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Abstract 

Systemic Candida infections pose a serious public health problem with high morbidity and 

mortality. C. albicans is the major pathogen identified in candidiasis, however non-albicans 

Candida spp. with antifungal resistance are now more prevalent. Azoles are first-choice 

antifungal drugs for candidiasis, however they are ineffective for certain infections caused 

by the resistant strains. Azoles block ergosterol synthesis by inhibiting fungal CYP51, which 

leads to disruption of fungal membrane permeability. In this study, we screened for 

antifungal activity of an in-house azole library of 65 compounds to identify hit matter 

followed by a molecular modelling study for their CYP51 inhibition mechanism. Antifungal 

susceptibility tests against standard Candida spp. including C. albicans revealed derivatives 

12 and 13 as highly active. Furthermore, they showed potent antibiofilm activity as well as 

neglectable cytotoxicity in a mouse fibroblast assay. According to molecular docking studies 

12 and 13 have the necessary binding characteristics for effective inhibition of CYP51. 



Finally, molecular dynamics (MD) simulations of the C. albicans CYP51 (CACYP51) homology 

model’s catalytic site complexed with 13 was stable demonstrating excellent binding. 

1. Keywords: Biological Screening; Molecular Modeling; Structure-Based Drug 

Design  

2. Introduction 

Systemic fungal infections, which are mostly nosocomial due to immune-suppressing 

conditions, have attracted attention lately as a serious public health threat. Candida spp. 

is the major pathogenic genus of fungi found in humans and among the most prevalent 

in all types of systemic infections. C. albicans is the most common species identified in 

candidiasis, however the rising number intrinsically drug resistant non-Candida species is 

alarming (Wong, Samaranayake, & Seneviratne, 2014). 

Among the main antifungal classes (polyenes, azoles, echinocandins, pyrimidines) azoles 

are the first-line antifungals due to their wide spectrum of efficacy and systemic 

availability. However, being widely used has led to increased azole resistance of fungal 

strains (Graybill, 1992). Biofilms, a form of pathogen colonies found on biotic and 

nonbiotic surfaces featuring structural matrices and extracellular polymers, are known 

to contribute to virulent pathogenic fungi. Most antifungal compounds were reported to 

be effective against biofilms only at much higher doses compared to their planktonic 

forms (Silva, Rodrigues, Araujo, Rodrigues, & Henriques, 2017). Therefore, new and 

improved azole derivatives are needed for invasive and systemic mycoses. 

Azoles exert their antifungal effects by inhibiting fungal lanosterol 14α-demethylase 

(CYP51), which in turn inhibits biosynthesis of the crucial ergosterol found in fungal cell 

membranes. Lack of ergosterol and excess lanosterol finally leads to disruption of cell 

membrane and loss of vital cytoplasmic components (Madhosingh & Southwick, 2012). 

Recent studies have taken advantage of property-based, ligand based, and structure-

based methods, or their combinations, to identify and optimize fungal CYP51 azole 

inhibitors (Dogan et al., 2017; Sun, Huang, & Liu, 2017; Sun, Zhang, Liu, Hou, & Liu, 2018; 



Thamban Chandrika et al., 2018; Wu et al., 2018; Yates, Garvey, Shaver, Schotzinger, & 

Hoekstra, 2017).  In these studies not only several antifungal hits were identified but 

some key residues for the enzyme inhibition were also determined in reference to 

biological studies.  

In this study, we screened antifungal properties of an in-house azole library (Table 1), 

tested for cytotoxic effects of the hit matter found against healthy cells, and evaluated 

their possible mechanism of action in silico. The 60+ azole derivatives that make up the 

library fall into four structural classes: 1-(4-Chlorophenyl)-2-(1H-imidazol-1-yl)ethanone 

oxime esters (5-21), 1-(4-chlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone oxime esters 

(22-37), 2-(1H-imidazol-1-yl)-1-phenylethanol esters (38-51), 1-(4-Chlorophenyl)-2-(1H-

imidazol-1-yl)ethanol esters (52-65). The library also includes four synthons of these 

esters: 1-(4-Chlorophenyl)-2-(1H-imidazol-1-yl)ethanone (1), 1-(4-chlorophenyl)-2-(1H-

imidazol-1-yl)ethanone oxime (2), 1-(4-chlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone 

(3), 1-(4-chlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone oxime (4). Of the library 

compounds, 62 are previously reported as anticonvulsants (Doğan, 2012; Doğan et al., 

2018; Porretta et al., 1993; S. Sari et al., 2017; Suat Sari, Kaynak, & Dalkara, 2018) albeit 

three (17, 18, and 37) are new structures. Antifungal activity of 1-4 were previously 

reported by Porretta et al. (1993). These results suggested that our azole collection was 

potentially an excellent source of antifungal compounds. Thus a screening study was 

initiated for antifungal activity using a number of standard susceptible fungal strains as 

well as testing against a resistant isolate, biofilms, cytotoxicity and finally a molecular 

modelling to shed light on the molecular mechanism of these active compounds. 

3. Materials and methods 

3.1. Chemistry 

All the chemical reagents were obtained from commercial suppliers. Merck Kieselgel 60 

F254 aluminium plates were used for thin layer chromatography to monitor the 

reactions and the spots were determined under 254 nm UV light using chloroform-

methanol (90:10) as mobile phase. Melting points (mp) were recorded on a Thomas-

Hoover capillary melting point apparatus (USA) and uncorrected. IR spectra were 



recorded as reciprocal centimetres (cm-1) using PerkinElmer FT-IR System Spectrum BX 

(USA). 1H-NMR (400 MHz) and 13C-NMR (75 MHz) spectra were recorded with Varian 

Mercury 400 FT (USA) and Bruker Avonce 600 Ultrashield™ (Germany) NMR 

spectrometers, respectively. LC-MS spectra were recorded with Micromass ZQ mass 

spectrometer (USA) connected with Waters Alliance HPLC (USA) with the electrospray 

ionization (ESI+) method and MassLynx 4.1 software. Elemental analyses were 

performed by LECO 932 CHNS elemental analysis apparatus (USA) and the results are 

reported as percentages (%). Compounds were dissolved in dimethyl sulfoxide (DMSO-

d6) for NMR spectroscopy and the chemical shifts are reported as δ (ppm) values using 

tetramethylsilane as internal reference. The splitting patterns were noted as s (singlet), 

d (doublet), t (triplet), q (quartet), m (multiplet), and dd (doublet of doublet). 

3.1.1. General synthetic procedures 

1-(4-Chlorophenyl)-2-(1H-imidazol-1-yl)ethanone-O-(4-chlorobenzoyl) oxime (17), 1-(4-

chlorophenyl)-2-(1H-imidazol-1-yl)ethanone-O-(2,4-dichlorobenzoyl) oxime (18), and 1-

(4-chlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone-O-(4-phenylbenzoyl) oxime (37) were 

prepared according to the Steglich esterification as outlined in Scheme 1 (Neises & 

Steglich, 1978). A mixture of 4-dimethylaminopyridine (DMAP) (0.27 mmol) and N,N'-

dicyclohexylcarbodiimide (DCC) (4 mmol) in dry dichloromethane (DCM) was added 

dropwise to a mixture of 1-(4-chlorophenyl)-2-(1H-imidazol-1-yl)ethanone oxime (2) (for 

17 and 18) or 1-(4-chlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone oxime (4) (for 37) (4 

mmol) and proper carboxylic acid (4 mmol) in dry DCM at 0-5 °C. The mixture was 

allowed to stir for 0.5 hour at 0-5 °C then for an additional 3-6 hours at room 

temperature. The resulting precipitate was filtered off, the filtrate was dried by 

evaporation, converted to its hydrochloride (HCl) salts using ethereal solution of gaseous 

HCl (gHCl), and, finally, crystallized from acetone. 



1-(4-Chlorophenyl)-2-(1H-imidazol-1-yl)ethanone-O-(4-chlorobenzoyl) oxime 

hydrochloride (17): The reaction of 4 mmol 2 and 4 mmol 4-chlorobenzoic acid gave 17 

as off-white powder (1.21 g, 73.5%). Mp: 161-2 °C; 1H NMR (400 MHz, DMSO-d6): δ=6.04

(s, 2H, CH2), 7.55-7.60 (m, 3H, 4-chlorobenzene H3,5, imidazole H4), 7.69 (d, J=8.4 Hz, 2H,

4- chlorobenzene H3',5'),  7.75-7.78 (m, 3H, 4-chlorobenzene H2,6, imidazole H5), 8.16 (d, 

J=8.8 Hz, 2H, 4-chlorobenzene H2',6'), 9.27 ppm (s, 1H, imidazole H2); 13C-NMR (75 MHz, 

DMSO-d6): δ=44.50 (CH2), 121.09 (imidazole C5), 122.36 (imidazole C4), 126.53 (4-

chlorobenzene C1'), 128.93-131.35 (4-chlorobenzene C1-3,5,6, 4-chlorobenzene C2',3',5',6'), 

136.07 (4-chlorobenzene C4), 136.42 (imidazole C2), 139.17 (4-chlorobenzene C4'), 

160.43 (CNO), 161.60 ppm (CO); IR (ATR): 3086, 3009, 2965, 1743, 1177 cm-1; MS (ESI+) 

m/z: 398 [M+2+Na]+, 396 ([M+Na]+, 100%), 378 ([M+4+H]+), 376 ([M+2+H]+), 374 

([M+H]+); Anal. calcd. for C18H14Cl3N3O2.1/2H2O: C 51.51, H 3.60, N 10.01, found: 51.83,

H 3.40, N 10.16. 

1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-yl)ethanone-O-(4-chlorobenzoyl) oxime 

hydrochloride (18): The reaction of 4 mmol 2 and 4 mmol 2,4-dichlorobenzoic acid gave 

18 as off-white powder (0.82 g, 46%). Mp: 156-9 °C; 1H NMR (400 MHz, DMSO-d6):

δ=5.91 (s, 2H, CH2), 7.53-7.56 (m, 3H, 4-chlorobenzene H3,5, imidazole H4), 7.64 (dd,

J1=8.4 Hz, J2=2.0 Hz, 1H, 2,4-dichlorobenzene H5), 7.67 (t, J1=1.6 Hz, J2=1.6 Hz, imidazole

H5), 7.74 (d, J=8.8 Hz, 4-chlorobenzene H2,6), 7.88 (d, J=2.0 Hz, 1H, 2,4-dichlorobenzene 

H3), 8.04 (d, J=7.1 Hz, 1H, 2,4-dichlorobenzene H6), 9.17 (s, 1H, imidazole H2); 13C-NMR 

(75 MHz, DMSO-d6): δ=44.67 (CH2), 121.23 (imidazole C5), 122.25 (imidazole C4), 126.64

(2,4-dichlorobenzene C1), 127.88 (2,4-dichlorobenzene C5), 128.95-129.66 (4-

chlorobenzene C2,3,5,6, 4-chlorobenzene C1), 130.65 (2,4-dichlorobenzene C3), 133.10 

(2,4-dichlorobenzene C6), 133.70 (2,4-dichlorobenzene C2), 136.17 (4-chlorobenzene C4), 

136.49 (imidazole C2), 138.14 (2,4-dichlorobenzene C4), 160.74 (CNO), 160.80 ppm (CO); 

IR (ATR): 3055, 2940, 1754, 1141 cm-1; MS (ESI+) m/z: 436 ([M+6+Na]+), 434 

([M+4+Na]+), 432 ([M+2+Na]+), 430 ([M+Na]+, 100%), 410 ([M+2+H]+), 408 ([M+H]+); 

Anal. calcd. for C18H13Cl4N3O2: C 48.57, H 2.95, N 9.44, found: 48.89, H 3.29, N 9.80. 



1-(2,4-Dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone-O-(4-phenylbenzoyl) oxime 

hydrochloride (37): The reaction of 4 mmol 4 and 4 mmol 4-phenylbenzoic acid gave 37 

as off-white powder (0.71 g, 39%). Mp: 155-7 °C; 1H NMR (400 MHz, DMSO-d6): δ=5.96

(s, 2H, CH2), 7.44-7.48 (m, 2H, benzene H4), 7.52-7.57 (m, 4H,  4-chlorobenzene H3,5,

benzene  H3,5), 7.79 (d, J=7.6 Hz, 2H, benzene H2,6), 7.83 (d, J=8.8 Hz, 2H, 4-

phenylbenzene H2,6), 7.90 (d, J=8.0 Hz, 2H, 4-chlorobenzene H2,6), 7.96 (s, 1H, triazole 

H3), 8.21 (d, J=8.8 Hz, 2H, 4-phenylbenzene H2,6), 8.77 ppm (s, 1H, triazole H5); 13C-NMR 

(75 MHz, DMSO-d6): δ=44.78 (CH2), 126,49 (benzene C4), 127.08 (4-phenylbenzene C3,5),

127.22 (benzene C2,6), 128.61 (4-phenylbenzene C1), 128.84 (4-chlorobenzene C3,5), 

129.16 (4-chlorobenzene C2,6), 129.50 (benzene C3,5), 130.33 (4-phenylbenzene C2,6), 

130.78 (4-chlorobenzene C1), 135.90 (4-chlorobenzene C4), 138.68 (benzene C1), 145.04 

(triazole C5), 145.49 (4-phenylbenzene C4), 151.33 (triazole C3), 160.26 (CNO), 162.34 

ppm (CO); IR (ATR): 3059, 2984, 1746, 1184 cm-1; MS (ESI+) m/z: 441 ([M+2+Na]+), 439 

([M+Na]+, %100), 419 ([M+2+H]+), 417 ([M+H]+); Anal. calcd. for C23H18Cl2N4O2: C 60.94,

H 4.00, N 12.36, found: 61.34, H 3.70, N 12.44. 

3.2. Biological assays 

3.2.1. Microdilution method for antifungal susceptibility tests 

Antifungal activities of the compounds were tested against Candida spp. (C. albicans 

ATCC 90028, C. krusei ATCC 6258, and C. parapsilosis ATCC 90018) by the broth 

microdilution method. The minimum inhibitor concentration (MIC) values were 

determined according to the Clinical and Laboratory Standards Institute (CLSI) reference 

documents using fluconazole as reference compound. Isolates stored at −80 °C in 

glycerol were thawed and subcultured twice onto Sabouraud dextrose agar prior to 

testing. Broth microdilution was performed using RPMI 1640 broth (ICN-Flow, Aurora, 

OH, USA, with glutamine, without bicarbonate and with pH indicator) buffered to pH 7.0 

with 3-N-morpholinopropanesulfonic acid (MOPS; Sigma, USA). The inoculum densities 

were prepared from 24-hour subcultures. The final test concentration of fungi was 0.5 to 

2.5 × 103 cfu/ml. Fluconazole was dissolved in sterile deionized distilled water (64–

0.0625 μg/ml) and the compounds were solvated in DMSO (Sigma, USA). Final twofold 

concentrations of the compounds were prepared in the wells of the microtiter plates, 



between 1024 and 0.25 μg/ml. The plates were incubated at 35 °C for 48 hours. MIC 

values were read as the lowest concentration of test compound that completely 

inhibited visual growth. 

3.2.2. Biofilm susceptibility assay/antibiofilm activity 

C. albicans SC5314 biofilms were grown in the Calgary Biofilm Device (commercially 

available as the MBEC Assay™ for Physiology & Genetics, P & G, Innovotech Inc., 

Edmonton, Alberta, Canada) according to the MBEC™ assay protocol, a standard ASTM 

method, as supplied by the manufacturer. Aliquots of 150 μl final inoculum suspension 

(106 cfu/ml) were transferred to each of the test wells and the MBEC assay plate lids 

with 96 pegs were placed into the microtiter plates. The plates were incubated for 24 

hours at 37 °C to form mature biofilm. After 24 hours, the peg lids of the MBEC assay 

plates were rinsed three times with 100 μl 0.9% physiological saline (PS), then 

transferred to a ‘challenge’ plate. Finally, 200 μl serial twofold dilutions of each 

compound were subsequently added to each well and they were incubated for 24 hours 

at 35 °C. The concentration range of the compounds was arranged as 512-0.5 µg/ml in 

columns 1-11, respectively. Positive growth control and sterility control were included in 

each assay plate. After treatment of the biofilm for 24 hours, the peg lids were rinsed 

three times in 0.9% PS and transferred to a 'recovery' plate, each well contained RPMI 

1640 supplemented with 2% glucose. The plates were sonicated for five minutes to 

remove the biofilms into recovery media and the peg lids were discarded. The recovery 

plates were incubated overnight and optical densities of the wells were measured at 550 

nm by spectrophotometer. The plates were also visually checked after 24 hours for 

turbidity, clear wells were taken as evidence of biofilm eradication. The minimum 

biofilm eradicator concentration (MBEC) values were determined by identifying the 

lowest antibiotic concentration that prevents regrowth of C. albicans from the treated 

biofilm. The minimum biofilm inhibitor concentration (MBIC) values were also 

determined by identifying the minimum concentration that prevents the initial 

formation of biofilm checking turbidity visually in the wells. 



3.2.3. Cytotoxicity assay 

The effects of 12 and 13 on cell viability were evaluated according to 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with slight changes 

(Ohguro, Fukuda, Sasabe, & Tano, 1999) based on colorimetric measuring the 

absorbance of formazan crystals formed from tetrazolium by mitochondrial reductase 

due to increased dehydrogenase activity of proliferating cells. 12 and 13 were applied to 

mouse fibroblast cell line (L929) at eight different concentrations from 0.025 to 5 and 

0.1 to 20 µg/ml, respectively, which include their MIC values, and the cell line was 

exposed to the compounds for 48 hours. The cells without compound exposure were 

used as negative control and those treated with 10% DMSO as positive control. At the 

end of each exposure period 1 mg/ml MTT solution in 100 µl DBPS was added to each 

well following removal of compound solution and incubated for 3 hours. Formazan 

crystals which formed during this process were dissolved by addition of 90 µl DMSO, the 

plates were stirred on a horizontal shaker for 15 minutes and the absorbance values 

were determined at 570 nm. Cell viability values were determined as percentages (%) 

according to the absorbance values of the cells treated with compounds considering 

those of the negative control cells as 100%. Each experiment was performed in 

triplicate. 

3.3. Molecular modelling 

The ligands to be used in molecular modelling studies were generated using 

MacroModel (2018-1: Schrödinger, LLC, NY, 2018) and optimized using OPLS_2005 force 

field parameters and conjugate gradient method (Banks et al., 2005; Polak & Ribiere, 

1969). 



3.3.1. Calculation of the molecular descriptors 

The molecular descriptors used for evaluating the chemical space were calculated using 

QikProp (2018-1: Schrödinger, LLC, NY, 2018).  The reliability of QikProp is established 

for the calculated descriptors (Ioakimidis, Thoukydidis, Mirza, Naeem, & Reynisson, 

2008). 

3.3.2. Molecular docking 

Molecular docking studies were performed using GOLD (v5.2.2, CCDC Software Ltd., 

Cambridge, UK, 2013), AutoDock (v4.2.6), AutoDock Vina (v1.1.2), and Glide (2018-1: 

Schrödinger, LLC, NY, 2018) (Friesner et al., 2004; Friesner et al., 2006; Halgren et al., 

2004; Jones, Willett, Glen, Leach, & Taylor, 1997; Morris et al., 2009; Trott & Olson, 

2010). We used a homology model of CAYP51 as receptor and defined the modelling, 

optimization, validation of this model and its preparation for molecular docking in detail 

in our previous study (Dogan et al., 2017). The centroid of itraconazole (ITR) in the 

binding site of CACYP51 (19.42 10.25 17.44) was taken as the centre of search space and 

grid maps were prepared for AutoDock using AutoGrid. For docking simulations on GOLD 

GoldScore (GS) (Jones et al., 1997), ChemScore (CS) (Eldridge, Murray, Auton, Paolini, & 

Mee, 1997; Verdonk, Cole, Hartshorn, Murray, & Taylor, 2003), Astex Statistical Potential 

(ASP) (Korb, Stutzle, & Exner, 2009), and Piecewise Linear Potential (CHEMPLP or PLP) 

(Mooij & Verdonk, 2005) fitness functions were used at 100% efficiency and 50 runs for 

each ligand and each scoring function with early termination enabled. For AutoDock 

each ligand was docked 50 times to the receptor using Lamarckian genetic algorithm on 

at medium exhaustiveness. On AutoDock Vina, where docking operations are fully 

automated, the default settings were used. AutoDockTools was used for docking 

operation on AutoDock and AutoDock Vina. On Glide induced fit docking protocol was 

applied. In this method, receptor grid is automatically created using the same centroid 

coordinates above and an initial docking with lowered receptor and ligand van der 

Waals scales was performed with Glide generating up to 20 poses per ligand. The 

protocol then used Prime (2018-1: Schrödinger, LLC, NY, 2018) to refine the residues 

within 5 Å of docked ligands except heme. Trimming of residue side chains was not 

allowed and the top 20 scoring structures were redocked to the refined binding site 



using Glide at standard precision. On AutoDock, AutoDock Vina, and GOLD the receptor 

was kept rigid. Top-scoring pose clusters for each ligand on each software were 

identified and the best poses were determined upon visual evaluation. 

3.3.3. MD Simulations 

We used NAMD (v2.10) and VMD (v1.9.2) for system preparation, MD simulation and 

analysis of the results (Humphrey, Dalke, & Schulten, 1996; Phillips et al., 2005). On VMD 

we created the systems of ligand-bound CACYP51 and solvated it in a water box with a 

5-Å layer of water on each face. The total number of atoms for each system was about 

60000. CHARMM36 force-field with CMAP corrections was used for the protein and 

solvent, CHARMM General Force-Field (v3.1) via cgenff.paramchem.org server (v1.0) 

was used for the ligands, and water molecules were modelled using TIP3P water model 

(Best et al., 2012; Jorgensen, Chandrasekhar, Madura, Impey, & Klein, 1983; A. D. 

MacKerell et al., 1998; A. D. MacKerell, Jr., Feig, & Brooks, 2004; Vanommeslaeghe et al., 

2010; Yu, He, Vanommeslaeghe, & MacKerell, 2012). We used particle mesh Ewald 

(PME) method with grid sizes 114, 103, and 84 (Darden, York, & Pedersen, 1993) and full 

updates at every 2 fs. Harmonic potential constraints (5 kcal/mol*Å2) were applied on 

the backbone atoms of the membrane-embedded residues, Fe2+ of heme, and S− of 

heme-coordinating cysteine. Heme was patched to keep planar. Systems with 13 bound 

to the active site and without any ligand (apo) were first minimized at 100 steps then 

run for 20 ns at constant temperature (310 K) and pressure (1 atm) (NPT ensemble) with 

integration time step 2 fs, non-bonded cut-off starting at 10 Å, pair list set to 14 Å and 

updated every 10 cycles using CUDA GPU acceleration on NAMD. SHAKE algorithm was 

used for hydrogens, and the coordinates were saved every 500 steps. Trajectory 

analyses were performed using VMD. 



4. Results and discussion 

4.1.  Chemistry 

Compounds 17, 18, and 37 were synthesized through esterification of proper carboxylic 

acids with 2 for 17 and 18 and 4 for 37 in moderate to high yields. The spectral and 

elemental analysis data proved their structures and purity. The 1H-NMR spectra of the 

compounds indicated that they were obtained as single geometric isomers, but it was 

not possible to determine whether they are E or Z. 

4.2.  Antifungal activity 

The MIC values of 1-65 were determined against standard ATCC type cultures of C. 

albicans and two non-albicans Candida spp. (C. krusei and C. parapsilosis) (Table 2). In 

general, the compounds were more potent against C. parapsilosis than C albicans. High 

MIC values were determined against C. krusei, which is intrinsically azole-resistant 

(Whaley et al., 2016). In general, compounds with imidazole were more active than 

those with 1,2,4-triazole. 12 and 13 stood out as the most active compounds in the 

series with lower MIC values than those of fluconazole against all the three standard 

Candida spp. Especially, 13 was highly potent with less than 1 µg/ml MIC value against C. 

albicans and C. parapsilosis, however for C. krusei, again higher concentrations were 

needed. Unfortunately, against the azole-resistant clinical isolate of C. tropicalis, no 

significant activity was observed for the tested compounds. 

Derivatives 12 and 13 were further tested for their antibiofilm activity. Their MBIC and 

MBEC values against biofilm were determined and compared with those of amphotericin 

B, an antifungal drug effective against clinical biofilms (Zarei Mahmoudabadi, Zarrin, & 

Kiasat, 2014). Both compounds were potent in blocking biofilm growth as shown in 

Table 3. Derivative 13, again, was highly potent, with a dose lower than 1 µg/ml. None of 

the compounds, however, showed significant biofilm eradicator effect. 



4.3. Cytotoxicity 

The effects of 12 and 13 on cell viability of the mouse fibroblast cell line was tested to 

evaluate their toxicity on healthy cells and gauge their selectivity to pathogens over host 

cells. In the case of 12, the viability percentage was in excess of 100% when its 

concentration increased from 0.025 to 5 µg/ml (Figure 1). 13 was tested at up to 20 

µg/ml since its MIC value was much higher than 12 for C. albicans. Nevertheless, the 

viability percentage was not less than 75% at this concentration. These results clearly 

show that 12 and 13 are not cytotoxic for host cells at their active doses. 

4.4. Molecular modelling 

4.4.1. Evaluation of the chemical space 

About 40% of drug candidates fail in clinical trials due to poor pharmacokinetic 

properties, which cause increasing cost of new drug development. Addressing 

pharmacokinetics in early stage drug discovery is important to save cost and time. We 

provided the calculated values a number of pharmaceutically relevant molecular 

descriptors (MW – molecular weight, log P – octanol water partition, HD – hydrogen 

bond donors, HA – hydrogen bond acceptors, PSA – polar surface area and RB – 

rotatable bonds) for 12 and 13 in Table 4 (The calculated values for the rest of the 

compounds are given in Table S1 of Supporting Information). For definitions of lead-like, 

drug-like and Known Drug Space (KDS) regions see Table S2 of Supporting Information 

and references therein (Zhu, Logan, & Reynisson, 2012). 

In general, the in-house azole collection adheres to the lead- and drug-like definitions 

making the excellent candidates for further development. MW lies in the region of 220-

417 g/mol putting squarely in the lead/drug-like chemical space. The log P values range 

from 1.3 to 5.4 with three derivatives (14, 21 and 65) reaching into KDS. Only two azoles 

have HD putting this descriptor in lead-like space whereas HA fits into drug-like space as 

well as RB. Finally, PSA straddles the lead/drug-like chemical space. 



For further analysis the Know Drug Indexes 2a and 2b (KDI2a/2b) were also derived 

(Eurtivong & Reynisson, 2018). The KDI reflect the overall balance of the six molecular 

properties calculated based on the statistical distribution of KDS and derivation of an 

index for each descriptor. KDI2a is an additive value with a maximum of 6.0 and KDI2b the 

indexes are then multiplied giving 1.0 as its maximum. The average for KDI2a for known 

drugs is 4.08 (±1.27) and the azoles lie in the range of 5.07 to 5.65, the KDI2b gives a 

range of 0.32 to 0.68 for the azoles with the average of know drugs being 0.18 (±0.20) 

(Table S1). Thus, it is clear that the azole collection is excellent in terms of balanced 

physicochemical properties as compared to known drugs. The active compounds; 12 has 

KDI values of 5.41(2A) and 0.51(2B) with 13 having even better results with 5.61(2A) and 

0.64(2B). Better, KDI number reflect enhanced bioavailability and the higher values of 13 

as compared to 12 can, partially explain the superior efficacy of the former. 

4.4.2. Molecular docking studies 

The heme cofactor found in cytochrome P450 enzymes plays a key role in their catalytic 

processes of the enzymes. CYP51 inhibitors displace O2 and form the 6th axial

coordination with the Fe2+ placed at the centre of heme molecules. This Fe2+ makes four 

horizontal coordination with the N of each pyrrole and one coordination with S- of a 

cysteine sidechain of the protein. Azole antifungals share a common scaffold which 

consists of an azole ring that interacts with heme, an aryl group connected to the azole 

ring through an alkylene linker, and a tail group that fills the channel which tunnels 

between the entry of the catalytic site and the cavity where heme is present (De Vita et 

al., 2012).  

The CACYP51 homology model used in this study features the full protein including the 

anchor region not available in current CACYP51 crystal structures. This region is attached 

to the endoplasmic reticulum bilayer membrane in mammals as eukaryotic CYP51s are 

bitopic membrane proteins (Monk et al., 2014). The model also includes ITR, a tight 

binder of CYP51 and an azole antifungal drug, in the catalytic site.  



There are many docking software available, free and commercial, with diverse 

algorithms and scoring functions. These algorithms may yield different results or 

consensus may be reached for certain cases, the latter being desirable for the sake of 

reliability.  We performed a redocking study to evaluate how close the 

software/algorithms used in this study predict the binding mode of ITR regarding its 

original conformation in CACYP51 catalytic site. The results confirmed that the methods 

worked well (Table 5) as reflected in relatively low RMSD values and high affinity 

predictions by the scoring functions used. 

Docking studies showed that 12 and 13 bound to the catalytic site of CACYP51 with high 

affinity evident in high positive values for GOLD fitness scores and low negative values 

for AutoDock, AutoDock Vina, and Glide scores (Table 6) (For the docking scores of the 

complete library from AutoDock and AutoDock Vina see Table S3 of the Supporting 

Information). Their binding modes were similar to those determined for azole 

antifungals in crystallography studies (Figure 2).  According to the binding modes 

obtained from several software and algorithms the azole ring placed close to the heme 

and Fe2+, the 4-chlorobenzen fit in the cleft surrounded by Gly303, Ile304, and Met306 

making hydrophobic contacts and the tail groups interacted with residues that form the 

active site gorge, e.g. Tyr118, Leu376, His377, Ser378, Phe380, Met508, Val509 (Figure 

3). Most of these residues were found to be important for CACYP51 inhibition according 

to the in vitro mutagenesis studies (Morio, Loge, Besse, Hennequin, & Le Pape, 2010) as 

well as molecular modelling studies with previously reported CACYP51 homology models 

(Dogan et al., 2017; Flowers, Colon, Whaley, Schuler, & Rogers, 2015; Hoekstra et al., 

2014; Iman & Davood, 2014; Sheng et al., 2004). 

For 12 and 13, the best binding mode was obtained from GS of GOLD and AutoDock 

(Figure 2), especially in terms of Fe2+ coordination and azole-heme π-π interaction, 

which is governed by the distance between the azole N at the third position and Fe2+ 

(Table 7) and vertical orientation of azole and heme planes (Rupp, Raub, Marian, & 

Holtje, 2005). Binding modes of 12 and 13 were very similar and perfectly aligned (Figure 

3). 



4.4.3. MD simulations 

The 13-CACYP51 complex obtained with GS of GOLD was solvated in water and MD 

simulations of the resulting system were run for 20 ns, along with the inhibitor-free 

(apo) system. The RMSD values of the protein in the 13-bound CACYP51 simulation 

plateaued beneath 2 Å (Figure 4A), while in the apo simulation protein displayed larger 

fluctuations especially between 2-8 ns and 15-20 ns (Figure 4B). The average RMS 

fluctuation (RMSF) of each residue of CACYP51 was analysed (Figure 4B) and some 

regions were observed to fluctuate more in the apo structure than in the 13-bound 

structure. Higher RMSF indicates higher flexibility during the MD simulation. Most of the 

residues which interacted with 13 (Figure 3B) coincides with the regions of greater 

fluctuations in the trajectory of the apo simulation (Table 8). This shows that the 13-

CACYP51 complex and the ligand-enzyme interactions of this complex identified in 

docking analyses are stabilizing the binding site of the protein. 

Some of the residues with the highest RMSF gap were reported in mutagenesis studies. 

For instance Y121F was reported as an increasing mutation due to agricultural use of 

triazole antifungals (Parker et al., 2014), I304N, I304T, and L376V were reported in the 

literature (Morio et al., 2010), and G307S was reported to be involved in azole resistance 

in combination with other mutations (Chau, Mendrick, Sabatelli, Loebenberg, & 

McNicholas, 2004; Flowers et al., 2015). 

5. Conclusion 

In this study we report on the antifungal activity of 65 azole derivatives, three of which 

are novel. Two hit molecules were identified, namely 12 and 13, the latter of which 

showed excellent activity against standard C. albicans and C. parapsilosis. These 

compounds also displayed potent inhibitor effect against C. albicans biofilms and proved 

non-toxic to mouse fibroblast cells, however, lacked potency against a clinical azole-

resistant C. tropicalis isolate and eradicator effect against the biofilms. 

Derivatives 12 and 13 were predicted to be lead-like, drug-like, and excellent in terms of 

balanced physicochemical properties compared to known drugs as their KDI reflect. 

Considering the fact that azole antifungals act by inhibiting fungal CYP51, we docked 12 



and 13 to the catalytic site of the CACYP51 homology model featuring full membrane 

spanning anchor domain, which we previously reported, using five different 

software/algorithms. The compounds satisfied the molecular determinants of CYP51 

inhibition, GS of GOLD and AutoDock yielded best poses regarding imidazole N-heme 

Fe2+ distance and imidazole-heme plane orientation. Their docking scores were also 

good indicating high affinity to the enzyme catalytic site. MD simulations of apo, ITR-

bound, and 13-bound CACYP51 systems were run. 13-bound CACYP51 was stable and 

the binding interactions of this complex predicted by molecular docking were 

maintained according to the trajectories obtained from the MD simulations. Most 

residues involved in these interactions were biologically relevant and in accordance with 

previously reported in silico studies. The molecular modelling studies strongly indicates 

that fungal CYP51 inhibition is the mechanism for the antifungal efficacy of the active 

compounds of this series.  
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Tables 

Table 1. The molecular structure of 1-65 azole derivatives. 

Comp. X Y Z R Comp. X Y Z R 

1 Cl CH =O - 34 Cl N =NO- 

2 Cl CH =NOH - 35 Cl N =NO- 

3 Cl N =O - 36 Cl N =NO- 

4 Cl N =NOH - 37 Cl N =NO- 

5 Cl CH =NO- -CH3 38 H N -O- -CH3

6 Cl CH =NO- 39 H N -O- 
7 Cl CH =NO- 40 H N -O- 
8 Cl CH =NO- 41 H N -O- 

9 Cl CH =NO- 42 H N -O- 

10 Cl CH =NO- 43 H N -O- 

11 Cl CH =NO- 44 H N -O- 

12 Cl CH =NO- 45 H N -O- 

13 Cl CH =NO- 46 H N -O- 

14 Cl CH =NO- 47 H N -O- 

15 Cl CH =NO- 48 H N -O- 

16 Cl CH =NO- 49 H N -O- 

17 Cl CH =NO- 50 H N -O- 

18 Cl CH =NO- 51 H N -O- 

19 Cl CH =NO- 52 Cl N -O- -CH3 

20 Cl CH =NO- 53 Cl N -O- 

21 Cl CH =NO- 54 Cl N -O- 

22 Cl N =NO- 55 Cl N -O- 

23 Cl N =NO- 56 Cl N -O- 

24 Cl N =NO- 57 Cl N -O- 

25 Cl N =NO- 58 Cl N -O-  



26 Cl N =NO- 59 Cl N -O- 

27 Cl N =NO- 60 Cl N -O- 

28 Cl N =NO- 61 Cl N -O- 

29 Cl N =NO- 62 Cl N -O- 

30 Cl N =NO- 63 Cl N -O- 

31 Cl N =NO- 64 Cl N -O- 

32 Cl N =NO- 65 Cl N -O- 

33 Cl N =NO- 
 

      

 

 

 

  



Table 2. MIC values (µg/ml) of 1-65 against standard cultures of Candida spp. and azole-

resistant C. tropicalis isolate. 

C. albicans C. krusei C. parapsilosis C. tropicalis 
Compound ATCC 90028 ATCC 6258 ATCC 90018 (resistant isolate) 

1 128 256 64 256 
2 128 64 32 512 
3 128 256 128 256 
4 512 512 256 512 
5 128 256 128 - 
6 128 256 128 - 
7 128 256 64 - 
8 32 64 16 256 
9 16 64 16 256 

10 64 128 64 - 
11 32 32 32 512 
12 2 64 2 256 
13 0.25 16 0.25 256 
14 128 256 128 256 
15 32 128 16 256 
16 128 256 256 - 
17 128 256 128 - 
18 256 128 256 - 
19 128 256 128 - 
20 64 128 8 - 
21 128 256 256 - 
22 256 256 128 - 
23 256 256 128 - 
24 64 128 32 - 
25 256 512 512 - 
26 128 256 128 - 
27 128 256 128 - 
28 256 256 128 - 
29 256 128 128 - 
30 128 128 128 - 
31 512 128 512 - 
32 16 128 16 512 
33 256 128 64 - 
34 16 256 16 256 
35 256 256 128 - 
36 256 256 16 - 
37 128 128 256 - 
38 128 256 128 - 
39 256 256 256 - 
40 256 512 256 - 
41 256 256 256 - 
42 256 256 256 - 



43 256 256 256 - 
44 256 256 256 - 
45 128 256 256 - 
46 256 256 256 - 
47 256 256 256 - 
48 256 256 256 - 
49 256 256 256 - 
50 256 256 256 - 
51 256 512 256 - 
52 128 256 128 - 
53 256 256 256 - 
54 128 256 128 - 
55 128 128 256 - 
56 128 128 256 - 
57 256 256 256 - 
58 128 256 128 - 
59 128 256 128 - 
60 512 256 512 - 
61 128 256 128 - 
62 128 128 128 - 
63 128 128 128 - 
64 128 256 128 - 
65 128 256 128 - 

Fluconazole 0.5 32 0.5 512 

Table 3. The minimum biofilm inhibitor and eradicator concentration (MBIC and MBEC) 

values (µg/ml) of 12 and 13. 

Compound MBIC MBEC 

12 2 256 
13 0.5 512 

Amphotericin B 4 256 



Table 4. Some of the calculated molecular descriptors/properties for 12 and 13. 

Property/descriptor and its definition 12 13 

RB Number of non-trivial, non-hindered rotatable bonds. 8 6 

MW molecular weight (g/mol) 329.8 339.8 

HD 
Estimated number of hydrogen bonds that would be 
donated by the solute to water molecules in an 
aqueous solution. 

0 0 

HA 
Estimated number of hydrogen bonds that would be 
accepted by the solute from water molecules in an 
aqueous solution. 

5.5 5.5 

LogP Predicted octanol/water partition coefficient. 3.8 3.6 

PSA 
Van der Waals surface area of polar nitrogen and 
oxygen 
atoms and carbonyl carbon atoms. 

62.0 60.6 

Table 5. RMSD values (Å) of ITR docked to CACYP51 catalytic site regarding its original 

conformer and docking scores of ITR for each software/algorithm. 

GOLD 

GS CS ASP ChemPLP Autodock AutoDock Vina Glidea 

RMSD (Å) 1.48 1.62 3.36 1.43 1.43 1.67 2.25 
Docking scoreb 99.2 59.2 66.1 111.4 -14.0 -10.0 -7.4 
a
 Standard precision mode 

b
 Fitness score for GOLD (dimensionless), free energy of binding (kcal/mol) for AutoDock and AutoDock 

Vina, and Glide score (kcal/mol) for Glide. 

Table 6. Docking scores of 12 and 13. 

GOLD fitness scores 
Free energy of binding 

(kcal/mol) Glide score 

Comp. GS CS ASP ChemPLP Autodock AutoDock Vina (kcal/mol) 

12 66.1 34.8 42.3 78.8 -7.9 -8.2 -7.3 
13 65.1 34.0 44.9 81.7 -8.1 -8.5 -7.3 



Table 7. Distances (Å) between the heme-coordinating N of the imidazole of 12 and 13 

and the heme Fe2+. 

GOLD 

Compounda GS CS ASP ChemPLP Autodock AutoDock Vina Glide 

12 2.01 3.57 2.77 3.15 2.02 2.85 3.61 
13 2.13 3.62 3.02 3.59 1.96 3.83 3.67 

a
 This value is 2.54 Å for ITR present in the homology model 

Table 8. RMS fluctuations (Å) of the CACYP51 residues interacting with 13 in apo and 13-

bound states. 

Residuea Apo 13-bound RMSF gap  Residuea Apo 13-bound RMSF gap 

118 1.28 0.84 0.43 307 2.65 1.17 1.48 
121 3.44 1.23 2.21 308 1.86 1.03 0.83 
122 1.90 0.83 1.08 311 1.70 1.08 0.62 
126 2.10 1.13 0.98 376 2.78 1.36 1.42 
131 1.60 1.24 0.36 377 1.64 2.02 -0.37 
228 4.09 1.57 2.53 378 1.35 1.96 -0.62 
303 2.20 0.94 1.26 380 2.32 1.71 0.62 
304 2.49 1.12 1.36 508 4.64 2.89 1.74 
306 2.31 1.30 1.01 509 2.08 1.91 0.17 

a
 Residues with the highest RMSF gap are highlighted as bold. 



FIGURE LEGENDS 

Scheme 1. Synthesis of derivatives 17, 18, and 37. 

Figure 1. The effect of 12 (A) and 13 (B) on cell viability of L929 cells for 48 h. 

Figure 2. Binding modes of 13 (orange sticks) in CACYP51 catalytic site obtained from 

molecular docking and the original conformer of ITR (green sticks). Molecular surface of the 

protein is rendered. 

Figure 3. Superimposition of the binding modes of 12 and 13 in CACYP51 catalytic site 

obtained from GOLD GS (A), 2D interaction diagram of 13- and 12-CACYP51 complexes (B 

and C) from GOLD GS. 

Figure 4. Plots showing apo and 13-bound CACYP51's Cα RMSD values (A) over time and 

average RMS fluctuations of each residue (B).  








