDE4 with τ = 10−2 and curvature monitor
function with α = 1 and n = 2. At early time, a finger is observed to
slowly start forming as shown in Fig. 2(a). As time t increases, the finger
appears to lengthen with a preferred width as observed in Figs. 2(b, c). This
is highlighted in the surface plot of h(x, y, t) (top view) shown in Fig. 3(c)
at t = 80. The width of the finger is approximately one (between y = −0.5
and y = 0.5). These results are visually identical to those obtained using
a uniform mesh with a higher resolution. For example, Fig. 3(b) shows
the surface plot of h(x, y, t) (top view) at t = 80 using a uniform mesh
with Mx = 2000 and Ny = 200 (∆x = ∆y = 0.01). Visual comparison
with the adaptive mesh simulation shown in Fig. 3(c)) shows them to be
nearly indistinguishable. Fig. 3(a) shows the surface plot of h(x, y, t) (top
view) at t = 80 using a uniform mesh with Mx = 400 and Ny = 40 (∆x =
∆y = 0.05). This has the same mesh size as the initial mesh used in the
adaptive mesh simulation shown in Fig. 3(c), however, the solution clearly
has not converged. This clearly indicates that the adaptive mesh solution
achieves a much higher accuracy using a coarser initial mesh in comparison
to the corresponding fixed uniform mesh solution. Figs. 4(a, b, c) show the
adaptive moving mesh, x(ξ, η, t) and y(ξ, η, t), at times t = 40, t = 80 and
t = 100, respectively. We clearly see how the mesh adapts itself in both the x
and y directions as the propagating finger gradually develops with localised
clustering of mesh points in the y-direction along the finger.

To quantify the measure of accuracy of the adaptive mesh solution over the
fixed uniform mesh solution we provide in Table 1 some metrics for accuracy
which focus on the important aspects of the solution. These are: the L2

norm error (characterises the mean error over the entire domain), hmax, the
maximum height of the advancing front (the so-called capillary ridge) at
the mid-line y = 0, xfront, the location of the “effective” contact line near
the advancing front at the mid-line y = 0 (where the leading edge of the
front connects onto the precursor film), Lfinger=xfront(y = 0)−xfront(y =
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Figure 2: Surface plots of h(x, y, t) (side view) showing its evolution in time (a) t = 40, (b)
t = 80 and (c) t = 100 using the adaptive moving mesh scheme with Mx = 400, Ny = 40
(initial ∆x = ∆y = 0.05), MMPDE4 with τ = 10−2 and curvature-based monitor function
with α = 1 and n = 2.
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Figure 3: Surface plots of h(x, y, t) (top view) at time t = 80 using (a) a uniform mesh with
Mx = 400, Ny = 40 (∆x = ∆y = 0.05), (b) a uniform mesh with Mx = 2000, Ny = 200
(∆x = ∆y = 0.01) and (c) an adaptive moving mesh with Mx = 400, Ny = 40 (initial
∆x = ∆y = 0.05), MMPDE4 with τ = 10−2 and curvature-based monitor function with
α = 1 and n = 2. 14
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Figure 4: The adaptive moving mesh, x(ξ, η, t) and y(ξ, η, t), at time (a) t = 40, (b) t = 80
and (c) t = 100 using the adaptive moving mesh scheme with Mx = 400, Ny = 40 (initial
∆x = ∆y = 0.05), MMPDE4 with τ = 10−2 and curvature-based monitor function with
α = 1 and n = 2.
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±0.5), the length of the finger and Wfinger, the width of the finger at a given
location (arbitrarily chosen as ξ = 8.5). We calculate these quantities from
the solution at a given time, t = 80 (when the finger has already developed).
These quantities are calculated for four adaptive meshes (denoted by A in
Table 1) with Mx = 400 and Ny = 40 (the initial ∆x = ∆y = 0.05),
Mx = 400 and Ny = 50 (the initial ∆x = 0.05 and ∆y = 0.04), Mx = 400
and Ny = 80 (the initial ∆x = 0.05 and ∆y = 0.025) and Mx = 400 and
Ny = 100 (the initial ∆x = 0.05 and ∆y = 0.02). These are compared against
the corresponding values obtained using two fixed uniform mesh solutions
(denoted by U in Table 1) with Mx = 2000 and Ny = 200 (∆x = ∆y = 0.01)
and Mx = 400 and Ny = 40 (∆x = ∆y = 0.05). The L2 norm error
is calculated relative to the fixed uniform mesh solution with Mx = 2000
and Ny = 200 (∆x = ∆y = 0.01). In calculating this error we interpolate
the solution onto this fixed uniform mesh using linear interpolation. We
observe that the mean error (relative to the uniform mesh with Mx = 2000
and Ny = 200, ∆x = ∆y = 0.01) for the adaptive mesh solutions using
between (16 − 40) × 103 elements is within 4.5% accuracy to that of this
fixed uniform mesh which uses 4× 105 elements. In contrast, the mean error
for the solution obtained using a coarser fixed uniform mesh (Mx = 400
and Ny = 40, ∆x = ∆y = 0.05) with similar number of elements as the
adaptive meshes is approximately 9%. The main contributor to this error

Mesh Mx Ny
% L2

error
hmax xfront Lfinger Wfinger

CPU
time

U 400 40 8.99 0.4720 9.75 1.25 2 1 day
2000 200 - 0.4936 10.08 1.83 1.16 3 days
400 40 1.94 0.4941 10.05 1.81 1.04 2 hrs

A 400 50 2.32 0.4918 10.02 1.76 1.02 2 hrs
400 80 3.64 0.4892 10.01 1.68 1.01 7 hrs
400 100 4.4 0.4891 10.01 1.66 1.01 16 hrs

Table 1: Metrics based on important characteristics of the solution obtained at time,
t = 80 in order to determine the accuracy of the adaptive mesh solutions (denoted by
A in the column titled “Mesh”) against the corresponding fixed uniform mesh solution
(denoted by U). See text for the description of each quantity.

is around the finger; the adaptive mesh adapts itself in this region both in
the x and y directions (see Fig. 4) which reduces this error. In fact, the
minimum ∆(x, y) = O(10−3) in this region for the adaptive meshes which

16



is smaller than that of the uniform mesh (∆(x, y) = 0.01). We also note
that the mean error relative to the uniform mesh increases as the adaptive
mesh is refined which could suggest that the adaptive mesh solutions are
more accurate than the fixed uniform mesh solutions. This is again due to
the adaptivity of the meshes in reducing ∆(x, y) which makes the solution
more accurate. We see a similar trend in the other metrics with the relative
error being much smaller for these in comparison to the mean error. We
also observe convergence in these quantities as the adaptive mesh is refined.
However, the CPU time increases as the adaptive mesh is refined but is still
much quicker compared to the fixed uniform mesh solution. For example,
it took almost 3 days to compute the fixed uniform mesh (with Mx = 2000
and Ny = 200, ∆x = ∆y = 0.01) solution to time, t = 80 using MATLAB

(Release 2013a, The MathWorks, Inc., Natick, Massachusetts, United States)
on a computer with a 2.8GHz processor while it took between 2-16 hours to
do the same calculation on the adaptive meshes.

6. Conclusions

In this paper, we have successfully applied the r-adaptive moving mesh
method based on MMPDEs and mesh density functions to a prototype two-
dimensional thin film flow problem with surface tension and involving a mov-
ing contact line. Our results show how the mesh adapts in both coordinate
directions in order to align itself with the propagating finger with local refine-
ment along the finger width (see Fig. 4). This adaptive moving mesh scheme
is shown to be within 4.5% accuracy to that using a fixed uniform grid but
with much fewer mesh points. In fact, by monitoring important characteris-
tics of the solution behaviour, we observe the convergence to a more accurate
solution compared to a fixed uniform mesh solution as the adaptive mesh is
refined. One could increase the initial number of mesh points to increase
the accuracy of the adaptive mesh solution but this would take more CPU
time due to the additional mesh PDEs that need to be solved along with
the underlying PDE. This difference between CPU times is not that large if
the desired error is not too small and it is also much quicker compared to
a fixed uniform mesh. For example, Table 1 shows a doubling of CPU time
when increasing the initial number of points in the y direction from 80 to
100 (initial ∆y = 0.025 and 0.02, respectively) although the solution appears
to have converged. For this case, the solution corresponding to the adaptive
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mesh with Mx = 400 and Ny = 80 (the initial ∆x = 0.05 and ∆y = 0.025)
could be considered reasonable in both accuracy as well as in computational
time.

The structure of the locally refined mesh is also consistent with those ob-
tained previously for the same test problem using h or hp-adaptive mesh
refinement schemes for unstructured meshes [30, 31]. Although we have not
made a quantitative comparison with these studies with respect to the accu-
racy of the solution, a visual inspection of their solution and meshes generated
shows very similar qualitative features as ours. Moreover, the MMPDEs used
here provide a simple framework to dynamically adapt and refine the mesh.
This is in comparison to the seemingly more algorithmically complicated
methods used by Sun et al. [30], who refine their mesh based on minimising
an a posteriori error estimate, and Li et al. [31], who generate a hierarchy of
multigrid meshes based on the gradient of the solution. The MMPDEs can
be implemented in a straightforward way and solved simultaneously with the
thin film equation quite efficiently using standard techniques for solving a
system of parabolic partial differential equations by either the finite differ-
ence or the finite element method. In this respect, the r-adaptive method
introduced here would hugely benefit the thin film flow research community.
However, the CPU time taken by this method could be higher compared to
the above two studies owing to the requirement of solving two additional
equations for the mesh. This can be overcome by mesh generation methods
within the r-adaptive framework such as the Monge-Ampère and Parabolic
Monge-Ampère (PMA) equations (see Budd et al. [35, 36]) where there is
only one equation for the mesh. These are currently being studied and will
be reported in the future.

In conclusion, our results indicate great promise in terms of simplicity in its
implementation and efficiency (in comparison to fixed uniform mesh schemes
and possibly with h or hp-adaptive methods) for MMPDEs-based moving
adaptive mesh methods to be applied on a regular basis in thin film flow
problems. We note that the MMPDEs used at least in our test problem here
did not result in mesh tangling or losss of mesh regularity. This does not,
however, guarantee that these undesirable features will not appear in other
thin film flow problems in general. We would need to further explore other
mesh generation methods within the r-adaptive framework, for example, the
so-called optimal transport equations, such as as the Monge-Ampère and
Parabolic Monge-Ampère (PMA) equations (Budd et al. [35, 36]) which
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generate regular meshes and there is no mesh tangling. These would need
to be tested on more challenging two-dimensional thin film problems that
are prone to more dramatic dendritic fingering instabilities, for example, the
fingering instabilities observed when a drop or sheet laden with surfactant
spreads on a horizontal or inclined plane [9, 17, 39, 40], before its success can
be guaranteed.
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Appendix A. Finite difference discretisation and smoothing scheme

The finite-difference discretisation scheme used for each of the terms appear-
ing in Eqs. (13)-(19) are:
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(Jξx)j,k = (yη)j,k =
1

2∆η
(yj,k+1 − yj,k−1) , (A.15)

(Jξy)j,k = − (xη)j,k = −
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(xj,k+1 − xj,k−1) , (A.16)
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(Jηy)j,k = (xξ)j,k = +
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2∆ξ
(xj+1,k − xj−1,k) , (A.18)

Some of the above approximations involve evaluations at half mesh points
which are obtained as an average of the neighbouring mesh points. The
expressions in Eqs. (A.11-A.14) are simplified along the boundaries using the
mesh derivative boundary conditions given in Eq. (4). Evaluating the above
at the boundaries require fictitious points which are obtained by discretising
the boundary conditions in Eq. (10). In some cases, we had to use one-sided
finite differences to evaluate a particular quantity at the boundary which was
obtained using a Taylor’s series approximation there.
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The semi-discretisation scheme for MMPDE5 given in Eq. (3) is given by

MMPDE5 : τ

[

xt − γ1

(
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(∆jxt,j,k −∆jxt,j−1,k)

−
1

∆η2
(∆kxt,j,k −∆kxt,j,k−1)

)]

= Ej,k, (A.19)

∀ j = 2, . . . ,Mx, k = 2, . . . , Ny, (A.20)

where the quantities involved are defined in the main text.

To obtain a smoother mesh and also make the MMPDEs easier to integrate,
it is common practice in the context of moving mesh methods to smooth the
mesh density function. A simple but effective smoothing scheme for a two
dimensional rectangular computational mesh suggested by Huang [33, 41] is
based on weighted averaging,

ρ̂j,k :=

∑min(Mx+1,j+p)
i=max(1,j−p)

∑min(Ny+1,k+p)

l=max(1,k−p) ρ̂i,lγ
|j−i|+|k−l|

∑min(Mx+1,j+p
i=max(1,j−p)

∑min(Ny+1,k+p)
l=max(1,k−p) γ|j−i|+|k−l|

,

j = 1, . . . ,Mx + 1, k = 1, . . . , Ny + 1, (A.21)

where p is a non-negative integer called the smoothing index and γ ∈ (0, 1)
is a smoothing parameter. Several sweeps of the scheme may be applied at
each integration step.
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We thank both referees for their careful reading of the manuscript and very useful comments. We 

have addressed all the comments/issues raised by the referees and incorporated their suggested 

corrections. This has resulted in revisions to the manuscript which are detailed below. Any page 

numbers below are with reference to the revised manuscript. 

 

We hope that the referees are satisfied by these revisions and recommend the paper for publication. 

 

Referee 1 

 

Issue 1: Statements made such as “much easier to implement” and “more accurate than h or hp 

refinement methods” need to be more specific and cannot be made without any evidence supporting 

this claim. 

 

Response: We fully agree with this. Any mention of this has now been removed from the 

manuscript except in the second paragraph in the section on Conclusions (Pg. 18). In this paragraph 

we make a qualitative comparison specifically for parabolic PDEs (such as the thin film equation 

studied here) between ours and the 2 related thin film flow studies of Sun et al. and Li et al. The 

comparison is with respect to the solution accuracy, ease of implementation and CPU time taken. 

 

Issue 2: Accuracy of method and computational time versus mesh size (number of points). 

 

Response: We have now provided more in-depth analysis on the accuracy and CPU time for 

varying mesh sizes. These include 4 adaptive meshes with varying number of points in the y 

direction (or varying Delta y). These changes are incorporated in Pgs. 16 and 17 and in the first 

paragraph in the section on Conclusions (Pgs. 17 and 18). 

 

Issue 3: How this method behaves on other test cases? 

 

Response: The focus of this study was meant to be on testing the numerical method on one problem 

which is a standard prototype in thin film spreading flows. We deliberately did not consider other 

test problems (as done in our earlier 1-D paper) since this would lose focus on the main problem 

and make the paper unnecessarily long. Work is currently underway on testing this method on other 

challenging problems (mentioned at the end of the Conclusions section) and will be reported 

elsewhere. 

 

Issue 4: Other metrics for accuracy and computational time versus mesh size (or number of points). 

 

Response: We thank the referee for this very helpful suggestion. We have now considered other 

metrics connected to the solution’s characteristics such as the maximum height at the front, the 

location of the front, the length and width of the finger and the computational time for varying mesh 

sizes. These changes are incorporated in Pgs. 16 and 17 (including Table 1) and in the first 

paragraph in the section on Conclusions (Pgs. 17 and 18). 

 

Issue 5: Shorten section 4. 

 

Response: Section 4 has now been shortened and some of the details of the discretisation have been 

moved to Appendix A. 

 

 

 

*Revision Notes



Referee 2 

 

Issue 1: Just state equations for MMPDE5 but not details of discretisation. 

 

Response: We have now deleted the discretisation of MMPDE5. 

 

Issue 2: It would help to define what steady states the MMPDEs relax to if rho is independent of 

time. 

 

Response: This is now defined on Pg. 4. 

 

Issue 3: What do you mean by regular meshes? 

 

Response: By regular meshes we mean those that do not have elements with very small aspect ratio. 

We have added a sentence stating this in the first paragraph on Pg. 5. 

 

Issue 4: The time discretisation is not stated. 

 

Response: We follow the Method of Lines to solve the equations. Only the spatial variables are 

discretised and the time derivative is left continuous resulting in a system of ODEs. The solver 

DASPK then solves the system of ODEs using built-in Backward Differentiation Formulas (BDF) 

to approximate the time derivative. A sentence stating this is now included on Pg. 10. 

 

 

 


