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Switzerland Neutron powder diffraction has been used to observe the changes in hydrogen

bonding that occur as a function of temperature in ND4IOj3 and, thus, determine
the structural features that occur during the low-temperature (103 K) phase
transition. It is shown that in the deuterated material the change is not a phase

$ 1963-2015

Keywords: neutron diffraction; hydrogen

bonding; phase transitions; variable tempera- Change per se but rather a structural reorganization in which the hydrogen
ture; ammonium ion. bonding becomes firmly locked in at the phase transition temperature, and stays

in this configuration upon further cooling to 4.2 K. In addition, both the
Supporting information: this article has differences and changes in the axial thermal expansion coefficients in the region

supporting information at journals.iucr.org/b

100-290 K can be explained by the changes involving both the hydrogen
bonding and the secondary I---O halogen bonds.

1. Introduction

Ammonium iodate has drawn interest because of its pyro-
electric (Keve et al.,, 1971), ferroelectric (Oka et al., 1976),
electro-optical (Salje & Bismayer, 1977) and ferroelastic
properties (Abdel-Kader et al., 2008) This compound contains
both halogen and hydrogen bonds, which may be implicated in
these macroscopic properties. In this work, neutron powder
diffraction has been used to investigate the changes in halogen
and hydrogen bonding that occur as a function of temperature
and relate these to some of the macroscopic properties.

The ambient-temperature orthorhombic (Pc2,n) crystal
structure of ammonium iodate was first determined over 40
years ago (Keve et al,, 1971). It consists of pyramidal 105~
anions and tetrahedral NH," cations [Fig. 1(a)]. In addition to
the covalent bonds within these ions there are also distinct
halogen and hydrogen bonds. In the original structural study, it
was not possible to locate the hydrogen atoms, but despite this
it was possible to describe the hydrogen bonding within the
compound on the basis of the N---O contacts. Two of the
oxygen atoms of the IO;~ group are each involved in one
hydrogen bond, whilst the third oxygen atom is implicated in
two hydrogen bonds [Fig. 1(b)]. In addition to the primary
covalent bonds there are also three longer I---O contacts
which are much shorter (2.778-2.830 A) than the sum of the
van der Waals radii (3.61 A) (Rowland & Taylor, 1996). Each
of these longer I---O halogen contacts occupies a position
which is approximately trans to an I—O covalent bond
resulting in a highly distorted octahedral environment

© 2019 International Union of Crystallography [Fig. 1(c)]. If the coordination of the iodine is considered to be
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octahedral then the structure has been described as a highly
distorted perovskite (Keve et al, 1971) [Fig. 1(d)] with the
iodine being the sixfold-coordinated atom. The occurrence of
these longer I---O contacts and the trans geometry found in
the O—I---O moieties was commented on by Alcock in his
classic review on secondary interactions in inorganic
compounds (Alcock, 1972). In this review he listed many
interactions which have subsequently been recognized as
halogen bonds (Metrangolo et al., 2005). At the time of
Alcock’s review it was believed that the donor atom in the
halogen bond donated a pair of electrons to the o* anti-
bonding orbital of the acceptor molecule in line with the then
current view of the bonding in charge transfer complexes
(Mulliken, 1952). In contrast the current view of bonding in

o1
NB,
D3 D4

o1

Figure 1

Structures of (a) molecular ions, (b) hydrogen bonds, (c) secondary
interactions and (d) pseudo-perovskite structure in ND,IO;. (e)
Relationship of molecular ions with respect to the unit cell. Hydrogen
bonds are indicated by dotted blue lines, halogen bonds by dashed orange
lines.

these (halogen-bonded) complexes (which is most widely
accepted) focuses on the Coulombic interaction between a
region of negative potential situated on the donor and a region
of positive potential on the halogen, the so-called o-hole
(Brinck et al., 1992; Politzer & Murray, 2013; Clark et al., 2007).
The o-hole on the halogen lies on the axis which is an
extension of the bond between the halogen and the atom to
which it is bonded. This model when modified to take account
of polarization and dispersion effects (Politzer & Murray,
2013; Politzer et al., 2012) has become the standard description
of halogen bonding in the vast majority of such complexes
(Cavallo et al., 2016). Complexes involving halogen bonds
have not only been investigated because of the basic questions
of bonding in these complexes but also because of their role in
fields as diverse as supramolecular chemistry (Bertani et al.,
2010; Rissanen, 2008), liquid crystals (Nguyen et al., 2004; Cho
et al., 2013; McAllister et al., 2013) and biological systems
(Auffinger et al., 2004; Scholfield et al., 2013). In biological
systems there is also the possibility of the occurrence of
additional (C—H- - -X) interactions which may be of impor-
tance in controlling the orientation of a substrate molecule at
an active site (Lu et al., 2009). We have also shown using
neutron powder diffraction that such weak additional
hydrogen bond interactions do occur in several simple non-
biological systems (Jones et al., 2013, Marshall et al., 2017,
2018) and can be responsible for properties such as colossal
thermal expansion (Jones et al., 2014). In NH4IOj; there is the
possibility of competition between both N—H---O and O—
I---O bonds controlling the orientation of the primary 103~
units with consequent effects on macroscopic properties.

As we have noted at the outset, ammonium iodate has
drawn interest because of its ferroelectric, pyroelectric,
electro-optical and ferroelastic properties. One ferroelectric
transition is well documented and occurs at 368 K at ambient
pressure (Viswanathan & Salje, 1975), for which it was shown
that in the immediate pre- and post-transition region there
were a series of subtle changes in the structure. In the pre-
transition region, it was observed that a contraction occurred
along the polar b axis. Later work showed that this was
accompanied by a simplification of the vibrational spectrum in
the N—H region to give a spectrum consistent with a tetra-
hedral ion in the high-temperature paraelectric phase (Bara-
bash et al, 1999). In the post-transition region there is a
further change to give a cubic unit cell at 393 K (Viswanathan
& Salje, 1975). A second transition has also been suggested at
103 K (Salje, 1974) and a recent study reporting X-ray
diffraction and dielectric permittivity results appears to
confirm this (Kader et al., 2013).

Furthermore, it is well known that hydrogen bonding can
play a key role in determining the ferroelectric and related
properties in both inorganic and organic systems. The proto-
typical system in the case of inorganic compounds is potassium
dihydrogen phosphate (KH,PO,) (Busch & Scherrer, 1935),
which has been extensively studied, both as a function of
temperature and pressure using both X-ray (Endo et al., 1989;
Kobayshi er al., 1995; Cai & Katrusiak, 2013) and neutron
diffraction (Umebayashi et al, 1967; Tibballs et al, 1982)
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techniques. The N—H. - -O systems have also been extensively
studied both in inorganic NH,H,PO, (Lasave et al, 2007,
Péres et al., 1997) and in organic systems (Olejniczak et al.,
2013; Zhang et al., 2010), under ambient and non-ambient
conditions.

While the structural changes that occur during the high-
temperature (368 K) phase transition of ND,IO; have been
extensively studied by a wide range of experimental methods
(Viswanathan & Salje, 1975; Barabash et al., 1999; Barabash,
1999; Oka et al., 1976; Bergman et al., 1969), much less
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Figure 2

(a) Fitted neutron powder diffraction data from ND,IO; at 42K
collected in the Polaris backscattering detector bank: (a) (20) = 147°,
magnified region x 2; (b) (26) = 92°, magnified region x 7.5; (c) (20) =
52°, magnified region X 4.8. Black crosses = observed data points; red line
= calculated fit to data; blue line = difference (obs—calc); green line =
calculated background; vertical pink lines = reflection position markers.
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Figure 3

(a) Variation in a with temperature, (b) variation in b with temperature,

(c) variation in ¢ with temperature and (d) variation in unit-cell volume

(V) with temperature. In each view the error bars are smaller than the
symbols.
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attention has been devoted to the low temperature (~103 K
transition (Salje, 1974; Kader et al., 2013), though line width
studies of the proton NMR spectra indicated that at around
100 K there was a second moment transition (Richards &
Schaefer, 1961). It was our aim in this work to establish at an
atomic level the nature of the low temperature phase transi-
tion, and how this is related to possible changes in both the
hydrogen and the halogen bonding within this compound. In
order to obtain accurate positions of light atoms (deuterium
and oxygen) in the presence of the heavy iodine atoms, we
have carried out studies using neutron diffraction on powder
samples, making use of the comparable scattering lengths of
iodine (b = 5.28 fm), nitrogen (b = 9.36 fm), oxygen (b =
5.803 fm), and deuterium (b = 6.671 fm).

2. Experimental

A sample of deuterated ammonium iodate was prepared by
repeatedly exchanging ammonium iodate dissolved in
deuterium oxide, followed by removal of solvent using a rotary
evaporator attached to a diaphragm pump. Exchange was
confirmed by use of infrared spectroscopy and also by the lack
of any large incoherent background scattering in the neutron
powder diffraction patterns which would have been observed
in the presence of any significant quantity of residual hydro-
genous material.

Time-of-flight neutron powder diffraction data were
collected on the medium-resolution powder diffractometer
POLARIS at the ISIS facility Rutherford Appleton Labora-

tory, UK. Deuterated ammonium iodate was loaded into a
6 mm-diameter thin-walled vanadium sample can which was
placed in a helium flow cryostat and data sets collected at
42K (300 pA h proton beam current to the ISIS target,
equivalent to ~2 h neutron beamtime) and then from 10 K to
90 K in 10 K steps; 95 K to 120 K in 5 K steps; and 130 K to
290K in 10K steps (all for 150 pA h, equivalent to ~1 h).
Equilibration times between data sets varied from 6 min (5 K
steps) to 10 min (10 K steps). Structure refinement was carried
out using the Rietveld method (Rietveld, 1969; van Laar &
Schenk, 2018) in space group Pc2;n [consistent with the non-
standard setting of space group Pna2, used in the original
study by Keve et al. (1971)] using the GSAS (Larson & Von
Dreele, 2000) suite of programs through the EXPGUI
graphical interface (Toby, 2001). For refinement of the struc-
ture at 4.2 K atomic coordinates for the non-hydrogen atoms
and unit-cell dimensions were taken from the literature (Keve
etal.,1971), and difference Fourier maps calculated in order to
locate the deuterium atoms. For each successive higher-
temperature data set, starting structural and profile para-
meters were taken from the results of the previous lower
temperature structure refinement. The final fit to the data
collected at 4.2 K for selected Polaris detector banks is shown
in Fig. 2. The variation of unit-cell parameters is shown in
Fig. 3, and selected interatomic contacts and angles as a
function of temperature are shown in Fig. 4, and in tabular
form in full in the supplementary data. The evolution of the
diffraction patterns over the temperature range 90-120 K is
given in Fig. 5. Thermal expansion coefficients for the linear
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(a) Variation in the primary bond lengths in the IO;™ ion as a function of temperature. (b) Variation in the I. - -O secondary contacts as a function of
temperature. (c¢) Variation in D- - -O as a function of temperature. (d) Variation of N—D bonds lengths as a function of temperature. (¢) Variation in N—
D---O angle as a function of temperature. (f) Variation of D—N—D bond angles as a function of temperature.
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portions of the lattice parameters were calculated used
PAScal (Cliffe & Goodwin, 2012), and the expansivity indi-
catrix is shown in Fig. 6.

Examination of the changes in the lattice parameters shows
a smooth increase in the a and ¢ axes as the sample is heated,
with the rate of change increasing as the temperature rises. By
contrast for the b axis, the graph shows a distinct sigmoidal
shape, with expansion appearing to stop at about 270 K; with
this axis possibly even contracting at temperatures above this.

The data in Fig. 3 shows fits to a(7T) = a, + k/[exp(E/T)—1],
where a, is lattice parameter at 0 K, E is Einstein temperature,
k is fitting constant that subsumes the effective bulk modulus
and the effective Gruneisen constant (dashed red line in

Normalized intensity

Zd—spacing (A)

Figure 5
Neutron powder diffraction patterns in the temperature range 90-120 K.
Lowest plot is at 90 K.
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Figure 6
Expansivity indicatrix for linear portion of expansion (150-250 K).

Fig. 3). The effect of modifying this model, by adding an
additional term {i.e a(T) = ag + k/[exp(E/T)—1] + ky/[exp(E,/
T)—1]}, is shown as the full blue lines. The fits assume that the
lattice parameters behave in the same way, and for simplicity,
the internal energy function is that of an Einstein oscillator
(delta function in the phonon density of states). The b axis (as
commented on previously) is quite clearly different and a
single Einstein expression would not fit these data (hence no
red line fit). The two-term model, however, fits acceptably well
but has k, < 0 (i.e a negative Gruneisen constant) which is
clearly necessary to take account of the negative linear
thermal expansion. For this to occur at the temperature it
does, means that FE, is very large with respect to E;. From
these fits to the lattice parameters we conclude that these show
no obvious premonitory behaviour for the low temperature
transition. Further confirmatory evidence for the absence of a
gross structural change can be seen in that there are no
obvious changes in the diffraction pattern in the range 90—
120 K (Fig. 5).

3. Discussion

For the linear portions of the graphs (100-250 K), calculation
of the expansion coefficients gives values of «,, o, o, [30.8 (2),
10.9 (3), 39.6 (6) MK ™']. A contraction of the b axis (negative
thermal expansion) has been previously reported in the
temperature region which precedes the 368 K phase transition
(Viswanathan & Salje, 1975). Such a contraction at a ferro-
electric transition is not unexpected and has been previously
seen* for example in PbTiO; and related materials with the
perovskite structure (Rossetti et al., 1998; Glazer & Mabud,
1978; Agrawal et al, 1987, 1988), and has been previously
commented on in reviews on negative thermal expansion
(Evans, 1999), and is associated with the coordination around
the sixfold coordinated metal ion becoming more regular. This
does not appear to the case in ND,IO; where instead the
differences between the primary and secondary contacts in the
IO;™ ion are increasing with temperature, although both the
primary and secondary bond lengths become slightly more
uniform. The lattice parameters that we determine are in good
agreement with those obtained in two of the early studies
(Keve et al, 1971; Viswanathan & Salje, 1975). The small
differences may be the result of deuteration which is a well
known effect in hydrogen-bonded systems (Robertson &
Ubbelohde, 1939; Ubbelohde & Woodward, 1942; Jeffrey,
1997), but differ markedly from those obtained in a more
recent study (Abdel-Kader et al, 2013), where the lattice
parameters reported at 300 K were a = 6.421 (17), 8.875 (8)
and 6.251 (6) A compared with our results at 295 K.

With regard to the interatomic contacts in this compound
we will first examine the three hydrogen bonds that are
weakest at ambient temperature. As the temperature is raised
two of these interactions (N—D1---O1 and N—D3-.-03)
show a marked increase in the D---O distances above 110 K
with one of these D3.--0O3 being accompanied by increasing
linearity of the N—D3---03 angle. (See comment on lattice
parameters mentioned above.) A similar but less pronounced
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trend is also observed for the weakest hydrogen bond (N—
D4---03). Finally, it can be seen that the strongest (N—
D2---02) hydrogen bond shows only small changes in the
N..-O, D---O distances and the N—D---O angle with
temperature, implying that the strength of this hydrogen bond
does not appreciably change with temperature. Thus it seems
likely that the changes previously reported to occur at 103 K
are the result of the locking in of the hydrogen bonds below
this temperature. These changes in the hydrogen bonding are
also seen in the changes in the N—D bond lengths as a
function of temperature. Here it can be clearly seen that N—
D3 becomes significantly shorter in length as the hydrogen
bond in which this atom is involved decreases in strength with
increasing temperature. We believe that this is a genuine effect
rather than effects associated with libration because the
deuterium atoms whose changes in hydrogen bonding are not
as dramatic, Figs. 4(d), 4(e) and 4(f) do not appear to show this
effect.

The changes caused by temperature on the O—I---O
moieties is far less pronounced. Whilst there is a decrease in
the primary I—O bond lengths on raising the temperature
[Fig. 4(a)] it is much smaller than the changes observed in the
secondary I- - -O interactions. There is a small increase in the
I- - -O distances [Fig. 4(b)] from about 77.5% to 78.4% of the
van der Waals radii. This by itself does not preclude a charge
transfer model as the changes in the bond order in such a
system are not linear (Biirgi, 1975; Dunitz, 1995). However, a
more likely cause of the shortening of the primary covalent
bonds at higher temperatures is due to the librational motion
of the IO5™ ions at higher temperatures. Unfortunately, we
were unable to obtain reliable anisotropic atomic displace-
ment parameters from the powder diffraction data (unsur-
prisingly) and thus we were unable to test this hypothesis,
which in practice could be determined by a full single crystal
analysis.

We have performed a bond valence calculation on the
system (Brown & Altermatt, 1985). Whilst the sums at the
oxygen atoms (when taking account of additional hydrogen
bonding) are plausible, the valence sum at iodine is approxi-
mately +5.5, significantly higher than the formal oxidation
state of +5. Fig. 7 shows the bond valence sums for the trans
O—1I- - -O units. The deficiency in the bond valence sum of 2 at
oxygen is made up by the contribution of the hydrogen bonds.
It can be seen that for all the units there is in general an
increase in the bond valence sum with increasing temperature,
and what is striking about the graph is that for O3—I..-03
there is a marked increase in the valence sum as the
temperature is raised, starting at about 250 K. Looking at
Fig. 1(e) we see that this unit is aligned almost parallel to b. We
previously noted that the thermal expansion of b starts to
decrease rapidly at this temperature and is known in the
hydrogenous form to produce negative thermal expansion as
the temperature is increased further (Viswanathan & Salje,
1975). Thus the decrease in hydrogen bonding (note O3 is
acting as an acceptor to two hydrogen bonds) with increasing
temperature leads to incipient regularization of the IO;
pyramids with concomitant negative thermal expansion in the

direction of regularization. This can also be seen by the
marked decrease in the I—O3 primary bond length above
approximately 250 K [Fig. 4(a)]. Further evidence that it is the
loss of hydrogen bonding and not regularization of the pyra-
midal IO5;™ ions in themselves that is responsible for this
phenomenon is given by it appearing to start at a lower
temperature in the deuterated form that we studied compared
to the protonated form (Viswanathan & Salje, 1975), where
contraction is known to start no lower in temperature than
293 K. This is because hydrogen bonding involving deuterium
was shown to be weaker than that involving hydrogen, in
imidazole at around 353 K (Grimison, 1963), and more
recently it has been shown (Scheiner & Cuma, 1996) that
hydrogen bonds irrespective of their nature (predominantly
covalent or ionic) involving deuterium are weaker than those
involving hydrogen at higher temperatures. Thus we would
expect the loss of hydrogen bonding to occur at a lower
temperature for the deuterated compound. Thus from our
limited data it appears that the hydrogen bonds are involved
in inhibiting regularization of the 10; . A further effect of
hydrogen bonding is also seen if we look at the thermal
expansion in the ac plane. Here it can be seen that the two
hydrogen bonds involving O3 lie mainly in a plane approxi-
mately parallel to it [Fig. 1(e)]. Since the change in hydrogen
bonding with temperature is more pronounced for the
hydrogen bonds in this plane, and that involving D3 is more
pronounced than that for D4, we would expect the expansion
to be larger for that involving D3 which is aligned with c,
followed by that involving D4, which is aligned ~15° away
from a direction, and this is reflected in the magnitudes of «,,
ay, o [30.8 (2), 10.9 (2), 39.6 (6) MK '].

As we commented on in the Introduction, two previous
studies on the dielectric properties of these materials have
been carried out (Salje, 1974; Abdel-Kader et al., 2013). The
earlier study does not permit detailed interpretation as neither
dielectric loss data nor the frequency used to determine the
permittivity are given, consequently all that can be deduced is
that there appears to be a peak in the permittivity at 100 K.
The more recent study show a much smaller frequency
dependent value for ¢&'. Frequency dependency was also
observed for ¢’, with &” increasing as the frequency is
increased, indicating that there may be a degree of relaxation
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Bond valence sums for trans O—1I. - -O moieties versus temperature.
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but only at very high frequencies. In addition, the D-E loops
do not show any saturation. Taking these results together
indicates that the material at low temperature does not display
ferroelectricity but rather is a ‘lossy’ dielectric which may be
associated with the reduced motion of the ammonium ions at
low temperature. Further evidence for this can be seen in a
proton spin relaxation NMR study of this material between
100 and 425K (Shenoy & Ramakrishna, 1983), which
concluded that their results were ‘typical of a hindered solid
with motions freezing around 77 K’. Our results suggest that
this freezing occurs rather at 100 K and is responsible for the
observed changes in dielectric behaviour.

4. Conclusion

In conclusion we have established the following points. Firstly
the changes in the dielectric properties of the material at
103 K are not the results of a structural phase transition
involving either changes in symmetry or large changes in the
size of the unit cell, but rather a maximization of the hydrogen
bonding on cooling of the three hydrogen bonds that are
weakest at room temperature. Secondly the uniaxial contrac-
tion of the b axis prior to the phase transition at 355 K starts to
occur at temperatures below 273 K in the deuterated form and
is caused by the reduction in the extent of hydrogen bonding
to the oxygen atoms involved in the O—1I---O unit which is
oriented approximately parallel to this axis. This lower
temperature compared to the protonated form is the result of
the lower strength of hydrogen bonds involving deuterons
compared to protons. Finally, both the magnitude and changes
in the magnitude of the thermal expansion coefficients are
primarily driven by the changes in hydrogen bonding.
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