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Abstract

The project is concerned with the analysis of bending edge waves propagating in thin

elastic orthotropic plates, and aims at the derivation of explicit formulations for bending

edge waves, generalising recent results for isotropic plates. The derived parabolic-elliptic

formulations provide significant simplification in analysis and allow efficient approximate

solutions to a number of dynamic problems, where the contribution of the edge wave is

dominant. The effect of the Winkler-Fuss foundation, supporting the plate is also stud-

ied.

First, the eigensolutions in terms of a single plane harmonic function are obtained, serv-

ing as a basis for further derivations of asymptotic models oriented to extraction of the

contribution of the studied localized waves to the overall dynamic response. The pro-

posed models are obtained through a multi-scale perturbation scheme, also employing

properties of plane harmonic functions. The approximate formulations for the bending

edge wave field include elliptic partial differential equations, describing the decay away

x



from the edge, along with the parabolic equations on the edge associated with wave

propagation. Model examples for excitation of the studied waves are investigated, in

particular, including impulse edge loading, internal sources and moving loads. Finally,

the effect of inhomogeneity arising from a Winkler-Fuss foundation with periodic stiffness

is addressed, revealing novel resonant phenomena.
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Introduction

Dynamic phenomena in thin walled elastic solids, in particular, plates and shells, have

attracted significant interest from researchers within the framework of applied mathemat-

ics, as well as civil and structural engineering. Numerous application areas of thin walled

bodies include, for example, architectural structures, bridges, hydraulic structures, pave-

ments, containers, air and space-crafts, marine vessels and structures, machine parts and

solar panels.

Mathematical modelling of thin elastic plates typically relies on reduction of the original

three-dimensional problem in elasticity to lower dimensional structural theories, exempli-

fied by the classical contribution of Kirchhoff (1851), followed by a considerable number

of refining attempts, see e.g. Timoshenko (1938), Mindlin (1955) and Reissner (1964),

followed by numerous studies, e.g. Kienzler (2002). It is worth mentioning that many

of the refined theories are not asymptotically justified, see the reasoning in Goldenveiser

et al. (1993), and also Kaplunov et al. (1998). We also mention a recent review by
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Elishakoff et al. (2015), revisiting the Timoshenko’s shear deformation theory.

Asymptotic analysis of dispersive behaviour in thin-walled elastic structures may be

classified into four distinct scenarios, including long-wave low-frequency, long-wave high-

frequency, short-wave low-frequency, and short-wave high-frequency approximations, for

more details see Kaplunov et al. (1998). Generally, for short-wave theories a typical wave

length is of order of the thickness, whereas the long-wave approximation is associated

with the wave length being much greater than the thickness. A number of contributions,

extending this approach to incorporate the effects of anisotropy, pre-stress and incom-

pressibility constraint, include Kaplunov et al. (2000), Kaplunov et al. (2002), Kaplunov

and Nolde (2002), Pichugin and Rogerson (2002), Nolde et al. (2004) and Rogerson

and Prikazchikova (2009). Typically, asymptotic theories in the long-wave low-frequency

limit generalise the corresponding static formulations, see e.g. Goldenveiser et al. (1993).

High-frequency theories, characterised by sinusoidal variation across the thickness, find

applications, in particular, in wave scattering, see Kaplunov and Markushevich (1993).

Long-wave high-frequency models have been studied in Kaplunov et al. (2000), Pichugin

and Rogerson (2001), Kaplunov et al. (2002) and L. Aghalovyan and M. Aghalovyan

(2016), also being important for structures with clamped faces see e.g. Kaplunov (1995)

and Kaplunov and Nolde (2002), layered structure studied by Lutianov and Rogerson

(2010), Ryazantseva and Antonov (2012), Craster et al. (2014), and Kaplunov et al.

2



(2017). Localisation effects for long-wave high-frequency modes were investigated by

Kaplunov et al. (2000), Gridin et al. (2005) and Kaplunov et al. (2005). The approx-

imation in the short wave high-frequency limit is useful for analysis of non-stationary

wave phenomena see Kossovich (1986), e.g Kaplunov et al. (2002) and Rogerson et al.

(2004). Throughout this thesis we will be operating within the long-wave low-frequency

region.

Most of the previously mentioned studies are related to thin plates, infinite in the in-plane

directions. Studies of dynamics in the near-edge vicinity of a semi-infinite thin elastic

plate are equally important, motivated, in particular, by applications in non-destructive

testing, e.g for aircraft wings, submarine hulls and floating platforms. We mention here

a fundamental contribution of Friedrichs and Dressler (1961), in which the approximate

boundary conditions at the free edge of the Kirchhoff plate were derived. The near-edge

dynamic phenomena include edge vibrations and edge waves. As for edge vibrations, one

of the main focuses of studies has been on the edge resonant effects, starting from works

of Shaw (1956), Torvik (1967), Roitberg and Weidl (1998), and including more recent

results of Kaplunov et al. (2004), Pagneux (2011), and Gulgazaryan and Srapionyan

(2012), also a review by Lawrie and Kaplunov (2012).

It is known that the edge waves on elastic plates are related to surface waves, discovered

by Lord Rayleigh (1885). Edge waves occurring in elastic structures, can be divided into

3



two main subcategories, namely, into flexural and extensional edge waves. As known

since early 20th century, a thin layer in generalised plane stress state is described ap-

proximately by equations, that are formally equivalent to those of plane strain elasticity,

see e.g. Filon (1903). Therefore, a semi-infinite plate in plane stress state possesses

an analogue of surface waves, which are usually referred to as extensional edge waves,

seemingly first exposed in Oliver et al. (1954), see also Lawrie and Kaplunov (2012).

The effect of pre-stress on the propagation of extensional edge waves have been recently

investigated by Pichugin and Rogerson (2012) for incompressible elastic plates, focusing

on the long-wave low-frequency limiting behaviour of extensional edge waves propagat-

ing along the free edge of such a layer, and revealing a possibility of a non-unique edge

wave solution. From a physical point of view, edge waves are similar to Rayleigh waves,

because they are both localized near the edge/surface. However, there is a considerable

difference between them. Indeed, the bending edge waves are dispersive, whereas exten-

sional edge waves and Rayleigh waves have constant phase velocities.

The interesting history of the discovery of bending edge waves is reported by Norris

et al. (2000). These waves were discovered by Konenkov (1960) within the framework

of Kirchhoff plate theory. However, the knowledge of his findings was limited by the

scarcity of Soviet literature available at that time, and this result was not widely known

in western scientific circles. The wave was rediscovered independently by Sinha (1974)
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and Thurston and McKenna (1974). In recent years it has been found that some pre-

liminary results related to the work of Konenkov were obtained by Ishlinskii (1954) who

studied stability of elastic plates. A detailed review of the existing state of art on edge

waves is presented in Lawrie and Kaplunov (2012).

Over recent years, intensive research has been conducted on flexural edge waves with

much emphasis placed on layering, refined plate models and the effects of fluid loading

etc., see e.g. Norris and Abrahams (2000) and Zakharov (2002, 2004). Zilbergleit and

Suslova (1983) have investigated the Stoneley-type flexural interfacial wave propagating

at the junction of two plates. Edge waves for the case of a circular disc were investigated

by Destrade and Fu (2008). Flexural edge waves on an arbitrarily curved plate edge have

been studied by Cherednichenko (2007). Edge waves may also arise in elastic shells, see

Kaplunov et al. (2000), Kaplunov and Wilde (2001) and also Fu and Kaplunov (2012).

We also mention contributions of Kaplunov et al. (2005), Zernov and Kaplunov (2008),

Krushynska (2011) and Feng et al. (2017), considering edge waves within exact 3D for-

mulation of elasticity. Other recent developments in the area of edge waves phenomena

in metamaterials were reported by Pal et al (2017), Yanget al (2018) and Yu et al (2018).

One more direction of development of the research field of flexural edge waves theory is

associated with anisotropic plates, see Norris (1994), Thompson et al. (2002), Zakharov

and Becker (2003), Fu (2003), also Fu and Brookes (2006), Lu et al. (2007), and Pili-
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posian et al. (2010). The consideration of bending edge waves in orthotropic Kirchhoff

plates was first performed by Norris (1994). More recently, Thompson et al. (2002)

studied the speed of edge wave on a thin orthotropic plate in a more general case, for an

arbitrary angle between the principle direction of anisotropy and the edge. In addition,

a review of other relevant contributions may be found in, Norris et al. (2000).

Furthermore, the effect of an elastic foundation on bending edge waves has been con-

sidered recently by Kaplunov et al. (2014), Kaplunov et al. (2016) and Althobaiti et

al. (2017). Extension of the analysis to more sophisticated foundation models have

been considered by Kaplunov and Nobili (2015). Further progress is possible along with

consideration of variable elastic characteristics similarly to Aghalovyan and Adamyan

(1986).

In a recent work, Kaplunov and Prikazchikov (2013) have discussed both surface and

edge waves within the framework of explicit asymptotic models oriented towards extrac-

tion of the contribution of the wave in question to the overall dynamics response. These

models combine simplified formulations with enhanced physical understanding.

In the case of surface waves, the decay over the interior is described by elliptic equations,

and the propagation along the surface is governed by a hyperbolic equation in terms of

elastic potentials. The model was first proposed by Kaplunov and Kossovitch (2004)

and then developed further in Kaplunov et al. (2006), Dai et al. (2010), Erbas et al.
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(2013), and Ege et al. (2015). The results were also successfully implemented for mov-

ing load problems, see Kaplunov et al. (2010), Kaplunov et al. (2013) and also Erbas

et al. (2017). The effects of anisotropy have been investigated in Prikazchikov (2013),

Parker(2013), and Nobili and Prikazchikov (2018). The methodology have recently been

summarized in Kaplunov and Prikazchikov (2017), with some further development for

pre-stressed incompressible elastic material appearing in Khajiyeva et al. (2018).

In the case of bending edge waves the decay away from the edge is also governed by an

elliptic equation for deflection of the plate, whereas the propagation along the edge is

represented by a beam-type parabolic equation. For isotropic Kirchhoff plate, Kaplunov

and Prikazchikov (2013) have constructed a bending edge wave of arbitrary profile, mir-

roring the result of Chadwick (1976) for surface and interfacial waves, and then used it

as a basis of a perturbation scheme resulting in the parabolic-elliptic formulation for the

bending edge wave. The parabolic-elliptic model, for an isotropic Kirchhoff plate resting

on a Winkler-Fuss foundation, has been derived in Kaplunov et al. (2016).

This thesis aims at extending the results for bending edge wave on a Kirchhoff plate

supported by a Winkler-Fuss foundation in order to account for the effects of anisotropy

and inhomogeneity.

The layout of the thesis is as follows. The opening Chapter covers all preliminary knowl-

edge and background for Kirchhoff plate theory, which is used throughout this thesis.
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Chapter 2 describes the explicit model for bending edge wave in an isotropic plate, con-

taining a parabolic equation at the edge and an elliptic equation over the interior. We

consider a model example, illustrating the proposed approach, in particular, for an in-

ternal source embedded in a plate.

In Chapter 3, we extend the previous results of Kaplunov et al. (2014), to the bending

edge wave on an orthotropic elastic plate supported by the Winkler-Fuss foundation,

subject to free edge boundary conditions, assuming the principle direction of anisotropy

coincides with the coordinate axis. The analysis of the dispersion relation reveals a

cut-off frequency and a local minimum of the phase velocity. Also, the conventional

eigensolution of the sinusoidal profile is extended to a more general form, with the de-

flection expressed in terms of a single plane harmonic function.

Chapter 4 contains derivation of an explicit formulation for the bending edge wave on

a thin orthotropic plate resting on a Winkler-Fuss foundation. The procedure relies on

a slow-time perturbation of the eigensolution obtained in the previous Chapter. The

formulation includes an elliptic equation associated with decay away from the edge, and

a parabolic beam-like equation governing edge wave propagation for both sub-cases of

boundary conditions, forcing moment and shear forcing. The model is oriented at ex-

tracting the contribution of the bending edge wave to the overall dynamic response.

Several model examples are considered, illustrating the proposed approach.

8



The final Chapter extends the results for homogeneous bending edge waves on a plate

supported by a foundation, to the case of an inhomogeneous foundation, namely for the

Winkler-Fuss foundation with a periodically varying stiffness. This allows a perturba-

tion procedure. In addition to the expected Bragg-type resonances, some novel resonant

frequencies are revealed. The analysis is carried out for both isotropic and orthotropic

plates.
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Chapter 1

Basic equations

This chapter contains the fundamental concepts, equations and techniques, used through-

out this thesis. We start from a brief description of the Euler-Bernoulli beam. Then, we

derive the equation of flexural motion in a thin Kirchhoff plate, within both orthotropic

and isotropic materials, and discuss various boundary conditions imposed on the edge

of a semi-infinite Kirchhoff plate. Then, the Fourier and Laplace integral transforms

are introduced. Finally, we present the Winkler-Fuss model of elastic foundation and

comment briefly on more advanced models.
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1.1 Euler-Bernoulli beam

Consider the bending of a homogeneous elastic beam of small thickness 2h, infinite in

the longitudinal direction. An element of the beam under the action of a distributed

force P (x, t) is shown in Fig 1.1.

2h

x

P(x,t)

y

Q

M

Q+
∂Q

∂x
dx

M +
∂M

∂x
dx

Figure 1.1: Element of a beam

In Fig.1.1 above, the bending moment and shear force are denoted by M and Q, respec-

tively. We rely on the hypothesis of the Euler-Bernoulli beam, namely, that the plane

cross-section that is initially perpendicular to the axis of the beam remains plane and

perpendicular to the neutral axis during bending.
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In other words, the vertical deflection is nearly constant through the thickness, see Graff

(1991).

The relationship between bending moment and curvature is given by

∂2W

∂x2
= −M/EI, (1.1)

where W is the coordinate of the neutral surface of the beam, E is the Young’s modulus,

and I is second moment of area of the beam’s cross-section.

Projecting the second Newton’s law on the vertical direction, we have

−Q+ (Q+
∂Q

∂x
dx) + P dx = ρA

∂2W

∂t2
dx, (1.2)

where A and ρ denote the cross-section area of the beam and volume mass density,

respectively. The last equation reduces to

∂Q

∂x
+ P = ρA

∂2W

∂t2
, (1.3)

Provided that the effects of rotational inertia of the elements are neglected, the moment

equation can be written as

Q =
∂Mx

∂x
, (1.4)

for more details see e.g. Graff (1991).

Therefore, in view of (1.3) and (1.4), equation (1.3) may be rearranged in terms of the

deflection W of the beam as

−EI ∂
4W

∂x4
+ P = ρA

∂2W

∂t2
. (1.5)
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By combining formula (1.3) and (1.5), we obtain the equation of transverse motion of

the beam in the following form

EI
∂4W

∂x4
+ ρA

∂2W

∂t2
= 0, (1.6)

in absence of loading P (x, t) = 0.

We note that this 1D equation of bending of an elastic beam may also be derived through

asymptotic methods, applied to 3D problem of elasticity, see e.g. Goldenveizer et al.

(1993), and also Aghalovyan (2015).

1.2 Kirchhoff plate

In this section, we expand our consideration in the previous section, focusing on bending

of a thin elastic plate. The classical Kirchhoff plate theory (1850) is an extension of the

Euler-Bernoulli beam theory.

Consider an element of a thin elastic plate of thickness 2h, subjected to forces and

moments, as shown in Fig.1.2.
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Z 
X 

Y 

𝑄𝑦 

𝑄𝑦 +
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𝜕𝑦
 d𝑦 

𝑄𝑥 +
𝜕𝑄𝑥 

𝜕𝑥
 dx 

𝑄𝑥 

𝑁𝑦 
𝑁𝑦𝑥  

𝑁𝑥 

𝑁𝑥𝑦  

𝑀𝑦𝑥 +
𝜕𝑀𝑦𝑥 

𝜕𝑦
 d𝑦 

𝑁𝑦𝑥  

𝑁𝑥 
𝑁𝑥𝑦  

𝑀𝑖𝑑𝑑𝑙𝑒 𝑃𝑙𝑎𝑛𝑒 

𝑀𝑦 𝑀𝑦𝑥 

𝑀𝑥 𝑀𝑥𝑦 

𝑀𝑥𝑦 
𝑀𝑥 

𝑀𝑦 

P (𝑥, 𝑦, 𝑡) 

Figure 1.2: Effective resultants from Kirchhoff theory acting on the plate

Here Mx,My and Mxy are bending moments, Qx and Qy are shearing forces in the

z direction, Nx, Ny, Nxy, and Nyx are shearing forces in the x and y directions, and

P = P (x, y, t) is an external force.

The following classical hypotheses of Kirchhoff, see Kaplunov et al. (1998), are adopted:

a. the straight lines normal to the mid plane remain straight after bending;

b. the straight lines normal to the mid plane remain normal after deformation;

c. the thickness of the plate does not change under dynamic conditions during the

deformation.
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The force equation of motion in z direction is written as

Qx dy +

(
Qx +

∂Qx

∂x
dx

)
dy −Qydx+

(
Qy +

∂Qy

∂y
dy

)
dx+ Pdxdy = 2ρh dxdy

∂2W

∂t2
,

(1.7)

along with the two moment equations around x and y axis given by

(
Mx +

∂Mx

∂x
dx

)
dy −Mxdy −Myxdx−

(
Myx +

∂Myx

∂y
dy

)
dx−Qxdydx = 0, (1.8)

and

(
My +

∂My

∂y
dy

)
dx−Mydx+Mxydy −

(
Mxy +

∂Mxy

∂x
dx

)
dy −Qydxdy = 0, (1.9)

see Graff (1991). Note that rotary-inertia effects have been neglected in (1.8) and (1.9).

Expressing the forces Qx and Qy from (1.8) and (1.9), respectively, and substituting the

results into (1.7), we obtain the following equation of vertical motion

∂2Mx

∂x2
+
∂2My

∂y2
− 2

∂2Mxy

∂x∂y
= 2ρh

∂2W

∂t2
. (1.10)

It is worth mentioning that the bending equation for a thin elastic plate can be asymp-

totically justified from 3D elasticity, see Goldenveizer et al. (1993) and Kaplunov et al.

(1998).

Below, we will express the bending and twisting moments in terms of the deflection for

the cases of orthotropic and isotropic plates.
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1.2.1 Orthotropic plate

In case of orthotropy, we assume that the material has three planes of symmetry, e.g.

see Courtney (1990). The bending moments Mx, My and Mxy arising in equation (1.10)

are now expressed in terms of the deflection W as

Mx = −
(
Dx

∂2W

∂x2
+D1

∂2W

∂y2

)
, (1.11)

My = −
(
Dy

∂2W

∂y2
+D1

∂2W

∂x2

)
, (1.12)

and

Mxy = 2Dxy
∂2W

∂xy
, (1.13)

where Dx and Dy are the bending stiffness in the x, y directions respectively, see e.g.

Norris (1994).

The material constants Dx, Dy, D1 and Dxy appearing in (1.11-1.12) can be expressed in

terms of the engineering constants as

Dx =
2h3

3

E1

1− ν1ν2
, Dy =

ν2
ν1
Dx

and

D1 = ν2Dx , Dxy =
2

3
h3G12,
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where E1, E2 are the Young’s moduli, with suffixes 1 and 2 referring to the x and y

directions, G12 is the shear modulus in the x − y plane, and ν1, ν2 are the Poisson’s

ratios, for more details on the technical constants see e.g. Jones (1999).

Note that the material parameters must satisfy the following conditions ensuring positive

definiteness of the strain energy density

Dx > 0, Dy > 0 , Dxy > 0 , DxDy > D2
1,

see Norris (1994).

Substituting (1.11)-(1.13) into the governing equation (1.10), we obtain the equation of

motion for an orthotropic plate in the form

Dx
∂4W

∂x4
+ 2(D1 + 2Dxy)

∂4W

∂x2∂y2
+Dy

∂4W

∂y4
+ 2ρh

∂2W

∂t2
= 0. (1.14)

In terms of the scaling

ξ =
x

4
√
Dx

, ζ =
y

4
√
Dy

,

the governing equation (1.14) becomes

∂4W

∂ξ4
+ 2α

∂4W

∂ξ2∂ζ2
+
∂4W

∂ζ4
+ 2ρh

∂2W

∂t2
= 0, (1.15)

where

α =
D1 + 2Dxy√

DxDy

. (1.16)
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1.2.2 Isotropic material

In case of an isotropic plate, the number of material parameters is reduced, since

Dx = Dy = D , Dxy =
D

2
(1− ν) and D1 = νD

where D is the flexural stiffness of the plate specified by

D =
2Eh3

3(1− ν2)
,

with E and ν denoting the Young modulus and Poisson’s ratio, respectively.

In this case, the moments Mx, My and Mxy are expressed through the deflection W as

Mx = −D
(
∂2W

∂x2
+ ν

∂2W

∂y2

)
, (1.17)

My = −D
(
∂2W

∂y2
+ ν

∂2W

∂x2

)
, (1.18)

and

Mxy = D(1− ν)
∂2W

∂x∂y
. (1.19)

Note that for isotropic material α = 1, see (1.16). Then, the governing equation of

motion (1.15) takes the form

D

(
∂4W

∂x4
+ 2

∂4W

∂x2∂y2
+
∂4W

∂y4

)
+ 2ρh

∂2W

∂t2
= 0, (1.20)

18



or

D∆2W + 2ρh
∂2W

∂t2
= 0, (1.21)

where

∆ =
∂2

∂x2
+

∂2

∂y2

is the Laplace operator.

1.3 Boundary conditions

Consider a semi-infinite orthotropic elastic plate, occupying the region −∞ < x < ∞,

0 6 y <∞, −h 6 z 6 h, see Fig.1.3.

x

y

z

Figure 1.3: A semi-infinite thin elastic plate.
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In order to formulate the appropriate boundary conditions at a free edge of an orthotropic

Kirchhoff plate, we introduce the so-called modified shear force, see Graff (1991), namely,

Qx and Qy can be expressed in terms of the deflection W as

Qx = −
(
Dy

∂3W

∂x3
+ (D1 + 4Dxy)

∂3W

∂y2∂x

)
,

and

Qy = −
(
Dy

∂3W

∂y3
+ (D1 + 4Dxy)

∂3W

∂x2∂y

)
.

Thus, the free edge boundary conditions at y = 0 are expressed in terms of vanishing

bending moment My and modified shear force Qy

My = 0, Qy = 0, (1.22)

or, in terms of the deflection W

D1
∂2W

∂x2
+Dy

∂2W

∂y2
= 0,

(D1 + 4Dxy)
∂3W

∂x2∂y
+Dy

∂3W

∂y3
= 0.

(1.23)

In the case of an isotropic plate, the modified shear force is given by

Qx = −D
(
∂3W

∂x3
+ (2− ν)

∂3W

∂y2∂x

)
,

and

Qy = −D
(
∂3W

∂y3
+ (2− ν)

∂3W

∂x2∂y

)
.
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The free edge boundary conditions (1.22) take the form

∂2W

∂y2
+ ν

∂2W

∂x2
= 0,

∂3W

∂y3
+ (2− ν)

∂3W

∂x2∂y
= 0.

(1.24)

In the case of a prescribed edge loading, it could be a combination of given bending

moment and modified shear force. Due to the linearity of the problem, this may be

decomposed into two separate sub-problems, involving a bending moment or shear force

only.

M
x

y

Figure 1.4: Bending moment at the plate edge.

For a prescribed bending moment My = M(x, t) at the plate edge y = 0, as shown in

Fig.1.4, the boundary conditions become

My = M(x, t) , Qy = 0. (1.25)
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For an orthotropic case, (1.25) is written in terms of the deflection W as

D1
∂2W

∂x2
+Dy

∂2W

∂y2
= −M(x, t),

(D1 + 4Dxy)
∂3W

∂x2∂y
+Dy

∂3W

∂y3
= 0,

(1.26)

whereas for an isotropic plate these take the form

∂2W

∂y2
+ ν

∂2W

∂x2
= −M(x, t),

∂3W

∂y3
+ (2− ν)

∂3W

∂x2∂y
= 0.

(1.27)

x
yN

Figure 1.5: Transverse shear force at the plate edge

For the case of a prescribed shear force Ny = N(x, t) applied at the edge y = 0, as shown

in Fig.1.5, the boundary conditions become

My = 0 , Qy = N(x, t),

or

D1
∂2W

∂x2
+Dy

∂2W

∂y2
= 0,

(D1 + 4Dxy)
∂3W

∂x2∂y
+Dy

∂3W

∂y3
= −N(x, t),

(1.28)
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for an orthotropic plate, and

∂2W

∂y2
+ ν

∂2W

∂x2
= 0,

∂3W

∂y3
+ (2− ν)

∂2W

∂x2∂y
= −N(x, t),

(1.29)

for an isotropic plate.

1.4 Integral transforms

In the subsequent analysis we intend to give a brief description of two integral transforms

which will be applied later in the thesis, namely the Fourier and the Laplace transforms.

1.4.1 Fourier integral transform

The Fourier integral transform of an integrable function W (x), is defined by

F (W (x)) = W F (α) =
1√
2π

∞∫
−∞

e−ixαW (x)dx, (1.30)

with the inverse Fourier transform given by

W (x) = F−1
(
W F (α)

)
=

1√
2π

∞∫
−∞

eixαW F (α)dα, (1.31)

where α ∈ R is the Fourier parameter.

One of the most important properties of the Fourier transform is the derivative property,
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which is

dnW (x)

dxn
= (iα)nW F (α). (1.32)

Another useful property is the convolution theorem, given by

[W1(x) ∗W2(x)]F = W F
1 (α)W F

2 (α), (1.33)

where the convolution operation is defined as follows

W1(x) ∗W2(x) =

+∞∫
−∞

W1(x− y)W2(y) dy.

1.4.2 Laplace integral transform

The Laplace integral transform of a function W (t) is defined by

WL(s) =

∞∫
0

e−stW (t)dt, (1.34)

where s is the Laplace parameter.

The inverse Laplace transform is given by

W (t) =
1

2πi

ao−i∞∫
ao+i∞

estWL(s)ds, (1.35)

where ao is a real constant, satisfying ao = s.

The Laplace integral transform, similar to that of Fourier, has the derivative property

given by the following expression

[
dnW (t)

dtn

]L
= (s)nWL(s), (1.36)
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for zero initial data.

1.5 Elastic foundation

1.5.1 Winkler-Fuss foundation

The simplest structural model of an elastic foundation, the Winkler-Fuss foundation

associated with a system of elastic springs, was proposed by Winkler (1867) who assumed

that the deflection at any point within the foundation depends only on the local pressure

at that point, see Fig.1.6. Winkler supposed the behaviour of foundation in the following

form

P = βW, (1.37)

where P is the force on the foundation, β is the coefficient of the foundation and W is

the the vertical displacement of the foundation.

25



P

Figure 1.6: Winkler-Fuss foundation

In fact, Fuss (1801) considered an elastic beam floating on the surface of an incompress-

ible fluid, see Borodich (2014), and also Borodich et al. (2015). This simplest model of

elastic foundation, often referred to as Winkler-Fuss foundation, is widely used in civil

engineering, for example in railway dynamics and contact mechanics, see e.g. Yim and

Chopra (1984), Nikolaou et al. (2001), Dutta and Roy (2002), Liyanapathirana and Pou-

los (2005), and Wang et al. (2005). Two-parametric asymptotic analysis of mechanical

response of a coated half-space, leading to Winkler-Fuss behaviour, involving geometric

and material parameters is considered by Alexandrov (2010) and Kaplunov et al. (2018).

For further historical remarks on the Winkler-Fuss model the reader is referred to Fryba

(1995).
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1.5.2 More advanced models

The Winkler-Fuss foundation is the simplest example of one-parametric foundation.

More advaned approaches include two-parametric models such as Hetenyi (1946), Paster-

nak (1954) and Vlasov’s (1966) foundation, for more details see Muravskii 2001. Further-

more, one can find reviews of foundation models in Kuznetsov (1952) and Kerr (1964).

Recently, considerable amount of research has focused on more advanced Winkler-Fuss

type models, taking in account inhomogeneity and non-linearity, for example see Mar-

tynyak et al. (2015). In Chapter 5 we consider an inhomogeneous Winkler-Fuss foun-

dation, assuming the coefficient of Winkler-Fuss foundation β(x) having a periodically

varying stiffness. This may have potential engineering applications, involving in par-

ticular inhomogeneity/roughness in railway tracks, pipelines, buried structures, floating

structures, etc., see for example Hunt (2008).
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Chapter 2

Explicit models for bending edge

waves on an isotropic elastic plate

This chapter contains brief results on parabolic-elliptic models for bending edge waves

in case of an isotropic elastic semi-infinite plate.

The chapter is organized as follows. First, we consider a homogeneous bending edge

wave of sinusoidal profile and derive its dispersion relation, following the classical work of

Konenkov (1960). Then we discus generalisation in terms of an arbitrary plane harmonic

function. Next, we formulate an explicit model for the Konenkov wave, including both

types of excitation, namely the case of the bending moment and the modified transverse

shear forces. Finally, we implement this model to the problem of an internal source,
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embedded in the plate.

2.1 Homogeneous bending edge wave

Consider a thin semi-infinite elastic isotropic plate of thickness 2h occupying the domain

−∞ < x <∞, 0 6 y <∞, −h 6 z 6 h, see Fig.2.1.

x

y

z

Figure 2.1: Thin isotropic elastic plate

The governing equation for transverse displacement W is (1.20). The free edge boundary

conditions (1.24) are imposed, assuming the absence of bending moment and modified

transverse shear force at the edge y = 0.
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2.1.1 Bending edge wave of a sinusoidal profile

Let us derive the dispersion relation for the bending edge wave, following the original

contribution of Konenkov (1960). The solution of the plate equation (1.20) is sought in

the form of a travelling harmonic wave as

W (x, y, t) = Aei(kx−wt)−kλy, (2.1)

where A is an arbitrary constant, ω is the frequency, k > 0 is wave number, and the

condition Re λ > 0 ensures decay away from the edge y = 0.

Substituting (2.1) into (1.20), we arrive at a bi-quadratic equation for λ, namely

Dk4
(
λ4 − 2λ2 + 1

)
− 2ρhω2 = 0. (2.2)

It may be shown that there exist two roots λ1 and λ2 satisfying the decay condition

Re λ > 0, namely

λj =

√
1 + (−1)j

√
2ρh

D

ω

k2
, (j = 1, 2).

Therefore the deflection may be presented as

W (x, y, t) =
2∑
j=1

Aje
i(kx−wt)−kλjy, (2.3)

where A1 and A2 are arbitrary constants.

Substituting (2.3) into the boundary conditions (1.24) leads to a system of order two λ21 − ν λ22 − ν

λ31 − (2− ν)λ1 λ32 − (2− ν)λ2


 A1

A2

 =

 0

0

 , (2.4)
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which has nontrivial solutions provided that the determinant of the matrix in the left-

hand side equals zero. As a result, we get

(λ21 − ν)(λ32 − (2− ν)λ2)− (λ22 − ν)(λ31 − (2− ν)λ1) = 0,

or

λ21 − ν
λ22 − ν

=
λ31 − (2− ν)λ1
λ32 − (2− ν)λ2

, (2.5)

which may be simplified as

(λ2 − λ1)[λ21λ22 − ν(λ22 + λ1λ2 + λ21) + λ1λ2(2− ν)− ν(ν − 2)] = 0.

Using the fact that

λ21 + λ22 = 2,

we obtain

λ21λ
2
2 − 2(ν − 1)λ1λ2 − ν2 = 0.

After some transformations we deduce

λ1λ2 = ν − 1 +
√

2ν2 − 2ν + 1,

leading to

λ21λ
2
2 = 1− c4, (2.6)
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where c is a well-known coefficient first presented by Konenkov (1960),

c =
[
(1− ν)

(
3ν − 1 + 2

√
2ν2 − 2ν + 1

)] 1
4
, (2.7)

note this depends on the Poisson ratio only, see Fig 2.2.

0.1 0.2 0.3 0.4 0.5
ν

0.990

0.992

0.994

0.996

0.998

1.000

c

Figure 2.2: The coefficient c versus the Poisson’s ratio .

Since the coefficient c is close to unity, one of the attenuation orders is almost zero. This

corresponds physically to known effect of a relatively slow decay of the bending edge

waves.

Using (2.7), the dispersion relation between the frequency and wave number is obtained

in the form

Dk4c4 = 2ρhω2. (2.8)
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In view of the boundary conditions (1.24), the eigensolution for displacement is given by

W (x, y, t) = A

(
e−kλ1y − ν − λ21

ν − λ22
e−kλ2y

)
ei(kx−ωt). (2.9)

This conventional derivation presented for the bending edge wave is not general and

explicit enough, since it is restricted to free harmonic waves of sinusoidal profile only.

Arguments of the same nature presented see Chadwick (1976) for the Rayleigh wave led

to contraction of an explicit asymptotic model derived by Kaplunov and Prikazchikov

(2013). Similar consideration will now be made for the bending edge wave. However,

this is not a trivial extension from surface waves in view of the dispersive nature of the

bending edge wave. Below we generalise it to that of arbitrary profile, following the

consideration of Kaplunov and Prikazchikov (2013).

2.1.2 Bending edge wave of arbitrary profile

We begin by rewriting the equation of motion in terms of the dimensionless variables,

ξ =
x

h
, ζ =

y

h
, τ =

t

h

√
E

3ρ(1− ν2)
. (2.10)

The governing equation (1.20) becomes

∆2W +
∂2W

∂τ 2
= 0, (2.11)

where

∆ =
∂2

∂ξ2
+

∂2

∂ζ2
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denotes the 2D Laplace operator in the dimensionless variables ξ and ζ.

Next we adopt the beam-like assumption, see Kaplunov and Prikazchikov (2013),

γ4
∂4W

∂ξ4
+
∂2W

∂τ 2
= 0, (2.12)

where γ is a coefficient to be determined.

Physically, this assumption corresponds to beam-like behaviour. It has been observed

that a string is a basic object for the classical Rayleigh wave (Kaplunov et al, 2010),

since the propagation on the surface is described by a 1D wave equation. However, the

bending edge wave is dispersive, therefore the solution of the form f(x−ct) employed by

Chadwick (1976) for surface waves, would not work for the bending edge wave. It may be

guessed that the corresponding object for Konenkov wave would be a beam, associated

with assumption (2.12). Another interpretation of (2.12) will be presented below.

It should be emphasized that this assumption is key, leading below to transformation of

the parabolic equation (2.11) to the following elliptic equation

(
1− γ4

) ∂4W
∂ξ4

+ 2
∂4W

∂ξ2∂ζ2
+
∂4W

∂ζ4
= 0. (2.13)

The above equation may also be expressed in operator form as

∆1∆2W = 0, (2.14)

where

∆j =
∂2

∂ζ2
+ λ2j

∂2

∂ξ2
, j = 1, 2
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and

λ2j = 1 + (−1)jγ2.

The solution of (2.14) is then written as a sum of two arbitrary plane harmonic functions

decaying as ζ →∞, namely

W =
2∑
j=1

Wj(ξ, λjζ, τ). (2.15)

Employing the Cauchy-Riemann identities for a plane harmonic function Wj

∂Wj

∂ξ
=

1

λj

∂Wj

∂ζ
, and

∂Wj

∂ζ
= −λj

∂Wj

∂ξ
, (2.16)

and substituting this result into the homogeneous edge boundary conditions and requir-

ing the related determinant to vanish, we have (2.6), leading once again to the dispersion

relation in (2.8), implying γ = c, with c denoted by (2.7).

Since γ = c , the physically intuitive guess for beam-like assumption (2.12) is confirmed.

In other words, the assumption (2.12) corresponds to an effective beam, with a bend-

ing stiffness chosen so that the dispersion relation of this beam is identical to that of a

bending edge wave on a semi-infinite plate.

Consequently, using the boundary conditions (1.24), the deflection profile (2.15) may be

expressed through a single harmonic function, say W1, as

W = W1(ξ, λ1ζ, τ)− ν − λ21
ν − λ22

W1 (ξ, λ2ζ, τ) . (2.17)

Clearly, the previously obtained eigensolution (2.9) is a particular case of (2.17).

It is worth noting that the representation (2.17) involves only the harmonic function,
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not its conjugate, as was the case for the Rayleigh wave, obtained by Chadwick (1976).

2.2 Model formulation

In this section we present briefly the results for a parabolic-elliptic model for the bending

edge wave on an isotropic Kirchhoff plate, associated with that obtained see Kaplunov

and Prikazchikov (2013).

The aim of this model is extracting the contribution of the bending edge wave to the

overall dynamic response.

Consider the non-homogeneous boundary conditions at the edge y = 0

∂2W

∂y2
+ ν

∂2W

∂x2
= −M,

∂3W

∂y3
+ (2− ν)

∂3W

∂x2∂y
= −N,

(2.18)

where M and N are the prescribed bending moment and modified shear force, respec-

tively.

For convenience we treat them separately as two sub-problems. Let us first consider the

case of edge bending moment, that is when N = 0, M 6= 0.

The model below relies on the representation of the eigensolution in terms of a single

plane harmonic function (2.17).

Perturbation of this eigensolution in slow time, leads to a beam-like equation along the
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edge y = 0 which can be written as

Dγ4
∂4W

∂x4
+ 2ρh

∂2W

∂t2
= Q

∂2M

∂x2
, (2.19)

where Q is the material constant

Q =
χ (χ+ ν)

1− ν + χ
, (2.20)

with

χ =
√

1− γ4, (2.21)

depending on the Poisson’s ratio only. The variation of the constant Q on the Poisson’s

ratio ν is shown on the following Fig.2.3,

0.1 0.2 0.3 0.4 0.5
ν

2.19

2.20

2.21

2.22

Q

Figure 2.3: The coefficient Q versus the Poisson’s ratio .
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Solution of (2.18) on the edge y = 0 serves as a Dirichlet-type boundary condition for

the elliptic equation

∂2W1

∂y2
+ λ21

∂2W1

∂x2
= 0, (2.22)

with the resulting deflection W expressed through the plane harmonic function W1 as

(2.16).

A similar formulation may be derived for the second sub-problems where N 6= 0 and

M = 0.

This corresponds to excitation by means of a prescribed shear force, for which

∂2W

∂y2
+ ν

∂2W

∂x2
= 0,

∂3W

∂y3
+ (2− ν)

∂3W

∂x2∂y
= −N.

(2.23)

Now, the slow time perturbation procedure leads to a parabolic equation for the rotation

angle θ =
∂W

∂y
evaluated at the edge y = 0, namely,

Dγ4
∂4θ

∂x4
+ 2ρh

∂2θ

∂t2
= −Q∂

2N

∂x2
, (2.24)

with Q defined in (2.20).

Similarly, the elliptic equation over the interior is given by

∂2θ

∂y2
+ λ21

∂2θ

∂x2
= 0, (2.25)

with the eigensolution following from (2.17).

Thus, for the case of a prescribed edge shear force, the bending edge wave field is again

38



described by a parabolic beam-like equation (2.24) on the edge, together with the elliptic

equation (2.25) , governing the decay away from the edge .

2.3 Excitation due to internal source

In this section, we consider an example illustrating the implementation of the asymptotic

model for an internal source embedded in the plate.

Below we implement the superposition principle, decomposing the solution in two steps:

1 The problem for an infinite plate with an embedded source.

2 The problem for a semi-infinite plate with the discrepancy taken care of due to

appropriate non-homogeneous boundary conditions on the edge.

The governing equation for an infinte Kirchhoff isotropic plate with an embedded point

time harmonic source is given by

D∆2W + 2ρh
∂2W

∂t2
= Pδ(x)δ(y − y0) eiωt, (2.26)

where δ(.) is the Dirac’s delta function and P is the magnitude of the load and the source

has coordinates x = 0, y = y0, see the Figure 2.4.
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P

Figure 2.4: Embedded source

In fact, the deflection produced by the source is the Green’s function, see e.g. Gunda et

al. (1998)

W ∗ =
i

8k2D

[
H1

0 (kr)−H1
0 (ikr)

]
, (2.27)

where r is distance of the observation point from the source location, H1
0 is the zero order

Hankel function of the first kind and k is wave number, related to frequency ω through

the dispersion relation

Dk4 = 2ρhω2.

Using the superposition principle, we can formulate a problem for a semi-infinite homo-

geneous plate governed by

D∆2W + 2ρh
∂2W

∂t2
= 0, (2.28)
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with the effect of source modelled by the following boundary conditions

∂2W

∂y2
+ ν

∂2W

∂x2
= M∗,

∂3W

∂y3
+ (2− ν)

∂2W

∂x2∂y
= N∗,

(2.29)

where M∗ and N∗ are the bending moment and modified shear force at y = 0 defined by

M∗ =
∂2W ∗

∂y2
+ ν

∂2W ∗

∂x2
, (2.30)

and

N∗ =
∂3W ∗

∂y3
+ (2− ν)

∂2W ∗

∂x2∂y
. (2.31)

As before, the problem may be decomposed into two sub-problems. Let us begin with

the bending moment excitation. After some transformation the effective bending edge

moment is represented as

M∗ =
1

8Dk (x2 + y20)
3/2

[
−ik

√
x2 + y20 (νx2 + y20)H

(1)
0

(
ik
√
x2 + y20

)
−

k
√
x2 + y20 (νx2 + y20)H

(1)
0

(
k
√
x2 + y20

)
+

(ν − 1) (x2 − y20)
(
H

(1)
1

(
ik
√
x2 + y20

)
+ iH

(1)
1

(
k
√
x2 + y20

))]
.

(2.32)

Now applying the parabolic-elliptic model, we have

Dγ4
∂4W

∂x4
− 2ρhω2W = Q

∂2M∗

∂x2
, (2.33)

where Q is defined in (2.20).

Applying the Fourier transform to (2.33) along the edge , we have

W F =
−Qh2k2M∗F

Dk4γ4 − 2ρhω2
. (2.34)
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where k denotes the parameter of the Fourier transforms. The solution for the function

W may be expressed as

W =
1

2π

∞∫
−∞

eikx
h2M∗Fk2χ (χ+ ν)

(1− ν + χ)(γ4 − 1)Dk4
dk. (2.35)

The graphical illustration of a real part of W F is shown in Fig. 2.5.

20 40 60 80 100

-2.0

-1.5

-1.0

-0.5

0.5

1.0

k

Re W F

Figure 2.5: Real part of WF for E = 2.3GPa, ν = 0.3 and h = 0.1

The case of shear force excitation may be treated similarly.

Thus, we have presented an example of implementation of the parbolic-elliptic model

for the bending edge waves to the problem of a time-harmonic internal source. Similar

approach could be realised for transient internal sources.
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Chapter 3

Edge bending wave on an othotropic

elastic plate resting on the

Winkler-Fuss foundation.

This chapter is concerned with the propagation of bending edge waves on an orthotropic

plate supported by the Winkler-Fuss foundation, subject to free edge boundary condi-

tions. First, the dispersion relation is derived. Then, the general profile of the wave is

constructed in terms of an arbitrary plane harmonic function.

Finally, several illustrative examples are considered including that of a conventional si-

nusoidal profile, together with a less trivial form of the eigensolution arising for a given
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initial data. An example of initial conditions corresponding to a point load demonstrates

a more localized distribution along the longitudinal variable occurring with an increase

in the transverse variable moving away from the edge.

Some of the results of this chapter have been published in Althobaiti and Prikazchikov

(2016) and Althobaiti et al. (2017).

3.1 Bending edge waves of sinusoidal profile on an

orthotropic elastic plate

3.1.1 Problem statement

 

Figure 3.1: Elastic plate on the Winkler-Fuss foundation.
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Consider an orthotropic elastic plate of thickness 2h supported by a Winkler-Fuss foun-

dation, see Figure 3.1. Let the plate occupy the region −∞ < x <∞, 0 ≤ y <∞,

0 ≤ z ≤ 2h, with the foundation domain given by −∞ < x <∞, 0 < y <∞,

2h 6 z <∞.

The governing equation for the flexural displacement W of an orthotropic, homogeneous,

thin elastic plate is

Dx
∂4W

∂x4
+ 2H

∂4W

∂x2∂y2
+Dy

∂4W

∂y4
+ 2ρh

∂2W

∂t2
+ βW = 0, (3.1)

where H = D1 + 2Dxy, and β is the Winkler coefficient. Clearly, when β = 0 this

corresponds to a free Kirchhoff plate, see Norris (1994).

In the absence of prescribed moment and modified shear force on the edge y = 0, the

boundary conditions are expressed as (1.23).

3.1.2 Dispersion equation

Let us derive the dispersion equation for the bending edge wave. The solution of the

plate equation (3.1) is sought in the form of a travelling harmonic wave as (2.1).

Substitution of (2.1) into (3.1) results in the following bi-quadratic equation

λ4 − 2D1 + 4Dxy

Dy

λ2 +
Dxk

4 + β − 2ρhω2

Dyk4
= 0, (3.2)
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which may be shown to have two roots satisfying the decay condition Reλ > 0. Therefore,

the deflection is expressed in the form

W (x, y, t) =
2∑
j=1

Aje
i(kx−ωt)−kλjy, (3.3)

with

λ21 + λ22 =
2D1 + 4Dxy

Dy

, λ21λ
2
2 =

Dxk
4 + β − 2ρhω2

Dyk4
, (Reλj > 0) , (3.4)

implying the associated attenuation orders, λ1 and λ2 given by

λj =

√
H

Dy

+ (−1)j
κ

2
, j = 1, 2, (3.5)

where

κ = 2

√
H2

D2
y

−
(
Dx

Dy

− γ4
)
. (3.6)

Now, substituting (3.3) into boundary conditions, we have


D1 − λ21Dy D1 − λ22Dy

λ31Dy − λ1(D1 + 4Dxy) λ31Dy − λ2(D1 + 4Dxy)


 A1

A2

 =

 0

0

 . (3.7)

The above set of linear equations possesses non-trivial solutions provided the related

determinant vanishes, i.e.∣∣∣∣∣∣∣∣∣∣
D1 − λ21Dy D1 − λ22Dy

λ31Dy − λ1(D1 + 4Dxy) λ31Dy − λ2(D1 + 4Dxy)

∣∣∣∣∣∣∣∣∣∣
= 0. (3.8)
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As a result we get

λ2
(
λ22Dy − (D1 + 4Dxy)

) (
λ21Dy −D1

)
−

λ1
(
λ21Dy − (D1 + 4Dxy)

) (
λ22Dy −D1

)
= 0.

(3.9)

Factorising the last equation and using the relation (3.4), it is possible to establish that

D2
yλ

2
1λ

2
2 + 4DyDxyλ1λ2 −D2

1 = 0, (3.10)

which implies

Dxk
4 + β − 2ρhω2

Dyk4
=

(√
D2

1 + 4D2
xy − 2Dxy

)2
D2
y

. (3.11)

The dispersion relation may then be re-cast as

Dxc
4k4 = 2ρhω2 − β, (3.12)

where

c4 = 1−

(√
4D2

xy +D2
1 − 2Dxy

)2
DxDy

, (3.13)

is a constant, arising for the bending edge wave on an orthotropic elastic plate, first

obtained by Norris (1994).

It is well-known that typical value of the coefficient c4 is close to 1, see Norris (1994)

and generalises the well-known Konenkov constant for isotropic plate, see (2.7).

In other words, foundation adds stiffening to the structure, and waves can only propagate
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starting from a certain frequency value. From (3.12) we have

ω2 >
β

2ρh
(3.14)

hence the cut-off frequency

ω0 =

√
β

2ρh
. (3.15)

Similarly to Kaplunov et al. (2014), the presence of elastic foundation causes a cut-off

frequency. It should be noted that the value of the cut-off frequency is identical to that

of the isotropic case due to the fact that the principal anisotropy directions coincide with

the coordinate axis.

The dispersion relation (3.12) may be represented in dimensionless form as

K4 = Ω2 − 1, (3.16)

where

K = kγ 4

√
Dx

β
, Ω = ω

√
2ρh

β
, (3.17)

hence Ω = 1 is the dimensionless cut-off frequency, similarly to the isotropic case exam-

ined in Kaplunov et al. (2014), see Fig.3.2
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Figure 3.2: Dispersion curve for edge wave.

Following the aforementioned publication, we note that the phase velocity normalized

by

√
2ρh

γ 4
√
βDx

,

V ph =
Ω

K
=

Ω
4
√

Ω2 − 1
, (3.18)

has the local minimum V ph =
√

2 at Ω =
√

2, corresponding to K = 1.

Moreover, at this point V ph coincides with the group velocity

V g =
dΩ

dK
=

2 4

√
(Ω2 − 1)3

Ω
, (3.19)

see Fig.3.3, which is in fact almost identical to Fig. 3 of Kaplunov et al. (2014).

It is also worth mentioning that the minimum value V ph = V g =
√

2, associated with the
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dispersion relation implies the critical speed of a moving load problem, corresponding

to the local minimum of the phase velocity, as noticed previously to the classical 1D

problem for a beam on a Winkler foundation, see Timoshenko (1926).
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V ph

V g

V

Ω

Figure 3.3: The phase and group velocities V ph and V g vs. frequency.

Therefore, we may expect the same resonant effect of an edge moving load on an elas-

tically supported plate. Thus, the effects of the cut-off frequency and local minimum of

phase velocity corresponding to the critical regime of the moving edge load, observed for

isotropic Kirchhoff plate on Winkler foundation, are also confirmed for an orthotropic

plate.

In view of the boundary conditions (1.23) the deflection profile may be written as

W = A

(
e−kλ1y − D1 − λ21Dy

D1 − λ22Dy

e−kλ2y
)
ei(kx−ωt). (3.20)
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Let us now generalise this profile to arbitrary shape, following the procedure in subsection

2.1.2.

3.2 Homogeneous bending edge wave of arbitrary

profile

In this subsection we generalise the profile (3.20) to that expressed in terms of an arbi-

trary single plane harmonic function. Some of the results have been reported already in

Althobaiti and Prikazchikov (2016).

Let us introduce the following dimensionless quantities

ξ =
x

h
, η =

y

h
, τ = t

√
Dx

2ρh5
. (3.21)

The governing equation (3.1) becomes

Dx
∂4W

∂ξ4
+ 2H

∂4W

∂ξ2∂η2
+Dy

∂4W

∂η4
+Dx

∂2W

∂τ 2
+ βh4W = 0. (3.22)

Next, we adopt the beam-like assumption, similarly to that in Kaplunov et al. (2016),

thus

γ4
∂4W

∂ξ4
+
∂2W

∂τ 2
+ β∗W = 0, (3.23)

where β∗ =
βh4

Dx

and presenting an analogue of the string-like assumption for the Rayleigh

wave, see Kaplunov and Prikazchikov (2017).
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As will be shown later, the assumption (3.23) is additionally justified by the fact that the

associated dispersion relation of this effective beam on the Winkler foundation coincides

with the dispersion relation (3.12) of the bending edge wave. As before, γ is a constant

which will be determined later.

In view of (3.23), we can exclude explicit time dependence from (3.22), resulting in

∂4W

∂η4
+ 2H

∂4W

∂ξ2∂η2
+
Dx

Dy

(
1− γ4

) ∂4W
∂ξ4

= 0. (3.24)

It may be shown that the obtained equation (3.24) is elliptic, therefore it may be repre-

sented as

∆1∆2W = 0,

where

∆j = ∂2η + λ2ξ∂
2
1,

with

λ21 + λ22 =
2H

Dy

and λ21λ
2
2 =

Dx

Dy

(
1− γ4

)
. (3.25)

The solution is therefore expressed as a sum of two arbitrary plane harmonic functions

W =
2∑
j=1

Wj(ξ, λjη, τ), (3.26)

satisfying the decay condition (W → 0 as y →∞) .

Here and below we restrict our contribution to the case of real λ1 and λ2.
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In terms of the scaling (3.21), the boundary conditions (1.23) take the form

Dx
∂2W

∂ξ2
+Dy

∂2W

∂η2
= 0,

(D1 + 4Dxy)
∂3W

∂ξ2∂η
+Dy

∂3W

∂η3
= 0.

(3.27)

Employing the Cauchy-Riemann identities (2.16) for a plane harmonic functionWj(ζ, λξ),

substituting (3.25) into the boundary conditions (1.23) and taking conjugate of the sec-

ond equation, we get

(D1 − λ21Dy)
∂2W1

∂ξ2
+ (D1 − λ22Dy)

∂2W2

∂ξ2
= 0

(λ31Dy − λ1(D1 + 4Dxy))
∂3W1

∂ξ3
+ (λ32Dy − λ2(D1 + 4Dxy))

∂3W2

∂ξ3
= 0,

(3.28)

which possesses non-trivial solutions provided that the associated determinant vanishes,

which yields precisely (3.8). Hence, we deduce

D1Dy(λ
2
1 + λ22) +D2

yλ
2
1λ

2
2 + 4DyDxyλ1λ2 +D2

1 + 4D1Dxy = 0. (3.29)

Using (3.25), the last equation may be rearranged to the form

(Dyλ1λ2 + 2Dxy)
2 = 4D2

xy +D2
1. (3.30)

After some algebraic manipulations we have

Dx

Dy

− γ4 =


√

4D2
xy +D2

1 − 2Dy

Dy

2

. (3.31)

Similarly to the previous subsection, only a positive root is of interest, leading to

γ4 = 1−

(√
4D2

xy +D2
1 − 2Dxy

)2
DxDy

, (3.32)
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which coincides exactly with the (3.13), hence,

γ = c.

In Figs. 3.5-3.7, we investigate the behaviour of the coefficient γ for the varying values

of the material constants, E1, E2, ν1 and ν2. The values of material parameters are given

in figure captions.
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Figure 3.4: The coefficient γ vs. parameter E1, GPa for E2 = 18.1GPa and ν1 = ν2 = 0.25.

54



20 40 60 80 100

0.95

0.96

0.97

0.98

0.99

1.00

γ

E2

Figure 3.5: The coefficient γ vs. constant E2, GPa with E1 = 54.2GPa and ν1 = ν2 = 0.25.
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Figure 3.6: The coefficient γ vs. Poisson’s ratio ν, for E1 = 54.1GPa and E2 = 18.1GPa.
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Dependence of γ on ν2 looks pretty similar to Fig. 3.7 and is therefore not presented

here. Also, we observe that Fig. 3.7 is similar to Fig. 2.2 for isotropic case.

Now let us present an additional clarification of the assumption (3.23). Indeed, if we

re-write it in the original x and t variables, we get

Dxc
4∂

4W

∂x4
+ 2ρh

∂2W

∂t2
+ β = 0,

which corresponds to a beam on a Winkler-Fuss foundation. The associated dispersion

relation is

Dxc
4k4 − β − 2ρhω2 = 0,

coinciding with (3.12), providing an additional confirmation of the assumption, comple-

menting the physically intuitive guess described earlier.

Thus, the physical meaning of the parameter γ introduced in the assumption (3.23) is

the coefficient in the dispersion relation (3.12), correcting the bending stiffness.

Note that from the boundary conditions (1.23), the harmonic functions W1 and W2 are

related to each other through

W2 (ξ, 0, t) = −D1 − λ21Dy

D1 − λ22Dy

W1 (ξ, 0, t) . (3.33)

Consequently, we can represent the deflection of the plate W in terms of a single plane

harmonic function as

W = W1(x, λ1y, τ)− D1 − λ21Dy

D1 − λ22Dy

W1 (x, λ2y, t) , (3.34)
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generalising the result in Kaplunov et al. (2016) to the orthotropic plate.

3.3 Illustrative examples

Let us now present several numerical examples, assuming

W1 (ξ, λ1η, τ) = A cos ξ e−λ1η−iωτ , (3.35)

where the frequency ω is determined from the assumption (3.23).

The dependence on time is omitted in this example, with the curves on Fig. 3.9. showing

the variation of the dimensionless quantity

W0 (ξ, λ1η) = cos ξ

(
e−λ1η − D1 − λ21Dy

D1 − λ22Dy

e−λ2η
)
, (3.36)

on the longitudinal coordinate ξ for several values of the transverse coordinate η, namely

η = 0 , 1 , 10 , and 50
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W0

ξ

Figure 3.7: Displacement of sinusoidal profile.

The calculations are performed for the following values of material parameters

E1 = 54.2GPa, E2 = 18.1GPa, Gxy = 8.96GPa, ν1 = ν2 = 0.25, h = 0.1m,

corresponding to a thin epoxy/glass plate, see Norris (1994).

Typically for edge bending waves, one of the attenuation parameters λ1, λ2 is close to

zero, therefore the exponential decay away from the edge is rather slow, which is clearly

confirmed by Fig.3.9.

In addition to this expected behaviour, the obtained representation (3.34) may allow
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other, non-sinusoidal types of eigensolutions. Let us investigate the wave profile caused

by arbitrary initial conditions.

According to (3.1) the deflection may be expressed in terms of the function W1 (ξ, λ1η, τ),

being harmonic in the first two arguments, satisfying

∂2W1

∂η2
+ λ21

∂2W1

∂ξ2
= 0, (3.37)

along with the beam-like assumption

γ4
∂4W1

∂ξ4
+
∂2W1

∂τ 2
+ βW1 = 0, (3.38)

subject to the following initial conditions

W1 |τ=0 = A (ξ, λ1η) ,
∂W1

∂τ
|τ=0 = B (ξ, λ1η) . (3.39)

It is clear from (3.37) that A (ξ, λ1η)and B (ξ, λ1η) are harmonic functions.

Applying the Fourier integral transform with respect to longitudinal variable ξ with

parameter k, we deduce

W F
1 = W1 (k, τ) e−λ1η|k|, (3.40)

where W F
1 denotes the Fourier transform

W F
1 =

∫ ∞
−∞

W1 (ξ, λ1η, τ) e−ikξdξ.

Using (3.38), we have the following initial value problem for W1 (k, τ)

∂2W F
1

∂τ 2
+
(
γ4k4 + β

)
W F

1 = 0, (3.41)
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subject to

W F
1 |τ=0 = a (k) ,

∂W F
1

∂τ
|τ=0 = b (k) , (3.42)

where a(k), b(k) are the initial conditions for the quantity W1.

Therefore, the solution is given by

W1 (ξ, λ1η, τ) =
1

2π

∫ ∞
−∞

[
b (k)

γ1
sin (γ1τ) + a (k) cos (γ1τ)

]
e−λ1η|k|+ikξdk, (3.43)

where

γ1 =
√
γ4k4 + β1.

Let us specify, for example,

A (ξ, λ1η) =
Aλ1η

λ21η
2 + ξ2

, B (ξ, λ1η) = 0, (3.44)

corresponding to point load at the edge

W1 |τ=η=0 = Aδ (ξ) ,
∂W1

∂τ
|τ=η=0 = 0. (3.45)

The function W1 is therefore given by

W1 (ξ, λ1η, τ) =
A

π

∫ ∞
0

cos (γ1τ) cos (kξ) e−λ1ηkdk, (3.46)

with the deflection following from (3.34).

In case of absence of the foundation (β = 0) the last formula (3.46) may be simplified to

W1 (ξ, λ1η, τ) =
A

2π

2∑
m=1

Re

∫ ∞
0

exp
[
iγ2τk2 − (λ1η + (−1)miξ) k

]
dk, (3.47)
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which may be evaluated explicitly through a standard integral, see Prudnikov (1986),

yielding

∫ ∞
0

exp
(
−px2 − qx

)
dx =

1

2

√
π

p
exp

(
q2

4p

)
erfc

(
q

2
√
p

)
, (3.48)

where

Re p = 0, Im p 6= 0 and Re q > 0.

Using the formula (3.48), it is possible to obtain

Ws =
4γ
√
πτ

A
W (ξ, η, τ) , (3.49)

where Ws is a scaled deflection and

Ws (ξ, η, τ) = Re

[
eiπ/4

2∑
m=1

(
f (λ1ζ + (−1)miχ)− D1 − λ21Dy

D1 − λ22Dy

f (λ2ζ + (−1)miχ)

)]
,

(3.50)

with

f(z) = ez
2

, ξ = 2γ
√
τχ and η = 2γ

√
τζ.

The dependence of the function Ws given by formula (3.50) is shown on the next Fig.3.8,

for relative depth of ζ
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ξ

Figure 3.8: Non-sinusoidal profile.

clearly showing a very different type of behaviour compared to Fig. 3.8.

Similarly, the calculations are performed for epoxy glass, with the values of material

parameters the same as for Figure 3.9. Indeed, the curves show a more localized type of

distribution of deflection along the longitudinal coordinate. Remarkably, the localisation
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effect increases as we move away from the edge, see for example the curve for ζ = 50.

One more observation, from Fig. 3.9, for most of the curves the deflection amplitude

decays away from the centre, except for one at the edge ζ = 0.

This may be readily explained, since at η = 0 the integral (3.47) becomes

∫ ∞
0

cos
(
αk2
)

cos (βk) dk =
1

2

√
π

α
sin

(
π

4
+
β2

4α

)
, (3.51)

see Prudnikov et al. (1986).

In view of the last formulation (3.51), we deduce for the scaled deflection at the edge

ζ = 0 that

Ws (χ, 0, τ) =
2Dy (λ21 − λ22)
D1 − λ22Dy

sin
(π

4
+ χ2

)
. (3.52)

Thus, it has been established that the displacement eigensolution for bending edge wave

on an orthotropic elastic plate supported by the Winkler-Fuss elastic foundation may be

represented in terms of an arbitrary plane harmonic function. The dispersion relation

has been analysed, revealing similar features to that of the isotropic Kirchhoff plate con-

sidered in Kaplunov et al. (2014). Finally, the presented examples illustrate theoretical

possibilities of not only sinusoidal, but also localized profiles.
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Chapter 4

Asymptotic model for the bending

edge wave on an orthotropic elastic

plate resting on the Winkler-Fuss

foundation

In this chapter, a derivation of an explicit formulation for the bending edge wave on a

thin orthotropic elastic plate resting on a Winkler-Fuss foundation is performed, gen-

eralising the results in Kaplunov et al. (2016) for isotropic plates to orthotropic ones.

The previously obtained eigensolution, in terms of an arbitrary plane harmonic function
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see.e.g. (3.34), will serve as a basis for further derivations of asymptotic models oriented

at extraction of the contribution of the studied localized waves from the overall dynamic

response. The derived model is expected to provide efficient approximate solutions to a

number of dynamic problems (including those for moving loads) where the contribution

of edge wave is dominant over that bulk waves.

The proposed models are obtained through a multi-scale perturbation scheme, also em-

ploying properties of plane harmonic functions, in particular the Cauchy-Riemann iden-

tities. The resulting formulation for the bending edge wave field includes elliptic partial

differential equations, describing the decay away from the edge, along with the parabolic

equations on the edge associated with wave propagation. Then, we analyse steady mo-

tion of a point moment along the edge of the plate, observing the resonant regime. In

addition, a beam-like behaviour on the edge is revealed, which might be expected from

the derived parabolic-elliptic formulation for the bending edge wave.

4.1 Explicit model formulation

In this section, we derive an asymptotic model for the bending edge wave on an or-

thotropic elastic plate resting on the Winkler-Fuss foundation. First, a multi-scale slow

time perturbation of the eigensolution is performed. Then, in both cases of boundary
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conditions at the edge, namely, the case of forcing moment and shear forcing, the elliptic

behaviour over the interior is complemented by a parabolic beam-like equation on the

edge, corresponding to propagation of the wave.

4.1.1 Perturbation scheme

Now that the results in section 3.2, expressing the wave field in terms of a single plane

harmonic function, have been established, we proceed with the development of an explicit

model for the bending edge wave. In parallel with Kaplunov et al. (2016), our starting

point is a multiple scale procedure.

Let us perturb equation (3.1) around the edge wave eigensolution.

We introduce fast (τf = τ ) and slow (τs = ετ) time variables accordingly, where ε � 1

is a small parameter, therefore

∂2

∂τ 2
=

∂2

∂τ 2f
+ 2ε

∂2

∂τf∂τs
+ ε2

∂2

∂τ 2s
. (4.1)

We remark that the slow time perturbation scheme my be interpreted from a physical

point of view as a focus on frequencies which are close to those frequencies of the ho-

mogeneous bending edge wave. In other words it means that the deviation of the phase

speed of the analysed motion from that of the homogeneous edge wave is small.

66



The deflection W is then expanded in an asymptotic series as

W =
h2p

εDx

(
W (0) + εW (1) + ....

)
, (4.2)

where

p = max
x,t

[M(x, t), hN(x, t)].

Next, we substitute (4.2) into (3.1) having at leading order

(
∂4

∂ζ4
+

2H

Dy

∂4

∂ξ2∂ζ2

)
W (0) +

Dx

Dy

(
∂4

∂ξ4
+ β∗

)
W (0) +

∂2W (0)

∂τ 2f
= 0. (4.3)

Using the beam-like assumption,

γ4
∂4W (0)

∂ξ4
+
∂2W (0)

∂τ 2f
+ β∗W (0) = 0, (4.4)

equation (4.3) may then be rewritten in an operator form as

∆1∆2W
(0) = 0, (4.5)

where

∆j = ∂2ζ + λ2j∂
2
ξ , j = 1, 2, λ2j =

H

Dy

+ (−1)j
κ

2

and

κ = 2

√
H2

D2
y

−
(
Dx

Dy

− γ4
)
.

The solution of (4.3) is then given by

W (0) =
2∑
j=1

W
(0)
j (ξ, λjζ, τf , τs), (4.6)
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where Wj, (j = 1, 2) are harmonic in the first two arguments, and the decay as ζ →∞

is supposed.

At the next order we obtain from (4.1)

(
∂4

∂ζ4
+

2H

Dy

∂4

∂ξ2ζ2

)
W (1) +

Dx

Dy

(
∂4

∂ξ4
+ β∗

)
W (1) +

∂2W (1)

∂τ 2f
+ 2

∂2W (0)

∂τf∂τs
= 0, (4.7)

which, in view of the beam like assumption, may be re-written as

∆1∆2W
(1) = −2

∂2W
(0)
j

∂τf∂τs
(j = 1, 2). (4.8)

The next order solution is then given by a combination of harmonic functions, yielding

W (1) = W
(1)
1 +W

(1)
2 . (4.9)

Further analysis of (4.8) requires separate consideration for both functions W
(1)
j , j = 1, 2.

Using the properties of harmonic functions, we deduce an auxiliary relation for the first

function

∆2W
(0)
1 =

[
∂2

∂ξ2
+ λ22

∂2

∂ξ2

]
W

(0)
1 = (λ22 − λ21)

∂2W
(0)
1

∂ξ2
= −κ∂

2W
(0)
1

∂ξ2
, (4.10)

and

∆1W
(0)
2 = −κ∂

2W
(0)
2

∂ξ2
. (4.11)

In view of assumption (4.4), differentiating equation (4.8) twice with respect to ξ, we

deduce

∆1∆2
∂2W

(1)
1

∂ξ2
= − 1

γ2
∆2

∂2W
(0)
1

∂τf∂τs
, (4.12)
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from which

∆1
∂3W

(1)
1

∂ξ2∂ζ
= − 1

γ2
∂3W

(0)
1

∂τf∂τs∂ζ
. (4.13)

It is convenient to continue the process for the derivative Φ
(1)
j =

∂W
(1)
j

∂ζ
, resulting in

∂W
(1)
j

∂ξ
= Φ

(1,0)
j + ζΦ

(1,1)
j . (4.14)

Then equation (4.13) is rewritten as

∆1Φ
(1)
j = − 1

γ2
∂3W

(0)
j

∂τf∂τs∂ζ
. (4.15)

Following Kaplunov et. al (2016), the solution of (4.12) is sought in the form

∂3W
(1)
1

∂ξ2∂ζ
=
∂3Φ

(1,0)
j

∂ξ2∂ζ
− ζ

κ

∂2W
(0)
1

∂τs∂τf
, (4.16)

where Φ1 = Φ1 (ξ, λ1ζ, τf , τs).

Similarly, for the second function, W
(0)
2 , we have

∆2
∂3W

(1)
2

∂ξ2∂ζ
= − 1

γ2
∂2W

(0)
2

∂τf∂τs∂ζ
, (4.17)

hence

∂3W
(1)
2

∂ξ2∂ζ
=
∂3Φ

(1,0)
2

∂ξ2∂ζ
− ζ

κ

∂2W
(0)
2

∂τ∂τf
, (4.18)

where Φ2 = Φ2 (ξ, λ1ζ, τf , τs) is also an arbitrary harmonic function.

Finally, we obtain

∂3W

∂ξ2∂ζ
=
h2P

Dx

[
∂3

∂ξ2∂ζ

(
1

ε
(W

(0)
1 +W

(0)
2 ) + (Φ

(1,0)
1 + Φ

(1,0)
2 )

)
− ζ

κ

∂2

∂τs∂τf
(W

(0)
1 −W

(0)
2 ) + ...

]
.

(4.19)

69



4.1.2 Parabolic equation on the edge

Now we are in position to consider the non-homogeneous boundary conditions (1.24) as

D1
∂2W

∂ξ2
+Dy

∂2W

∂ζ2
=
h2Dx

P
M,

(D1 + 4Dxy)
∂3W

∂ξ2∂ζ
+Dy

∂3W

∂ζ3
=
h3Dx

p

∂2N

∂ξ2
,

(4.20)

where M and N are the prescribed bending moment and shear force respectively.

Now, due to the linearity of the problem, the problem may be split into the two separate

sub-problems presented below

(a) Bending moment

We consider the case of an edge bending moment applied at the edge of an orthotropic

plate, that is when N = 0, M 6= 0.

On substituting the asymptotic expansion (4.19) into the boundary conditions (3.27) we

have at leading order

(D1 − λ21Dy)
∂2W

(0)
1

∂ξ2
+ (D1 − λ22Dy)

∂2W
(0)
2

∂ξ2
= 0

(λ31Dy − λ1(D1 + 4Dxy))
∂3W

(0)
1

∂ξ3
+ (λ32Dy − λ2(D1 + 4Dxy))

∂3W
(0)
2

∂ξ3
= 0,

(4.21)

which leads, after some transformation, to a dispersion relation in the form

λ1λ2 =

(
4D2

xy +D2
1 − 2Dxy

Dy

)
, (4.22)
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as a condition for existence of non-trivial solutions.

At next order, the boundary conditions (1.23) are given by

D1
∂2W

(1)
1

∂ξ2
+D1

∂2W
(1)
2

∂ξ2
+Dy

∂2W
(1)
1

∂ζ2
+Dy

∂2W
(1)
2

∂ζ2
=
h2Dx

P
M,

(D1 + 4Dxy)
∂3W

(1)
1

∂ξ2∂ζ
+ (D1 + 4Dxy)

∂3W
(1)
2

∂ξ2∂ζ

+Dy
∂3W

(1)
1

∂ζ3
+Dy

∂3W
(1)
2

∂ζ3
= 0.

(4.23)

It may be deduced from the relations (4.13) and (4.17) that

∂4W
(1)
1

∂ξ4
=

1

λ21

(
− 1

γ2
∂2W

(0)
1

∂τf∂τs
− ∂4W

(1)
1

∂ξ2∂ζ2

)
. (4.24)

Similarly,

∂4W
(1)
2

∂ξ4
=

1

λ22

(
1

γ2
∂2W

(0)
2

∂τf∂τs
− ∂4W

(1)
2

∂ξ2∂ζ2

)
. (4.25)

Using (4.19), we may rewrite the boundary conditions (4.23) as

D1

[
∂4

∂ξ4

(
W

(1)
1 +W

(1)
2

)]
+Dy

[
∂4

∂ξ2∂ζ2

(
Φ

(1,0)
1 + Φ

(1,0)
2

)]
=
Dx

p

∂2M

∂ξ2
,

(D1 + 4Dxy)

[
∂5

∂ξ4∂ζ

(
Φ

(1,0)
1 + Φ

(1,0)
2

)
− 1

γ2
∂3

∂τf∂τs∂ζ

(
W

(0)
1 +W

(0)
2

)]

+Dy

[
∂5

∂ξ2∂ζ3

(
Φ

(1,0)
1 + Φ

(1,0)
2

)]
= 0.

(4.26)

Employing the Cauchy-Riemann identities (2.16) for a plane harmonic function and
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substituting into the boundary conditions (4.26), we may establish that

(D1 − λ21Dy)
∂4Φ

(1,0)
1

∂ξ4
+ (D1 − λ22Dy)

∂4Φ
(1,0)
2

∂ξ4
=
D1

γ2

[
1

λ21

∂2W
(0)
1

∂τfτs
+

1

λ22

∂2W
(0)
2

∂τfτs

]
− Dx

p

∂2M

∂ξ2

(D1 + 4Dxy)

[
λ1
∂4Φ

(1,0)
1

∂ξ4
+ λ2

∂4Φ
(1,0)
2

∂ξ4

]
=

[
1

γ2
∂2

∂τfτs

(
λ1W

(0)
1 + λ2W

(0)
2

)]
+Dy[

λ31
∂4Φ

(1,0)
1

∂ξ4
+
λ32∂

4Φ
(1,0)
2

∂ξ4

]
.

(4.27)

From the solvability of equation (4.21), and after some transformations, we have

2∑
j=1

(
λ2j(D1 + 4Dxy)−D1

) [
1− D1 − λ2iDy

D1 − λ2jDy

]
∂2W

(0)
j

∂τf∂τs
= γ2λ1

[
(D1 + 4Dxy) + λ21Dy

] Dx

p

∂2M

∂ξ2
,

(4.28)

where 1 ≤ i 6= j 6 2.

Now we use the representation of the wave field in terms of a single harmonic function,

expressing the deflection W on the edge ζ as

W (0) =

(
1− D1 − λ21Dy

D1 − λ22Dy

)
W

(0)
1 (ξ, 0, t). (4.29)

Finally, using formula (3.32), we obtain from (4.28), that

∂2W (0)

∂τf∂τs
=
QDx

2p

∂2M

∂ξ2
(4.30)

where Q is a material constant depending on Dx, Dy, D1 and Dxy with E and ν as

Q =
γ2λ1 [(D1 + 4Dxy) + λ21Dy]

A1 − A2

, Ai = [λi(D1 + 4Dxy)−D1]

[
1− D1 − λ2iDy

D1 − λ2jDy

]
.

(4.31)
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As will be shown later, the coefficient Q is rather important, appearing in the right hand

side of a parabolic equation on the edge, see (4.35).

It may be shown that Q could be expressed in simplified form as

Q =
χ (χ+D1)

Dy(χ+ 2Dxy)
, (4.32)

with

χ =
√
DxDy(1− γ4).

In Figs.4.1-4.3 behaviour of the coefficient Q (4.32) on the material parameters is illus-

trated, with the values of material parameters given in captions.

20 40 60 80 100

5

10

15

Q

E1

Figure 4.1: The coefficient Q vs. the material constant E1, GPa for E2 = 18.1GPa, ν1 =

0.25, h = 0.1m.
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Figure 4.2: The coefficient Q vs. the material constant E2, GPa for E1 = 54.2GPa, ν1 =

0.25, h = 0.1m.
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Figure 4.3: The coefficient Q vs. the material constant ν1 for E1 = 54.2GPa, E2 =

18.1GPa, h = 0.1m.
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.

As may be seen from all Figs. 4.1-4.3, the coefficient Q is an increasing function of E1,

E2 and ν1. We also note that Fig 4.3 is rather similar to Fig 2.3 for an isotropic plate.

Applying the leading-order approximation

W ≈ h2P

εDx

W (0), (4.33)

and using the relation (3.23), equation (4.30) can be transformed to a parabolic equation

at the edge

Dxγ
4∂

4W

∂ξ4
+
∂2W

∂τ 2
+ 2ε

∂2W (0)

∂τf∂τs
+ βW = Q

∂2M

∂ξ2
. (4.34)

Returning back to the original coordinates x, y and t, (4.34) takes the form of a parabolic

beam-like equation along the edge y = 0, namely

Dxγ
4∂

4W

∂x4
+ 2ρh

∂2W

∂t2
+ βW = Q

∂2M

∂x2
. (4.35)

Thus, for the bending edge wave excited by the given bending moment M the wave field

at y = 0 is governed by a parabolic equation (4.35).

The decay over the interior is described by the elliptic equation

∂2W1

∂y2
+ λ21

∂2W1

∂x2
= 0, (4.36)

with the resulting deflection W found from (3.34).

As a result, we have a simpler formulation for a scaled Laplace equation, not a bi-

harmonic one. Thus, we established a dual parabolic-elliptic nature of the studied wave,
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with the solution of the parabolic equation (4.35) serving as a boundaru value for elliptic

equation (4.36).

(b) Shear force

A similar formulation may be derived for the second type of boundary conditions (4.20),

now with M = 0, N 6= 0, corresponding to a shear force excitation

D1
∂2W

∂ξ2
+Dy

∂2W

∂ζ2
= 0,

(D1 + 4Dxy)
∂3W

∂ξ2∂ζ
+Dy

∂3W

∂ζ3
=
h3Dx

p
N.

(4.37)

The analysis is rather similar to that presented in the previous subsection. The dispersion

relation follows from the leading order boundary conditions, with the following system

obtained at the next order

D1
∂2W

(1)
1

∂ξ2
+D1

∂2W
(1)
2

∂ξ2
+Dy

∂2W
(1)
1

∂ζ2
+Dy

∂2W
(1)
2

∂ζ2
= 0,

(D1 + 4Dxy)
∂3W

(1)
1

∂ξ2∂ζ
+ (D1 + 4Dxy)

∂3W
(1)
2

∂ξ2∂ζ

+Dy
∂3W

(1)
1

∂ζ3
+Dy

∂3W
(1)
2

∂ζ3
=
h2Dx

P
N.

(4.38)

Substituting solution (4.19) into (4.37), we deduce

D1

[
∂4

∂ξ4

(
W

(1)
1 +W

(1)
2

)]
+Dy

[
∂4

∂ξ2∂ζ2

(
Φ

(1,0)
1 + Φ

(1,0)
2

)]
= 0,

(D1 + 4Dxy)

[
∂5

∂ξ4∂ζ

(
Φ

(1,0)
1 + Φ

(1,0)
2

)
− 1

γ2
∂3

∂τf∂τs∂ζ

(
W

(0)
1 +W

(0)
2

)]
+

Dy

[
∂5

∂ξ2∂ζ3

(
Φ

(1,0)
1 + Φ

(1,0)
2

)]
=
h3Dx

p

∂2N

∂ξ2
.

(4.39)
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It worth notice that this system does not lead to a parabolic beam equation for the

deflection W . Instead it provides an equation for the rotation angle θ =
∂W

∂y
evaluated

at the edge y =0, namely

Dxγ
4 ∂

4θ

∂x4
+ 2ρh

∂2θ

∂t2
+ βW = Q

∂2N

∂x2
, (4.40)

with the constant Q defined in (4.32).

The resulting explicit model for the shear edge force is similar to that obtained in respect

of a bending moment. It contains the elliptic equation

∂2θi
∂y2

+ λ22
∂2θi
∂x2

= 0. (4.41)

Thus, for the bending edge moment excitation the parabolic-elliptic model is comprised

of (4.35) and (4.36), whereas in case of the shear force excitation, the explicit formulation

for bending edge wave consists of an elliptic equation (4.40) and a parabolic equation

(4.41).

4.2 Implementation of the model

Consider now model examples for illustrating the implementation of the formulation

developed in above section, in particular, including near-resonant excitation and moving

loads.
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4.2.1 Comparison with exact solution

Let us consider the problem of moment excitation having the governing equation (3.1),

subject to boundary condition (3.27). Then, by applying the Laplace transform to (3.22)

with respect to scaled time τ , and Fourier integral transform with respect to longitudinal

variable ξ, we have

Dy
d4W FL

dη4
− 2Hp2

d2W FL

dη2
+Dx

(
p4 + s2 + β

)
W FL = 0, (4.42)

where p and s are the parameters of Fourier and Laplace transforms, respectively, and

W FL the transformed deflection.

For decaying solution of (4.42) we require

W FL = C1e
−µ1η + C2e

−µ2η, (4.43)

where C1 and C2 are arbitrary constants, and

µ2
1 + µ2

2 =
2Hp2

Dy

, µ2
1µ

2
2 =

Dxp
4 − s2 + β

Dy

. (4.44)

Then the boundary conditions (3.27) are transformed to

Dy
∂2W FL

∂η2
−D1p

2W FL = −MFL
0 ,

Dy
∂3W F

∂η3
− (D1 + 4Dxy)p

2∂W
F

∂η
= 0,

(4.45)

where MFL is the transformed moment M .

On substituting the solution (4.43) into the boundary conditions (3.27), it is possible to
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determine the constants C1 and C2. The result for the transformed deflection W FL may

be expressed as

W FL =
∆1

∆
e−µ1η +

∆2

∆
e−µ2η, (4.46)

where

∆1 =

∣∣∣∣∣∣∣∣∣∣
−MFL −D1p

2 +Dyµ
2
2

0 −Dyµ
3
2 + (D1 + 4Dxy)µ2p

2

∣∣∣∣∣∣∣∣∣∣
, (4.47)

∆2 =

∣∣∣∣∣∣∣∣∣∣
−D1p

2 +Dyµ
2
1 −MFL

−Dyµ
3
1 + (D1 + 4Dxy)µ1p

2 0

∣∣∣∣∣∣∣∣∣∣
, (4.48)

and

∆ =

∣∣∣∣∣∣∣∣∣∣
−D1p

2 +Dyµ
2
1 −D1p

2 +Dyµ
2
2

−Dyµ
3
1 + (D1 + 4Dxy)µ1p

2 −Dyµ
3
2 + (D1 + 4Dxy)µ2p

2

∣∣∣∣∣∣∣∣∣∣
. (4.49)

Therefore, using the definition (4.44) we establish

∆i = (−1j)MFµj
[
Dyµ

2
j − (D1 + 4Dxy)p

2
]
, i 6= j = 1, 2,

and

∆ = (µ2 − µ1)
[
D2
yµ

2
1µ

2
2 −DyD1p

2(µ2
1 + µ2

2) + 4DyDxyp
2µ1µ2 + p4D1(D1 + 4Dxy)

]
.

(4.50)

After some transformations the solution of (4.46) for W FL at the edge ζ = 0 may be

found in the form

W FL |ζ=0= −
MFL

0 (D1p
2 +Dyq)

D2
yq

2 + 4DyDxyqp2 −D2
1p

4
, (4.51)
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with

q = µ1µ2 =

√
Dx

Dy

p4(1− γ4). (4.52)

Note that the pole of the denominator given by

s2 + β = −γ4p4, (4.53)

is associated with the dispersion relation for bending edge wave (3.12).

Approximating the result (4.51) around the pole (4.53), we deduce

W FL |ζ=0≈ −
MFL

0 p2χ (χ+D1)

Dy (χ+ 2Dxy) (β +Dxγ4p4 + s2)
, (4.54)

with

χ =
√
DxDy(1− γ4) .

which is a transformed solution of the parabolic equation (4.35) rewritten in terms of ξ

and τ . Thus, it is concluded that the presented parabolic-elliptic models (4.35) and (4.46)

capture the contribution of the bending edge wave field to overall dynamics response.

4.2.2 Near-resonant excitation

Let us consider inhomogeneous boundary conditions and prescribe the edge bending

moment in the form of time-harmonic sinusoidal form

M = Ae−i(kx−ωt), (4.55)
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with no modified shear force assumed.

This loading allows a particular form of solution of the plate bending equation (3.1),

subject to the inhomogeneous boundary conditions (1.24), which can be given as

W (x, y, t) = F (y)e−i(kx−ωt). (4.56)

As a result, the secular equation for the function F (y) is given by

d4F

dy4
− 2D1 + 4Dxy

Dy

k2
d2F

dy2
+

(
Dxk

4 + β − 2ρhω2

Dyk4

)
F = 0. (4.57)

The solution of (4.57) is conventionally expressed as a sum of two decaying exponents,

i.e.

F (y) =
2∑
j=1

Cje
−kχj , (4.58)

with

χ2
1 + χ2

2 =
2D1 + 4Dxy

Dy

, χ2
1χ

2
2 =

Dxk
4 + β − 2ρhω2

Dyk4
. (4.59)

It may be easily verified that the attenuation orders χj satisfy the dispersion relation

(3.12), provided that the χj coincide with λj.

The arbitrary constants C1 and C2 are determined from the boundary conditions (4.20)

as

C1 =
∆∗1
∆∗

and C2 =
∆∗2
∆∗

,

where

∆∗j = (−1j)M χj
[
Dyχ

2
j − (D1 + 4Dxy)k

2
]
,
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and

∆∗ = (χ2 − χ1)
[
Dy2χ2

1χ
2
2 −DyD1k

2(χ2
1 + χ2

2) + 4DyDxyk
2χ1χ2 + k4D1(D1 + 4Dxy)

]
.

The exact solution at the edge is then given by

W (x, 0, t) = − A

Dxk2
D1k

2 +Dyq

D2
yχ

2
1χ

2
2 + 4DyDxyχ1χ2 −D2

1

. (4.60)

Let us now compare the last formula with that obtained from the approximate formu-

lation derived in (4.35) for the case of edge moment excitation. The related particular

solution of equation(4.35) is given by

W (x, 0, t) = − AQk2

Dxk4γ4 + β − 2ρhω2
ei(kx−ωt), (4.61)

with Q defined in (4.32).

It is clear that both exact and approximate formulae (4.60) and (4.61), respectively,

display resonant behaviour, provided that the frequency ω and the wave number k satisfy

the dispersion relation (3.12).

We will now compare solutions (4.60) and (4.61) when the frequency of the excitation is

close to that of the bending edge wave.

Consider a frequency perturbation of the form

ω = ω0 + εω1, (4.62)

where

ω0 =

√
Dxk

4γ4 + β

2ρh
,
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is a eigenfrequency, see (3.12).

As before, we operate with the same type of motion evolving in slow time τ = εt, which

is in line with the asymptotic theory presented in section 4.2.

In view of (4.62) and considering the bending moment evolve in slow time as

m(ξ, τf , τs) =
∂2m

∂τf∂τs
, (4.63)

satisfying the beam-like equation.

The form of the near-resonant excitation (4.55) gives

m = Aeih(kχj+(ω0τf+ω1τs)), (4.64)

the simplest example of behaviour (4.61). First, we obtain

χ2
1χ

2
2 =

√
Dxk4 + β − 2ρhω2

Dyk4
≈ λ1λ2 −

2ρh

Dxk4
εω0 + ω1

λ1λ2
. (4.65)

On substituting the particular solution (4.60) and using the dispersion relation (3.12),

we arrive at

W (x, 0, t) = − A

Dxk2
D1k

2 +Dyλ1λ2[
D2
yλ

2
1λ

2
2 + 4DyDxyλ1λ2 −D2

1

]
− 4ρhεω0ω1

Dxk

=
Ak2χ (χ+D1)

4ρhεω0ω1 (Dy(χ+ 2Dxy))
=

AQk2

4ρhεω0ω1

.

(4.66)

Thus, this expression coincides with the leading order behaviour of the approximation

solution (4.61), indeed we have

W (x, 0, t) =
AQk2

[Dxk4γ4 + β − 2ρhω]− 4ρhεω0ω1

=
AQk2

4ρhεω0ω1

(4.67)

which matches with (4.66).
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4.2.3 Edge moving load

In this subsection we present another related problem, namely, steady-state motion of a

bending edge moment and the associated field of the bending edge wave on an orthotropic

Kirchhoff plate resting on the Winkler foundation see Fig 4.4.

Due to range of validity of the model we focus on the near-resonant regime. Beam-like

behaviour on the edge is revealed, which might be expected from the parabolic-elliptic

model derived in the subsection 4.1.

M

Figure 4.4: Moving along the edge of the plate.

Let us replace the first boundary condition in (1.23) by

D1
∂2W

∂x2
+Dy

∂2W

∂y2
= −M0δ(x− vt), (4.68)

corresponding to a point moment of amplitude M0 moving along the edge of the plate at

a constant speed v. Let us transform to the moving coordinate system (ξ, y) = (x−vt, y).
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On applying the Fourier transform with respect to ξ in equation (3.1) and conditions

(4.68) , we obtain the following ODE for the transformed deflection W F

Dy
d4W F

dy4
− 2Hk2

d2W F

dy2
+
(
Dxk

4 − 2ρhv2k2 + β
)
W F = 0, (4.69)

subject to the boundary conditions at the edge y = 0

Dy
∂2W F

∂y2
−D1k

2W F = −M0,

Dy
∂3W F

∂y3
− (D1 + 4Dxy)k

2∂
3W F

∂y
= 0,

(4.70)

where k is the Fourier parameter.

The decaying solution of (4.69) is given by

W F = C1e
−µ1y + C2e

−µ2y (4.71)

where C1 and C2 are arbitrary constants, and

µ2
1 + µ2

2 =
2Hk2

Dy

, µ2
1µ

2
2 =

Dxk
4 − 2ρhv2k2 + β

Dy

. (4.72)

On inserting the solution (4.71) into the transformed boundary conditions (4.68), the

coefficients C1 and C2 may be determined. The solution for W F at the edge y = 0 is

then given by

W F
∣∣
y=0

= − MF
0 (D1k

2 +Dyq)

D2
yq

2 + 4DyDxyqk2 −D2
1k

4
, (4.73)

with q = µ1µ2, which may be easily rewritten as

W F
∣∣
y=0

= − MF
0 (D1k

2 +Dyq)

(Dyq + 2Dxyk2)
2 −

(
D2

1 + 4D2
xy

)
k4

(4.74)
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with √
D2

1 + 4D2
xy − 2Dxy =

√
DxDy(1− γ4).

Rearranging (4.74), we have

W F
∣∣
y=0

= −
MF (D1k

2 +Dyq)
(
Dyq + (

√
D2

1 + 4D2
xy − 2Dxy)k

2
)

(
Dyq − k2(

√
D2

1 + 4D2
xy − 2Dxy)

)(
Dyq + k2(

√
D2

1 + 4D2
xy + 2Dxy)

)
(4.75)

which implies

W F
∣∣
y=0

= −
MF (D1k

2 +Dyq)
(
Dyq +

√
DxDy(1− γ4)k2

)
Dy (Dxγ4k4 − 2ρhν2k2 + β)

(
Dyq + k2(

√
D2

1 + 4D2
xy ± 2Dxy)

) . (4.76)

The last formula may be re-written in terms of the dimensionless wave number K and

phase speed V as

K =
k

γ

√
β

Dx

, v =
γ 4
√
βDx√
2ρh

V, (4.77)

as

W F
∣∣
y=0
≈ − P

β (K4 − V 2K2 + 1)
, (4.78)

where

P =

√
β3

Dyγ4

M (Q+ χ1K
2)
(
Q+

√
1− γ4K2

)
(
Q+

(√
1− γ4 + 4χ2

)
K2
) , (4.79)

with

Q =
√
K4 − γ4 (K2V 2 − 1), χ1 =

D1√
DxDy

, χ2 =
Dxy√
DxDy

. (4.80)

It is clear from (4.74) that V =
√

2 corresponds to the resonant speed, confirming

the expectations of the section 3.2 Moreover, it may be shown that in the vicinity of the
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critical values K = 1 and V =
√

2 the resulting transformed deflection (4.78) corresponds

to the moving load problem for an elastically supported beam specified by

Dxγ
4∂

4W

∂x4
+ 2ρh

∂2W

∂t2
+ βW = P ∗δ(x− νt), (4.81)

with P ∗ = P
∣∣
K=1,V=

√
2
.

It may be easily verified that in case of a near-resonant excitation, whenM = M0δ(x−vt),

the Fourier transform of the deflection governed along the edge by (4.35), coincides with

that obtained in the previous section, see (4.35), where P = P ∗.

Thus, parabolic-elliptic model for the bending edge wave on an orthotropic Kirchhff plate

resting on the Winkler foundation is derived. It includes the elliptic equation (4.41) and

parabolic equation (4.35). The model was illustrated for several cases of loading. In

addition, the obtained constant Qk see (4.32), was studied numerically for different values

of the material parameters in order to investigate the effect of anisotropy on propagation

of bending edge waves in a Kirchhoff plate resting on a Winkler foundation.
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Chapter 5

Effect of inhomogeneous

Winkler-Fuss foundation

In the present chapter we extend the results for bending edge wave Kaplunov et al.

(2014), to account for the effect of an inhomogeneous Winkler foundation. The periodic

Winkler foundation has been studied in a number of contributions, see e.g. Jedrysiak

(2003). We also mention related works for corrugated surfaces, see Asfar and Hawwa

(1995), Nayfeh and Hawwa (1998) and Hawwa and Asfar (2008), motivated in particular

by frequency-filtering applications. The analysis is carried out for both isotropic and or-

thotropic plates. A multi-scale approach is performed to study the resonant frequencies,

as well as the region of wave numbers allowing decaying solution.
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5.1 Isotropic plate

In this section we consider bending edge waves, propagating in a semi-infinite isotropic

elastic plate resting on an inhomogeneous Winkler foundation .

5.1.1 Statement of the problem

Consider a semi-infinite isotropic elastic plate of thickness 2h occupying the domain

−∞ < x < ∞, 0 6 y < ∞, −h 6 z 6 h, resting on an inhomogeneous Winkler

foundation, see Fig.5.1, with the foundation domain given by −∞ < x <∞,

0 < y <∞, 2h 6 z <∞,

x

y

z

Figure 5.1: Thin elastic plate on a periodic Winkler foundation.
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having a periodic modulus of subgrade reaction in the form

β = β0[1 + ε sin(kgx)], (5.1)

where β0 is the average Winkler modules and kg is the wave number associated with the

sinusoidal variation of stiffness of the foundation. Within the framework of the classical

Kirchhoff theory, the equation of bending motion in a thin elastic plate, supported by a

Winkler foundation, is given by

∂4W

∂x4
+ 2

∂4W

∂x2∂y2
+
∂4W

∂y4
+ ϕ4∂

2W

∂t2
+ γ0[1 + ε sin(kgx)]W = 0, (5.2)

where ϕ4 =
2ρh

D
and γ0 =

β0
D

.

The boundary conditions at y = 0 are taken in the standard form (1.24).

5.1.2 Perturbation procedure

Let us expand the deflection W into asymptotic series as

W = W (0) + εW (1) + ... . (5.3)

The leading order problem is given by

∆2W (0) + ϕ4∂
2W (0)

∂t2
+ γW (0) = 0. (5.4)

The solution of (5.4) is then expressed as a sum of two decaying exponents, yielding

W (0) =
2∑
j=1

Aj cos(kx− ωt)e−λjy. (5.5)
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Here k and ω denote wave number and frequency, respectively.

The dispersion relation for the bending edge wave on a semi-infinite Kirchhoff plate

supported by a Winkler foundation has the form

Dk4χ4 = 2ρhω2 − β0, (5.6)

where c is a well-known constant appearing first in Konenkov (1961), see (2.7), and the

attenuation coefficients are given by

λj = k
√

1 + (−1)jχ2.

It should be noted that in view of (5.5) the first boundary condition in (1.24) implies a

relation between the constants Aj, i.e.

A2 =
λ21 − νk2

λ22 − νk2
A1 = α0A1 (5.7)

with

α0 =
1− χ2 − ν
1 + χ2 − ν

, (5.8)

therefore the leading order solution may be expressed through a single constant, say A1

as

W (0) = A1

(
e−λ1y + α0e

−λ2y
)

cos (kx− ωt) . (5.9)

At the next order, we obtain from (5.2)

∂4W (1)

∂x4
+ 2

∂4W (1)

∂x2∂y2
+
∂4W (1)

∂y4
+ γW1 + ϕ4∂

2W (1)

∂t2
= −γ sin(kgx)W (0), (5.10)
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subject to boundary conditions at y = 0 given by

∂2W (1)

∂y2
+ ν

∂2W (1)

∂x2
= 0,

∂3W (1)

∂y3
+ (2− ν)

∂3W (1)

∂x2∂y
= 0.

(5.11)

Equation (5.10) may be written as

∂4W (1)

∂x4
+ 2

∂4W (1)

∂x2∂y2
+
∂4W (1)

∂y4
+ γW1 + ϕ4∂

2W (1)

∂t2

= −γ sin(kgx)Aj cos(kx− ωt)e−λjy

=
γA1

2
[sin(kg − k)x− ωt)− sin(kg + k)x− ωt)]

(
e−λ1y + α0e

−λ2y
)
,

(5.12)

implying the following representation corresponding to the two terms in the right hand

side as

W (1) = W
(1)
1 +W

(1)
2 .

Let us first deal with the terms in the right hand side associated with sin [(kg − k)x− ωt)].

The corresponding particular solution is sought for in the form

W
(1)
1 = F1(y) sin ((kg − k)x− ωt)) . (5.13)

Hence, from (5.12) we deduce an equation for the function F , namely

d4F1

dy4
− 2 (k − kg)2

d4F1

dy2
+
[
((k − kg)4 − κ4ω2 + γ

]
F1 =

γA1

2

(
e−λ1y + α0e

−λ2y
)
. (5.14)

The related characteristic equation for (5.14) is

m4 − 2 (k − kg)2m2 +
(
(k − kg)4 − χ4k4

)
= 0, (5.15)
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from which

m2
j = (k − kg)2 + (−1)jχ2k2, j = 1, 2. (5.16)

The decay condition at y →∞ implies m2
j > 0, which is satisfied automatically for j = 2,

and infers the restriction on the ratio of wave numbers for j = 1, namely

kg
k
∈ (0; 1− χ) ∪ (1 + χ;∞). (5.17)

Indeed, consider several options for the root m2
1. It is obvious that if m2

1 > 0, then the

positive value of m1 will provide the exponentially decaying solution. At the same time,

if m2
1 = 0 or m2

1 < 0 then the solution em1y will correspond to radiation.

Note that the Bragg resonance, for more details see Brillouin (1953), associated with

kg = 2k is very close to the boundary interval, 1 + χ ≈ 1.99.

As will be shown later, one of the non-Bragg resonances that we obtain is within the

region (5.17), and another one falls outside of the region (5.17), and is associated with

radiation.

Thus, in case of mj > 0 (j = 1, 2), the decaying solution of (5.14) is given by

F1(y) = C1e
−m1y + C2e

−m2y + α1e
−λ1y + α0α2e

−λ2y, (5.18)

where

αj =
γ1A1

2
(
(λ2j − (k − kg)2 − χ4k4

) , j = 1, 2. (5.19)

The values of C1 and C2 may now found from the boundary conditions (5.11).

Indeed, on substituting (5.13) with (5.19) into the boundary conditions (5.11), we result
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in a system of linear equations, which can be presented in a matrix form as m2
1 − ν(kg − k)2 m2

2 − ν(kg − k)2

m1 ((2− ν)(kg − k)2 −m2
1) m2 ((2− ν)(kg − k)2 −m2

2)


 C1

C2

 (5.20)

= α1A1

 λ21 − α0λ
2
2 + (1 + α0)ν(kg − k)2

λ31 − α0λ
3
2 + ((λ1 − α0λ2)(2− ν)(kg − k)2

.
It is possible to determine the constants C1 and C2 from above system (5.20), as

C1 =
∆1

∆
, C2 =

∆2

∆
, (5.21)

where

∆ =

∣∣∣∣∣∣∣∣∣∣
m2

1 − ν(kg − k)2 m2
2 − ν(kg − k)2

m1 ((2− ν)(kg − k)2 −m2
1) m2 ((2− ν)(kg − k)2 −m2

2)

∣∣∣∣∣∣∣∣∣∣
,

= (m1 −m2)
[
m2

1m
2
2 + 2m1m2(kg − k)2(1− ν)− ν2(kg − k)4

]

and

∆1 = α1A1

∣∣∣∣∣∣∣∣∣∣
λ21 − α0λ

2
2 + (1 + α0)ν(kg − k)2 m2

1 − ν(kg − k)2

λ32 + (λ1 − α0λ2)(2− ν)(kg − k)2 m2 ((2− ν)(kg − k)2 −m2
2) ,

∣∣∣∣∣∣∣∣∣∣
,

∆2 = α1A1

∣∣∣∣∣∣∣∣∣∣
m2

1 − ν(kg − k)2 λ21 − α0λ
2
2 + (1 + α0)ν(kg − k)2

m2
2 − ν(kg − k)2 λ32 + (λ1 − α0λ2)(2− ν)(kg − k)2

∣∣∣∣∣∣∣∣∣∣
.

Substituting solution (5.16) in (5.21), we have from ∆ = 0

k4(1− 2χ2)− 2k2(kg − k)2(1− χ2) + (kg − k)4 = 0, (5.22)
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providing the resonant values

rB =
kg
k

=
1

2
, rnB1 =

kg
k

=

√
2χ2 + 1− 1

2χ2
. (5.23)

The first value k = 2kg is a well-known Bragg resonance, see Brillouin (1953). The second

value is seemingly a new result , which we will report to as a non-Bragg resonance.

0.1 0.2 0.3 0.4 0.5

0.3665

0.3670

0.3675

rnB1

ν

Figure 5.2: Non-Bragg resonant value rnB1 versus the Poisson’s ratio ν.

The Fig. 5.2 illustrates dependence of the non-Bragg resonant value rnB1 on the Poisson’s

ratio. Since χ is close to unity, this non-Bragg resonance happens approximately at

k ∼ 0.37kg, which belongs to the interval (5.17) allowing decaying solutions. Similarly,

for the terms associated with sin(kg + k)x− ωt, we have

W
(1)
2 = F2(y) sin ((kg + k)x− ωt) , (5.24)
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for which

d4F2

dx4
−2 (k + kg)

2 d
4F2

dx2
+
[
((k + kg)

4 − κ4ω2 + γ
]
F2 = −γA2

2

(
e−λ1y + α0e

−λ2y
)
, (5.25)

hence, the attenuation orders are

m2
j = (k + kg)

2 + (−1)jχ2k2, j = 3, 4, (5.26)

both allowing decaying solution.

The solution of (5.25) is found as

F2(y) = C3e
−m3y + C4e

−m4y + α1e
−λ1y + α0α2e

−λ2y, (5.27)

where

αj =
γA2

2
(
(λ2j − (k + kg)2 − χ4k4

) , j = 1, 2. (5.28)

The values of C3 and C4 once again can be found from the boundary conditions (4.9),

using the Cramer’s rule as

C3 =
∆3

∆
, C4 =

∆4

∆
, (5.29)

where

∆ =

∣∣∣∣∣∣∣∣∣∣
m2

1 − ν(kg + k)2, m2
2 − ν(kg + k)2

m1 ((2− ν)(kg + k)2 −m2
1) , m2 ((2− ν)(kg + k)2 −m2

2)

∣∣∣∣∣∣∣∣∣∣
,
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= (m1 −m2)
[
m2

1m
2
2 + 2m1m2(kg + k)2(1− ν)− ν2(kg + k)4

]

and

∆3 = α1A1

∣∣∣∣∣∣∣∣∣∣
λ21 − α0λ

2
2 + (1 + α0)ν(kg + k)2 m2

1 − ν(kg + k)2

λ32 + (λ1 − α0λ2)(2− ν)(kg + k)2 m2 ((2− ν)(kg + k)2 −m2
2) ,

∣∣∣∣∣∣∣∣∣∣
,

∆4 = α1A1

∣∣∣∣∣∣∣∣∣∣
m2

1 − ν(kg + k)2 λ21 − α0λ
2
2 + (1 + α0)ν(kg + k)2

m2
2 − ν(kg + k)2 λ32 + (λ1 − α0λ2)(2− ν)(kg + k)2

∣∣∣∣∣∣∣∣∣∣
.

After some algebraic manipulations we establish from ∆ = 0

k4(1− 2χ2)− 2k2(kg + k)2(1− χ2) + (kg + k)4 = 0, (5.30)

with the only positive resonant value being

rnB2 =
kg
k

=
1 +

√
2χ2 + 1

2χ2
, (5.31)

which is again a non-Bragg resonance. Other roots have a negative value, and therefore,

have no physical meaning.
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0.1 0.2 0.3 0.4 0.51.365

1.370

1.375

1.380

1.385

1.390

rnB2

ν

Figure 5.3: The resonant value rnB2 versus the Poisson’s ratio ν.

The Fig.5.3 illustrates dependence of the resonant value (5.31) on Poisson’s ratio, show-

ing that the value is around rnB2 ≈ 1.38, which is outside of the region (5.18), being

associated with radiation.

In the following Fig 5.4, a typical variation of the function F1(y) at y = 0 on the di-

mensionless parameter
k

kg
is presented, with both resonances (5.23) and (5.31) clearly

observed.

Let us now study the next order approximation, which follows from (5.2) as

∂4W (2)

∂x4
+ 2

∂4W (2)

∂x2∂y2
+
∂4W (2)

∂y4
+ γW (2) + κ4

∂2W (2)

∂t2
= −γ sin(kgx)W (1). (5.32)
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0.5 1.0 1.5 2.0 2.5 3.0

-10

-5

0

5

10
F1(0)

k

kg

Figure 5.4: Dependence of F1(y) at y = 0 on the dimensionless parameter
k

kg

.

The boundary conditions at y = 0 are

∂2W (2)

∂y2
+ ν

∂2W (2)

∂x2
= 0,

∂3W (2)

∂y3
+ (2− ν)

∂3W (2)

∂x2∂y
= 0.

(5.33)

The right hand side of equation (5.32) can be rewritten as

∂4W (2)

∂x4
+ 2

∂4W (2)

∂x2∂y2
+
∂4W (2)

∂y4
+ γW (2) + κ4

∂2W (2)

∂t2
=

−γ sin(kgx) [F1(y) sin ((kg − k)x− ωt) + F2(y) sin ((kg + k)x− ωt)] .

(5.34)
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The solution can again be decomposed as

W (2) = W
(2)
1 +W

(2)
2 (5.35)

where

W
(2)
1 = F1(y) cos ((k − 2kg)x− ωt)− F2(y) cos(−kx+ ωt), (5.36)

and

W
(2)
2 = F3(y) cos ((k + 2kg)x− ωt)− F4(y) cos(kx+ ωt). (5.37)

The analysis is rather similar to that presented in first order. The F1(y), the related

characteristic equation for (5.34) may be given by

m4 − 2 (k − 2kg)
2m2 +

(
(k − 2kg)

4 − χ4k4
)

= 0, (5.38)

from which

m2
j = (k − 2kg)

2 + (−1)jχ2k2, j = 1, 2. (5.39)

Substituting the solution (5.36) into the boundary conditions (5.33), it is possible to

determine the constants C1 and C2.

After some algebraic manipulations we establish

∆ = k4(1− 2χ2)− 2k2(2kg + k)2(1− χ2) + (kg + k)4, (5.40)

which has the roots as
kg
k

= ±1, see Fig.4, which is higher-order Bragg-resonance, see

e.g. Yu and Howard (2010).
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Figure 5.5: Dependence of F2(y) at y = 0 on the dimensionless parameter
k

kg
.

5.2 Orthotropic plate

In this section we investigate a homogeneous edge wave propagating along the edge of a

semi-infinite orthotropic plate resting on an inhomogeneous Winkler foundation.
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5.2.1 Formulation the problem

Consider a semi-infinite orthotropic elastic plate of thickness 2h, supported by an in-

homogeneous Winkler foundation, occupying the domain −∞ < x < ∞, 0 6 y < ∞,

−h 6 z 6 h, resting on an inhomogeneous Winkler foundation, see Fig.5.1, with the

foundation domain given by −∞ < x < ∞, 0 < y < ∞, 2h 6 z < ∞. As introduced in

above section the foundation is having a periodic modulus of subgrade reaction as (5.1),

the equation of motion is given by

Dx
∂4W

∂x4
+ 2H

∂4W

∂x2∂y2
+Dy

∂4W

∂y4
+ ϕ4

o

∂2W

∂t2
+ γ[1 + ε sin(kgx)]W = 0, (5.41)

where ϕ4
o =

2ρh

Dx

and the boundary conditions at y = 0 are taken in the form (1.23).

5.2.2 Perturbation scheme

A perturbation procedure similar to that in previous section for isotropic direction leads

to expansion of the deflection W as

W = W (0) + εW (1) + ... . (5.42)

At leading order we have

Dx
∂4W (0)

∂x4
+ 2H

∂4W (0)

∂x2∂y2
+Dy

∂4W (0)

∂y4
+ ϕ4

o

∂2W (0)

∂t2
+ γW (0) = 0. (5.43)
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The solution of (5.41) is then given by a combination of harmonic functions, yielding

W (0) =
2∑
j=1

Bj cos(kx− ωt)e−λjy, (5.44)

where k and ω denote wave number and frequency, respectively.

The dispersion relation for the bending edge wave on a semi-infinite orthotropic plate

supported by a Winkler foundation has the form (3.12).

At next order we deduce

Dx
∂4W (1)

∂x4
+ 2H

∂4W (1)

∂x2∂y2
+Dy

∂4W (0)

∂y4
+ ϕ4

o

∂2W (1)

∂t2
+ γW (1) = −γ sin(kgx)W (0), (5.45)

accompanied by the boundary condition at y = 0 given by

D1
∂2W (1)

∂x2
+Dy

∂2W (1)

∂y2
= 0,

(D1 + 4Dxy)
∂3W (1)

∂x2∂y
+Dy

∂3W (1)

∂y3
= 0.

(5.46)

Equation (5.45) can be re-cast in the form

Dx
∂4W (1)

∂x4
+ 2H

∂4W (1)

∂x2∂y2
+Dy

∂4W (0)

∂y4
+ ϕ4

o

∂2W (1)

∂t2
+ γW (1) =

−γ sin(kgx) cos(kx− ωt)
2∑
j=1

Bje
−λjy,

(5.47)

with

W (1) = W
(1)
1 +W

(1)
2 .

The analysis is rather similar to that provided in isotropic case. Let us first consider the

following solution

W
(1)
1 = F1(y) sin ((kg − k)x− ωt)) , (5.48)
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associated with sin((k − kg)x− ωt).

Hence, equation (5.47) is transformed into a secular equation for the function F1, namely

d4F1

dy4
− 2H (k − kg)2

Dy

d2F1

dy2
+

[Dx(k − kg)4 − ϕ4
oω

2 + γ]

Dy

F1 =

γB1

2

(
e−λ1y + α0e

−λ2y
)
,

(5.49)

The related characteristic equation is

m4 − 2H (k − kg)2

Dy

m2 +

[
(Dx(k − kg)4 − γ4k4

]
Dy

= 0, (5.50)

from which

m2
j =

2H (k − kg)2

Dy

+ (−1)j
κ(k − kg)4

2
and κ = 2

√
H2

D2
y

−
(
Dx

Dy

− γ4
)
, (5.51)

where γ is introduced in (3.32), and known from Norris (1994).

The solution of (5.49), decaying away from the edge y = 0, is then given by

F1(y) = C1e
−m1y + C2e

−m2y + α1e
−λ1y + α0α2e

−λ2y, (5.52)

The values of C1 and C2 can be found from the boundary conditions (1.23).

The substitution of the solution (5.52) into the boundary conditions (5.46). This leads

to a system of linear equations for unknowns C1 and C2, can be written in a matrix form

as
−D1(kg − k)2 +Dym

2
1, −D1(kg − k)2 +Dym

2
2

−Dym
3
1 + (D1 + 4Dxy)m1(kg − k)2, −Dym

3
2 + (D1 + 4Dxy)m2(kg − k)2


 C1

C2


(5.53)
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= α1B1

 (λ21 − α0λ
2
2)Dy +D1(1 + α0)(kg − k)2

(λ31 − α0λ
3
2)Dy + (D1 + 4Dxy)((λ1 − α0λ2)(kg − k)2

.
The values of C1 and C2 can be found from the boundary conditions (1.23), which can

be expressed in the form

C1 =
∆1

∆
, C2 =

∆2

∆
, (5.54)

where

∆ =

∣∣∣∣∣∣∣∣∣∣
−D1(kg − k)2 +Dym

2
1 −D1(kg − k)2 +Dym

2
2

−Dym
3
1 + (D1 + 4Dxy)m1(kg − k)2 −Dym

3
2 + (D1 + 4Dxy)m2(kg − k)2

∣∣∣∣∣∣∣∣∣∣
,

(5.55)

and

∆1 = α1B1

∣∣∣∣∣∣∣∣∣∣
(λ21 − α0λ

2
2)Dy +D1(1 + α0)(kg − k)2 −D1(kg − k)2 +Dym

2
1

(λ31 − α0λ
3
2)Dy + (D1 + 4Dxy)((λ1 − α0λ2)(kg − k)2 −D1(kg − k)2 +Dym

2
2

∣∣∣∣∣∣∣∣∣∣
,

(5.56)

∆2 = α1B1

∣∣∣∣∣∣∣∣∣∣
(λ21 − α0λ

2
2)Dy +D1(1 + α0)(kg − k)2 −D1(kg − k)2 +Dym

2
2

−D1(kg − k)2 +Dym
2
2 (λ31 − α0λ

3
2)Dy + (D1 + 4Dxy)((λ1 − α0λ2)(kg − k)2

∣∣∣∣∣∣∣∣∣∣
.

(5.57)

It may be shown that ∆ = 0

D2
yq

2 + 4DyDxyq(kg − k)2 −D2
1(kg − k)4 = 0, (5.58)
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where q = m1m2, which may be factorised as

(
Dyq − (kg − k)2(

√
D2

1 + 4D2
xy − 2Dxy)

)(
Dyq + (kg − k)2(

√
D2

1 + 4D2
xy + 2Dxy)

)
= 0,

(5.59)

from which

Dyqχ0 − χ2
0(kg − k)2 = 0, (5.60)

therefore the resonant values is

kg
k

= 1− χ0

Dx(1− γ4)
(5.61)

where χ0 =
√
D2

1 + 4D2
xy + 2Dxy.
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Figure 5.6: Dependence of F1(y) for y = 0 on k/kg.
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The dependence of the function F1(y) at y = 0 on the dimensionless parameter kg/k is

shown in Fig.5.6 for E1 = 54.2GPa,E2 = 18.1GPa and ν1 = ν2 = 0.25

Similarly, for term W
(1)
2 associated with sin((k + kg)x− ωt), we have

W
(1)
2 = F2(y) sin [(kg + k)x− ωt)] . (5.62)

The equation of motion (5.47) is transformed to

d4F2

dy4
− 2H (k + kg)

2

Dy

d4F2

dy2
+

[Dx(k + kg)
4 − ϕ4ω2 + γ]

Dy

F2 =

γB2

2

(
e−λ1y + α0e

−λ2y
)
,

(5.63)

hence, the attenuation orders are

m2
j =

2H (k + kg)
2

Dy

+ (−1)j
κ(k + kg)

4

2
and κ = 2

√
H2

D2
y

−
(
Dx

Dy

− γ4
)
. (5.64)

The decaying solution is given by

F2(y) = C3e
−m1y + C4e

−m2y + α1e
−λ1y + α0α2e

−λ2y, (5.65)

where

C3 =
∆3

∆
, C4 =

∆4

∆
, (5.66)

with

∆ =

∣∣∣∣∣∣∣∣∣∣
−D1(k + kg)

2 +Dym
2
1 −D1(k + kg)

2 +Dym
2
2

−Dym
3
1 + (D1 + 4Dxy)m1(k + kg)

2 −Dym
3
2 + (D1 + 4Dxy)m2(k + kg)

2

∣∣∣∣∣∣∣∣∣∣
.

(5.67)
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The resonant values follow from

D2
yq

2 + 4DyDxyq(kg + k)2 −D2
1(kg + k)4 = 0. (5.68)

∆ =
(
Dyq − (kg + k)2(

√
D2

1 + 4D2
xy − 2Dxy)

)(
Dyq + (kg + k)2(

√
D2

1 + 4D2
xy + 2Dxy)

)
,

(5.69)

also

∆3 = α1B1

∣∣∣∣∣∣∣∣∣∣
(λ21 − α0λ

2
2)Dy +D1(1 + α0)(k + kg)

2 −D1(kg + k)2 +Dym
2
1

(λ31 − α0λ
3
2)Dy + (D1 + 4Dxy)((λ1 − α0λ2)(kg + k)2 −D1(kg + k)2 +Dym

2
2

∣∣∣∣∣∣∣∣∣∣
,

(5.70)

∆4 = α1B1

∣∣∣∣∣∣∣∣∣∣
(λ21 − α0λ

2
2)Dy +D1(1 + α0)(kg + k)2 −D1(kg + k)2 +Dym

2
2

−D1(kg + k)2 +Dym
2
2 (λ31 − α0λ

3
2)Dy + (D1 + 4Dxy)((λ1 − α0λ2)(kg + k)2

∣∣∣∣∣∣∣∣∣∣
.

(5.71)

Then, after some transformation we have ∆ on the following form

∆ = Dyqχ0 + χ2
0(kg + k)2. (5.72)

The related resonant value is explicit

kg
k

= 1 +
χ0

Dx(1− γ4)
. (5.73)

The dependence of the function F2(y) for y = 0 on the dimensionless parameter kg/k is

shown in Fig.5.7 for E1 = 54.2GPa,E2 = 18.1GPa and ν1 = ν2 = 0.25, with resonant

value (5.37) clearly seen.
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Figure 5.7: Dependence of F2(y) at y = 0 on k/kg.

Thus, we have investigated the effect of inhomogeneous Winkler-Fuss foundation with

periodic stiffness on propagation of bending edge waves on isotropic and orthotropic

plates. This study was mostly focussed on the analysis of resonant frequencies, revealing

both expected Bragg resonant values, as well as novel non-Bragg resonant frequencies.

Further development may include attempts of generalisation of the eigensolution and

explicit models for the bending edge wave.
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Conclusion

In this thesis, the propagation of the bending edge wave in a semi-infinite orthotropic

Kirchhoff plate supported by a Winkler-Fuss foundation is considered. The consideration

is carried out for the case of principle directions of orthotropy along the coordinate axis.

First, the conventional profile of a sinusoidal shape is investigated, and the dispersion

relation is derived. The analysis of the dispersion relation reveals similar features to

that of an isotropic plate considered in Kaplunov et al. (2014), including the cutt-off

frequencey and the local minimum of the phase velocity, coinciding with the value of the

group velocity, corresponding to the critical speed of the moving load. Then, the sinu-

soidal displacement profile is generalised to that in terms of an arbitrary plane harmonic

function.

Then, the derived eigensolution is perturbed in slow-time, leading to a parabolic-elliptic

model for the bending edge wave, excited by the bending edge moment and modified

shear force, extracting the contribution of the wave to the overall dynamic response,
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thus generalising the results of Kaplunov et al. (2016). The derived formulation is im-

plemented to a number of dynamic problems, including the impulse edge loading, internal

sources the near-resonant regimes of the and moving loads.

In the last Chapter 5 the results of Kaplunov et al. (2014) are extended in a different

direction, incorporating the effect of inhomogeneity of the foundation, considering more

specifically a periodic modules of subgrade reaction. The classical Bragg resonances are

found, as well as novel non-Bragg resonant frequencies.

The possible future developments of the methodology include, in particular, implemen-

tation of advanced foundation models, see e.g. Kaplunov and Nobili (2015), as well

as refined plate models, see Zakharov (2004). Another possible direction is related to

considering more general anisotropy, see e.g. Thompson et al. (2002). Moreover, we

note a less trivial extension to interfacial localized waves, curved plates and shells see

Zilbergleit and Suslova (1983), edge waves on curved platessee Cherednichenko (2007),

and edge waves in thin elastic shell, see e.g. Kaplunov et al. (2000) and Fu and Kaplunov

(2012). Another challenge is connected with crack propagation problems, see Nobili et

al. (2014) and Nobili et al. (2017).
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