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Abstract: 11 

 12 

 Performance and scalability testing and measurements of cloud-based software services 13 

are necessary for future optimizations and growth of cloud computing. Scalability, elasticity, 14 

and efficiency are interrelated aspects of cloud-based software services' performance 15 

requirements. In this work, we use a technical measurement of the scalability of cloud-based 16 

software services. Our technical scalability metrics are inspired by metrics of elasticity. We 17 

used two cloud-based systems to demonstrate the usefulness of our metrics and compare their 18 

scalability performance in two cloud platforms: Amazon EC2 and Microsoft Azure. Our 19 

experimental analysis considers three sets of comparisons: first we compare the same cloud-20 

based software service hosted on two different public cloud platforms; second we compare 21 

two different cloud-based software services hosted on the same cloud platform; finally, we 22 

compare between the same cloud-based software service hosted on the same cloud platform 23 

with two different auto-scaling policies. We note that our technical scalability metrics can be 24 

integrated into a previously proposed utility oriented metric of scalability. We discuss the 25 

implications of our work.  26 
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1. INTRODUCTION 31 

Cloud-based applications are increasing rapidly as hosting cost have been reduced and 32 

computing resources become more available and efficient. In order to maximize the 33 

scalability and performance of any software system, it is essential to incorporate performance 34 

and scalability testing and assessment into the development lifecycle. This will provide an 35 

important foundation for future optimization and will support the Service Level Agreement 36 

(SLA) compliant quality of cloud services [1, 2]. There are three typical requirements that are 37 

associated with the performance of cloud-based applications: scalability, elasticity, and 38 

efficiency [3, 4]. 39 

In this study, we adopt technical definitions of these performance features, which were 40 

identified by Lehrig et al. [5]. Scalability is the ability of the cloud layer to increase the 41 

capacity of the software service delivery by expanding the quantity of the software service 42 

that is provided. Elasticity is the level of autonomous adaptation provided by the cloud layer 43 

in response to variable demand for the software service. Efficiency is the measure of 44 

matching the quantity of software service available for delivery with the quantity of demand 45 

for the software service. However, we note that alternative, utility-oriented (i.e. economic 46 

cost/benefit focused) approaches are also used in the literature for the conceptualization and 47 

measurement of these performance aspects of cloud-based services [6, 7]. Technical 48 

scalability measurements and testing is key to assessing and measuring the performance of 49 

cloud-based software services [1, 8]. Both elasticity and efficiency aspects depend on 50 

scalability performance.   51 

Cloud Computing, auto-scaling and load-balancing features provide the support for 52 

cloud-based applications to be more scalable, which allows such applications to be able to 53 

deal with sudden workload by adding more of instance(s) at runtime. Furthermore, as cloud-54 

based applications are being offered as Software as a Services (SaaS), and the use of multi-55 



tenancy architectures [9]; emphasizes the need for scalability that supports the availability 56 

and productivity of the services and on-demand resources. 57 

A relevant systematic literature review reports, only a few research works (e.g. project 58 

reports, MSc theses) which try to address the assessment of technical scalability of cloud-59 

based software services [5]. However, recently a number of publications addressed the 60 

technical measurement of the elasticity of cloud-based provision of software services [5, 10]. 61 

On the other hand, other recent publications address the scalability of cloud-based software 62 

services from utility perspective [5–7, 11].  63 

In order to try to improve the scalability of any software system, we need to understand 64 

the system’s components that effect and contribute to scalability performance of the service. 65 

This could help to design suitable test scenarios, and provides a basis for future opportunities 66 

aiming to maximize the services scalability performance. Assessing scalability from utility 67 

perspective is insufficient for the above purpose, as it works from an abstract perspective 68 

which is not necessarily closely related to the technical components and features of the 69 

system.  70 

In this paper, we use technical scalability measurements and metrics for scalability [12] 71 

of cloud-based software services, inspired by earlier technical measures of cloud elasticity 72 

[13–15], this work is extended from previous works [12], [16]. We demonstrate the metrics 73 

application using two cloud-based software services (OrangeHRM and/or MediaWiki) run 74 

through the Amazon EC2 and Microsoft Azure clouds. We perform three comparisons, the 75 

first one between the same cloud-based software service hosted on two different public cloud 76 

platforms. The second comparison is between two different cloud-based software services 77 

hosted on the same cloud platform. The third comparison is between the same cloud-based 78 

software service hosted on the same cloud platform with different auto-scaling policies. We 79 

show how the metrics can be used to show differences in the system behavior based on 80 



different scaling scenarios. We discuss how we can use these metrics for measuring and 81 

testing the scalability of cloud-based software services.  82 

The rest of the paper is organized as follows: Section 2 presents related works. A 83 

description of our approach to measuring the scalability of cloud-based software services and 84 

our metrics based on this measurement approach are presented in Section 3. Section 4 85 

presents our experiments and analyses using two different usage scenarios, and three sets of 86 

comparisons to demonstrate the measurement approach and metrics results. Next, we discuss 87 

the implications and importance of the approach and metrics in Section 5. Finally, we present 88 

our conclusions and future works in Section 6. 89 

2. RELATED WORK 90 

Related reviews [17, 18] highlight scalability and performance testing and assessment 91 

for cloud-based software services, as promising research challenges and directions. Another 92 

related mapping study [19] highlights that the majority of the studies in software cloud testing 93 

present early results, which indicates growing interests across the field and also the potential 94 

for much more research to follow the early results.  95 

A relevant systematic literature review [5] covers cloud performance assessments and 96 

metrics in terms of scaling, elasticity, and efficiency. Highlights of their key findings are: 97 

most of the reviewed papers focus on elasticity, and in the term of scalability, they report that 98 

the papers were either early and preliminary result or initial ideas of research students. The 99 

review [5] provides the definitions of the key performance aspects (scalability, elasticity, and 100 

efficiency) which have been adopted in this study. Other similar recent surveys [20, 21] focus 101 

primarily on cloud service elasticity.  102 

The majority of the studies focus on measuring the elasticity of cloud services from a 103 

technical perspective [4, 10, 15, 22–26]. For example, Herbst et al. [4] sets a number of key 104 



concepts that allows measuring cloud service elasticity in technical term (see Fig. 1) such as 105 

the quantity and time extents for periods of time when the service provision is either below or 106 

above what is required by the service demand. Elasticity measures defined by [4, 22] is: the 107 

timeshares and average time lengths in under-provisioned and over-provisioned states; the 108 

amounts of the over-provisioned and under-provisioned resources per time unit; the averages 109 

of the excess and lacking resources; and the jitter, which is the number of resource 110 

adaptations during a specific time of provisioning the service. The up-elasticity and the 111 

down-elasticity metrics are defined as the reciprocal value of the product of the average 112 

under-provisioned/over-provisioned time length and average lack of resources. Further 113 

elaboration [23] that extended the above metrics introduced other factors and ways such as 114 

reconfiguration time, functions of resource inaccuracy, and scalability. 115 

 116 

Fig. 1.  Key concepts for measuring elasticity.  117 

From the utility-oriented perspective of measuring and quantifying scalability, we note 118 

the work of Hwang et al. [7, 11]. Their production-driven scalability metric includes the 119 

measurement of a quality-of-service (QoS) and the cost of that service, in addition to the 120 

performance metric from a technical perspective [7, 11]. This approach is useful from a utility 121 

perspective, as it depends on multiple facets of the system (including cost measures), it is 122 

improbable to be able to provide useful and specific information in terms of contribution of 123 

system components to scalability in a technical perspective.   124 



Technical-oriented measurements or metrics for cloud-based software scalability 125 

research are limited. Such as [4] provides a technical scalability metric, however, this is a 126 

rather elasticity driven metric which measures the sum of over- and under-provisioned 127 

resources over the total length of time of service provision. While, Jayasinghe et al. [13, 14] 128 

provides a technical scalability measure in terms of throughput and CPU utilization of the 129 

virtual machines, but the work does not provide a metric or measure. Jamal et al. [27] 130 

describe practical measurements of systems throughput with and without multiple virtual 131 

machines (VMs), without clearly formulating specific measurements or metric of scalability. 132 

Gao et al. [15] evaluate software as services (SaaS) performance and scalability from the 133 

capacity of the system perspective, by using the system load and capacity as measurements 134 

for scalability. Another recent work [28] focuses on building a model that helps to measure 135 

and compare different deployment configurations in terms of costs, capacity, and elasticity. 136 

Brataas et al. [29] offered two scalability metrics, one based on the relationship between the 137 

capacity of cloud software services and its use of cloud resources; the second is the cost 138 

scalability metric function that replaces cloud resources with cost, in order to demonstrate the 139 

metrics, they used CloudStore application hosted in Amazon EC2 with different 140 

configurations. In an earlier work, [30] provides a theoretical framework of scalability for 141 

mobile multi-agent systems, however, which remains limited to theory and modeling results. 142 

In terms of comparisons, we note that [13, 14] compared the performance and scalability 143 

of two applications (RUBBoS and/or Cloudstone) on three public clouds (Amazon, Open 144 

Cirrus, and Emulab), and three private clouds that have been built using the three mainstream 145 

hypervisors (XEN, KVM and CVM). As we mentioned above the comparison were based on 146 

CPU utilization and throughput without providing any metric or measure. Similarly, Hwang 147 

et al. [7, 11] introduces a set of experiments involving five benchmarks, three clouds, and set 148 

of different workload generators. Only three benchmarks were considered for scalability 149 



measurements, the comparison was based on the scaling scenarios, and what the effect on 150 

performance and scalability. Gao et al. [15] run the same experiments in two different AWS 151 

EC2 instance types, one with load-balancing and one without. While Vasar et al. [31] 152 

introduces a framework for testing web application scalability on the cloud, run the same 153 

experiments settings to measure response time on three different EC2 instance types.       154 

3. SCALABILITY PERFORMANCE MEASUREMENT 155 

Scalability is the ability of the cloud-based system to increase the capacity of the software 156 

service delivery by expanding the quantity of the software service that is provided when such 157 

increase is required by increased demand for the service over a period of time during which 158 

the service is exposed to a certain variation in demand for the service (i.e. a demand scenario) 159 

[5]. Our focus is whether the system can expand in terms of quantity (scalability) when 160 

required by demand over a sustained period of service provision, according to a certain 161 

demand scenario. We are not concerned with short-term flexible provision of the resources 162 

(elasticity of the service provision) [22]. The purpose of elasticity is to match the service 163 

provision with actual amount of the needed resources at any point in time [22]. Scalability is 164 

the ability of handling the changing needs of an application within the confines of the 165 

infrastructure by adding resources to meet application demands as required, in a given time 166 

interval [5, 32]. Therefore, the elasticity is scaling up or down at a specific time, and 167 

scalability is scaling up by adding resources in the context of a given time frame. The 168 

scalability is an integral measurement of the behavior of the service over a period of time, 169 

while elasticity is the measurement of the instantaneous behavior of the service in response to 170 

changes in service demand. Furthermore, we are not concerned with the efficiency of the 171 

cloud-based software services delivery, which is usually measured by the consumption of 172 

resources (i.e. cost and power consumption) required to complete the desired workload [5].  173 

The increase of cloud capacity usually happens by expanding the volume of service 174 



demands served by one instance of the software or by providing a lower volume of service 175 

through multiple instances of the same software, or a combination of these two approaches. 176 

Generally, we expect that if a service scales up the increase in demand for service should be 177 

matched by the proportional increase in the service's provision without degradation in terms 178 

of quality. In this work, the quality of the service may be seen for example in terms of 179 

response time.    180 

The ideal scaling behavior of the service system should be substantial over a sufficiently 181 

long timescale, in contrast with cloud elasticity that looks at short-term mismatches between 182 

provision and demand. If the system does not show ideal scaling behavior, it will increase the 183 

volume of the service without changing the quality of that service. Ordinarily, real systems 184 

are expected to behave below the level of the ideal scaling and the aim of scalability testing 185 

and measurements is to quantify the extent to which the real system behavior differs from the 186 

ideal behavior. 187 

To match the ideal scaling behavior, we expect that the system will increase the quantity 188 

of the software instances proportionately with the rise in demand for the software services, i.e. 189 

if the demand is doubled, we would ideally expect the base number of software instances to 190 

also double. We also expect that the system maintains quality of service in terms of 191 

maintaining the same average response time irrespective of the volume of service requests, i.e. 192 

if demand was increased by 25%, we would ideally expect no increase in average response 193 

time. Formally, let us assume that D and D’ are two service demand volumes, D’ > D. Let I 194 

and I’ be the corresponding number of software instances that are deployed to deliver the 195 

service, and let tr and t’r be the corresponding average response times. If the system scales 196 

ideally we expect that for any levels of service demand D and D’ we have that 197 

 D’ / D = I’ / I 198 



 tr = t’r 199 

Equation (1) means that the volume of software instances providing the service scale up 200 

linearly with the service demand. Equation (2) means that the quality of service, in terms of 201 

average response time, remains the same for any level of service demand. 202 

In order to measure the values of I and tr the system must perform the delivery of the 203 

service over a period of time, such that short-term variations corresponding to system 204 

elasticity do not influence the measurements. This means that the measurements should be 205 

based on an average number of software instances and average response time measured 206 

regularly (e.g. every second) during the execution of a demand scenario following a particular 207 

pattern of demand variation. The same demand pattern should be executed multiple times to 208 

get reliable averages. 209 

Demand scenarios may follow certain patterns expected to test the scalability of the system 210 

in specific ways. Two kinds of demand patterns that appear as natural and typical choices are 211 

the steady increase followed by a steady decrease of the demand with a set level of the peak, 212 

and the stepped increase and decrease, again with a set peak level of demand. The second 213 

scenario is a stepped increase and decrease, again with a set peak level of demand; with this 214 

scenario, we schedule to start with 10% of the demand size, then stepped increase 10% 215 

through time, while stepped down 10% through time. These two demand scenarios are shown 216 

in Fig. 2. The purpose of having two scenarios is to see how the auto-scaling service (services 217 

that automatically help to ensure that an application has the proper number of instances 218 

dynamically, can handle the workload during runtime [33, 34]) handles cloud-based software 219 

services with different patterns of growth of workloads and to verify that the cloud resources 220 

covers the target system’s needs without experiencing a drop in performance. A demand 221 

scenario is characterized by a summary measure of the demand level, which may be the peak 222 



level or the average or total demand level. This characteristic of a demand scenario is denoted 223 

as D. 224 

 225 

Fig. 2.  Demand scenarios: A) Steady rise and fall of demand; B) Stepped rise and fall of demand. 226 

In general, real-world cloud-based systems are unlikely to deliver the ideal scaling 227 

behavior. Given the difference between the ideal and the actual system scaling behavior, it 228 

makes sense to measure technical scalability metrics for cloud-based software services using 229 

as reference the ideal scalability behavior defined in equations (1) and (2).  230 

In terms of provision of software instances for the delivery of the services, the scaling is 231 

deficient if the number of actual instances is lower than the ideally expected number of scaling 232 

instances. To quantify the level of deficiency we pick a demand scenario and start with a low 233 

level of characteristic demand D0 and measure the corresponding volume of software instances 234 

I0. Then we measure the number of software instances Ik corresponding to a number (n) of 235 

increasing demand levels Dk following the same demand scenario, we can then calculate how 236 

close are the Ik values to the ideal I*
k values (in general we expect Ik < I*

k). Following the ideal 237 

scalability assumption of equation (1) we get for the ideal I*
k values: 238 

 I*
k = (Dk / D0) I0 239 

Considering the ratio between the area defined by the (Dk, Ik) values, k = 0,…,n, and the 240 

area defined by the (Dk, I*
k) values we get the metric of service volume scalability of the 241 

system I: 242 



 A* = k=1,…,n (Dk – Dk-1)  (I
*
k + I*

k-1) / 2 243 

 A = k=1,…,n (Dk – Dk-1)  (Ik + Ik-1) / 2 244 

 I  = A / A* 245 

where A and A* are the areas under the curves evaluated piecewise as shown in Fig. 3A 246 

calculated for actual and ideal I values and I is the volume scalability performance metric of 247 

the system. The system is close to the ideal volume scalability if I is close to 1. If the 248 

opposite is the case and I is close to 0, then the volume scalability of the system is much less 249 

than ideal. 250 

We define the system quality scalability in a similar manner by measuring the service 251 

average response times tk corresponding to the demand levels Dk. Here, the system average 252 

response time measures as the average time that the system takes to process a request once it 253 

was received. We approximate the ideal average response time as t0, following the ideal 254 

assumption of equation (2). The system quality scalability is less than ideal if the average 255 

response times for increasing demand levels increase, i.e. tk > t0. By considering the ratio 256 

between the areas defined by the (Dk, tk) values, k = 0,…,n, and the area defined by the (Dk, t0) 257 

values we get a ratio that defines a metric of service quality scalability for the system t: 258 

 B* = k=1,…,n (Dk – Dk-1)  t0 = (Dn – D0)  t0  259 

 B = k=1,…,n (Dk – Dk-1)  (tk + tk-1) / 2 260 

 t  = B* / B 261 

where B and B* are the areas under the curves evaluated piecewise as shown in Fig. 3B 262 

calculated for actual and ideal t values and t is the quality scalability performance metric of 263 

the system. If t is close to 1 the system is close to ideal quality scalability. On the other hand, 264 

if t is close to 0 the quality scalability of the system is far from the ideal. 265 



 266 

 267 

Fig. 3.  The calculation of the scalability performance metrics: A) the volume scalability metric is I, which is 268 

the ratio between the areas A and A* – see equation (6); B) the quality scalability metric is t, which is the ratio 269 

between the areas B* and B – see equation (9). The red lines indicate the ideal scaling behavior and the blue 270 

curves show the actual scaling behavior. 271 

Figure 3 illustrates the calculation of the two scalability performance metrics. In Fig. 3A, 272 

A* is the area under the red line showing the ideal expectation about the scaling behavior (see 273 

equation (1)) and A is the shaded area under the blue curve, which corresponds to the actual 274 



volume scaling behavior of the system. The blue curve is expected in general to be under the 275 

ideal red line, indicating that the volume scaling is less efficient than the ideal scaling. In Fig. 276 

3B, B* is the shaded area under the red line indicating the expected ideal behavior (see 277 

equation (2)) and B is the area under the blue curve, showing the actual quality scaling 278 

behavior of the system. Again, in general, we expect that the blue curve is above the ideal red 279 

line, indicating that the quality scaling is below the ideal. We chose nonlinear curves for the 280 

examples of actual scaling behavior (blue curves in Fig. 3) to indicate that the practical scaling 281 

of the system is likely to respond in a nonlinear manner to changing demand.  282 

The above-defined scalability metrics allow the effective measurement of technical 283 

scalability of cloud-based software services. These metrics do not depend on other utility 284 

factors such as cost and non-technical quality aspects. This allows us to utilize these metrics in 285 

technically focused scalability tests that aim to spot components of the system that have a vital 286 

impact on the technical measurability, and additionally the testing of the impact of any change 287 

in the system on the technical system scalability. The scalability performance refers to the 288 

service volume and service quality scalability of the software service; these two technical 289 

measurements reflect to the performance of the scalability of the cloud-based software 290 

services.      291 

Applying these metrics to different demand scenarios allows the testing and tuning of the 292 

system for particular usage scenarios and the understanding of how system performance can 293 

be expected to change as the pattern of demand varies. Such application of these metrics may 294 

highlight trade-offs between volume scaling and quality scaling of the system that characterize 295 

certain kinds of demand pattern variation (e.g. the impact of the transition from low-frequency 296 

peak demands to high-frequency peak demands or to seasonal change of the demand). 297 

Understanding such trade-offs can help in tailoring the system to its expected or actual usage. 298 



4. EXPERIMENTAL SETUP AND RESULTS 299 

To validate the volume and quality metrics, we performed experiments on Amazon AWS 300 

and Microsoft Azure cloud platforms, we used OrangeHRM and Mediawiki as cloud-based 301 

software services. Mediawiki is an open-source wiki software system available from 302 

https://www.mediawiki.org, OrangeHRM is an open source human resource management 303 

software system available from https://www.orangehrm.com. The reason for using these two 304 

cloud-based software services (OrangeHRM and MediaWiki) is based on the REST-based 305 

nature of the applications, which is highly adopted by cloud and application providers. As the 306 

architecture of these applications support REST caching to improve performance and 307 

scalability; by caching the data and the code, which will reduce the amount of time required to 308 

execute each HTTP request and therefor improving response times by serving data more 309 

quickly [35, 36]. 310 

The purpose is to check the scalability performance of cloud-based applications using 311 

different cloud environments, configuration settings, and demand scenarios. We applied the 312 

similar experimental settings for the same cloud-based system (OrangeHRM) in two different 313 

cloud environments (EC2 and Azure). We have changed the parameters for Mediawiki, which 314 

runs a different type of instance on AWS EC2 environment. Table 1 illustrates the hardware 315 

configurations for both cloud platforms.        316 

TABLE 1: HARDWARE CONFIGRATIONS FOR CLOUD PLATFORMS  317 

Platform Type CPU Credits/hr V-CPU(s) RAM Price ($/ Hr) 

Amazon EC2 (London) 

t2.micro (Linux) 6 1 1 0.0132 

t2.medium (Linux) 24 2 4 0.052 

MS Azure (UK South) Standard A1 (Linux) 6 1 1.75 0.06 

https://www.mediawiki.org/
https://www.orangehrm.com/


 To provide the scaling of the services we relied on the Auto-Scaling and Load-Balancer 318 

services provided by both Amazon AWS and Microsoft Azure. Furthermore, Amazon 319 

CloudWatch and Azure Monitor services have been configured in order to monitor the 320 

parameters. The Auto-scaling polices (the default policies that are offers by the cloud 321 

providers when setting up an auto-scaling group) that have been used for the first two set of 322 

experiments are given in Table 2. 323 

TABLE 2:    AUTO-SCALING POLICES 324 

Auto-Scaling Policies 

Add Instance When 80% >= CPUUtilization < +infinity 

Remove Instance When 30% <= CPUUtilization > -infinity 

In this study, we perform three kinds of comparisons, one between the same cloud-based 325 

software hosted on two different cloud platforms (EC2 and Azure). The second comparison is 326 

between two different cloud-based software services hosted on the same cloud platform 327 

(EC2). The third is between the same cloud-based software service hosted on the same cloud 328 

platform (EC2) with different Auto-scaling polices. The parameters of these experiments are 329 

listed in Table 3. 330 

TABLE 3: CLOUD-BASED SERVICES, WORKLOAD, AND CLOUD PLATFORM 331 

System service Cloud provider / Instance type Workload generator 

OrangeHRM Amazon EC2 / t2.micro JMeter script run by Redline13 services. 

OrangeHRM Microsoft Azure / Standard A1 JMeter script run by Redline13 services. 

Mediawiki Amazon EC2 / t2.medium Redline13 

For OrangeHRM experiments (hosted on EC2 and Azure), we simulate the workload using 332 

an Apache JMeter script (http://jmeter.apache.org/) and run through Redline13 services after 333 

connecting our cloud accounts to the service (https://www.redline13.com).  334 

http://jmeter.apache.org/
https://www.redline13.com/


We used Redline13 services by uploading the test script into our account; which allows us 335 

to easily deploy JMeter test plans inside our cloud domain and repeat the tests without the 336 

need to reset the test parameters again. This allows efficient extraction of the data. The 337 

experimental data has been collected through both Redline13 management portal and the 338 

monitoring services from EC2 and Azure. The service requests consisted of an HTTP request 339 

to all pages and links of OrangeHRM by gaining login access using the following steps via the 340 

Apache JMeter: 341 

 Path = /. 342 

 Method = GET. 343 

 Parameters = username, password and login button. 344 

 We used the Redline13 Pro services to test Mediawiki, which allows us to test the targeted 345 

application by covering HTTP requests for all pages and links, including getting 346 

authentication (log in) to the application’s admin page. In this paper, we report the behavior of 347 

the service software in response to the most basic service request, i.e. a generic HTTP request. 348 

The JMeter script allows us to send an HTTP/HTTPS request to the targeted application, and 349 

parses HTML files for images and other embedded resources (i.e. applets, stylesheets (CSS), 350 

external scripts, frames, iframes, background images...etc.), and sends HTTP retrieval requests 351 

[37]. For our purposes it was sufficient to issue the simplest HTTP Request, i.e. logging in to 352 

the software service and getting in response an acceptance of the login request. Figure 4 353 

illustrates our way to test the scalability of cloud-based software services. 354 

 355 

 356 

 357 

 358 

Fig. 4.  Scalability testing process.  359 



4.1 Experimental Process 360 

The cloud resources must be adequately configured to measure up to the workload in order 361 

to achieve efficient performance and scalability. We considered two demand scenarios as 362 

shown in Fig. 2. The first scenario follows the steady rise and fall of demand pattern (see Fig. 363 

2A). The second scenario consists of a series of stepwise increases and falls in demand as 364 

shown in Fig. 2B. Examples of the two kinds of experimental demand patterns (users running) 365 

are shown in Fig. 5. Figure 5. A is an example of experiments on Mediawiki in AWS EC2 and 366 

Fig. 4.B is an example of experiments on OrangeHRM in Microsoft Azure. We varied the 367 

volume of demand and experimented with four demand scenarios: 100, 200, 400 and 800 368 

service requests in total.  369 

 370 

Fig. 5.  Typical experimental demand patterns: A) Mediawiki/EC2 - Steady rise and fall of demand; 371 

B) OrangeHRM/Microsoft Azure - Series of step-wise increases and decreases of demand.  372 

All experimental settings were repeated 20 times, in total 640 experimental were 373 

conducted. The average number of simultaneously active software instances and the average 374 

response time for all service requests for each experimental run has been calculated. In this 375 

study, the system average response time was measured as the average time that the targeted 376 



system takes to process an HTTP request once it was received. The averages and standard 377 

deviations of simultaneously active software instances and average response times over the 20 378 

experimental runs have been calculated. The standard deviations are included alongside the 379 

averages in the results graphs.  380 

4.2 Measured Cloud-based software Services Result 381 

4.2.1 Results for the same cloud-based software system on EC2 and Azure 382 

To achieve fair comparisons between two public clouds, we used similar software 383 

configurations, hardware settings, and a workload generator in the experiments. To measure 384 

the scalability for the proposed demand scenarios for the first cloud-based software service 385 

(OrangeHRM) hosted in EC2 and Azure. The average number of OrangeHRM instances for 386 

both scenarios and for the four demand workloads are shown in Fig. 6. The average response 387 

times for both scenarios and four demand workloads are shown in Fig. 7. In both figures, the 388 

‘Ideal’ lines show the expected value of average response time, assuming that the scaling of 389 

the software service works perfectly. The ‘Real’ curves show the actual measured average 390 

response times. 391 

We note that there are variations in average response times for the same cloud-based 392 

application hosted on two different cloud platforms (EC2 and Azure). So we checked all 393 

configurations for instances, Auto-Scaling, and Load-Balancer services for both cloud 394 

accounts, to make sure that all settings match. We re-ran a number of tests to make sure that 395 

the variations in results are not caused by configuration differences. 396 

 We note that there have been other investigations about variations in average response 397 

times for cloud-based applications by [38, 39]. There are a number of factors that could cause 398 

variations such as: bursty workload, software component management strategies, bursts in 399 

system consumption of hardware resources, and network latency. However, all software 400 

configurations, hardware settings, and workload generator are similar in our experiments. 401 



The observed average response time values for Azure for the stepped rise and fall of 402 

demand scenario are shown in Fig. 7D. Starting from the demand size of 200 the response 403 

time increases significantly. Once the demand size reached 800 the average response time 404 

began to decline significantly. In contrast, response time values for EC2 for the same scenario 405 

which shown in Fig. 7C, have increased gradually with less variation. 406 

407 

 408 

Fig. 6.  The average number of software instances. A) OrangeHRM/EC2 – Steady rise and fall of demand 409 

scenario. B) OrangeHRM/Azure - Steady rise and fall of demand scenario. C) OrangeHRM/EC2– Series of step-410 

wise increases and decreases of demand scenario. D) OrangeHRM/Azure– Series of step-wise increases and 411 

decreases of  demand scenario. 412 

 413 



   414 

 415 

Fig. 7.  The average response times. A) OrangeHRM/EC2 – Steady rise and fall of demand scenario. B) 416 

OrangeHRM/Azure - Steady rise and fall of demand scenario. C) OrangeHRM/EC2– Series of step-wise 417 

increases and decreases of demand scenario. D) OrangeHRM/Azure– Series of step-wise increases and 418 

decreases of  demand scenario. 419 

We calculated the scalability metrics I and t for the two demand scenarios for the cloud-420 

based application for both cloud platforms. The values of the scalability metrics are shown in 421 

Table 4. The calculated metrics for EC2 show that in terms of volume scalability the two 422 

scenarios are similar, the scaling being slightly better in the context of the step-wise increase 423 

and decrease of demand scenario. In contrast, Azure shows better volume scaling in the first 424 

scenario (Steady rise and fall) with around 0.65, while in the second scenario the volume 425 

scaling performance for the Azure is slightly less than the corresponding performance for the 426 

EC2.    427 

In terms of quality scalability, the EC2 hosted system scales much better in the context of 428 

the first scenario, steady rise and fall of demand, than in the case of the second scenario with 429 



step-wise increase and decrease of demand. In contrast, Azure shows lower quality scalability 430 

than EC2 in this respect, with the metric being 0.45 in the first scenario, and 0.23 for the 431 

second scenario.  432 

TABLE 4: SCALABILITY METRICS VALUES 433 

Cloud Provider Scenario 

Metric 

I t 

Amazon EC2 

Steady rise and fall 0.5687 0.9041 

Step-wise increase and decrease 0.5882 0.5201 

Microsoft Azure 

Steady rise and fall 0.6532 0.4526 

Step-wise increase and decrease 0.5592 0.2372 

 We note from the values of both metrics I and t for both clouds that software system 434 

performed better with respect to both volume and quality in the first scenario, steady rise and 435 

fall of demand, which is more realistic and simpler demand scenario for many cloud-based 436 

software services. In general, we conclude that OrangeHRM performed better in Amazon 437 

EC2, in the terms of quality scalability, while performed slightly better in Azure in the terms 438 

of volume scalability for the steady rise and fall demand scenario. In the case of the variable 439 

rise and fall of demand, the OrangeHRM performs considerably better on the EC2 than on the 440 

Azure. 441 

 The big difference in the average response times for the software system running on the 442 

two cloud platforms indicates that either the software system is tailored better to the provisions 443 

of the EC2 system or that the Azure might have issues with the speed of service delivery for 444 

the kind of service software systems like the OrangeHRM (or for some particular kind of 445 

technical aspect of this software system). Both options raise interesting questions and 446 



opportunities for further investigation of the technical match between a software system and 447 

the cloud platforms on which it may run. 448 

4.2.2 Results for different cloud-based software systems on EC2 449 

We used different software configurations, hardware settings, and workload generator in 450 

this set of experiments to measure the scalability of the two scenarios for both cloud-based 451 

software services that have been hosted in EC2. We changed the instance type and the 452 

workload generator in order to see the changes in scalability performance when using different 453 

and larger experimental settings. The purpose of this kind of comparison is to see the effects 454 

on the scalability performance using the same cloud platform while using different types of 455 

instances and workload generators. The average number of OrangeHRM instances for both 456 

scenarios and for the four demand workload levels are shown in Fig. 6A and Fig. 6C. The 457 

average numbers of MediaWiki instances for both scenarios and for the four workload levels 458 

are shown in Fig. 8A and Fig. 8B. The average response times of OrangeHRM for both 459 

scenarios and four demand workload levels are shown in Fig. 7A and Fig. 7C. The average 460 

response times of MediaWiki for both scenarios and for the four workload levels are shown in 461 

Fig. 8C and Fig. 6D. 462 

 463 



 464 

Fig. 8.  The average response times and number of software instances for MediaWiki in EC2. A,B) Average 465 

number of software instances- Steady rise and fall of demand scenario, Series of step-wise increases and 466 

decreases of  demand scenario respectively. C,D) Average response times – Steady rise and fall of demand 467 

scenario, Series of step-wise increases and decreases of  demand scenario respectively. 468 

We note that in the case of the MediaWiki we found a case of over-provisioning of 469 

software instances, i.e. when the measured average number of software instances is larger than 470 

what would be expected as ideal performance according to equation (1) – see Fig. 8B. Given 471 

that we found this for the scenario with many stepwise up and down changes of the demand, a 472 

possible reason for this is the slow or delayed down-elastic response of the cloud platform. 473 

Our volume performance metric does not account for over-provision as it assumes by default 474 

under-provision. Consequently, the over-provision, in this case, distorts somewhat the 475 

performance metric (increases it). One way to correct for this is to include a penalty for over-476 

provisioning. Considering the symmetric nature of the deviation from the idea (downward or 477 

upward) in terms of its impact on the performance and on the geometric calculations in 478 

equation (5), we can modify this equation as follows: 479 

A = k=1,…,n (Dk – Dk-1)  (Ik – 2  [ Ik – I*
k]++ Ik-1 – 2  [ Ik+1 – I*

k+1]+) / 2 480 

where [x]+ represents the value of x if it is positive and 0 otherwise. This change of the 481 

calculation avoids the distortion of the metric caused by potential over-provision.    482 



Table 5 shows the calculated values for the scalability metrics I and t for the two demand 483 

scenarios for both OrangeHRM and MediaWiki cloud-based systems. The corrected volume 484 

scalability performance metric, according to equation (10), for the MediaWiki for the second 485 

scenario is reported in Table 5 in italics. 486 

TABLE 5: SCALABILITY METRICS VALUES 487 

Cloud-Based System Scenario 

Metric 

I t 

OrangeHRM 

Steady rise and fall 0.5687 0.9041 

Step-wise increase and decrease 0.5882 0.5201 

MediaWiki 

Steady rise and fall 0.7556 0.9664 

Step-wise increase and decrease 

0.7421 

0.7183 

0.5012 

The calculated metrics show that in terms of volume scaling the two scenarios give similar 488 

performance metrics for both systems. The scaling is slightly better in the context of the 489 

scenario with step-wise increase and decrease of demand for OrangeHRM. In contrast, for 490 

MediaWiki, the performance metrics indicate that the software performs slightly better in the 491 

first scenario, steady rise and fall of demand than in the second scenario. In terms of quality 492 

scalability, both systems scale much better in the context of the first scenario, steady rise and 493 

fall of demand, than in the case of the second scenario with step-wise increase and decrease of 494 

demand.  495 

Comparing the two software systems running on the EC2, the metrics show that the 496 

MediaWiki runs at a considerably higher volume scalability performance than the 497 

OrangeHRM in both demand scenarios. The quality scalability metrics show at the MediaWiki 498 

has higher performance than the OrangeHRM in this respect in the first scenario and the 499 

performances are relatively close in this sense in the case of the second scenario. One possible 500 



factor behind the different volume scalability performance is that we ran the MediaWiki on 501 

t2.medium virtual machines, while the OrangeHRM was run on t2.micro virtual machines. 502 

Interestingly this difference in the virtual machines made no major difference to the quality 503 

scaling of the two software systems. In principle, the difference in the volume scalability 504 

performance may point to the possibility that technical solutions in the MediaWiki system 505 

support more the volume scaling of the system than the corresponding solutions in the 506 

OrangeHRM. A deeper insight and investigation into the components of these systems 507 

responsible for the performance difference could deliver potentially significant improvements 508 

to the system with the weaker scalability performance metrics. 509 

4.2.3 Results for the same cloud-based software system on EC2 with different Auto-510 

scaling policies  511 

We used the same software configurations, hardware settings, and workload generator in 512 

this set of experiments to measure the scalability of the two scenarios for the same cloud-513 

based software services that have been hosted in EC2, with different Auto-Scaling policies. 514 

The first set of policies are the default policies that are provided by EC2 cloud when setting 515 

up an Auto-Scaling group (option 1). We pick out random scaling policies for the second set 516 

of experiments (option 2). The Auto-scaling policies that have been used for this set of 517 

experiments are given in Table 6. 518 

TABLE 6:    AUTO-SCALING POLICES 519 

Auto-Scaling Policies 

Option 1 

Add Instance When 80% >= CPUUtilization < +infinity 

Remove Instance When 30% <= CPUUtilization > -infinity 

Option 2 

Add Instance When 70% >= CPUUtilization < +infinity 

Remove Instance When 10% <= CPUUtilization > -infinity 



The purpose of this kind of comparison is to see the effects on the scalability performance 520 

using the same cloud platform while using same types of instances and workload generators, 521 

with different auto-scaling policies. The average number of MediaWiki instances (Option 2) 522 

for both scenarios are shown in Fig. 9.A,B. The average response times of MediaWiki (Option 523 

2) for both scenarios shown in Fig. 9.C,D. The average response times and number of software 524 

instances for MediaWiki in EC2 (Option 1) - see Fig. 8. 525 

  526 

 527 

Fig. 9.  The average response times and number of software instances for MediaWiki in EC2 (Option 2). A,B) 528 

Average number of software instances- Steady rise and fall of demand scenario, Series of step-wise increases 529 

and decreases of  demand scenario respectively. C,D) Average response times – Steady rise and fall of demand 530 

scenario, Series of step-wise increases and decreases of  demand scenario respectively. 531 

We note two cases of over-provisioning of MediaWiki software instances for both 200 and 532 

400 demand size, when we used new set of auto-scaling policies – see Fig. 8B. Table 7 shows 533 

the calculated values for the scalability metrics I and t for the two demand scenarios for 534 

MediaWiki cloud-based systems for both auto-scaling policies options. The corrected volume 535 



scalability performance metric, according to equation (10), for the second scenario is reported 536 

in Table 7 in italics. 537 

In the term of average response time, we note that there are big differences in the average 538 

of response times for the second scenario as it gradually from 2.035 seconds for demand size 539 

100 to 9.24 seconds for demand size 800. While it graduates from 1.02 seconds for demand 540 

size 100 to 3.06 seconds for demand size 800, for the second scenario- Step-wise increase 541 

and decrease.  542 

TABLE 7: SCALABILITY METRICS VALUES 543 

Cloud-Based System Scenario 

Metric 

I t 

MediaWiki (Auto-Scaling policies option 1) 

Steady rise and fall 0.7556 0.9664 

Step-wise increase and decrease 

0.7421 

0.7183 

0.5012 

MediaWiki (Auto-Scaling policies option 2) 

Steady rise and fall 0.7923 0.9202 

Step-wise increase and decrease 

0.8510 

0.8217 
0.4060 

 We note in term of volume scaling that the experiments of MediaWiki with the second 544 

option of auto-scaling policies, increased 4% and 11% for the first and second scenarios 545 

respectively. While in term of quality scaling the the values has decresed 4.5% and 10% for 546 

the first and second scenarios respectively. If we draw a comparison between the two options 547 

of auto-scaling policies, we note that efficiency is increased when we used the default auto-548 

scaling policies (option 1). 549 



5. DISCUSSION  550 

The scalability metrics [12] address both volume and quality scaling of cloud-based 551 

software services and provide a practical measure of these features of such systems. This is 552 

important in order to support effective measurement and testing the scalability of cloud-based 553 

software systems. These metrics are distinct from elasticity oriented metrics [4]. 554 

We used two demand scenarios to demonstrate the effect of demands patterns on scaling 555 

metrics. Using more than one scenario can be used to improve cloud-based software services 556 

to fit specified demand scenario expectations. This can be useful, to track changes in such 557 

scenarios that trigger interventions in terms of systems upgrade or maintenance or direct 558 

investment of software engineering resources in the development of focused upgrades for the 559 

system. Demand scenarios combined with multi-aspects of quality scaling metric can also be 560 

used to determine rational QoS expectations and likely variations depending on changes in 561 

demand scenarios. 562 

Here we use the quality scalability metric defined by considering the system average 563 

response time. Alternative quality scaling metrics may be defined by considering other quality 564 

aspects of the system such as system throughput or recovery rate [11]. Expanding the range of 565 

quality measurements provides a multiple factor view of quality scalability to support the 566 

trade-off options in the context of QoS offerings in the case of service scaling.     567 

We understand the importance and need for utility-perspective scalability metric and 568 

measurements. Therefore, our proposed metrics can be integrated into the utility-oriented 569 

scalability metric proposed by Hwang et al. [11], by combining our metrics as the performance 570 

and/or quality components of their utility-oriented scalability metric. This will allow the 571 

analysis of the scalability of cloud-based software services from both technical and 572 



production-driven perspectives. The utility oriented productivity metric (P()) is given as 573 

[11]: 574 

 P() = p()  () / c() 575 

where  is the system configuration, p() is the performance component of the metric – in our 576 

case this is the volume scalability metric, () is the quality component of the metric – in our 577 

case this is the quality scaling metric, and c() is the cost component of the metric. This leads 578 

to a re-definition of the utility-oriented metric as: 579 

 P() = I ()  t () / c() 580 

We calculated the integrated scalability metric (see costs in Table 1) for the two demand 581 

scenarios for all cloud-based applications for both cloud platforms. The values of the utility-582 

oriented scalability metrics are shown in Table 8 – note that the MediaWiki experiments used 583 

more powerful and more expensive virtual machines than the experiments with the 584 

OrangeHRM on the EC2. Our utility oriented scalability calculations show that in the case of 585 

the systems that we compared the best choice is to use smaller and cheaper virtual machines 586 

on the EC2. The corrected integrated scalability metric, based on equation (10), for the 587 

MediaWiki for the second scenario, is reported in Table 8 in italics. 588 

TABLE 8: INTEGRATED SCALABILITY METRIC VALUES 589 

Cloud-Based System / Cloud provider Scenario Integrated Metrics 

OrangeHRM / EC2 

Steady rise and fall 38.95 

Step-wise increase and decrease 23.18 

OrangeHRM / Azure 

Steady rise and fall 4.93 

Step-wise increase and decrease 2.21 

MediaWiki (Auto-Scaling policies option 1) Steady rise and fall 14.04 



Cloud-Based System / Cloud provider Scenario Integrated Metrics 

Step-wise increase and decrease 7.15 6.92 

MediaWiki (Auto-Scaling policies option 2) 

Steady rise and fall 14.02 

Step-wise increase and decrease 6.64 6.42 

The technical scalability metrics that we used in this paper allow exploring in more detail 590 

the contribution to the system scalability of various components and techniques used in 591 

software systems. By instrumenting the software system [40] it becomes possible to determine 592 

these contributions and using this information to improve the system. Potentially, different 593 

components, technologies or technical solutions may fit different degree with the cloud 594 

platform’s provisions. The technical scalability metrics that we used here combined with 595 

instrumentation could allow the identification of best matches that can improve the system 596 

scalability.  597 

6. CONCLUSIONS AND FUTURE WORK 598 

In this paper, we demonstrate the use of two technical scalability metrics for cloud-based 599 

software services for the comparison of software services running on the same and also on 600 

different cloud platforms. The underlying principles of the metrics are conceptually very 601 

simple and they address both the volume and quality scaling performance and are defined 602 

using the differences between the real and ideal scaling carves. We used two demand 603 

scenarios, two cloud-based open source software services (OrangeHRM and MediaWiki) and 604 

two public cloud platforms (Amazon AWS and Microsoft Azure). Our experimental results 605 

and analysis show that the metrics allow clear assessments of the impact of demand scenarios 606 

on the systems, and quantify explicitly the technical scalability performance of the cloud-607 

based software services. The results show that the metrics can be used effectively to compare 608 



the scalability of software on cloud environments and consequently to support deployment 609 

decisions with technical arguments. 610 

Some interesting scalability behavior has been noted through the analysis, such as big 611 

variations in average response time for similar experimental settings hosted in different clouds. 612 

A case of over provision state has been accrued when using higher capacity hardware 613 

configurations in the EC2 cloud. 614 

We believe that the technical-based scalability metrics can be used in designing and 615 

performing scalability testing of cloud-based software systems, in order to identify system 616 

components that critically contribute to the technical scaling performance. We have shown the 617 

integration of our technical scalability metrics into a previously proposed utility oriented 618 

metric. Our metrics can also be extended, by considering multiple service quality aspects and 619 

combined with a range of demand scenarios to support the fine-tuning of the system. Such 620 

things can help the identification of QoS trade-offs, and estimation of genuine scalability 621 

performance expectations about the system depending on demand scenarios.  622 

Future work will include the consideration of other cloud platforms (e.g. Google Cloud, 623 

IBM), demand workload generators, and other cloud-based software services, in order to 624 

extend the practical validity of the work. We also aim to consider further demand patterns 625 

(such as variable width sudden peaks in demand, seasonal demand) to see the impact of these 626 

scenarios on the scalability performance of cloud-based software services. Another aspect of 627 

future work will focus on using whole code instrumentation technique in order to identify the 628 

software system or cloud platform components that contribute critically to variations in 629 

average response times for the same cloud-based application with the similar experimental 630 

settings in different clouds.  631 

632 



DECLARATIONS 633 

Abbreviations 634 

SLA: Service level agreement. 635 

QoS: Quality of service. 636 

SaaS: Software as services. 637 

VMs: Virtual machines. 638 

I : Volume scalability metric. 639 

t: Quality scalability metric. 640 

D and D’: Service demand volumes. 641 

I and I’: The corresponding number of software instances.  642 

tr and t’r: The corresponding average response times. 643 

Availability of data and materials 644 

Not applicable. 645 

Competing interests 646 

The authors declare that they have no competing interests. 647 

Funding 648 

Not applicable. 649 

Authors’ contributions 650 

The core of this paper is based on work developed for Al-Said Ahmad’s PhD project at the 651 

University of Keele, supervised by Peter Andras. Both authors read, edited, and approved the 652 

final manuscript. 653 



Acknowledgements 654 

This research is supported by a PhD scholarship from Philadelphia University – Jordan for 655 

Amro Al-Said Ahmad. 656 

Authors' information 657 

Amro Al-Siad Ahmad has a PhD in scalability analysis of cloud-based systems (2019) from 658 

Keele University, UK. Prior to his PhD, he obtained bachelor degree in Software Engineering 659 

(2009) from Philadelphia University in Jordan, and a Master Degree in Computer Science 660 

(2014) with distinction from Amman Arab University, Jordan. He works in the areas of 661 

scalability of cloud computing and software engineering.  662 

Peter Andras has a BSc in computer science (1995), an MSc in artificial intelligence (1996) 663 

and a PhD in mathematical analysis of neural networks (2000), all from the Babes-Bolyai 664 

University, Cluj, Romania. He is a Professor in the School of Computing and Mathematics, 665 

Keele University, UK. He has published 2 books and over 100 papers. He works in the areas 666 

of complex systems, computational intelligence and computational neuroscience. Dr. Andras 667 

is Senior Member of IEEE, member of the International Neural Network Society, of the 668 

Society for Artificial Intelligence and Simulation of Behaviour, and Fellow of the Royal 669 

Society of Biology. 670 

671 



REFERENCES 672 

1.  Liu HH (2011) Software performance and scalability: a quantitative approach. John Wiley & 673 

Sons, Hoboken, N.J 674 

2.  Atmaca T, Begin T, Brandwajn A, Castel-Taleb H (2016) Performance Evaluation of Cloud 675 

Computing Centers with General Arrivals and Service. IEEE Trans Parallel Distrib Syst 676 

27:2341–2348 . doi: 10.1109/TPDS.2015.2499749 677 

3.  Becker M, Lehrig S, Becker S (2015) Systematically Deriving Quality Metrics for Cloud 678 

Computing Systems. In: Proceedings of the 6th ACM/SPEC International Conference on 679 

Performance Engineering - ICPE ’15. ACM, New York, NY, USA, pp 169–174 680 

4.  Herbst NR, Kounev S, Reussner R (2013) Elasticity in Cloud Computing: What It Is , and 681 

What It Is Not. In: Presented as part of the 10th International Conference on Autonomic 682 

Computing. USENIX, San Jose, CA, pp 23–27 683 

5.  Lehrig S, Eikerling H, Becker S (2015) Scalability, elasticity, and efficiency in cloud 684 

computing: A systematic literature review of definitions and metrics. In: Proceedings of the 685 

11th International ACM SIGSOFT Conference on Quality of Software Architectures - QoSA 686 

’15. pp 83–92 687 

6.  Buyya R, Ranjan R, Calheiros RN (2010) InterCloud : Utility-Oriented Federation of Cloud 688 

Computing Environments for Scaling of. In: Hsu C-H, Yang LT, Park JH, Yeo S-S (eds) 689 

Algorithms and Architectures for Parallel Processing (10th International Conference, ICA3PP 690 

20). Springer Berlin Heidelberg, Berlin, Heidelberg, pp 13–31 691 

7.  Hwang K, Shi Y, Bai X (2015) Scale-out vs. scale-up techniques for cloud performance and 692 

productivity. In: Proceedings of the International Conference on Cloud Computing 693 

Technology and Science, CloudCom. pp 763–768 694 

8.  Blokland K, Mengerink J, Pol M (2013) Testing Cloud Services: How to Test SaaS, PaaS & 695 

IaaS. Rocky Nook 696 

9.  Aljahdali H, Albatli A, Garraghan P, et al (2014) Multi-tenancy in cloud computing. In: 697 

Proceedings - IEEE 8th International Symposium on Service Oriented System Engineering, 698 



SOSE 2014. pp 344–351 699 

10.  Islam S, Lee K, Fekete A, Liu A (2012) How a consumer can measure elasticity for cloud 700 

platforms. In: Proceedings of the third joint WOSP/SIPEW international conference on 701 

Performance Engineering - ICPE ’12. ACM, New York, NY, USA, p 85 702 

11.  Hwang K, Bai X, Shi Y, et al (2016) Cloud Performance Modeling with Benchmark 703 

Evaluation of Elastic Scaling Strategies. IEEE Trans Parallel Distrib Syst 27:130–143 . doi: 704 

10.1109/TPDS.2015.2398438 705 

12.  Al-Said Ahmad A, Andras P (2018) Measuring the Scalability of Cloud-Based Software 706 

Services. In: 2018 IEEE World Congress on Services (SERVICES). IEEE, San Francisco, CA, 707 

pp 5–6. doi: 10.1109/SERVICES.2018.00016 708 

13.  Jayasinghe D, Malkowski S, Wang Q, et al (2011) Variations in performance and scalability 709 

when migrating n-tier applications to different clouds. In: Proceedings - 2011 IEEE 4th 710 

International Conference on Cloud Computing, CLOUD 2011. pp 73–80 711 

14.  Jayasinghe D, Malkowski S, Li J, et al (2014) Variations in performance and scalability: An 712 

experimental study in IaaS clouds using multi-tier workloads. IEEE Trans Serv Comput 713 

7:293–306 . doi: 10.1109/TSC.2013.46 714 

15.  Gao J, Pattabhiraman P, Bai X, Tsai WT (2011) SaaS performance and scalability evaluation 715 

in clouds. In: Proceedings - 6th IEEE International Symposium on Service-Oriented System 716 

Engineering, SOSE 2011. IEEE, pp 61–71 717 

16.  Al-Said Ahmad A, Andras P (2018) Measuring and Testing the Scalability of Cloud-based 718 

Software Services. In: 2018 Fifth International Symposium on Innovation in Information and 719 

Communication Technology (ISIICT). Amman, pp 1–8. doi: 10.1109/ISIICT.2018.8613297 720 

17.  Jennings B, Stadler R (2015) Resource Management in Clouds: Survey and Research 721 

Challenges. J Netw Syst Manag 23:567–619 . doi: 10.1007/s10922-014-9307-7 722 

18.  Gao J, Bai X, Tsai WT, Uehara T (2013) SaaS testing on clouds - Issues, challenges, and 723 

needs. In: Proceedings - 2013 IEEE 7th International Symposium on Service-Oriented System 724 

Engineering, SOSE 2013. pp 409–415 725 



19.  Al-Said Ahmad A, Brereton P, Andras P (2017) A Systematic Mapping Study of Empirical 726 

Studies on Software Cloud Testing Methods. In: Proceedings 2017 IEEE International 727 

Conference on Software Quality, Reliability and Security Companion, QRS-C 2017. pp 555–728 

562. doi: 10.1109/QRS-C.2017.94 729 

20.  Geetha N, Anbarasi MS (2015) Ontology in cloud computing: A survey. International Journal 730 

of Applied Engineering Research 10(23):43373-43377. doi: 10.1007/s12243-014-0450-7 731 

21.  Hu Y, Deng B, Peng F, et al (2016) A survey on evaluating elasticity of cloud computing 732 

platform. In: World Automation Congress Proceedings. pp 1–4 733 

22.  Herbst NR, Kounev S, Weber A, Groenda H (2015) BUNGEE: An Elasticity Benchmark for 734 

Self-Adaptive IaaS Cloud Environments. In: Proceedings - 10th International Symposium on 735 

Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2015. pp 46–56 736 

23.  Bauer A, Herbst N, Kounev S (2017) Design and Evaluation of a Proactive, Application-737 

Aware Auto-Scaler. In: Proceedings of the 8th ACM/SPEC on International Conference on 738 

Performance Engineering  - ICPE ’17. ACM, New York, NY, USA, pp 425–428 739 

24.  Beltran M (2016) Defining an Elasticity Metric for Cloud Computing Environments. In: 740 

Proceedings of the 9th EAI International Conference on Performance Evaluation 741 

Methodologies and Tools. ICST (Institute for Computer Sciences, Social-Informatics and 742 

Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, pp 172–179 743 

25.  Kuhlenkamp J, Klems M, Röss O (2014) Benchmarking scalability and elasticity of distributed 744 

database systems. Proc VLDB Endow 7:1219–1230 . doi: 10.14778/2732977.2732995 745 

26.  Ilyushkin A, Ali-Eldin A, Herbst N, et al (2017) An Experimental Performance Evaluation of 746 

Autoscaling Policies for Complex Workflows. In: Proceedings of the 8th ACM/SPEC on 747 

International Conference on Performance Engineering  - ICPE ’17. ACM, New York, NY, 748 

USA, pp 75–86 749 

27.  Hasan Jamal M, Qadeer A, Mahmood W, et al (2009) Virtual machine scalability on multi-750 

core processors based servers for cloud computing workloads. In: Proceedings - 2009 IEEE 751 

International Conference on Networking, Architecture, and Storage, NAS 2009. pp 90–97 752 



28.  Lehrig S, Sanders R, Brataas G, et al (2018) CloudStore — towards scalability, elasticity, and 753 

efficiency benchmarking and analysis in Cloud computing. Futur Gener Comput Syst 78:115–754 

126 . doi: 10.1016/j.future.2017.04.018 755 

29.  Brataas G, Herbst N, Ivansek S, Polutnik J (2017) Scalability Analysis of Cloud Software 756 

Services. In: Proceedings - 2017 IEEE International Conference on Autonomic Computing, 757 

ICAC 2017. pp 285–292 758 

30.  Woodside M (2001) Scalability Metrics and Analysis of Mobile Agent Systems. In: Wagner T, 759 

Rana OF (eds) Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-Agent 760 

Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 234–245 761 

31.  Vasar M, Srirama SN, Dumas M (2012) Framework for monitoring and testing web 762 

application scalability on the cloud. In: Proceedings of the WICSA/ECSA 2012 Companion 763 

Volume on - WICSA/ECSA ’12. p 53 764 

32.  Autili M, Di Ruscio D, Paola I, et al (2011) CHOReOS Dynamic Development Model 765 

Definition (D2. 1) 766 

33.  Xiao Z, Chen Q, Luo H (2014) Automatic scaling of internet applications for cloud computing 767 

services. IEEE Trans Comput 63:1111–1123 768 

34.  Amazon EC2 (2019) What Is Amazon EC2 Auto Scaling? 769 

https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-770 

scaling.html. Accessed 23 Jan 2019 771 

35.  OrangeHRM OrangeHRM REST APIS. https://api.orangehrm.com/?url=/apidoc/index.html. 772 

Accessed 14 Feb 2019 773 

36.  Microsoft Azure (2017) Caching. https://docs.microsoft.com/en-us/azure/architecture/best-774 

practices/caching. Accessed 15 Mar 2019 775 

37.  JMeter (2019) JMeter HTTP Request. https://jmeter.apache.org/usermanual/ 776 

component_reference.html#HTTP_Request. Accessed 1 Apr 2019 777 

38.  Wang Q, Kanemasa Y, Li J, et al (2012) Response time reliability in cloud environments: An 778 

empirical study of n-tier applications at high resource utilization. In: Proceedings of the IEEE 779 



Symposium on Reliable Distributed Systems. pp 378–383 780 

39.  Butler B (2016) Who’s got the best cloud latency? 781 

https://www.networkworld.com/article/3095022/cloud-computing/who-s-got-the-best-cloud-782 

latency.html,. Accessed 19 Mar 2018 783 

40.  Jayathilaka H, Krintz C, Wolski R (2017) Performance Monitoring and Root Cause Analysis 784 

for Cloud-hosted Web Applications. In: Proceedings of the 26th International Conference on 785 

World Wide Web - WWW ’17. International World Wide Web Conferences Steering 786 

Committee, Republic and Canton of Geneva, Switzerland, pp 469–478 787 

 788 


