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Wireless sensor networks (WSNs) are a fundamental building block of many pervasive applications. Nevertheless the use of such
technology raises new challenges regarding the development of reliable and fault-tolerant systems. One of the most critical issues
is the detection of corrupted readings amidst the huge amount of gathered sensory data. Indeed, such readings could significantly
affect the quality of service (QoS) of the WSN, and thus it is highly desirable to automatically discard them. This issue is usually
addressed through “fault detection” algorithms that classify readings by exploiting temporal and spatial correlations. Generally,
these algorithms do not take into account QoS requirements other than the classification accuracy. This paper proposes a fully
distributed algorithm for detecting data faults, taking into account the response time besides the classification accuracy. We
adopt the Bayesian networks to perform classification of readings and the Pareto optimization to allow QoS requirements to be
simultaneously satisfied. Our approach has been tested on a synthetic dataset in order to evaluate its behavior with respect to
different values of QoS constraints. The experimental evaluation produced good results, showing that our algorithm is able to
greatly reduce the response time at the cost of a small reduction in classification accuracy.

1. Introduction

Wireless sensor networks (WSNs) are a pervasive computing
technology that is experiencing broad diffusion and use in
many ICT applications both in the industrial and research
fields [1]. The typical WSN is composed of several resource-
constrained devices (sensor nodes) capable of sensing envi-
ronmental quantities, such as light intensity, air humidity, and
temperature; even though their nature allows for significant
flexibility, thanks to the possibility of performing small on-
board computations and of cooperating with each other, such
nodes are also prone to faults of different natures that could
weaken their effectiveness as a pervasive sensory tool.

Malfunctions may be due to several causes, such as harsh
environmental conditions, resulting into hardware failures;
power outages, producing incorrect sensory readings or
possibly altering communications; or sensor miscalibrations,
having an effect on the ADC transducer; consequently, they
may be classified according to the architectural level they
affect the most, that is, Network level, Node level, or Sensor
level [2]. Network faults include loss of connectivity, routing
loops, and congestion, and they affect the exchange of data

among nodes, so they are perceived as link failures. Node
faults are malfunctions of the main components of the sensor
node, that is, radio, CPU, battery, and memory; they include
unexpected resettings,meaningless values of sensed data, and
poor quality of transmissions, and they are perceived as link
failures and data failures. Sensor faults only affect the quality
of sensed data and are always perceived as data failures.

In order to understand the factors that may negatively
affect the QoS provided by a WSN, it is important to capture
the root cause of a fault; this often represents a challenge for
the researcher and requires the adoption of artificial intelli-
gence techniques [3, 4]. Research has traditionally focused
on the task of fault detection, and in this work we specifically
address data faults, which occur when gathered data does not
provide a reliable representation of the monitored physical
phenomenon; in this case, transmission and processing of
these data clearly constitute a waste of energy and time and
the overall QoS gets worse. On the contrary, early detection
of data faults helps reducing the amount of sensory data
to be processed by high-level systems, and in-network fault
detection is in fact a crucial functionality for many WSN-
based applications [5].
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A high accuracy of the fault detection algorithm con-
tributes to address the reliability requirements ofWSN appli-
cations; however, this is not the only relevant requirement
of such a type of pervasive system; other significant require-
ments may be a low communication latency, a long WSN
lifetime obtained through energy consumption reduction,
and so on.

To the best of our knowledge, works proposed in the
literature coping with the fault detection problem neglect
other QoS requirements. Here we propose QoS-aware fault
detection (QAFD) implemented as a distributed in-network
algorithm, that has the aim of not only maximizing the
accuracy of the fault detection but also minimizing the
response time for such a task; we address the issue of com-
bining these two different and contrasting goals by exploiting
the constrained Pareto optimization. Each node is left free
to decide whether to cooperate with its nearby nodes by
exchanging its readings with them; the cooperation increases
the accuracy of the detection; instead, the noncooperation
reduces the response time. The fault detection is performed
by running probabilistic inference on a Bayesian network
distributed over the whole WSN; the distributed architecture
makes the system highly reactive to changes in themonitored
phenomena and allows the reduction of the computational
effort required to the single node. The Bayesian network
structure is also adapted at runtime to reflect the choice of
cooperating or being not performed by sensor nodes; the
more complex the structure, the higher the classification
accuracy of theWSN; the simpler the structure, the lower the
response time.

2. Related Works

Fault detection is a widely studied topic in WSN research,
but its correct definition differs from that which is generally
adopted in other fields. According to the classical point of
view in statistics and data mining, a data fault corresponds
to a data pattern not complying with a well-defined normal
behavior [6].This definition does not apply toWSNs, because
in such context we are usually unaware of the ground truth;
thus, the data fault definition can be modified as a “data
pattern not conforming to the expected behavior of the
monitored quantity.”

Many works in the WSN literature extend such a def-
inition by providing a complete taxonomy of data faults
occurring in wireless sensor nodes.The authors of [2] classify
data faults as temporal or spatial anomalies; the former
class includes high variability, frozen outputs, and out-of-
bound errors; the latter class includes calibration errors and
a burst of values that differs from that of the average in the
neighborhood. Temporal anomalies can be detected locally
by considering temporal series of data gathered by a single
node, while the detection of spatial anomalies mandatorily
requires the comparison of a single sensory measurement
with data gathered by surrounding nodes. Also the authors
of [7] propose a similar classification of data faults by
distinguishing among short (single or multiple values of out-
of-bound readings), noise (data with high variance), and

constant (frozen output); for the purpose of our work, we
adopted the latter taxonomy.

Fault detection algorithms are usually classified with
respect to two different perspectives: architectural and
methodological [2]. The architectural perspective distin-
guishes two types of approaches: Centralized [8, 9] and
Distributed [10, 11]. In a centralized architecture, data flow
from sensor nodes to the base station that performs fault
detection by analyzing the whole amount of received data;
this approach is limited by the resources of the base station
that constitute a single point of failure. Moreover, faults
are discovered only after their transmission, thus causing a
waste of energy and time inside the WSN. In a distributed
architecture, sensor nodesmonitor their status and label their
readings as corrupted or not; if a reading is classified as
corrupted, it could be locally discarded. The classification
accuracy of such approaches is usually lower than that of
the centralized ones; nevertheless, the fault detection occurs
earlier with respect to centralized approaches, since it is not
necessary to wait for the complete data transmission toward
the base station.

From a methodological point of view, it is possible to
distinguish between Threshold-based approaches [11, 12] and
Classification-based approaches [13–15].The former class uses
thresholds to perform fault detection; just as an example,
consider the majority voting schemes and the cluster-based
method, where thresholds are used to separate readings
in “good” and “corrupted.” Such approaches are generally
not much expensive in terms of computational and time
resources, but the classification accuracy is highly dependent
from the chosen threshold values; thus, performances are
quite unpredictable unless an extensive empirical tuning is
performed in order to find the optimal threshold values.
The latter class avoids the use of thresholds; thus, no human
intervention is required to correctly tune the classifier. As an
example, in these categories we can find Bayesian Networks
and Neural Networks approaches; in both cases, during an
offline learning phase, a model is automatically learnt from
raw data, while an online algorithm exploits the learnt
model in order to perform fault detection. Such methods are
computationally and time expensive, but their classification
accuracy is predictable, since it is determined by the learning
phase.

A great weakness for each of the described approaches is
that they present a fixed computational complexity, strictly
dependent from the adopted method; moreover, the compu-
tational complexity highly affects the ideal upper bound of
classification accuracy. As a consequence, in noisy scenarios
or when achieving a high classification accuracy is very
important, it is suitable to adopt a more precise approach,
even if it is more resource demanding. On the contrary, in
less dynamic scenarios or when the focus is on the response
time, it is more convenient to adopt a less expensive approach
even if the classification accuracy is lower. To the best of
our knowledge, none of the works presented in the literature
seems suitable to be adopted in every type of scenario,
and to support a tunable ranking of QoS requirements (for
instance, a real-time scenario may require a priority on
response time rather than on classification accuracy). None
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of them is able to tune the classification accuracy and the
computational complexity against the response time. In order
to design a data-fault detection algorithm that is able to
fuse different QoS requirements, we formulated such a task
as a multiobjective problem and we adopted the Pareto
optimization in order to deal with different and typically
contrasting objective functions. The use of that theoretical
framework is not totally new in the WSN research field;
indeed, it has been adopted for many different purposes. The
authors of [16] define a set of metrics for evaluating network
performanceswith respect to reliability, lifetime, and coverage;
the proposed experimental evaluation showed that the set
of all possible solutions can be easily clustered and one of
the identified clusters is the Pareto optimal with respect to
the considered qualitative dimensions. Finally, the authors of
[17] cope with a multiobjective problem in an heterogeneous
sensor network, and in that case the goal is to find the
trade-off between the number of active sensor nodes and the
network energy consumption.

3. Proposed Approach

We propose a distributed algorithm for detecting corrupted
sensory readings by means of a Bayesian network distributed
over sensor nodes. In such inference overlay network, the
belief about the correctness of sensory readings is updated
thanks to communications among nodes. The use of a large
Bayesian network allows for obtaining a high classification
accuracy, but, at the same time, it might cause a high
response time; for such a reason, our systemuses the Bayesian
networks with dynamic structure in order to be able to adapt
them according to the characteristics of the specific WSN
deployment field. This adaptivity is obtained by allowing
each sensor node to choose the set of neighbor nodes to
cooperate with and possibly also to choose to not cooperate
at all. In the latter case, the sensor node tries to detect its
own corrupted sensory readings by exploiting only temporal
correlation among local measurements. On the contrary, if
a node chooses to cooperate with its neighborhood, shared
information is used as an additional evidence so that each
node can also exploit spatial correlation for classifying its
own readings. These independent and dynamic decisions
drive the fault detection system toward the configuration that
represents the best trade-off among all possibly contrasting
application goals, such as high classification accuracy and
low response time.Our distributedQoS-aware fault detection
algorithm (QAFD) is composed of twomain building blocks:
a fault detection algorithm, based on the Bayesian networks,
and a QoS-aware optimization algorithm, periodically affect-
ing the structure of the Bayesian networks. It is worth noting
that both the fault detection and the QoS-aware optimization
are locally performed in every sensor node. Figure 1 shows the
interaction between these two logical blocks within a single
sensor node. The fault detection block takes as an input the
sensory reading to be classified and the set of neighbor nodes
to cooperate with. Such block, besides classifying the latest
sensory reading, produces a set of QoS indices, namely, the
classification accuracy and the response time. Such indices

Cooperating node list
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Fault
detection

0
1

QoS metrics list

Response time
Accuracy

QoS-aware
optimizationReading

...
...

Figure 1: Block diagram of QAFD algorithm.

are then used by the QoS-aware optimization block for
modifying the cooperating node list for the next step.

Figure 2 shows the dynamic arrangement of the overlay
communication graph performed by the QAFD, in a simple
running example. Let us suppose that at time 𝑡 = 0 the
overlay cooperation network includes all the sensor nodes
in a single group, thus producing a very high classification
accuracy. When the first optimization occurs (𝑡 = 𝑇), node
2 detects that there is some margin for reducing response
time; thus, it chooses to disconnect from node 1 and it
consequently modifies its cooperating node list CN(2) =

{4, 5}. After𝑇more steps, a new optimization occurs; because
the classification accuracy is still sufficiently high, the node 2
chooses to disconnect also from node 4; thus, its cooperating
node list becomes CN(2) = {5}. The QAFD algorithm
performs analogously to an online clustering, since the
update of the cooperating node lists modifies the overlay
communication graph. In order to ensure the convergence of
the fault detection, we will assume for the rest of the paper
that the underlying communication network is arranged as a
tree so that every cluster is still tree arranged.

3.1. Fault Detection. Fault detection is solved using dis-
tributed inference over a Bayesian network built on top of
the cooperation network.Thedistributed inference algorithm
takes as an input a set of readings gathered by sensor nodes
and provides the classification of readings into corrupted
and uncorrupted ones. A first convergecast phase builds
an initial estimate of the belief about reading classification,
and a further broadcast phase refines such belief by adding
information gathered over the whole cooperation network.

The bayesian networks are represented by a directed
acyclic graph made up of random variables 𝑥

𝑖
, connected by

directed links representing causal relations among variables.
This model allows to take into account the probabilistic
dependency between hidden random variables and observ-
able random variables. The directed acyclic graph structure
allows a simple computing of the likelihood function of the
considered hidden variables. If pa(𝑥

𝑖
) denotes the set of

parent variables for the random variable 𝑥
𝑖
, then the joint

probability of the Bayesian network is

𝑝 (𝑥
1
, . . . , 𝑥

𝑛
) = ∏

𝑖

𝑝 (𝑥
𝑖
| pa (𝑥

𝑖
)) . (1)

In our system, each sensor node implements a small
Bayesian network composed of one hidden variable 𝑐 repre-
senting the (estimated) class of the current sensory reading
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Figure 2: The dynamic arrangement of the overlay communication graph for five sensor nodes at different time instants.
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Figure 3:TheNaive Bayes classifier, for a single node, including only
local observed variables (a), and two Naive Bayes classifiers linked
by shared observed variables (b).

and a set of observable variables representing the evidence
probabilistically deriving from the true value of 𝑐. Observable
variables can therefore be considered as features related to the
spatiotemporal correlations among readings.

Fault detection finds the combination of values for the
hidden variable of each node that maximizes its a posteri-
ori probability, given the evidence. We demonstrated, in a
previous work [18], that the maximum a posteriori (MAP)
approach is highly suitable to be implemented in WSNs,
since it avoids the use of fixed thresholds and it is not too
computationally expensive for sensor nodes.

Let 𝐿 = (𝑙
1
, . . . , 𝑙
𝑛
) be the set of local observed variables,

representing only the temporal correlation among the current
and the past readings of a single node. If a node does not
cooperate with its neighborhood, it can only exploit this
evidence, and the structure of its Bayesian network becomes
a Naive Bayes classifier [19], as shown in Figure 3(a).

Besides the local observed variables, the evidence vari-
ables include a set of shared observed variables, representing
the spatial correlations among readings. If 𝑖 and 𝑗 are two
cooperating nodes, then they share a set of variables 𝑆

𝑖,𝑗

that connect their two Naive Bayes classifiers by adding
causal links from their hidden variables. The set of variables
shared between two nodes 𝑖 and 𝑗 is a vectorial function of
their last readings. Figure 3(b) shows two sensor nodes that
linked their Naive Bayes classifiers through the use of shared
variables; for the sake of simplicity, local and shared variables
are grouped into the arrays of variables 𝐿 and 𝑆.

There is a mapping between the current communication
graph and thewhole Bayesian network.TheBayesian network

can be obtained from the communication graph by replacing
each sensor node with a Naive Bayes structure and each
communication link (𝑖, 𝑗) with a shared variable 𝑆

𝑖,𝑗
and

by adding two causal links from hidden variables 𝑐
𝑖
and

𝑐
𝑗
to the shared observable variable 𝑆

𝑖,𝑗
. Figure 4 shows

how the whole Bayesian network evolves in the previously
considered running example.Dark shaded ovals represent the
Naive Bayes classifiers implemented by each node, while light
shaded ovals represent cooperating clusters. It is possible to
notice that every pair of nodes belonging to the same cluster
is connected through the shared variables set.

The definition of the adopted fault detection method is
completed by specifying the hidden and observed variables
and method of the MAP problem solving.

Definition 1. The hidden variable 𝑐 takes values in the set
𝐶 = {short, noise, constant, correct}.

According to the taxonomy proposed in [7] we define
a short fault as a reading whose value is out of range
for the monitored physical quantity, a noise fault as a
burst of readings whose variance is higher than that of the
environmental one, and finally a constant fault as a burst of
readings that shows almost zero variations or, in other terms,
that has a variance lower than that of the environmental one.

Definition 2. Local observed variables are represented by
a vectorial function of the last 𝐾 readings of a sin-
gle node, and they are defined as 𝐿 = {𝑙

1
, 𝑙
2
, 𝑙
3
} =

{inner-gradient, repetitions, variance} as follows:

𝑙
1
= 𝑟
𝑡
− 𝑟
𝑡−1
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𝑙
2
=

𝑡−𝐾+1

∑

𝑘=𝑡
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𝑟
𝑘
− 𝑟
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< 𝜃] ,

𝑙
3
=

𝑡

∑
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(𝑟
𝑘
)
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𝐾
− (

𝑡

∑

𝑘=𝑡−𝐾+1

𝑟
𝑘

𝐾
)

2

,

(2)

where 𝑟
𝑡
is the reading at time 𝑡; 𝑙

1
is the first derivative of 𝑟

𝑡
; 𝑙
2

is the number of consecutive readings, in a window of length
𝐾, that falls within a specific range 𝜃 and I[⋅] is the indicator
function (which is equal to 1 if the argument is true and 0
otherwise); 𝑙

3
is the variance of the last 𝐾 readings.
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Figure 4: Evolution of the Bayesian network for a simple network composed of five sensor nodes.

Although the previous set is not exhaustive and other
features could be added to improve the classification accu-
racy, we found it is sufficient to recognize many temporal
correlations among readings.

Definition 3. Shared observed variables are represented by
𝑆
𝑖,𝑗
= {𝑠
𝑖,𝑗
} = {outer-gradient} as follows:

𝑠
𝑖,𝑗
= 𝑟
𝑖

𝑡
− 𝑟
𝑗

𝑡
. (3)

The shared variables set 𝑆
𝑖,𝑗

is, in principle, a vectorial
function of the last 𝐾 readings of sensor nodes 𝑖 and 𝑗, but
in practice we adopt a single function because it is sufficient
to recognize spatial correlations; 𝑠

𝑖,𝑗
is simply the difference

between the last reading sensed at node 𝑖 and node 𝑗.

Definition 4. The maximum a posteriori problem corre-
sponds to finding the solution array, 𝑐∗ = (𝑐

∗

1
, . . . , 𝑐

∗

𝑛
), that

maximizes the joint probability of the Bayesian network as
follows:

𝑝 (𝑐
1
, . . . , 𝑐

𝑛
| 𝐿
1
, . . . , 𝐿

𝑛
, 𝑆
1,2
, . . . , 𝑆

𝑛−1,𝑛
)

= ∏

𝑖

𝑗∈CN(𝑖)

𝑝 (𝐿
𝑖
| 𝑐
𝑖
) 𝑝 (𝑆
𝑖,𝑗
| 𝑐
𝑖
, 𝑐
𝑗
) 𝑝 (𝑐
𝑖
) , (4)

where (𝑖, 𝑗) are pairs of cooperating nodes and CN(i) is the
cooperating node list of node 𝑖. Equation (4) is obtained
by applying (1) to the particular form of the Bayesian
network induced by QAFD algorithm; it represents the joint
probability of (𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
) of a single cluster of nodes, and

with slight variations it could be extended for thewholeWSN.

In order to solve this problem,we adapted thewell-known
“max-product” inference algorithm [20] to the Bayesian
networks. The pseudocode for the QAFD fault detection
algorithm is shown in Algorithm 1. It includes two main
phases: (i) a convergecast phase, estimating the probability
distribution over all possible classes for each sensed reading,
and (ii) a broadcast phase, determining the final class label-
ing. Since the communication network is arranged as a tree,
we assume that any sensor node is aware of being a leaf, a
root, or an intermediate node. In order to take into account
the latency of the algorithm, we also included a variable that

tracks the number of hops (between any node and the root of
the cluster) required for computing the class label.

The convergecast phase startswhenever fresh readings are
to be classified. Each sensor node of the cluster computes the
local features 𝐿

𝑖
as in (2) and the local belief Λ(𝑐

𝑖
) as follows:

Λ (𝑐
𝑖
) = 𝑝 (𝑐

𝑖
) 𝑝 (𝐿

𝑖
| 𝑐
𝑖
) . (5)

Such quantity represents the belief about the class of the
sensory reading at node 𝑖, only considering local evidence.
Successively, sensor nodes exchange their own readings with
their direct neighbors, so they can compute also shared
features as in (3).

Each node 𝑖, with the exception of root node, sends a
message to its parent 𝑗 containing the parent’s reading belief
computed as follows:

Φ(𝑐
𝑗
)
𝑖→ 𝑗

= max
𝑐𝑖

𝜙 (𝑐
𝑖
, 𝑐
𝑗
) . (6)

The matrix 𝜙(𝑐
𝑖
, 𝑐
𝑗
) represents the joint belief about the

classes of the readings of nodes 𝑖 and 𝑗; such quantity takes
into account local belief, shared features, and belief messages
received from children nodes as follows:

𝜙 (𝑐
𝑖
, 𝑐
𝑗
) = 𝑝 (𝑆

𝑖,𝑗
| 𝑐
𝑖
, 𝑐
𝑗
)Λ (𝑐
𝑖
) ∏

𝑧∈CN(𝑖)/𝑗
Φ(𝑐
𝑗
)
𝑧→ 𝑖

, (7)

where the product is replaced by 1 if 𝑖 has no children.
Root node 𝑟 terminates the convergecast phase and

computes its optimal class assignment as follows:

𝑐
∗

𝑟
= argmax

𝑐𝑟

Λ (𝑐
𝑟
) ∏

𝑧∈CN(𝑟)
Φ(𝑐
𝑟
)
𝑧→𝑟

. (8)

Then, the root node starts the broadcast phase, during
which optimal classes 𝑐∗ are propagated over the tree. Every
nonroot node 𝑖 receives the label 𝑐∗

𝑗
from its parent 𝑗 and

computes its own optimal class as follows:

𝑐
∗

𝑖
= argmax

𝑐𝑖

𝜙 (𝑐
𝑖
, 𝑐
∗

𝑗
) , (9)

and it then propagates such quantity to its children. This
phase ends at leaf nodes and produces the solution of the
MAP problem.
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Date: 𝑖, node id; CN, the cooperation network; 𝑅, the last𝑊 sensed readings.
Result: 𝑐∗, the optimal class label; 𝑝err the probability of error for the chosen label;

lat the latency (# of hops) experienced for computing 𝑐∗.
Convergecast
begin

Compute local features using (2);
Compute local belief using (5);
for 𝑗 ∈ CN do

Send the last reading 𝑙𝑎𝑠𝑡(𝑅) to 𝑗;
end
for 𝑗 ∈ CN do

Receive the last reading of 𝑗;
end
Compute shared features using (3);
if 𝑖 is a leaf node then

Compute the parent’s reading belief Φ(𝑐
𝑗
) using (6);

else
Receive Φ(𝑐

𝑖
) from children in CN;

Compute Φ(𝑐
𝑗
) using (6);

end
if 𝑖 is not a root node then

Send Φ(𝑐
𝑗
) to parent 𝑗;

else
Compute optimal class label 𝑐∗ using (8);

end
end
Broadcast
begin

if 𝑖 is the root node then
for 𝑗 ∈ CN do

Send 𝑐∗ as optimal class label;
Send 0 as latency;

end
else

Receive 𝑐∗ from parent node;
Receive latency lat from parent node;
Compute optimal class label 𝑐∗ using (9);
Compute 𝑝corr using (10);
Compute 𝑝err = 1 − 𝑝corr;
if 𝑖 is not a leaf then

for 𝑗 ∈ CN do
Send 𝑐∗ as optimal class label;
Send lat + 2 as latency;

end
end

end
end
Output
return 𝑐∗, 𝑝err, lat;

Algorithm 1: Fault detection algorithm.

The performance of the QAFD fault detection algorithm
can be evaluated through the probability of correct classifica-
tion, 𝑝𝑖corr, computed as follows:

𝑝
𝑖

corr = 𝜙 (𝑐
∗

𝑖
, 𝑐
∗

𝑗
) . (10)

It is also worth pointing out that the conditional prob-
ability tables, namely, 𝑝(𝐿

𝑖
| 𝑐
𝑖
) and 𝑝(𝑆

𝑖,𝑗
| 𝑐
𝑖
, 𝑐
𝑗
), and

the class priors 𝑝(𝑐
𝑖
) are computed by an off-line supervised

learning, based on sensor readings recorded during one day
and manually labeled through a simple frequentist approach.

3.2. QoS-Aware Optimization. The fault detection algorithm
is performed starting from a given structure of the communi-
cation network, defined in terms of clusters.The classification
accuracy and the response time highly depend on the size
of network clusters. In order to find the optimal cluster
structure, we propose a dynamic and distributed algorithm
that charges sensor nodes with determining neighbor nodes
to cooperate with, on the basis of QoS indices associated with
different configurations.Themain goal is to find the network
configuration representing the best trade-off among several
application-driven QoS goals and constraints.
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This QoS-aware optimization is performed through the
Pareto optimization that allows to considermultiple objective
functions, possibly contrasting and with noncomparable
units of measurement.

Our system can be seen as a complex system where each
agent interacts with the environment by taking decisions
𝑑 ∈ 𝐷 at each time step of their lifetime. Before taking
any decision, an agent can evaluate its goodness by means
of a set of QoS metrics 𝑚

𝑑
= (𝑞

1
, . . . , 𝑞

𝑛
). In order to

allow an agent to choose the better decision to be taken,
it is required to define an order relation over the space of
𝑚
𝑑
; the Pareto dominance is the order relation we chose

to adopt. Let 𝑚
𝑑1

and 𝑚
𝑑2

be the quality metrics arrays,
respectively, for the decisions 𝑑

1
and 𝑑

2
; then 𝑚

𝑑1
Pareto

dominates 𝑚
𝑑2

(𝑚
𝑑1

⪯ 𝑚
𝑑2
) if each component 𝑘 of 𝑚

𝑑1

is better than the corresponding component of 𝑚
𝑑2
. Such

definition, in a minimization problem, corresponds to the
following equation:

𝑚
𝑑1
⪯ 𝑚
𝑑2
⇐⇒ {∀𝑘 = 0, . . . , 𝑛 ⇒ 𝑚

𝑑1
(𝑘) ⩽ 𝑚𝑑2

(𝑘)} .

(11)

A Pareto optimal decision is defined as a decision that is not
dominated by any other decision as follows:

𝑑
∗
= {𝑑
𝑖
∈ 𝐷 : ∀𝑑

𝑗
∈ 𝐷, 𝑑

𝑗
̸= 𝑑
𝑖
⇒ 𝑚

𝑑𝑖
⪯ 𝑚
𝑑𝑗
} . (12)

The set of the Pareto optimal solutions constitutes the Pareto
optimal front.

In addition to multiple objective functions, a real appli-
cation may be characterized by a set of constraints about
QoS requirements. We take into account these constraints by
representing them as points in the QoS metric space; namely,
V = (V

1
, . . . , V

𝑛
). A decision 𝑑 is said to be admissible if and

only if its quality metric array 𝑚
𝑑
⪯ V. This further check

allows to eliminate possible Pareto optimal solutions that
break at least one QoS constraint.

In our approach, each sensor node 𝑖 is an agent of the
overall system (the WSN), and it has to periodically choose
the subset of neighbor nodes to cooperate with. If 𝑁(𝑖) is its
neighborhood set, then the output of the Pareto optimization
is the decision 𝑑

∗ that drives the cooperating node list,
CN(𝑖) ⊆ 𝑁(𝑖), to the combination corresponding to the
optimal value of the metrics array 𝑚

𝑑
∗ that also satisfies the

constraints array V.
The following of this section specifies all the components

of our QoS-aware optimization.

Definition 5. The decision 𝑑 for node 𝑖 is defined as a pair
of values (𝑎𝑐𝑡𝑖𝑜𝑛, 𝑗), where 𝑎𝑐𝑡𝑖𝑜𝑛 ∈ {connect, disconnect,
do-nothing}, and 𝑗 ∈ 𝑁(𝑖).

Each decision of the node 𝑖 corresponds to a single
atomic action affecting its cooperating node list, CN(𝑖).Three
actions are possible, namely: (i) connecting to a neighbor,
(ii) disconnecting from a neighbor, (iii) leaving the CN(𝑖)
unchanged. This latter decision is taken when the current
cooperating node list is Pareto optimal.

Definition 6. The QoS metrics vector corresponding to a
decision 𝑑 is defined as𝑚

𝑑
= (𝑞err, 𝑞lat) as follows:

𝑞err (𝑡) =
∑
𝑗∈CN(𝑖)∑

𝑡

�̃�=𝑡−𝑇+1
𝑝
𝑗

err (�̃�)

|CN (𝑖)| ⋅ 𝑇
;

𝑞lat (𝑡) =
{

{

{

max
𝑗∈CN(𝑖)

{lat𝑗 (𝑡) + 2} if |CN (𝑖)| > 0,

0 otherwise.

(13)

Such metrics are used for predicting the goodness of
each possible decision 𝑑. The first metric, 𝑞err, represents
the average classification error of the nodes belonging to the
chosen configuration of CN(𝑖) over a time window of length
𝑇; clearly, in order to compute such value, any node 𝑗 of the
cluster simply stores the values of 𝑝𝑗err for its last 𝑇 readings.

In order to define the second metric, it is necessary to
consider that the response time of the inference algorithm
is proportional to the number of hops between 𝑖 and the
furthest node in its cluster; in the worst case 𝑖 is a leaf of the
tree representing the cluster topology, so the response time
for node 𝑖 will be at most equal to the maximum value of
the response time (lat𝑗(𝑡)) for nodes in CN(𝑖), plus the two
messages used for broadcast and convergecast on the link of
𝑖.

The satisfiability of a decision is verified by checking that
the corresponding metrics vector is not dominated by the
constraints; that is (𝑞err, 𝑞lat) ⪯ (Verr, Vlat). Such constraints
are used as imposed upper bound for the values of the
QoS metrics, and they should be manually chosen by the
application programmer.

In summary, node 𝑖 evaluates the impact of changing its
cooperating node list by forecasting the values of the future
QoSmetrics for the decisions of connecting or disconnecting
from each node 𝑗 ∈ CN(𝑖). Resulting solutions are filtered
by cutting off all those that are not admissible with respect
to the specified constraints.The filtered solutions are ordered
making use of definition 11 and the optimal front is found.
If several solutions belong to the Pareto optimal front, a
random decision among them is selected. Finally, it is also
worth noting that it is possible that no admissible solutions
are found after filtering; this occurs whenever the Pareto
optimal front is placed beyond the constraints polyhedron.
To cope with this situation, the constraints are relaxed by
making all QoSmetrics unbounded and then letting theQoS-
aware optimization algorithm choose the Pareto optimal
solution that is considered as the “less unsatisfactory” one.
The pseudocode for the described optimization algorithm is
summarized in Algorithm 2.

Definition 7. Theconstraints array is defined as V = (Verr, Vlat).

Figure 5 shows, in our running example, the Pareto
optimization performed by the sensor node 2 at time 2𝑇
for the classification error and the response time. Node 2
can choose among four different decisions, on the basis of
its current cooperating list (CN(2) = {4, 5}); among such
decisions, 𝑑

1
is the Pareto optimal one because its QoS

metrics are lower than those of other decisions. It is also
worth noting that decisions are grouped into thePareto fronts;
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d1

d3

d4
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d1 Disconnect 4
d2 Do nothing
d3 Disconnect 5
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Figure 5: Example of a two-dimensional Pareto optimization; the x-axis represents the response time, while the y-axis is the classification
error.

Date:𝑀
𝑑
, array of QoS metrics for all admissible decisions.

Result: 𝑑∗, the Pareto Optimal decision.

Pareto Optimal Front Generation
begin

for 𝑖 ∈ 𝑀
𝑑
do

mark 𝑖 as pareto optimal;
for 𝑗 ∈ 𝑀

𝑑
, 𝑗 ̸= 𝑖 do

if 𝑀
𝑑
(𝑗) ≺ 𝑀

𝑑
(𝑖) then

mark𝑀
𝑑
(𝑖) as non-optimal;

end
end
if 𝑖 is marked as optimal then

add 𝑖 to Pareto Optimal front;
end

end
end
Pareto Optimal decision
begin

if Many solutions belongs to Pareto Optimal front then
set 𝑑∗ to a random 𝑖 of the Pareto Optimal front;

else
set 𝑑∗ as the unique 𝑖 of the Pareto Optimal front;

end
end
Output
return 𝑑∗;

Algorithm 2: QoS-aware optimization algorithm.

𝑑
2
and 𝑑

4
belong to the same Pareto front, so they are Pareto

equivalent.
In conclusion, QAFD algorithm is composed of twomain

blocks: a fault detection block activated for each sensory read-
ing and a Pareto optimizationmodifying the communication
graph over which the fault detection is performed, occurring
with a period of𝑇 time steps.TheQAFD is intended as a fully
distributed algorithm where each sensor node runs the same
program whose pseudocode is summarized in Algorithm 3.

4. Experimental Results

This section describes the experimental evaluation of our
QAFD algorithm, with the aim of proving that our approach
allows sensor nodes to adapt their behavior with respect to
the imposed QoS requirements and the dynamics of the real
deployment scenario.

We simulated a tree-arranged WSN characterized by
depth 16 and branch factor 3 and composed of 100 sensor
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Date: t, the current time;m, the current quality metrics; R,
the last 𝐾 readings; CN, the current cooperating node
list; V, the array of constraints.

Result: 𝑐∗, the most probable class for the last reading; 𝑝err,
the probability of error; lat, the response time;
CNnew, the next cooperating node list.

Fault detection
begin

Run Fault detection (CN, 𝑅) → 𝑐
∗
, 𝑝err, lat;

end

Pareto optimization
begin

if 𝑡 is multiple of 𝑇 then
for 𝑑 ∈ 𝐷 do

Compute QoS metrics𝑚
𝑑
using (13);

Accept 𝑑 only if𝑚
𝑑
≼ V;

end
if no admissible solutions found then

Accept all 𝑑 as admissible;
end
Run
QoS-aware Optimization (𝑚

𝑑1
, 𝑚
𝑑2
, . . . , 𝑚

𝑑𝑛
) → 𝑑

∗;

Update CN according to the decision 𝑑∗;
end

end

Output
return 𝑐∗, 𝑝err, lat, CN;

Algorithm 3: QAFD algorithm.

nodes gathering temperaturemeasurements every 30 seconds
for two days. In order to build the simulated dataset we
used 10Mica2Dot sensor nodes as real generators of readings
and then modified this basic dataset by adding 10 different
Gaussian noise signals, N(0, 𝜎

2

𝐸
), with 𝜎

2

𝐸
= 0.02, to the

sensory signal gathered by each real sensor node. Data faults
have been simulated by corrupting the obtained dataset,
according to fault definitions proposed in [7] as follows:

(i) short: 𝑟(𝑡) = 𝑔 × 𝑟(𝑡),

(ii) noise: 𝑟(𝑡) = 𝑟(𝑡) +N(0, 𝜎
2

𝑁
),

(iii) constant: 𝑟(𝑡
0
+ 𝑖) = 𝑟(𝑡

0
) +N(0, 𝜎

2

𝜃
), 𝑖 ∈ {1, . . . , 𝑘},

where 𝑔 = 1.5 is a gain constant, 𝜎2
𝑁
= 3 and 𝜎2

𝜃
= 10
−9 are

Gaussian noises, 𝑡
0
is a random time instant where a constant

fault starts, and𝐾 = 10 is its duration.
Different scenario dynamics have been simulated by gen-

erating three different corrupted datasets where the amount
of data faults corresponds, respectively, to 20%, 30%, and 40%
of total number of readings. In each dataset, different classes
of faults were mixed in equal parts. For each dataset, we used
the first day of readings as a training set to learn conditional
probability tables for the Bayesian network, while the second
day was used as the test set.

4.1. Comparison with Benchmarks. The performances of
QAFD algorithm, with different QoS constraints, were com-
pared against two benchmarks, corresponding to the max-
product inference algorithm over two different static net-
work topologies. The first topology corresponds to a fully
connected network, that is, a single cluster where 100% of
nodes cooperate; here the average response time is static
and corresponds to 28 hops, and the classification accuracy
achieves its upper bound. The second one corresponds to
a network where none of the nodes cooperate; that is, the
number of clusters is equal to the number of nodes; in this
benchmark the average response time is equal to 0 and the
classification accuracy drops to its lower bound.

We want to show that the adaptive behavior of QAFD
makes it able to meet the imposed constraints, while paying a
small cost in terms of the possibly unconstrained metrics; at
the same time, although the static topologies achieve better
performance with respect to one QoS requirement, they
dramatically worsen the other one. We adopted two different
sets of QoS constraints; namely

V
1
= (Verr = 0.06, Vlat = unconstrained) ,

V
2
= (Verr = unconstrained, Vlat = 2) .

(14)

Sensor nodes run the Pareto optimization every 𝑇 = 100

readings.
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Figure 6:The performance ofQAFD for two different constraints comparedwith two fixed network topologies while the amount of corrupted
samples spans from 20 to 40 percent.

Performances are evaluated by using the two considered
QoS metrics, namely the classification accuracy (a value
between 0 and 1) and the response time (measured in
numbers of hops), averaged over time windows of size 𝑇 and
over all the networks nodes.

Figure 6 compares the performances of the four consid-
ered configurations in three different scenarios. As expected,
the “100% cooperating node” configuration always achieves
the best classification accuracy and the worst response time
in every scenario, while the “0% cooperating node” config-
uration is the best for response time and the worst for the
classification accuracy.

Analyzing the performance of QAFD with a constraint
over the classification accuracy (V

1
), it is possible to note

that suchmetric approaches the constraint for every scenario,
paying an increasing cost in response time as the corruption
percentage increases. Moreover, while the classification accu-
racy is quite close to the “100% benchmark,” in comparison,
its response time obtains a significant reduction.

Analogously, QAFD with a constraint over the response
time (V

2
) always meets such requirement by paying a small

decrease in the classification accuracy as the corruption
percentage increases. Moreover, at the cost of a small increase

of response time with respect to the “0% benchmark,” the
classification accuracy is remarkably higher.

4.2. Adaptivity of QAFD to Different Scenarios. We aim to
demonstrate the adaptability of QAFD to different scenarios,
namely, to different percentages of corruption in sensory
data. This adaptability corresponds to tuning the uncon-
strained QoSmetrics in order to satisfy the constrained ones.

Figures 7 and 8 show this property by comparing the
performances of QAFD, respectively, with constraints V

1
and

V
2
, for the three considered scenarios. In particular, Figure 7

shows how QAFD behaves when a constraint over the
classification accuracy is imposed; as shown, QAFD rapidly
adapts the network communication graph, thus increasing
the response time for higher percentages of corruption.
Analogously, Figure 8 shows that as the amount of corrupted
samples increases, QAFD with a constraint over the response
time is able to tune the classification accuracy by decreasing
it after few time steps.

Such results show that QAFD is able to find the correct
trade-off among theQoSmetrics, satisfying the imposed con-
straints and also taking implicitly into account the dynamics
of the real deployment scenario.
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Figure 7: A comparison among the average response time values
for different amounts of corruption with constraint on classification
accuracy.
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Figure 8: A comparison among the average classification accuracy
values for different amounts of corruption with constraint on
response time.

4.3. Relationship between Response Time and Classification
Accuracy. Obtained experimental results allow a qualitative
analysis of the relationship between response time and
classification accuracy in three different scenarios, as shown
in Figure 9. The plots shown were obtained by averaging
values obtained in the four settings described in previous
experiments.

Trends are quite similar for all the three scenarios: the
minimum value of the classification accuracy is obviously
achieved for singleton clusters; on the contrary, a fully
connected network gets the maximum of the classification
accuracy.
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Figure 9: Average response time and accuracy for the three consid-
ered scenarios.

A small increase of the allowed response time, for small
cluster size, corresponds to great increase of the classification
accuracy. This behavior is more visible when the corruption
amounts to 20%; in this scenario a response time propor-
tional to 5 hops corresponds to a classification accuracy very
close to its maximum value.

The three plots tend to asymptotically reach their max-
imum value as the response time increases. Such evidence
allows us to deduce that farther nodes have a small influence
on the choice of the correct class label; this behavior is
strictly related to the characteristic of the monitored physical
quantity (e.g., the temperature) and simply means that the
spatial correlation decreases as the distance between nodes
increases.

5. Conclusion

This paper proposed a distributed fault detection algorithm
for WSN, which is able to find the optimal trade-off among
different and possibly contrasting QoS requirements. Even if
we considered only classification accuracy and response time,
many other QoS requirements could be considered, provided
that the corresponding metric is defined.

The fault detection algorithm we proposed performs a
probabilistic inference on the Bayesian networks distributed
over the wireless sensor nodes. A QoS-aware Pareto opti-
mization algorithm allows to adapt the Bayesian network
structure according to the considered QoS metrics.

Experimental results showed the capability of our system
to dynamically tune its behavior, also according to different
dynamics of the real deployment scenario, and to optimize
QoSmetrics if compared with that of other static approaches.

In a future work we are going to includemetrics related to
network energy consumption and link quality that are other
relevant QoS requirements is of WSN applications.
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