
1

 1

Scalability Analysis Comparisons of Cloud-based Software 2

Services 3

 4

Amro Al-Said Ahmad1,2 and Peter Andras1 5

1School of Computing and Mathematics, Keele University, Newcastle-under-Lyme, UK 6

2Faculty of Information Technology, Philadelphia University, Amman, Jordan 7

{a.m.k.al-said.ahmad, p.andras}@keele.ac.uk 8

 9

10

Abstract: 11

 12

 Performance and scalability testing and measurements of cloud-based software services 13

are necessary for future optimizations and growth of cloud computing. Scalability, elasticity, 14

and efficiency are interrelated aspects of cloud-based software services' performance 15

requirements. In this work, we use a technical measurement of the scalability of cloud-based 16

software services. Our technical scalability metrics are inspired by metrics of elasticity. We 17

used two cloud-based systems to demonstrate the usefulness of our metrics and compare their 18

scalability performance in two cloud platforms: Amazon EC2 and Microsoft Azure. Our 19

experimental analysis considers three sets of comparisons: first we compare the same cloud-20

based software service hosted on two different public cloud platforms; second we compare 21

two different cloud-based software services hosted on the same cloud platform; finally, we 22

compare between the same cloud-based software service hosted on the same cloud platform 23

with two different auto-scaling policies. We note that our technical scalability metrics can be 24

integrated into a previously proposed utility oriented metric of scalability. We discuss the 25

implications of our work. 26

 27

Keywords: Measurement; Performance; Scalability; Software-as-a-Service (SaaS); 28

Metrics; 29

30

1. INTRODUCTION 31

Cloud-based applications are increasing rapidly as hosting cost have been reduced and 32

computing resources become more available and efficient. In order to maximize the 33

scalability and performance of any software system, it is essential to incorporate performance 34

and scalability testing and assessment into the development lifecycle. This will provide an 35

important foundation for future optimization and will support the Service Level Agreement 36

(SLA) compliant quality of cloud services [1, 2]. There are three typical requirements that are 37

associated with the performance of cloud-based applications: scalability, elasticity, and 38

efficiency [3, 4]. 39

In this study, we adopt technical definitions of these performance features, which were 40

identified by Lehrig et al. [5]. Scalability is the ability of the cloud layer to increase the 41

capacity of the software service delivery by expanding the quantity of the software service 42

that is provided. Elasticity is the level of autonomous adaptation provided by the cloud layer 43

in response to variable demand for the software service. Efficiency is the measure of 44

matching the quantity of software service available for delivery with the quantity of demand 45

for the software service. However, we note that alternative, utility-oriented (i.e. economic 46

cost/benefit focused) approaches are also used in the literature for the conceptualization and 47

measurement of these performance aspects of cloud-based services [6, 7]. Technical 48

scalability measurements and testing is key to assessing and measuring the performance of 49

cloud-based software services [1, 8]. Both elasticity and efficiency aspects depend on 50

scalability performance. 51

Cloud Computing, auto-scaling and load-balancing features provide the support for 52

cloud-based applications to be more scalable, which allows such applications to be able to 53

deal with sudden workload by adding more of instance(s) at runtime. Furthermore, as cloud-54

based applications are being offered as Software as a Services (SaaS), and the use of multi-55

tenancy architectures [9]; emphasizes the need for scalability that supports the availability 56

and productivity of the services and on-demand resources. 57

A relevant systematic literature review reports, only a few research works (e.g. project 58

reports, MSc theses) which try to address the assessment of technical scalability of cloud-59

based software services [5]. However, recently a number of publications addressed the 60

technical measurement of the elasticity of cloud-based provision of software services [5, 10]. 61

On the other hand, other recent publications address the scalability of cloud-based software 62

services from utility perspective [5–7, 11]. 63

In order to try to improve the scalability of any software system, we need to understand 64

the system’s components that effect and contribute to scalability performance of the service. 65

This could help to design suitable test scenarios, and provides a basis for future opportunities 66

aiming to maximize the services scalability performance. Assessing scalability from utility 67

perspective is insufficient for the above purpose, as it works from an abstract perspective 68

which is not necessarily closely related to the technical components and features of the 69

system. 70

In this paper, we use technical scalability measurements and metrics for scalability [12] 71

of cloud-based software services, inspired by earlier technical measures of cloud elasticity 72

[13–15], this work is extended from previous works [12], [16]. We demonstrate the metrics 73

application using two cloud-based software services (OrangeHRM and/or MediaWiki) run 74

through the Amazon EC2 and Microsoft Azure clouds. We perform three comparisons, the 75

first one between the same cloud-based software service hosted on two different public cloud 76

platforms. The second comparison is between two different cloud-based software services 77

hosted on the same cloud platform. The third comparison is between the same cloud-based 78

software service hosted on the same cloud platform with different auto-scaling policies. We 79

show how the metrics can be used to show differences in the system behavior based on 80

different scaling scenarios. We discuss how we can use these metrics for measuring and 81

testing the scalability of cloud-based software services. 82

The rest of the paper is organized as follows: Section 2 presents related works. A 83

description of our approach to measuring the scalability of cloud-based software services and 84

our metrics based on this measurement approach are presented in Section 3. Section 4 85

presents our experiments and analyses using two different usage scenarios, and three sets of 86

comparisons to demonstrate the measurement approach and metrics results. Next, we discuss 87

the implications and importance of the approach and metrics in Section 5. Finally, we present 88

our conclusions and future works in Section 6. 89

2. RELATED WORK 90

Related reviews [17, 18] highlight scalability and performance testing and assessment 91

for cloud-based software services, as promising research challenges and directions. Another 92

related mapping study [19] highlights that the majority of the studies in software cloud testing 93

present early results, which indicates growing interests across the field and also the potential 94

for much more research to follow the early results. 95

A relevant systematic literature review [5] covers cloud performance assessments and 96

metrics in terms of scaling, elasticity, and efficiency. Highlights of their key findings are: 97

most of the reviewed papers focus on elasticity, and in the term of scalability, they report that 98

the papers were either early and preliminary result or initial ideas of research students. The 99

review [5] provides the definitions of the key performance aspects (scalability, elasticity, and 100

efficiency) which have been adopted in this study. Other similar recent surveys [20, 21] focus 101

primarily on cloud service elasticity. 102

The majority of the studies focus on measuring the elasticity of cloud services from a 103

technical perspective [4, 10, 15, 22–26]. For example, Herbst et al. [4] sets a number of key 104

concepts that allows measuring cloud service elasticity in technical term (see Fig. 1) such as 105

the quantity and time extents for periods of time when the service provision is either below or 106

above what is required by the service demand. Elasticity measures defined by [4, 22] is: the 107

timeshares and average time lengths in under-provisioned and over-provisioned states; the 108

amounts of the over-provisioned and under-provisioned resources per time unit; the averages 109

of the excess and lacking resources; and the jitter, which is the number of resource 110

adaptations during a specific time of provisioning the service. The up-elasticity and the 111

down-elasticity metrics are defined as the reciprocal value of the product of the average 112

under-provisioned/over-provisioned time length and average lack of resources. Further 113

elaboration [23] that extended the above metrics introduced other factors and ways such as 114

reconfiguration time, functions of resource inaccuracy, and scalability. 115

 116

Fig. 1. Key concepts for measuring elasticity. 117

From the utility-oriented perspective of measuring and quantifying scalability, we note 118

the work of Hwang et al. [7, 11]. Their production-driven scalability metric includes the 119

measurement of a quality-of-service (QoS) and the cost of that service, in addition to the 120

performance metric from a technical perspective [7, 11]. This approach is useful from a utility 121

perspective, as it depends on multiple facets of the system (including cost measures), it is 122

improbable to be able to provide useful and specific information in terms of contribution of 123

system components to scalability in a technical perspective. 124

Technical-oriented measurements or metrics for cloud-based software scalability 125

research are limited. Such as [4] provides a technical scalability metric, however, this is a 126

rather elasticity driven metric which measures the sum of over- and under-provisioned 127

resources over the total length of time of service provision. While, Jayasinghe et al. [13, 14] 128

provides a technical scalability measure in terms of throughput and CPU utilization of the 129

virtual machines, but the work does not provide a metric or measure. Jamal et al. [27] 130

describe practical measurements of systems throughput with and without multiple virtual 131

machines (VMs), without clearly formulating specific measurements or metric of scalability. 132

Gao et al. [15] evaluate software as services (SaaS) performance and scalability from the 133

capacity of the system perspective, by using the system load and capacity as measurements 134

for scalability. Another recent work [28] focuses on building a model that helps to measure 135

and compare different deployment configurations in terms of costs, capacity, and elasticity. 136

Brataas et al. [29] offered two scalability metrics, one based on the relationship between the 137

capacity of cloud software services and its use of cloud resources; the second is the cost 138

scalability metric function that replaces cloud resources with cost, in order to demonstrate the 139

metrics, they used CloudStore application hosted in Amazon EC2 with different 140

configurations. In an earlier work, [30] provides a theoretical framework of scalability for 141

mobile multi-agent systems, however, which remains limited to theory and modeling results. 142

In terms of comparisons, we note that [13, 14] compared the performance and scalability 143

of two applications (RUBBoS and/or Cloudstone) on three public clouds (Amazon, Open 144

Cirrus, and Emulab), and three private clouds that have been built using the three mainstream 145

hypervisors (XEN, KVM and CVM). As we mentioned above the comparison were based on 146

CPU utilization and throughput without providing any metric or measure. Similarly, Hwang 147

et al. [7, 11] introduces a set of experiments involving five benchmarks, three clouds, and set 148

of different workload generators. Only three benchmarks were considered for scalability 149

measurements, the comparison was based on the scaling scenarios, and what the effect on 150

performance and scalability. Gao et al. [15] run the same experiments in two different AWS 151

EC2 instance types, one with load-balancing and one without. While Vasar et al. [31] 152

introduces a framework for testing web application scalability on the cloud, run the same 153

experiments settings to measure response time on three different EC2 instance types. 154

3. SCALABILITY PERFORMANCE MEASUREMENT 155

Scalability is the ability of the cloud-based system to increase the capacity of the software 156

service delivery by expanding the quantity of the software service that is provided when such 157

increase is required by increased demand for the service over a period of time during which 158

the service is exposed to a certain variation in demand for the service (i.e. a demand scenario) 159

[5]. Our focus is whether the system can expand in terms of quantity (scalability) when 160

required by demand over a sustained period of service provision, according to a certain 161

demand scenario. We are not concerned with short-term flexible provision of the resources 162

(elasticity of the service provision) [22]. The purpose of elasticity is to match the service 163

provision with actual amount of the needed resources at any point in time [22]. Scalability is 164

the ability of handling the changing needs of an application within the confines of the 165

infrastructure by adding resources to meet application demands as required, in a given time 166

interval [5, 32]. Therefore, the elasticity is scaling up or down at a specific time, and 167

scalability is scaling up by adding resources in the context of a given time frame. The 168

scalability is an integral measurement of the behavior of the service over a period of time, 169

while elasticity is the measurement of the instantaneous behavior of the service in response to 170

changes in service demand. Furthermore, we are not concerned with the efficiency of the 171

cloud-based software services delivery, which is usually measured by the consumption of 172

resources (i.e. cost and power consumption) required to complete the desired workload [5]. 173

The increase of cloud capacity usually happens by expanding the volume of service 174

demands served by one instance of the software or by providing a lower volume of service 175

through multiple instances of the same software, or a combination of these two approaches. 176

Generally, we expect that if a service scales up the increase in demand for service should be 177

matched by the proportional increase in the service's provision without degradation in terms 178

of quality. In this work, the quality of the service may be seen for example in terms of 179

response time. 180

The ideal scaling behavior of the service system should be substantial over a sufficiently 181

long timescale, in contrast with cloud elasticity that looks at short-term mismatches between 182

provision and demand. If the system does not show ideal scaling behavior, it will increase the 183

volume of the service without changing the quality of that service. Ordinarily, real systems 184

are expected to behave below the level of the ideal scaling and the aim of scalability testing 185

and measurements is to quantify the extent to which the real system behavior differs from the 186

ideal behavior. 187

To match the ideal scaling behavior, we expect that the system will increase the quantity 188

of the software instances proportionately with the rise in demand for the software services, i.e. 189

if the demand is doubled, we would ideally expect the base number of software instances to 190

also double. We also expect that the system maintains quality of service in terms of 191

maintaining the same average response time irrespective of the volume of service requests, i.e. 192

if demand was increased by 25%, we would ideally expect no increase in average response 193

time. Formally, let us assume that D and D’ are two service demand volumes, D’ > D. Let I 194

and I’ be the corresponding number of software instances that are deployed to deliver the 195

service, and let tr and t’r be the corresponding average response times. If the system scales 196

ideally we expect that for any levels of service demand D and D’ we have that 197

 D’ / D = I’ / I 198

 tr = t’r 199

Equation (1) means that the volume of software instances providing the service scale up 200

linearly with the service demand. Equation (2) means that the quality of service, in terms of 201

average response time, remains the same for any level of service demand. 202

In order to measure the values of I and tr the system must perform the delivery of the 203

service over a period of time, such that short-term variations corresponding to system 204

elasticity do not influence the measurements. This means that the measurements should be 205

based on an average number of software instances and average response time measured 206

regularly (e.g. every second) during the execution of a demand scenario following a particular 207

pattern of demand variation. The same demand pattern should be executed multiple times to 208

get reliable averages. 209

Demand scenarios may follow certain patterns expected to test the scalability of the system 210

in specific ways. Two kinds of demand patterns that appear as natural and typical choices are 211

the steady increase followed by a steady decrease of the demand with a set level of the peak, 212

and the stepped increase and decrease, again with a set peak level of demand. The second 213

scenario is a stepped increase and decrease, again with a set peak level of demand; with this 214

scenario, we schedule to start with 10% of the demand size, then stepped increase 10% 215

through time, while stepped down 10% through time. These two demand scenarios are shown 216

in Fig. 2. The purpose of having two scenarios is to see how the auto-scaling service (services 217

that automatically help to ensure that an application has the proper number of instances 218

dynamically, can handle the workload during runtime [33, 34]) handles cloud-based software 219

services with different patterns of growth of workloads and to verify that the cloud resources 220

covers the target system’s needs without experiencing a drop in performance. A demand 221

scenario is characterized by a summary measure of the demand level, which may be the peak 222

level or the average or total demand level. This characteristic of a demand scenario is denoted 223

as D. 224

 225

Fig. 2. Demand scenarios: A) Steady rise and fall of demand; B) Stepped rise and fall of demand. 226

In general, real-world cloud-based systems are unlikely to deliver the ideal scaling 227

behavior. Given the difference between the ideal and the actual system scaling behavior, it 228

makes sense to measure technical scalability metrics for cloud-based software services using 229

as reference the ideal scalability behavior defined in equations (1) and (2). 230

In terms of provision of software instances for the delivery of the services, the scaling is 231

deficient if the number of actual instances is lower than the ideally expected number of scaling 232

instances. To quantify the level of deficiency we pick a demand scenario and start with a low 233

level of characteristic demand D0 and measure the corresponding volume of software instances 234

I0. Then we measure the number of software instances Ik corresponding to a number (n) of 235

increasing demand levels Dk following the same demand scenario, we can then calculate how 236

close are the Ik values to the ideal I*
k values (in general we expect Ik < I*

k). Following the ideal 237

scalability assumption of equation (1) we get for the ideal I*
k values: 238

 I*
k = (Dk / D0) I0 239

Considering the ratio between the area defined by the (Dk, Ik) values, k = 0,…,n, and the 240

area defined by the (Dk, I*
k) values we get the metric of service volume scalability of the 241

system I: 242

 A* = k=1,…,n (Dk – Dk-1)  (I
*
k + I*

k-1) / 2 243

 A = k=1,…,n (Dk – Dk-1)  (Ik + Ik-1) / 2 244

 I = A / A* 245

where A and A* are the areas under the curves evaluated piecewise as shown in Fig. 3A 246

calculated for actual and ideal I values and I is the volume scalability performance metric of 247

the system. The system is close to the ideal volume scalability if I is close to 1. If the 248

opposite is the case and I is close to 0, then the volume scalability of the system is much less 249

than ideal. 250

We define the system quality scalability in a similar manner by measuring the service 251

average response times tk corresponding to the demand levels Dk. Here, the system average 252

response time measures as the average time that the system takes to process a request once it 253

was received. We approximate the ideal average response time as t0, following the ideal 254

assumption of equation (2). The system quality scalability is less than ideal if the average 255

response times for increasing demand levels increase, i.e. tk > t0. By considering the ratio 256

between the areas defined by the (Dk, tk) values, k = 0,…,n, and the area defined by the (Dk, t0) 257

values we get a ratio that defines a metric of service quality scalability for the system t: 258

 B* = k=1,…,n (Dk – Dk-1)  t0 = (Dn – D0)  t0  259

 B = k=1,…,n (Dk – Dk-1)  (tk + tk-1) / 2 260

 t = B* / B 261

where B and B* are the areas under the curves evaluated piecewise as shown in Fig. 3B 262

calculated for actual and ideal t values and t is the quality scalability performance metric of 263

the system. If t is close to 1 the system is close to ideal quality scalability. On the other hand, 264

if t is close to 0 the quality scalability of the system is far from the ideal. 265

 266

 267

Fig. 3. The calculation of the scalability performance metrics: A) the volume scalability metric is I, which is 268

the ratio between the areas A and A* – see equation (6); B) the quality scalability metric is t, which is the ratio 269

between the areas B* and B – see equation (9). The red lines indicate the ideal scaling behavior and the blue 270

curves show the actual scaling behavior. 271

Figure 3 illustrates the calculation of the two scalability performance metrics. In Fig. 3A, 272

A* is the area under the red line showing the ideal expectation about the scaling behavior (see 273

equation (1)) and A is the shaded area under the blue curve, which corresponds to the actual 274

volume scaling behavior of the system. The blue curve is expected in general to be under the 275

ideal red line, indicating that the volume scaling is less efficient than the ideal scaling. In Fig. 276

3B, B* is the shaded area under the red line indicating the expected ideal behavior (see 277

equation (2)) and B is the area under the blue curve, showing the actual quality scaling 278

behavior of the system. Again, in general, we expect that the blue curve is above the ideal red 279

line, indicating that the quality scaling is below the ideal. We chose nonlinear curves for the 280

examples of actual scaling behavior (blue curves in Fig. 3) to indicate that the practical scaling 281

of the system is likely to respond in a nonlinear manner to changing demand. 282

The above-defined scalability metrics allow the effective measurement of technical 283

scalability of cloud-based software services. These metrics do not depend on other utility 284

factors such as cost and non-technical quality aspects. This allows us to utilize these metrics in 285

technically focused scalability tests that aim to spot components of the system that have a vital 286

impact on the technical measurability, and additionally the testing of the impact of any change 287

in the system on the technical system scalability. The scalability performance refers to the 288

service volume and service quality scalability of the software service; these two technical 289

measurements reflect to the performance of the scalability of the cloud-based software 290

services. 291

Applying these metrics to different demand scenarios allows the testing and tuning of the 292

system for particular usage scenarios and the understanding of how system performance can 293

be expected to change as the pattern of demand varies. Such application of these metrics may 294

highlight trade-offs between volume scaling and quality scaling of the system that characterize 295

certain kinds of demand pattern variation (e.g. the impact of the transition from low-frequency 296

peak demands to high-frequency peak demands or to seasonal change of the demand). 297

Understanding such trade-offs can help in tailoring the system to its expected or actual usage. 298

4. EXPERIMENTAL SETUP AND RESULTS 299

To validate the volume and quality metrics, we performed experiments on Amazon AWS 300

and Microsoft Azure cloud platforms, we used OrangeHRM and Mediawiki as cloud-based 301

software services. Mediawiki is an open-source wiki software system available from 302

https://www.mediawiki.org, OrangeHRM is an open source human resource management 303

software system available from https://www.orangehrm.com. The reason for using these two 304

cloud-based software services (OrangeHRM and MediaWiki) is based on the REST-based 305

nature of the applications, which is highly adopted by cloud and application providers. As the 306

architecture of these applications support REST caching to improve performance and 307

scalability; by caching the data and the code, which will reduce the amount of time required to 308

execute each HTTP request and therefor improving response times by serving data more 309

quickly [35, 36]. 310

The purpose is to check the scalability performance of cloud-based applications using 311

different cloud environments, configuration settings, and demand scenarios. We applied the 312

similar experimental settings for the same cloud-based system (OrangeHRM) in two different 313

cloud environments (EC2 and Azure). We have changed the parameters for Mediawiki, which 314

runs a different type of instance on AWS EC2 environment. Table 1 illustrates the hardware 315

configurations for both cloud platforms. 316

TABLE 1: HARDWARE CONFIGRATIONS FOR CLOUD PLATFORMS 317

Platform Type CPU Credits/hr V-CPU(s) RAM Price ($/ Hr)

Amazon EC2 (London)

t2.micro (Linux) 6 1 1 0.0132

t2.medium (Linux) 24 2 4 0.052

MS Azure (UK South) Standard A1 (Linux) 6 1 1.75 0.06

https://www.mediawiki.org/
https://www.orangehrm.com/

 To provide the scaling of the services we relied on the Auto-Scaling and Load-Balancer 318

services provided by both Amazon AWS and Microsoft Azure. Furthermore, Amazon 319

CloudWatch and Azure Monitor services have been configured in order to monitor the 320

parameters. The Auto-scaling polices (the default policies that are offers by the cloud 321

providers when setting up an auto-scaling group) that have been used for the first two set of 322

experiments are given in Table 2. 323

TABLE 2: AUTO-SCALING POLICES 324

Auto-Scaling Policies

Add Instance When 80% >= CPUUtilization < +infinity

Remove Instance When 30% <= CPUUtilization > -infinity

In this study, we perform three kinds of comparisons, one between the same cloud-based 325

software hosted on two different cloud platforms (EC2 and Azure). The second comparison is 326

between two different cloud-based software services hosted on the same cloud platform 327

(EC2). The third is between the same cloud-based software service hosted on the same cloud 328

platform (EC2) with different Auto-scaling polices. The parameters of these experiments are 329

listed in Table 3. 330

TABLE 3: CLOUD-BASED SERVICES, WORKLOAD, AND CLOUD PLATFORM 331

System service Cloud provider / Instance type Workload generator

OrangeHRM Amazon EC2 / t2.micro JMeter script run by Redline13 services.

OrangeHRM Microsoft Azure / Standard A1 JMeter script run by Redline13 services.

Mediawiki Amazon EC2 / t2.medium Redline13

For OrangeHRM experiments (hosted on EC2 and Azure), we simulate the workload using 332

an Apache JMeter script (http://jmeter.apache.org/) and run through Redline13 services after 333

connecting our cloud accounts to the service (https://www.redline13.com). 334

http://jmeter.apache.org/
https://www.redline13.com/

We used Redline13 services by uploading the test script into our account; which allows us 335

to easily deploy JMeter test plans inside our cloud domain and repeat the tests without the 336

need to reset the test parameters again. This allows efficient extraction of the data. The 337

experimental data has been collected through both Redline13 management portal and the 338

monitoring services from EC2 and Azure. The service requests consisted of an HTTP request 339

to all pages and links of OrangeHRM by gaining login access using the following steps via the 340

Apache JMeter: 341

 Path = /. 342

 Method = GET. 343

 Parameters = username, password and login button. 344

 We used the Redline13 Pro services to test Mediawiki, which allows us to test the targeted 345

application by covering HTTP requests for all pages and links, including getting 346

authentication (log in) to the application’s admin page. In this paper, we report the behavior of 347

the service software in response to the most basic service request, i.e. a generic HTTP request. 348

The JMeter script allows us to send an HTTP/HTTPS request to the targeted application, and 349

parses HTML files for images and other embedded resources (i.e. applets, stylesheets (CSS), 350

external scripts, frames, iframes, background images...etc.), and sends HTTP retrieval requests 351

[37]. For our purposes it was sufficient to issue the simplest HTTP Request, i.e. logging in to 352

the software service and getting in response an acceptance of the login request. Figure 4 353

illustrates our way to test the scalability of cloud-based software services. 354

 355

 356

 357

 358

Fig. 4. Scalability testing process. 359

4.1 Experimental Process 360

The cloud resources must be adequately configured to measure up to the workload in order 361

to achieve efficient performance and scalability. We considered two demand scenarios as 362

shown in Fig. 2. The first scenario follows the steady rise and fall of demand pattern (see Fig. 363

2A). The second scenario consists of a series of stepwise increases and falls in demand as 364

shown in Fig. 2B. Examples of the two kinds of experimental demand patterns (users running) 365

are shown in Fig. 5. Figure 5. A is an example of experiments on Mediawiki in AWS EC2 and 366

Fig. 4.B is an example of experiments on OrangeHRM in Microsoft Azure. We varied the 367

volume of demand and experimented with four demand scenarios: 100, 200, 400 and 800 368

service requests in total. 369

 370

Fig. 5. Typical experimental demand patterns: A) Mediawiki/EC2 - Steady rise and fall of demand; 371

B) OrangeHRM/Microsoft Azure - Series of step-wise increases and decreases of demand. 372

All experimental settings were repeated 20 times, in total 640 experimental were 373

conducted. The average number of simultaneously active software instances and the average 374

response time for all service requests for each experimental run has been calculated. In this 375

study, the system average response time was measured as the average time that the targeted 376

system takes to process an HTTP request once it was received. The averages and standard 377

deviations of simultaneously active software instances and average response times over the 20 378

experimental runs have been calculated. The standard deviations are included alongside the 379

averages in the results graphs. 380

4.2 Measured Cloud-based software Services Result 381

4.2.1 Results for the same cloud-based software system on EC2 and Azure 382

To achieve fair comparisons between two public clouds, we used similar software 383

configurations, hardware settings, and a workload generator in the experiments. To measure 384

the scalability for the proposed demand scenarios for the first cloud-based software service 385

(OrangeHRM) hosted in EC2 and Azure. The average number of OrangeHRM instances for 386

both scenarios and for the four demand workloads are shown in Fig. 6. The average response 387

times for both scenarios and four demand workloads are shown in Fig. 7. In both figures, the 388

‘Ideal’ lines show the expected value of average response time, assuming that the scaling of 389

the software service works perfectly. The ‘Real’ curves show the actual measured average 390

response times. 391

We note that there are variations in average response times for the same cloud-based 392

application hosted on two different cloud platforms (EC2 and Azure). So we checked all 393

configurations for instances, Auto-Scaling, and Load-Balancer services for both cloud 394

accounts, to make sure that all settings match. We re-ran a number of tests to make sure that 395

the variations in results are not caused by configuration differences. 396

 We note that there have been other investigations about variations in average response 397

times for cloud-based applications by [38, 39]. There are a number of factors that could cause 398

variations such as: bursty workload, software component management strategies, bursts in 399

system consumption of hardware resources, and network latency. However, all software 400

configurations, hardware settings, and workload generator are similar in our experiments. 401

The observed average response time values for Azure for the stepped rise and fall of 402

demand scenario are shown in Fig. 7D. Starting from the demand size of 200 the response 403

time increases significantly. Once the demand size reached 800 the average response time 404

began to decline significantly. In contrast, response time values for EC2 for the same scenario 405

which shown in Fig. 7C, have increased gradually with less variation. 406

407

 408

Fig. 6. The average number of software instances. A) OrangeHRM/EC2 – Steady rise and fall of demand 409

scenario. B) OrangeHRM/Azure - Steady rise and fall of demand scenario. C) OrangeHRM/EC2– Series of step-410

wise increases and decreases of demand scenario. D) OrangeHRM/Azure– Series of step-wise increases and 411

decreases of demand scenario. 412

 413

 414

 415

Fig. 7. The average response times. A) OrangeHRM/EC2 – Steady rise and fall of demand scenario. B) 416

OrangeHRM/Azure - Steady rise and fall of demand scenario. C) OrangeHRM/EC2– Series of step-wise 417

increases and decreases of demand scenario. D) OrangeHRM/Azure– Series of step-wise increases and 418

decreases of demand scenario. 419

We calculated the scalability metrics I and t for the two demand scenarios for the cloud-420

based application for both cloud platforms. The values of the scalability metrics are shown in 421

Table 4. The calculated metrics for EC2 show that in terms of volume scalability the two 422

scenarios are similar, the scaling being slightly better in the context of the step-wise increase 423

and decrease of demand scenario. In contrast, Azure shows better volume scaling in the first 424

scenario (Steady rise and fall) with around 0.65, while in the second scenario the volume 425

scaling performance for the Azure is slightly less than the corresponding performance for the 426

EC2. 427

In terms of quality scalability, the EC2 hosted system scales much better in the context of 428

the first scenario, steady rise and fall of demand, than in the case of the second scenario with 429

step-wise increase and decrease of demand. In contrast, Azure shows lower quality scalability 430

than EC2 in this respect, with the metric being 0.45 in the first scenario, and 0.23 for the 431

second scenario. 432

TABLE 4: SCALABILITY METRICS VALUES 433

Cloud Provider Scenario

Metric

I t

Amazon EC2

Steady rise and fall 0.5687 0.9041

Step-wise increase and decrease 0.5882 0.5201

Microsoft Azure

Steady rise and fall 0.6532 0.4526

Step-wise increase and decrease 0.5592 0.2372

 We note from the values of both metrics I and t for both clouds that software system 434

performed better with respect to both volume and quality in the first scenario, steady rise and 435

fall of demand, which is more realistic and simpler demand scenario for many cloud-based 436

software services. In general, we conclude that OrangeHRM performed better in Amazon 437

EC2, in the terms of quality scalability, while performed slightly better in Azure in the terms 438

of volume scalability for the steady rise and fall demand scenario. In the case of the variable 439

rise and fall of demand, the OrangeHRM performs considerably better on the EC2 than on the 440

Azure. 441

 The big difference in the average response times for the software system running on the 442

two cloud platforms indicates that either the software system is tailored better to the provisions 443

of the EC2 system or that the Azure might have issues with the speed of service delivery for 444

the kind of service software systems like the OrangeHRM (or for some particular kind of 445

technical aspect of this software system). Both options raise interesting questions and 446

opportunities for further investigation of the technical match between a software system and 447

the cloud platforms on which it may run. 448

4.2.2 Results for different cloud-based software systems on EC2 449

We used different software configurations, hardware settings, and workload generator in 450

this set of experiments to measure the scalability of the two scenarios for both cloud-based 451

software services that have been hosted in EC2. We changed the instance type and the 452

workload generator in order to see the changes in scalability performance when using different 453

and larger experimental settings. The purpose of this kind of comparison is to see the effects 454

on the scalability performance using the same cloud platform while using different types of 455

instances and workload generators. The average number of OrangeHRM instances for both 456

scenarios and for the four demand workload levels are shown in Fig. 6A and Fig. 6C. The 457

average numbers of MediaWiki instances for both scenarios and for the four workload levels 458

are shown in Fig. 8A and Fig. 8B. The average response times of OrangeHRM for both 459

scenarios and four demand workload levels are shown in Fig. 7A and Fig. 7C. The average 460

response times of MediaWiki for both scenarios and for the four workload levels are shown in 461

Fig. 8C and Fig. 6D. 462

 463

 464

Fig. 8. The average response times and number of software instances for MediaWiki in EC2. A,B) Average 465

number of software instances- Steady rise and fall of demand scenario, Series of step-wise increases and 466

decreases of demand scenario respectively. C,D) Average response times – Steady rise and fall of demand 467

scenario, Series of step-wise increases and decreases of demand scenario respectively. 468

We note that in the case of the MediaWiki we found a case of over-provisioning of 469

software instances, i.e. when the measured average number of software instances is larger than 470

what would be expected as ideal performance according to equation (1) – see Fig. 8B. Given 471

that we found this for the scenario with many stepwise up and down changes of the demand, a 472

possible reason for this is the slow or delayed down-elastic response of the cloud platform. 473

Our volume performance metric does not account for over-provision as it assumes by default 474

under-provision. Consequently, the over-provision, in this case, distorts somewhat the 475

performance metric (increases it). One way to correct for this is to include a penalty for over-476

provisioning. Considering the symmetric nature of the deviation from the idea (downward or 477

upward) in terms of its impact on the performance and on the geometric calculations in 478

equation (5), we can modify this equation as follows: 479

A = k=1,…,n (Dk – Dk-1)  (Ik – 2  [Ik – I*
k]++ Ik-1 – 2  [Ik+1 – I*

k+1]+) / 2 480

where [x]+ represents the value of x if it is positive and 0 otherwise. This change of the 481

calculation avoids the distortion of the metric caused by potential over-provision. 482

Table 5 shows the calculated values for the scalability metrics I and t for the two demand 483

scenarios for both OrangeHRM and MediaWiki cloud-based systems. The corrected volume 484

scalability performance metric, according to equation (10), for the MediaWiki for the second 485

scenario is reported in Table 5 in italics. 486

TABLE 5: SCALABILITY METRICS VALUES 487

Cloud-Based System Scenario

Metric

I t

OrangeHRM

Steady rise and fall 0.5687 0.9041

Step-wise increase and decrease 0.5882 0.5201

MediaWiki

Steady rise and fall 0.7556 0.9664

Step-wise increase and decrease

0.7421

0.7183

0.5012

The calculated metrics show that in terms of volume scaling the two scenarios give similar 488

performance metrics for both systems. The scaling is slightly better in the context of the 489

scenario with step-wise increase and decrease of demand for OrangeHRM. In contrast, for 490

MediaWiki, the performance metrics indicate that the software performs slightly better in the 491

first scenario, steady rise and fall of demand than in the second scenario. In terms of quality 492

scalability, both systems scale much better in the context of the first scenario, steady rise and 493

fall of demand, than in the case of the second scenario with step-wise increase and decrease of 494

demand. 495

Comparing the two software systems running on the EC2, the metrics show that the 496

MediaWiki runs at a considerably higher volume scalability performance than the 497

OrangeHRM in both demand scenarios. The quality scalability metrics show at the MediaWiki 498

has higher performance than the OrangeHRM in this respect in the first scenario and the 499

performances are relatively close in this sense in the case of the second scenario. One possible 500

factor behind the different volume scalability performance is that we ran the MediaWiki on 501

t2.medium virtual machines, while the OrangeHRM was run on t2.micro virtual machines. 502

Interestingly this difference in the virtual machines made no major difference to the quality 503

scaling of the two software systems. In principle, the difference in the volume scalability 504

performance may point to the possibility that technical solutions in the MediaWiki system 505

support more the volume scaling of the system than the corresponding solutions in the 506

OrangeHRM. A deeper insight and investigation into the components of these systems 507

responsible for the performance difference could deliver potentially significant improvements 508

to the system with the weaker scalability performance metrics. 509

4.2.3 Results for the same cloud-based software system on EC2 with different Auto-510

scaling policies 511

We used the same software configurations, hardware settings, and workload generator in 512

this set of experiments to measure the scalability of the two scenarios for the same cloud-513

based software services that have been hosted in EC2, with different Auto-Scaling policies. 514

The first set of policies are the default policies that are provided by EC2 cloud when setting 515

up an Auto-Scaling group (option 1). We pick out random scaling policies for the second set 516

of experiments (option 2). The Auto-scaling policies that have been used for this set of 517

experiments are given in Table 6. 518

TABLE 6: AUTO-SCALING POLICES 519

Auto-Scaling Policies

Option 1

Add Instance When 80% >= CPUUtilization < +infinity

Remove Instance When 30% <= CPUUtilization > -infinity

Option 2

Add Instance When 70% >= CPUUtilization < +infinity

Remove Instance When 10% <= CPUUtilization > -infinity

The purpose of this kind of comparison is to see the effects on the scalability performance 520

using the same cloud platform while using same types of instances and workload generators, 521

with different auto-scaling policies. The average number of MediaWiki instances (Option 2) 522

for both scenarios are shown in Fig. 9.A,B. The average response times of MediaWiki (Option 523

2) for both scenarios shown in Fig. 9.C,D. The average response times and number of software 524

instances for MediaWiki in EC2 (Option 1) - see Fig. 8. 525

 526

 527

Fig. 9. The average response times and number of software instances for MediaWiki in EC2 (Option 2). A,B) 528

Average number of software instances- Steady rise and fall of demand scenario, Series of step-wise increases 529

and decreases of demand scenario respectively. C,D) Average response times – Steady rise and fall of demand 530

scenario, Series of step-wise increases and decreases of demand scenario respectively. 531

We note two cases of over-provisioning of MediaWiki software instances for both 200 and 532

400 demand size, when we used new set of auto-scaling policies – see Fig. 8B. Table 7 shows 533

the calculated values for the scalability metrics I and t for the two demand scenarios for 534

MediaWiki cloud-based systems for both auto-scaling policies options. The corrected volume 535

scalability performance metric, according to equation (10), for the second scenario is reported 536

in Table 7 in italics. 537

In the term of average response time, we note that there are big differences in the average 538

of response times for the second scenario as it gradually from 2.035 seconds for demand size 539

100 to 9.24 seconds for demand size 800. While it graduates from 1.02 seconds for demand 540

size 100 to 3.06 seconds for demand size 800, for the second scenario- Step-wise increase 541

and decrease. 542

TABLE 7: SCALABILITY METRICS VALUES 543

Cloud-Based System Scenario

Metric

I t

MediaWiki (Auto-Scaling policies option 1)

Steady rise and fall 0.7556 0.9664

Step-wise increase and decrease

0.7421

0.7183

0.5012

MediaWiki (Auto-Scaling policies option 2)

Steady rise and fall 0.7923 0.9202

Step-wise increase and decrease

0.8510

0.8217
0.4060

 We note in term of volume scaling that the experiments of MediaWiki with the second 544

option of auto-scaling policies, increased 4% and 11% for the first and second scenarios 545

respectively. While in term of quality scaling the the values has decresed 4.5% and 10% for 546

the first and second scenarios respectively. If we draw a comparison between the two options 547

of auto-scaling policies, we note that efficiency is increased when we used the default auto-548

scaling policies (option 1). 549

5. DISCUSSION 550

The scalability metrics [12] address both volume and quality scaling of cloud-based 551

software services and provide a practical measure of these features of such systems. This is 552

important in order to support effective measurement and testing the scalability of cloud-based 553

software systems. These metrics are distinct from elasticity oriented metrics [4]. 554

We used two demand scenarios to demonstrate the effect of demands patterns on scaling 555

metrics. Using more than one scenario can be used to improve cloud-based software services 556

to fit specified demand scenario expectations. This can be useful, to track changes in such 557

scenarios that trigger interventions in terms of systems upgrade or maintenance or direct 558

investment of software engineering resources in the development of focused upgrades for the 559

system. Demand scenarios combined with multi-aspects of quality scaling metric can also be 560

used to determine rational QoS expectations and likely variations depending on changes in 561

demand scenarios. 562

Here we use the quality scalability metric defined by considering the system average 563

response time. Alternative quality scaling metrics may be defined by considering other quality 564

aspects of the system such as system throughput or recovery rate [11]. Expanding the range of 565

quality measurements provides a multiple factor view of quality scalability to support the 566

trade-off options in the context of QoS offerings in the case of service scaling. 567

We understand the importance and need for utility-perspective scalability metric and 568

measurements. Therefore, our proposed metrics can be integrated into the utility-oriented 569

scalability metric proposed by Hwang et al. [11], by combining our metrics as the performance 570

and/or quality components of their utility-oriented scalability metric. This will allow the 571

analysis of the scalability of cloud-based software services from both technical and 572

production-driven perspectives. The utility oriented productivity metric (P()) is given as 573

[11]: 574

 P() = p()  () / c() 575

where  is the system configuration, p() is the performance component of the metric – in our 576

case this is the volume scalability metric, () is the quality component of the metric – in our 577

case this is the quality scaling metric, and c() is the cost component of the metric. This leads 578

to a re-definition of the utility-oriented metric as: 579

 P() = I ()  t () / c() 580

We calculated the integrated scalability metric (see costs in Table 1) for the two demand 581

scenarios for all cloud-based applications for both cloud platforms. The values of the utility-582

oriented scalability metrics are shown in Table 8 – note that the MediaWiki experiments used 583

more powerful and more expensive virtual machines than the experiments with the 584

OrangeHRM on the EC2. Our utility oriented scalability calculations show that in the case of 585

the systems that we compared the best choice is to use smaller and cheaper virtual machines 586

on the EC2. The corrected integrated scalability metric, based on equation (10), for the 587

MediaWiki for the second scenario, is reported in Table 8 in italics. 588

TABLE 8: INTEGRATED SCALABILITY METRIC VALUES 589

Cloud-Based System / Cloud provider Scenario Integrated Metrics

OrangeHRM / EC2

Steady rise and fall 38.95

Step-wise increase and decrease 23.18

OrangeHRM / Azure

Steady rise and fall 4.93

Step-wise increase and decrease 2.21

MediaWiki (Auto-Scaling policies option 1) Steady rise and fall 14.04

Cloud-Based System / Cloud provider Scenario Integrated Metrics

Step-wise increase and decrease 7.15 6.92

MediaWiki (Auto-Scaling policies option 2)

Steady rise and fall 14.02

Step-wise increase and decrease 6.64 6.42

The technical scalability metrics that we used in this paper allow exploring in more detail 590

the contribution to the system scalability of various components and techniques used in 591

software systems. By instrumenting the software system [40] it becomes possible to determine 592

these contributions and using this information to improve the system. Potentially, different 593

components, technologies or technical solutions may fit different degree with the cloud 594

platform’s provisions. The technical scalability metrics that we used here combined with 595

instrumentation could allow the identification of best matches that can improve the system 596

scalability. 597

6. CONCLUSIONS AND FUTURE WORK 598

In this paper, we demonstrate the use of two technical scalability metrics for cloud-based 599

software services for the comparison of software services running on the same and also on 600

different cloud platforms. The underlying principles of the metrics are conceptually very 601

simple and they address both the volume and quality scaling performance and are defined 602

using the differences between the real and ideal scaling carves. We used two demand 603

scenarios, two cloud-based open source software services (OrangeHRM and MediaWiki) and 604

two public cloud platforms (Amazon AWS and Microsoft Azure). Our experimental results 605

and analysis show that the metrics allow clear assessments of the impact of demand scenarios 606

on the systems, and quantify explicitly the technical scalability performance of the cloud-607

based software services. The results show that the metrics can be used effectively to compare 608

the scalability of software on cloud environments and consequently to support deployment 609

decisions with technical arguments. 610

Some interesting scalability behavior has been noted through the analysis, such as big 611

variations in average response time for similar experimental settings hosted in different clouds. 612

A case of over provision state has been accrued when using higher capacity hardware 613

configurations in the EC2 cloud. 614

We believe that the technical-based scalability metrics can be used in designing and 615

performing scalability testing of cloud-based software systems, in order to identify system 616

components that critically contribute to the technical scaling performance. We have shown the 617

integration of our technical scalability metrics into a previously proposed utility oriented 618

metric. Our metrics can also be extended, by considering multiple service quality aspects and 619

combined with a range of demand scenarios to support the fine-tuning of the system. Such 620

things can help the identification of QoS trade-offs, and estimation of genuine scalability 621

performance expectations about the system depending on demand scenarios. 622

Future work will include the consideration of other cloud platforms (e.g. Google Cloud, 623

IBM), demand workload generators, and other cloud-based software services, in order to 624

extend the practical validity of the work. We also aim to consider further demand patterns 625

(such as variable width sudden peaks in demand, seasonal demand) to see the impact of these 626

scenarios on the scalability performance of cloud-based software services. Another aspect of 627

future work will focus on using whole code instrumentation technique in order to identify the 628

software system or cloud platform components that contribute critically to variations in 629

average response times for the same cloud-based application with the similar experimental 630

settings in different clouds. 631

632

DECLARATIONS 633

Abbreviations 634

SLA: Service level agreement. 635

QoS: Quality of service. 636

SaaS: Software as services. 637

VMs: Virtual machines. 638

I : Volume scalability metric. 639

t: Quality scalability metric. 640

D and D’: Service demand volumes. 641

I and I’: The corresponding number of software instances. 642

tr and t’r: The corresponding average response times. 643

Availability of data and materials 644

Not applicable. 645

Competing interests 646

The authors declare that they have no competing interests. 647

Funding 648

Not applicable. 649

Authors’ contributions 650

The core of this paper is based on work developed for Al-Said Ahmad’s PhD project at the 651

University of Keele, supervised by Peter Andras. Both authors read, edited, and approved the 652

final manuscript. 653

Acknowledgements 654

This research is supported by a PhD scholarship from Philadelphia University – Jordan for 655

Amro Al-Said Ahmad. 656

Authors' information 657

Amro Al-Siad Ahmad has a PhD in scalability analysis of cloud-based systems (2019) from 658

Keele University, UK. Prior to his PhD, he obtained bachelor degree in Software Engineering 659

(2009) from Philadelphia University in Jordan, and a Master Degree in Computer Science 660

(2014) with distinction from Amman Arab University, Jordan. He works in the areas of 661

scalability of cloud computing and software engineering. 662

Peter Andras has a BSc in computer science (1995), an MSc in artificial intelligence (1996) 663

and a PhD in mathematical analysis of neural networks (2000), all from the Babes-Bolyai 664

University, Cluj, Romania. He is a Professor in the School of Computing and Mathematics, 665

Keele University, UK. He has published 2 books and over 100 papers. He works in the areas 666

of complex systems, computational intelligence and computational neuroscience. Dr. Andras 667

is Senior Member of IEEE, member of the International Neural Network Society, of the 668

Society for Artificial Intelligence and Simulation of Behaviour, and Fellow of the Royal 669

Society of Biology. 670

671

REFERENCES 672

1. Liu HH (2011) Software performance and scalability: a quantitative approach. John Wiley & 673

Sons, Hoboken, N.J 674

2. Atmaca T, Begin T, Brandwajn A, Castel-Taleb H (2016) Performance Evaluation of Cloud 675

Computing Centers with General Arrivals and Service. IEEE Trans Parallel Distrib Syst 676

27:2341–2348 . doi: 10.1109/TPDS.2015.2499749 677

3. Becker M, Lehrig S, Becker S (2015) Systematically Deriving Quality Metrics for Cloud 678

Computing Systems. In: Proceedings of the 6th ACM/SPEC International Conference on 679

Performance Engineering - ICPE ’15. ACM, New York, NY, USA, pp 169–174 680

4. Herbst NR, Kounev S, Reussner R (2013) Elasticity in Cloud Computing: What It Is , and 681

What It Is Not. In: Presented as part of the 10th International Conference on Autonomic 682

Computing. USENIX, San Jose, CA, pp 23–27 683

5. Lehrig S, Eikerling H, Becker S (2015) Scalability, elasticity, and efficiency in cloud 684

computing: A systematic literature review of definitions and metrics. In: Proceedings of the 685

11th International ACM SIGSOFT Conference on Quality of Software Architectures - QoSA 686

’15. pp 83–92 687

6. Buyya R, Ranjan R, Calheiros RN (2010) InterCloud : Utility-Oriented Federation of Cloud 688

Computing Environments for Scaling of. In: Hsu C-H, Yang LT, Park JH, Yeo S-S (eds) 689

Algorithms and Architectures for Parallel Processing (10th International Conference, ICA3PP 690

20). Springer Berlin Heidelberg, Berlin, Heidelberg, pp 13–31 691

7. Hwang K, Shi Y, Bai X (2015) Scale-out vs. scale-up techniques for cloud performance and 692

productivity. In: Proceedings of the International Conference on Cloud Computing 693

Technology and Science, CloudCom. pp 763–768 694

8. Blokland K, Mengerink J, Pol M (2013) Testing Cloud Services: How to Test SaaS, PaaS & 695

IaaS. Rocky Nook 696

9. Aljahdali H, Albatli A, Garraghan P, et al (2014) Multi-tenancy in cloud computing. In: 697

Proceedings - IEEE 8th International Symposium on Service Oriented System Engineering, 698

SOSE 2014. pp 344–351 699

10. Islam S, Lee K, Fekete A, Liu A (2012) How a consumer can measure elasticity for cloud 700

platforms. In: Proceedings of the third joint WOSP/SIPEW international conference on 701

Performance Engineering - ICPE ’12. ACM, New York, NY, USA, p 85 702

11. Hwang K, Bai X, Shi Y, et al (2016) Cloud Performance Modeling with Benchmark 703

Evaluation of Elastic Scaling Strategies. IEEE Trans Parallel Distrib Syst 27:130–143 . doi: 704

10.1109/TPDS.2015.2398438 705

12. Al-Said Ahmad A, Andras P (2018) Measuring the Scalability of Cloud-Based Software 706

Services. In: 2018 IEEE World Congress on Services (SERVICES). IEEE, San Francisco, CA, 707

pp 5–6. doi: 10.1109/SERVICES.2018.00016 708

13. Jayasinghe D, Malkowski S, Wang Q, et al (2011) Variations in performance and scalability 709

when migrating n-tier applications to different clouds. In: Proceedings - 2011 IEEE 4th 710

International Conference on Cloud Computing, CLOUD 2011. pp 73–80 711

14. Jayasinghe D, Malkowski S, Li J, et al (2014) Variations in performance and scalability: An 712

experimental study in IaaS clouds using multi-tier workloads. IEEE Trans Serv Comput 713

7:293–306 . doi: 10.1109/TSC.2013.46 714

15. Gao J, Pattabhiraman P, Bai X, Tsai WT (2011) SaaS performance and scalability evaluation 715

in clouds. In: Proceedings - 6th IEEE International Symposium on Service-Oriented System 716

Engineering, SOSE 2011. IEEE, pp 61–71 717

16. Al-Said Ahmad A, Andras P (2018) Measuring and Testing the Scalability of Cloud-based 718

Software Services. In: 2018 Fifth International Symposium on Innovation in Information and 719

Communication Technology (ISIICT). Amman, pp 1–8. doi: 10.1109/ISIICT.2018.8613297 720

17. Jennings B, Stadler R (2015) Resource Management in Clouds: Survey and Research 721

Challenges. J Netw Syst Manag 23:567–619 . doi: 10.1007/s10922-014-9307-7 722

18. Gao J, Bai X, Tsai WT, Uehara T (2013) SaaS testing on clouds - Issues, challenges, and 723

needs. In: Proceedings - 2013 IEEE 7th International Symposium on Service-Oriented System 724

Engineering, SOSE 2013. pp 409–415 725

19. Al-Said Ahmad A, Brereton P, Andras P (2017) A Systematic Mapping Study of Empirical 726

Studies on Software Cloud Testing Methods. In: Proceedings 2017 IEEE International 727

Conference on Software Quality, Reliability and Security Companion, QRS-C 2017. pp 555–728

562. doi: 10.1109/QRS-C.2017.94 729

20. Geetha N, Anbarasi MS (2015) Ontology in cloud computing: A survey. International Journal 730

of Applied Engineering Research 10(23):43373-43377. doi: 10.1007/s12243-014-0450-7 731

21. Hu Y, Deng B, Peng F, et al (2016) A survey on evaluating elasticity of cloud computing 732

platform. In: World Automation Congress Proceedings. pp 1–4 733

22. Herbst NR, Kounev S, Weber A, Groenda H (2015) BUNGEE: An Elasticity Benchmark for 734

Self-Adaptive IaaS Cloud Environments. In: Proceedings - 10th International Symposium on 735

Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2015. pp 46–56 736

23. Bauer A, Herbst N, Kounev S (2017) Design and Evaluation of a Proactive, Application-737

Aware Auto-Scaler. In: Proceedings of the 8th ACM/SPEC on International Conference on 738

Performance Engineering - ICPE ’17. ACM, New York, NY, USA, pp 425–428 739

24. Beltran M (2016) Defining an Elasticity Metric for Cloud Computing Environments. In: 740

Proceedings of the 9th EAI International Conference on Performance Evaluation 741

Methodologies and Tools. ICST (Institute for Computer Sciences, Social-Informatics and 742

Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, pp 172–179 743

25. Kuhlenkamp J, Klems M, Röss O (2014) Benchmarking scalability and elasticity of distributed 744

database systems. Proc VLDB Endow 7:1219–1230 . doi: 10.14778/2732977.2732995 745

26. Ilyushkin A, Ali-Eldin A, Herbst N, et al (2017) An Experimental Performance Evaluation of 746

Autoscaling Policies for Complex Workflows. In: Proceedings of the 8th ACM/SPEC on 747

International Conference on Performance Engineering - ICPE ’17. ACM, New York, NY, 748

USA, pp 75–86 749

27. Hasan Jamal M, Qadeer A, Mahmood W, et al (2009) Virtual machine scalability on multi-750

core processors based servers for cloud computing workloads. In: Proceedings - 2009 IEEE 751

International Conference on Networking, Architecture, and Storage, NAS 2009. pp 90–97 752

28. Lehrig S, Sanders R, Brataas G, et al (2018) CloudStore — towards scalability, elasticity, and 753

efficiency benchmarking and analysis in Cloud computing. Futur Gener Comput Syst 78:115–754

126 . doi: 10.1016/j.future.2017.04.018 755

29. Brataas G, Herbst N, Ivansek S, Polutnik J (2017) Scalability Analysis of Cloud Software 756

Services. In: Proceedings - 2017 IEEE International Conference on Autonomic Computing, 757

ICAC 2017. pp 285–292 758

30. Woodside M (2001) Scalability Metrics and Analysis of Mobile Agent Systems. In: Wagner T, 759

Rana OF (eds) Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-Agent 760

Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 234–245 761

31. Vasar M, Srirama SN, Dumas M (2012) Framework for monitoring and testing web 762

application scalability on the cloud. In: Proceedings of the WICSA/ECSA 2012 Companion 763

Volume on - WICSA/ECSA ’12. p 53 764

32. Autili M, Di Ruscio D, Paola I, et al (2011) CHOReOS Dynamic Development Model 765

Definition (D2. 1) 766

33. Xiao Z, Chen Q, Luo H (2014) Automatic scaling of internet applications for cloud computing 767

services. IEEE Trans Comput 63:1111–1123 768

34. Amazon EC2 (2019) What Is Amazon EC2 Auto Scaling? 769

https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-770

scaling.html. Accessed 23 Jan 2019 771

35. OrangeHRM OrangeHRM REST APIS. https://api.orangehrm.com/?url=/apidoc/index.html. 772

Accessed 14 Feb 2019 773

36. Microsoft Azure (2017) Caching. https://docs.microsoft.com/en-us/azure/architecture/best-774

practices/caching. Accessed 15 Mar 2019 775

37. JMeter (2019) JMeter HTTP Request. https://jmeter.apache.org/usermanual/ 776

component_reference.html#HTTP_Request. Accessed 1 Apr 2019 777

38. Wang Q, Kanemasa Y, Li J, et al (2012) Response time reliability in cloud environments: An 778

empirical study of n-tier applications at high resource utilization. In: Proceedings of the IEEE 779

Symposium on Reliable Distributed Systems. pp 378–383 780

39. Butler B (2016) Who’s got the best cloud latency? 781

https://www.networkworld.com/article/3095022/cloud-computing/who-s-got-the-best-cloud-782

latency.html,. Accessed 19 Mar 2018 783

40. Jayathilaka H, Krintz C, Wolski R (2017) Performance Monitoring and Root Cause Analysis 784

for Cloud-hosted Web Applications. In: Proceedings of the 26th International Conference on 785

World Wide Web - WWW ’17. International World Wide Web Conferences Steering 786

Committee, Republic and Canton of Geneva, Switzerland, pp 469–478 787

 788

