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Abstract In recent years, the widespread diffusion of pervasive sensing devices and
the increasing need for reducing energy consumption have encouraged research in the
energy-aware management of smart environments. Following this direction, this paper
proposes a hybrid intelligent system which exploits a fog-based architecture to achieve
energy efficiency in smart buildings. Our proposal combines reactive intelligence, for
quick adaptation to the ever-changing environment, and deliberative intelligence, for
performing complex learning and optimization. Such hybrid nature allows our system
to be adaptive, by reacting in real time to relevant events occurring in the environ-
ment and, at the same time, to constantly improve its performance by learning users’
needs. The effectiveness of our approach is validated in the application scenario of a
smart home by extensive experiments on real sensor traces. Experimental results show
that our system achieves substantial energy savings in the management of a smart
environment, whilst satisfying users’ needs and preferences.

Keywords Ambient Intelligence · Fuzzy Systems · Fog Computing · Energy Efficiency

1 Introduction

The growing need for environmentally friendly ICT solutions aimed to support users
of a smart environment in their everyday activities has inspired scientific research and
has increasingly gained attention from many governments. Particular emphasis has
been reserved to the issue of energy efficiency where shortcomings may depend on
several complex and intertwined factors, including those related to the aging urban
infrastructures. A recent report of the European Commission states that buildings are
responsible for 40% of energy consumption in the EU (European Commission 2017),
and this percentage sounds even more alarming if we consider that about 35% of the EU
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buildings are over 50 years old, and older buildings consume 7 times more than newer
ones; a reduction in the energy consumption of pre-existing buildings would thus likely
produce a noticeable positive effect on local economy, besides improving the citizens’
quality of life. It is clear that strong actions must be devised to stimulate virtuous
behaviors at various scale, from urban level down to the individual smart homes.

As the activities of the users have considerable influence on the energy footprint
of residential, office, or commercial buildings, the European Union has consequently
issued directives to promote a change in consumer behavior, and to foster better energy
consumption practices. At the same time, the design of Building Energy and Comfort
Management (BECM) systems (Nguyen and Aiello 2013) has grown into an indepen-
dent research area, as part of the greater field of Ambient Intelligence (AmI) (Cook and
Das 2007; Cook et al. 2009). Many efforts have been made in the past years to design
systems for fine-tuning the deployed devices, or appliances, according to users’ actual
needs in order to reduce potential energy waste. Even though such systems are bound
to gather data about the surrounding environmental conditions, typically through a
network of pervasively deployed devices, they usually include a component of artificial

reasoning in order to devise a plan toward the final goal of saving energy.
Most AmI systems attempt to maintain a sharp separation between low-level func-

tionalities, and high-level ones by exploiting a distributed architecture where low-power
devices are used as pure sensing platforms, whereas the intelligent algorithms reside
in remote servers that can be reached through the Internet. In this context, the cloud
computing paradigm is frequently adopted as a feasible solution to confine heavy com-
putation in the cloud. However, all the benefits brought by this approach could be
negligible in real-time applications, where data are continuously transferred from/to
the cloud. To overcome this limitation, in 2012, the fog computing paradigm was in-
troduced by Cisco as an extension of the cloud computing at the edge of the network.
Nowadays, when dealing with large amounts of data which need to be processed locally,
and timely, the fog has been widely accepted as the most proper solution to distribute
data collection, analysis, and storage tasks among different devices located at distinct
logic levels.

In our proposal, a fog-based architecture is adopted to enable a hybrid intelligence

solution for the control of a smart environment in the context of an AmI system ad-
dressing energy efficiency in buildings (De Paola et al. 2015). The goal of the whole
framework is to make the environment responsive to the users’ needs by exploiting
information gathered through pervasive monitoring equipment, while also meeting en-
ergy saving requirements. We address this issue by proposing a hybrid approach that
combines a reactive component, hosted by edge devices and capable of quickly reacting
to changes, with a deliberative component designed to perform more complex tasks
(e.g., optimization) on the cloud.

Reactive intelligence is provided by a fuzzy controller which acts in response to
current conditions by automatically selecting the actions the actuators should perform.
This reactive behavior is not statically coded, but it is dynamically driven by the
deliberative component according both to the current measurements and the overall
system goals.

The remainder of the paper is organized as follows. Section 2 briefly discusses
relevant work presented in the literature. The architecture of the Ambient Intelligence
system is presented in Section 3. Section 4 describes the AmI algorithms hosted by the
middleware layer which aim to model the users and the environment, while Section 5
presents the hybrid intelligent algorithms implemented for controlling the environment.
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Section 6 describes the experimental setup and results. Conclusions are discussed in
Section 7.

2 Related Work

The separation of the functionalities of an intelligent system between different logic
levels can be achieved by making appropriate architectural choices which rely on the
distributed model.

Fog computing, in particular, is becoming one of the most promising approaches
when planning sustainable development of urban areas (Perera et al. 2017). This para-
digm can be, for instance, successfully adopted in application scenarios involving en-
ergy management (Stojkoska and Trivodaliev 2017b; Yan and Su 2016; Stojkoska and
Trivodaliev 2017a), Ambient Assisted Living (AAL) (Bhargava et al. 2017) and health-
care (Stantchev et al. 2015; Rahmani et al. 2018).

Fog computing promotes a shift in information management; in particular, it is
claimed that storage and processing should not be strictly confided to cloud platforms,
but rather be partially moved to devices located on the edge of the network, such as
terminal devices or intermediate gateways. Such shift, however, needs not be abso-
lute; on the contrary the cloud generally maintains most of the computing-demanding
functionalities, but lets the computational capabilities of edge devices to be fully ex-
ploited (Perera et al. 2017). One of the main advantages of combining cloud and fog
computing is lower latency, which translates to real-time reaction in response to ob-
served data. Such feature is useful in many smart buildings scenarios that typically need
to support prompt responses to changes of the environment and of the context (Perera
et al. 2017). An additional desirable feature that can be so achieved is a higher sys-
tem availability. A purely cloud-based approach may suffer from several connectivity
issues (Stojmenovic and Wen 2014), while a fog-based approach allows edge devices to
independently perform their tasks even when the connection with the cloud is lost (Per-
era et al. 2017). Finally, fog computing addresses one of the main issues of pervasive
environments, i.e., the heterogeneity of sensor and actuator devices. Intermediate de-
vices can interact with physical devices and provide the cloud with a homogeneous
point of access (Amadeo et al. 2017). For instance, a three-tier architecture aiming to
provide an abstract view over heterogenous sensory devices in order to implement a
number of higher-level smart services is presented in (De Paola et al. 2012).

Some researchers have proposed to exploit edge devices to perform a more efficient
data storage, as the authors of (Yan and Su 2016) that describe a system for moni-
toring the energy consumption, where the smart meters act as edge devices and are
responsible for locally storing consumption information. The smart meters thus con-
stitute a distributed database that may be accessed on-demand by the cloud server.
Edge devices can be also exploited to perform data compression in order to reduce the
information volume to send toward cloud servers, by adopting moving average, autore-
gressive models, and least mean square (Stojkoska and Trivodaliev 2017a; Santini and
Romer 2006).

One of the most relevant fog-based strategies which allows to achieve the aforemen-
tioned goals is to split the computations required to provide the system functionalities
across different layers (e.g., IoT devices, edge gateways, cloud servers), by exploiting
the respective device capabilities (Bhargava et al. 2017; Sahni et al. 2017). In some
simple scenarios, data processing occurs completely on the IoT devices, as proposed
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in (Bhargava et al. 2017) which describes an AAL system performing user localization
through wearable sensors. Such devices perform activity recognition entirely on-board,
and rely on the cloud infrastructure only to make easier accessing to recognition result.
More often, the solutions described in the literature uses simple sensors, whose com-
putational capabilities are very limited, and rely on intermediate gateways, deployed
near the physical infrastructure, to perform a relevant part of the whole processing. In
the healthcare system proposed in (Rahmani et al. 2018), the edge gateways, besides
managing the connection with the heterogeneous set of devices composing the body
area network, perform a local pre-filtering in order to reduce the amount of data to
be transferred to the cloud. Moreover, the edge gateways locally analyse the gathered
data in order to launch timely alarms for local operators, if anomalous events occur.
Such solution allows to minimize latency and guarantees the correct functioning of the
system even with a poor connectivity with the cloud. Similarly, the authors of (Verma
and Sood 2018) leverage fog devices to classify data collected by a body area net-
work through a Bayesian network, and use the cloud to analyze the trend over time of
biometrics parameters, in order to provide valuable information to a decision support
system.

In an Ambient Intelligent system, splitting the reasoning capabilities across different
levels of the architecture poses a challenge regarding how to ensure unity and consis-
tency of the reasoning. To this end, the use of a distributed hierarchical task network
(D-HTN) has been proposed by (Amigoni et al. 2005); however, the context in which
the system operates also needs to be taken into account and HTNs, together with an
ontology-based occupant activity recognition technique, have been suggested as a tool
to gather contextual information for energy saving in smart offices (Georgievski et al.
2013). A comprehensive survey of intelligent management systems for energy efficiency
in buildings is proposed in (De Paola et al. 2014), which describes the architectural
solutions and the intelligent functionalities used to perform energy management, as
well as how such functionalities are split over system levels.

Clearly, neither the collected measurements, nor the information about user actions
can be considered completely reliable, so great effort has been devoted to devise sys-
tems able to cope with uncertainty, either in the form of noisy measurements about the
environmental quantities, or in variability of actions across different groups of users, or
over time for the same user. Hagras et al. (Hagras et al. 2015) propose the use of fuzzy
controllers for handling uncertainties in AmI systems. Both the fuzzy rules, and the
membership functions may be inferred by using specifically designed meta-heuristics,
typically through evolutionary methods. The work in (Herrera 2008) contains a taxon-
omy of genetic fuzzy systems with learning and adaptation capabilities, while methods
for extracting an optimal set of fuzzy rules from an initial set, by applying multi-
objective evolutionary algorithms are described in (Fazzolari et al. 2013; Hinojosa and
Camargo 2013).

3 The Fog Infrastructure supporting the AmI System

This section describes the fog-based architecture adopted to manage heterogeneous IoT
devices in a smart environment, to process data coming from different sources in an
efficient way, and to infer high-level knowledge of the user’s behavior according to the
environmental conditions.
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Fig. 1: System Architecture. Edge devices (green) cooperate within a low-power net-
work, and share data about the user/environment with the fog units (orange). Data
processed here are sent to the cloud data center (blue) to learn the overall system
models.

The fog computing paradigm allows to allocate the computing tasks among sev-
eral heterogeneous devices logically distributed over three layers: the boundary sensing
infrastructure (edge) , the collecting intermediate computing devices (fog), and the re-
mote storage and processing unit (cloud). Determining which activites are most suitable
to be placed at the edge, fog, and cloud layers is critical to optimize the performances
of the system. According to the model we propose, the edge layer consists of low-power
Sensor and Actuator Networks (SANs) responsible for observing the environment and
changing its state. The core functionalities of the AmI system are provided by a com-
puting device that is logically located at an intermediate (fog) layer, so as to quickly
process data coming from the SAN, and implement the reactive intelligence behaviors.
Finally, the cloud layer hosts the software components that provide the deliberative
intelligence functionalities required to maintain an overall representation of the smart
home.

The sensor and actuator network is made up of a number of heterogeneous devices,
both wireless and wired, communicating to each other by means of various network
protocols (e.g., Bluetooth, Zigbee, Z-Wave, NFC). In order to guarantee system scala-
bility and compatibility with as many different devices as possible, homogeneous sub-
networks are managed through specific gateways which provide the proper interfaces
to enable a bidirectional communication between the edge and the upper levels. At this
edge level, since the system processes raw — non sensitive — data, communications
are not encrypted, also meeting the computing constraints of the devices.

As showed in Fig. 1, the Emote (Energy Monitor) is the fog device that hosts
several software components, named AmI modules, aimed at processing data captured
by SANs at the edge of the network. In particular, the AmI modules allow to (i) create
mathematical models of temperature and humidity trends over time, (ii) model the
impact of the actuators on the overall energy consumption, (iii) recognize the activities
performed by the users on the basis of multi-sensor information, and (iv) learn users’
preferences. The Emote includes also additional modules for the communication with
the lower level, which also provide the network management functionalities for each
subnet, i.e., sensor registration, command dispatch, event/fault management and data
delivery. In our architecture, a single smart home can be monitored by means of one
or more Emotes, depending on the size of the area covered by the AmI system.
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Fog devices are not only responsible for forwarding information from/to sensor and
cloud layers, but can also communicate with each other to allow the overall AmI system
to achieve complex goals. For instance, several Emotes controlling a single smart home
should share with each other information about the energy consumption of the build-
ing and the users’ behavior, even though each Emote maintains also specific models of
the environment in which it is installed. Moreover, the Emotes responsible for different
buildings within the same area (such as a hospital) could share their inner models to
allow a single administrator to apply the most proper policy for all the buildings. At
this level, information is exchanged using reliable wireless (e.g., WiFi, GSM/3G/4G)
and wired networks. Here, data transmission is protected through encryption and au-
thentication techniques, which guarantee both data integrity and user’s privacy.

Information generated at the fog layer is sent to the cloud, where a component
named CLIMR (Cloud Intelligent Modeler and Reasoner) provides the deliberative
intelligence required to maintain an overall representation of the smart home, finding
the best trade-off between the satisfaction of user’s preferences and the minimization of
energy consumption. The overall models of the AmI system are stored in the CLIMR,
and sent back to the Emotes at the fog layer in order to update their behaviors, making
the whole system synchronized.

Our system adopts a straightforward scheduling strategy according to which the
general tasks that must executed by the edge, fog, and cloud devices are identified
during the design of the AmI system. For instance, environmental monitoring and con-
trolling is always performed at the edge, reactive intelligence tasks are always demanded
to the fog, and deliberative intelligence routines are always executed by the cloud. This
static strategy guarantees that tasks are always assigned to devices that have enough
computing resources and power capabilities to complete them.

4 Modeling the Users and the Environment

As briefly discussed in the previous Section, the methods necessary to model the user
behavior and the environment reside at the fog layer, i.e., in the Emote, where the
following intelligent modules are provided: the Actuation Module, the User Profiler,
the Activity Recognition Module, and the Environmental Modeler.

In the context of energy optimization, the aim of the Actuation Module is to learn
the energy consumption of the actuators according to different settings. For instance,
it might exploit sensory data gathered by specialized sensors and characterized by a
low level of noise, such as those reported in (Corucci et al. 2011); it might also be man-
ually configured by the system administrator according to the technical specifications
of the actuators. The User Profiler module collects the preferences about environment
conditions explicitly stated by the user, and can be easily extended to learn the user
preferences exploiting also implicit feedbacks obtained by observing the interaction
between the user and the actuators. In order to highlight the interplay between the re-
active and the deliberative components, in the following, we provide more details about
the remaining two modules, i.e. the Activity Recognition Module and the Environmental

Modeler.
The Activity Recognition Module aims at analyzing heterogenous sensor data in

order to detect and recognize the activities performed by the users. Activities are
modeled as a Markov Chain in which the set of sensory readings St = (S1

t , . . . , S
n
t ),
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gathered by all the n sensors at time t, can be considered as the observable manifes-
tation of the state Xt. The validity of adopting Markovian models to analyze users’
behavior by exploiting pervasive sensory information is confirmed by several works in
literature (Atallah and Yang 2009).

The link between the current state and the sensory manifestation observed by the
i-th sensor is given by the probabilistic sensor model P (Si

t |Xt). Our model includes also
a limited set of context information, Ct = (C1

t , . . . , C
k
t ), which affects the current state

of the system. Thanks to the Markov assumption, the current state belief depends only
on the past state, the context information and the current observations, as expressed
by the following equation:

Bel(Xt) = P (Xt|C1:k,S1:n) = P (Xt|Xt�1,Ct,St). (1)

In order to reduce the complexity of the activity recognition procedure, only a
reduced set of context information about the scheduled activities is considered. Sensory
data are provided by pervasive inexpensive sensors; in particular, motion and door have
been considered, whereas we chose not to monitor temperature and humidity since such
quantities are not correlated with the activity performed by the users (De Paola et al.
2017).

Finally, the goal of the Environmental Modeler, is to learn mathematical models
of the physical phenomena affecting the environmental conditions (i.e., temperature,
humidity), possibly in response to the actuators’ settings. Such models are built by
exploiting a given number of past sensory observations, and their parameters are con-
tinuously updated in order to minimize the prediction error. Our model is based on
the linear predictive controller proposed in (Gruber et al. 2001) and is trained using
indoor sensors and an external weather forecast service. A rough 24-hour prediction
of the outdoor temperature is generated according to data provided by the weather
forecast service in the past 24 hours; then, as new data become available, the pre-
diction is updated by making a linear correction over the next 6 hours. The indoor
temperature is predicted according to an analogous linear model based on indoor and
outdoor temperature captured in the past 24 hours, while the indoor humidity model
depends on the humidity values measured in the past 24 hours and on the predicted
indoor temperature. The linear dynamic relations for outdoor temperature Te, indoor
temperature Ti and indoor humidity percentage Hi are shown in eq.(2), (3) and (4)
respectively. The indoor phenomena are also affected by the actuators’ settings, and
such influence is modeled through a factor µt(at) that is dynamically learned on the
basis of the past observations.

Te(t) = ↵tTe(t� 1) + �t; (2)

Ti(t) = ↵tTi(t� 1) + �tTi(t� 2) + �tTe(t� 1) + 'tTe(t� 2) + µt(at); (3)

Hi(t) = ↵tHi(t� 1) + �tTi(t) + µt(at). (4)

The service provided by the Environmental Modeler is requested by the CLIMR to
foresee the effect of a given actuator setting on the environmental conditions, in order
to evaluate which action would produce the desired conditions, and to estimate the
time required to reach them.
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Fig. 2: Membership functions for the input variable associated to the indoor tempera-
ture.

5 Hybrid Intelligence for Environmental Control

In order to learn from past experiences and to adapt the behavior of the AmI system to
variable conditions as well as users’ needs, we propose a hybrid approach that combines
two different types of intelligence: reactive to quickly respond to unexpected changes,
and deliberative to perform complex reasoning.

5.1 Reactive Intelligence

The reactive intelligence of the AmI system, provided by the computing devices de-
ployed at the fog layer, is based on fuzzy logic (Zadeh 1975). Fuzzy approaches have
been frequently, and successfully, applied in the field of Ambient Intelligence (Doc-
tor et al. 2005) in order to deal with the unavoidable subjectivity of the evaluations
provided by the users. As an example, let us consider the indoor temperature of the
controlled environment, which is a typical concept considered by AmI systems. It is
not convenient to perform a rigid threshold-based classification in order to establish
whether the current temperature is hot or cold ; on the contrary, a fuzzy system al-
lows a given temperature to be considered at the same time as hot and cold, but with
different membership values. This concept is exemplified in Fig. 2, which shows the
Gaussian membership functions (MFs) of the fuzzy sets used by our system to perform
the temperature classification.

In order to reason on the various concepts related to the environment manage-
ment, the reactive intelligence module is organized into independent components, each
addressing a different set of independent environmental features. In particular, we pro-
pose two distinct fuzzy controllers for reasoning on (i) temperature and humidity, and
(ii) light level, which are separately optimized by the deliberative component.

Regardless of the specific environment where the AmI system is deployed, the in-
put variables to the temperature controller are known in advance: the indoor/outdoor
temperature, the indoor humidity percentage, and information about the activity per-
formed by the user. The indoor temperature and humidity are computed as an average
of the measurements taken by the sensors deployed in the target room, while the out-
door temperature is measured on the building facade. Finally, the activity performed
by the user is detected by the Activity Recognition Module.

In order to define the output variables is necessary to know the set of actuators
installed in the target room, and for each of them, the set of available commands
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Fig. 3: Temperature and humidity fuzzy controller.
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Fig. 4: Lighting level fuzzy controller.

and their possible parameters. A typical scenario might consist of a room containing
one HVAC actuator with four possible operating modes, i.e., Dry, Cold, Hot and Off,
where Cold and Hot commands allow the user to specify the desired temperature. Con-
sequently, the fuzzy controller will be characterized by two output variables, one with
values mapping the four operating modes, and the other corresponding to the desired
temperature, with integer values from 18 to 32. The fuzzy controller for temperature
and humidity is shown in Fig. 3.

Unlike the spatial and temporal smoothness of temperature and humidity, lighting
is characterized by a discontinuous behavior; thus, the average lighting level of a room
is not a significative information. On the contrary, it is convenient to maintain fine-
grained information about the lighting level in different locations of the considered
room. Consequently, the structure of the lighting controller (see Fig. 4) is more complex
than the one for temperature-humidity, because both its input and output depend on
the physical deployment of sensors and actuators. To be more specific, there are as
many input variables as the number of light sensors, one input variable related to the
activity performed by the user, and one representing the external light level; each of the
output variables is associated with a specific lighting controller. The number of light
sensors and controllers, together with their commands and parameters, are defined by
the physical infrastructure ontology.
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The input variables of the controllers are modeled by Gaussian MFs, that are com-
monly adopted, as well as triangular and trapezoidal ones, to represent environmental
physical features such as temperature or humidity (Baghban et al. 2016; Doctor et al.
2005). The identification of the proper MFs for each input variable has been performed
through a simplified version of the double-clustering approach proposed in (Doctor
et al. 2005; Castellano et al. 2002). Firstly, environmental data are clustered in a n-
dimensional space, e.g., temperature and humidity are mapped in a two dimensional
space as shown in Fig. 5. Each cluster is then projected along each dimension and rep-
resented by a cluster prototype, obtained by computing the mean value and the variance
of data belonging to that cluster. If the distance between two projected prototypes is
too low, the two clusters are merged and the resulting prototype represents a MF for
a single variable.

As last step, given the range of admissible values [vi, vf ] for a certain variable, the
boundary membership functions MF i and MF f , whose centroids Ci and Cf are the
closest to vi and vf respectively, are manually modified in order to assign a membership
value equal to 1 to any input point v : vi  v  Ci and Cf  v  vf .

Output variables, which are intrinsically discrete, are represented through triangu-
lar MFs.

It is worth noting that the membership functions are computed only once, and are
never updated. The fuzzy rules, on the other hand, are periodically learned by the
deliberative intelligence, as it will be discussed in next Section.

Both the temperature-humidity and the lighting controllers are based on simple
fuzzy rules in the form: «if antecedent then consequent», where the antecedent and the
consequent are conjunctions of conditions on input and output variables respectively.
As an example, a simple rule of the temperature controller may look like: «if Activity is
Working and IndoorTemperature is Hot then Mode is Cold and DesiredTemperature
is 24».

The adopted rules are of Mamdani type, i.e., they are characterized by the adop-
tion of linguistic terms both for the antecedent and the consequent (Hosseini et al.
2012). Differently from Sugeno-type rules, Mamdani controllers allow to obtain a non-
continuous output surface, that is more suitable for representing the discrete set of
actuators’ commands. Moreover, Mamdani rules are easy to understand for humans
and this aspect is crucial to guarantee the proper management of the AmI system. The
final defuzzification step is performed through the Centroid of Gravity (CoG) approach.

Tuning the set of fuzzy rules requires the selection of the number of rules to be
adopted, the antecedent, and the consequent of each rule. This process is performed
by the deliberative intelligence by combining a clustering step with a meta-heuristic
algorithm.

5.2 Deliberative Intelligence

The deliberative intelligence, provided by the high performance computing devices avail-
able on the cloud, aims to optimize the behavior of the reactive intelligence in order
to find the best trade-off between meeting the user’s preferences and minimizing the
energy consumption.

The optimization of a fuzzy system could be focused on different elements chosen
among the set of linguistic variables, the fuzzy MFs, or the fuzzy rules (Herrera 2008).
In our proposal, the set of linguistic variables and the MFs are fixed and represent the
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AF
T



A Fog-based Hybrid Intelligent System for Energy Saving in Smart Buildings 11

a-priori knowledge for the fuzzy controller. Therefore, the deliberative intelligence will
focus on optimizing the set of fuzzy rules and, with respect to the taxonomy proposed
in (Herrera 2008), our approach can be classified as a “rule learning and selection”
method.

Several works in the literature aim to learn fuzzy rules by exploiting different ap-
proaches, such as neural networks, reinforcement learning, evolutionary and heuristic
search algorithms. In (Nauck and Kruse 1993) a neural network, whose nodes represent
the preconditions and the results, is used to simulate the behavior of the fuzzy rules.
All nodes of the network are connected through weighted links updated by means of a
back propagation procedure. The main issue of this model is that the huge number of
nodes required by large fuzzy systems makes it impractical due to its excessive compu-
tational load. As described in (Hosoya and Umano 2012), rules can be learned through
a reinforcement algorithm such as Q-Learning. This technique creates a table where
each configuration is rewarded or penalized according to the fitness function. The con-
figurations that achieve the highest scores will be selected as the best set of rules for
the system. In order to reduce the memory consumption, authors of (Lhotska et al.
2004; Navara and Peri 2004) adopt a hierarchical approach to learn fuzzy rules. In our
AmI system, the best set of fuzzy rules is obtained by using the TabuSearch heuristic
method (Denna et al. 1999), which explores the space of all the possible solutions for a
given problem, while prohibiting the repetition of previous moves that would produce
a loop in the search path (tabu moves).

We adopt TabuSearch in order to minimize computational costs, while maintaining
adequate performance for our system. Recently, several works have successfully used
TabuSearch to learn fuzzy systems rules, as shown in (Nguyen et al. 2015) and (Talbi
and Belarbi 2013). Other approaches, such as genetic algorithms, often exhibit draw-
backs that conflict with our stated goals. The TabuSearch approach has some elements
in common with evolutionary techniques, but it clearly differs from genetic algorithms
since the evolution is achieved by using a single individual, instead of a population
of individuals (Denna et al. 1999). The main advantage is that the computational
resources and, in particular, the amount of memory required, are much lower in the
case of the TabuSearch. Moreover, genetic algorithms continue their search until a
previously defined convergence criterion is reached. Thus, several parameters must be
carefully adjusted to avoid problems of premature or delayed convergence, which could
lead to a poor exploration of the search space. In contrast, TabuSearch is able to con-
tinue its search until an adequate solution is found. The cycle prevention mechanism
of TabuSearch also ensures that the search space is explored efficiently (Bagis 2008).

We determine the optimal number of fuzzy rules by clustering the sensory data
aggregated by the Environmental Modeler and the activities detected by the Activity

Recognition Module, and thus by selecting cluster centroids as rule antecedents. Such
selection aims to define at least one rule for each relevant group of environment values
and context conditions, by aggregating similar configurations in a single rule and ne-
glecting configurations of input variables which never occur. After such initial process,
a different instance of the TabuSearch optimization algorithm is performed to learn
the consequent part of each rule. Fig. 5 summarizes the behavior of the deliberative

intelligence by showing only two sensory dimensions for the sake of simplicity.
A single execution of the TabuSearch algorithm is driven by a fitness function F

which evaluates the effect of a given action on the environment. This is obtained by
simulating the energy consumption of the actuator in response to the execution of a
given rule, and the level of user satisfaction associated with the resulting environment
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TabuSearch 

TabuSearch 

TabuSearch 

TabuSearch 

antecedent1 

antecedent2 

antecedent3 

antecedent4 

if antecedent1  
then consequent1 

if antecedent2  
then consequent2 

if antecedent3  
then consequent3 
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Rule 
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indoor temperature 

indoor hum
idity 

Fig. 5: Logical flow for the Deliberative Intelligence: (i) sensory data are clustered, (ii)
cluster centroids identify rule antecedents, (iii) TabuSearch executions find the optimal
consequent for each antecedent.

conditions. These results are provided by the Actuation Module, the Environmental

Modeler, and the User Profiler. The right balance between fulfilling the user’s prefer-
ences or the energy saving is established by the system administrator, according to the
following equation:

F = ↵ ⇤ energy_saving + (1� ↵) ⇤ user_satisfaction; (5)

where energy_saving is a value in the [0, 1] interval, defined as the normalized differ-
ence between the upper limit of tolerable energy consumption and the current energy
utilization. If ↵ is close to 0, the system gives priority to user’s preferences; on the
other hand, values of ↵ close to 1 increase the importance of energy saving.

In order to support the exploration of the solution space, the Gray code is adopted
to represent the output MFs, as proposed in (Denna et al. 1999). Rule consequents
are represented as binary strings and a move corresponds to the complementation of
a single bit. A move is admissible if it does not contain repetitions within the last T

steps, where the period T varies during the search process and indicates the number
of tabu moves. The algorithm adopted to learn a single fuzzy rule accepts as input
the rule antecedent and performs N independent searches starting from N random
solutions, i.e., consequents.

The deliberative intelligence is able to adapt the fuzzy controllers to specific build-
ings, user preferences and seasonal trends of environmental phenomena. By periodically
repeating the optimization algorithm it is possible to guarantee that fuzzy controllers
ever represent the current optimal solution. As shown in the experimental section, rules
learned by TabuSearch have proved to be effective for the purposes of our system, and
have led to satisfactory performance.

6 Case Study

To evaluate the performance of the proposed system, we present in this section two
sets of experiments addressing the scenario of a smart home in which a user carries
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A Fog-based Hybrid Intelligent System for Energy Saving in Smart Buildings 13

out various daily activities. The challenge of our system is to infer the context and ito
plan the necessary direct and indirect modifications to the surrounding environment
by physically acting on the actuators.

The system takes into account the fact that the user’s environmental preferences
are not static, and may change depending on the context, e.g., on the current activ-
ity. These preferences can cover all aspects of the smart home that are automatically
controlled by actuators, including heating, lighting, opening and closing windows and
shutters. For example, the system can change the lighting setting and ensure ideal in-
door temperature and humidity if the user is doing relaxing activities, such as watching
television or reading a book, or vice versa, modify these settings if the user needs to
focus on working or studying.

The first set of experiments we performed aims to test the system in a simulated
smart home, to analyze its behavior as parameters change. Once the best values for the
system parameters have been identified, another set of experiments was carried out in
a real smart home. In this case, the system was tested with the help of a volunteer who
lived in the smart home for a period of 5 months, leaving it to our system to proactively
modify the environment, acting on different ambient properties. In Section 6.2 we will
present in detail the setting and the experimental results obtained from this practical
experiment.

6.1 Experimental Analysis – Simulated smart home

The first set of experiments seeks to experimentally identify the best parameter values
to use in order to maximize system performance. To do this, we analyzed real data
which reflects the environment conditions and the user behavior. Sensory traces we
used come from the Aruba dataset of the CASAS Smart Home Project (Washington
State University) (Cook 2010). We have chosen this publicly available dataset because
it is one of the most used in the field of smart environments, and is therefore a guarantee
of reproducibility of the tests performed.

The Aruba dataset contains annotated data collected in a smart home with a
single resident over a period of 7 months. Sensor events are generated by 31 motion
sensors, 5 temperature sensors, and 3 door sensors. The smart home is divided in 8
rooms, with 5 sensors per room on average. The dataset is annotated with 11 activities
of daily living (ADLs) performed by the user, such as sleeping, eating, working, and
relax. Additionally, hourly external temperature data for the entire duration of the
experiment come from a real weather station close to the smart home, provided by the
AgWeatherNet project of Washington State University (Rasul et al. 2015). Moreover,
since the CASAS Project does not provide information about actuators, we enriched
this dataset by making use of the Environmental Modeler to estimate the impact of the
actions performed by the intelligent system (or the user) to change the environmental
conditions.

As a preprocessing step, we grouped the original data into time windows of 30
seconds. We also added two more ADLs, i.e., outside, which is active when the user is
not at home, and other, which groups all unlabeled time windows. Four main rooms
(bedroom, living room, kitchen, and office) have been studied during experiments. In
the following, we assume that each room is equipped with an air conditioner, which
can be automatically controlled by the system.
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As metric to assess the effectiveness of the proposed system, we introduce the
notion of user satisfaction. The user is considered satisfied if environmental conditions
are within his preferred range. Otherwise, if the environmental conditions are outside
this range for a certain period of time, the user becomes unsatisfied and manually acts
on the actuators. As an example, let’s assume the user’s preferred temperature when
working is 22 �C, his tolerance range is ± 2 �C and his tolerance time is 5 minutes. In
such a case, if the user is working and the temperature of the room is in the range
20–24 �C, the user is satisfied. On the other hand, if the temperature of the room is
outside this range for more than 10 minutes, he becomes unsatisfied, and directly acts
to correct the temperature, by manually turning on (or off) the air conditioner.

At each timestep, the system exploits sensory data to infer the user’s activity
and position (with room-level granularity), and plan the best sequence of actions to
keep the user satisfied, while ensuring energy savings. If the user is unsatisfied with
the system’s decisions, he can manually override them. Every 24 hours, the heuristic
search algorithm is run again to find a new set of fuzzy rules which will be exploited
by the reactive subsystem during the following day. Tests have been performed using a
cross-validation method, by dividing the dataset into ten parts. For each experiment,
nine out of these ten parts have been used to train the activity recognition subsystem,
and the last one has been used for evaluating the system. Each experiment has been
repeated ten times, changing the test set and averaging the results.

In the following, we will compare our hybrid intelligent system, which automatically
plans the sequence of actuator actions to perform, against a baseline manual system
where the user manually controls the actuators when he is unsatisfied. Then, we will
focus on the behavior of the smart system during a given week, by carefully analyzing
what happens in a single room when the user is present or absent. Finally, we will study
the performance of the system when varying the trade-off between user preferences and
energy saving, i.e., parameter ↵ in Eq. 5.

The first set of experiments is run by setting ↵ to 0, so as to prioritize user prefer-
ences. Table 1 summarizes the comparison of the smart and manual systems, reporting
results for each test of the cross-validation, along with the averages. For each period, we
consider the fraction of timesteps in which the user is satisfied, the satisfaction ratio,
which is the ratio of the user’s satisfaction with the smart system over the satisfaction
with the manual one, and the energy saving obtained by the smart system, calculated
as 1� (cs/cm), where cs and cm are the power consumptions of the smart and manual

system, respectively.
Since the smart system tries to save energy by turning off air conditioners whenever

possible, we would expect a small reduction of the user’s satisfaction and a big reduction
of energy consumption, with respect to the manual system. Results reported in Table 1
confirm our insights. On average, the user is satisfied 84.6% of the time with the manual
system, and 77.6% of the time with the smart one. The satisfaction ratio is, thus, 0.917.
On the other hand, the smart system achieves 35.1% energy savings compared to the
manual system. In other words, less than 10% decrease in user’s satisfaction allows
the system to reduce energy consumption by more than 35%, on average. Moreover,
as will be shown in the last set of experiments, energy savings can be pushed as high
as 55.3% when setting ↵ to 1, with a satisfaction ratio of 0.736.

Table 1 provides useful insights as well, by reporting detailed results on single
tests. The satisfaction ratio reaches its minimum in the third test (17 December – 8
January) and, in general, it is lower during winter months. On the other hands, it
reaches its maximum value in the last test (21 May – 11 June) and, in general, it is
DR
AF
T



A Fog-based Hybrid Intelligent System for Energy Saving in Smart Buildings 15

Table 1: User satisfaction (Sat) of the manual and smart systems, along with satisfac-
tion ratio and energy savings of the smart system, in each test of the cross-validation
experiment.

Test dates Sat (manual) Sat (smart) Sat ratio Energy savings
4 Nov - 25 Nov 85.5% 82.8% 0.968 20.0%
25 Nov - 17 Dec 83.4% 66.2% 0.794 37.5%
17 Dec - 8 Jan 86.2% 66.5% 0.771 27.1%
8 Jan - 30 Jan 83.9% 69.2% 0.825 49.5%
30 Jan - 21 Feb 83.1% 69.7% 0.839 32.4%
21 Feb - 15 Mar 82.0% 62.7% 0.765 41.3%
15 Mar - 7 Apr 84.6% 76.0% 0.898 45.3%
7 Apr - 29 Apr 83.1% 89.8% 1.081 23.0%

29 Apr - 21 May 87.2% 95.1% 1.091 33.8%
21 May - 11 Jun 87.0% 97.8% 1.124 41.0%

Average 84.6% 77.6% 0.917 35.1%

Fig. 6: Temperature (internal and external), air conditioner status, user satisfaction
and presence in the bedroom during a given week. The stars indicate when the user
performed a manual action.

higher during spring months. It is worth noting that the experiment took place in a
rather cold environment, thus the different satisfaction values are mainly dependent on
the high variability of the external temperature during the year. Indeed, the minimum
external temperature registered during the experiment was �25.17 �C, while the user’s
preferred temperature was 22 �C on average. It is thus understandable that trying to
save energy in such conditions is challenging and may result in reduced satisfaction
ratio. Surprisingly, the satisfaction ratio is greater than 1 in some of the tests, which
means that the smart system managed to satisfy the user better than the manual one,
while ensuring remarkable energy savings. Indeed, the user satisfaction in the last three
tests is 94.2% (1.098 satisfaction ratio), and the energy savings are 32.6% on average.
These results confirm the advantage of the smart system over the manual one, since it
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�

Fig. 7: User satisfaction ratio and energy savings when varying the parameter ↵.

achieves substantial energy savings in all considered tests, regardless of the extremely
low external temperature, while maintaining a very high satisfaction ratio.

In order to better understand how the system achieves such performances, we also
conducted extensive experiments to evaluate its behavior in a single room of the house,
i.e., the bedroom, focusing on temperature controlling. The topmost graph in Fig. 6
shows the internal and external temperature trend during a week. The other three
graphs illustrate, respectively, the air conditioner status, the user satisfaction, and the
user presence in the room during the same period of time. Additionally, the stars in-
cluded in the third graph indicate the moment when the user performs manual actions.
The main activity performed in the bedroom is sleeping, which is, unsurprisingly, the
most regular activity annotated in the dataset, and it is also the one with the longest
average duration. Every day, the user spends the majority of the night in this room,
and he seldom visits it during the rest of the day. This regularity makes the bedroom
ideal to analyze with ease the behavior of the smart system.

As we can see, the system turns on the air conditioner during night, so as to
maintain an ideal temperature while the user is sleeping. Whenever it is possible,
however, the system temporarily turns the air conditioner off to save energy. Looking
at the point when the user manually turns on (or off) the air conditioner, disagreeing
with the system, it can be noticed that these interventions are remarkably infrequent
and spaced over during the week, which means that the system was able to maintain
the user satisfied while saving energy. Fig. 6 also shows that the air conditioner is
automatically turned off in the mornings, and it generally remains off throughout the
day, with occasional exceptions when the user spent time in the bedroom during the
day (e.g., to do housework).

We will now discuss an example of how fuzzy rules and fuzzy sets are used for
decision-making by the system. For the sake of clarity, let’s just consider the following
rules, which are a subset of those learned by the system during the simulation.

«if Activity is Sleeping and IndoorTemperature is VeryCold and OutdoorTem-
perature is PrettyCold then Mode is Hot and DesiredTemperature is 23».

«if Activity is Sleeping and IndoorTemperature is PrettyCold and OutdoorTem-
perature is PrettyCold then Mode is Hot and DesiredTemperature is 24».

«if Activity is Sleeping and IndoorTemperature is PrettyHot and OutdoorTem-
perature is SlightlyHot then Mode is Cold and DesiredTemperature is 22».

Let’s assume that the current user’s activity, as inferred from the Activity Recogni-
tion system, is Sleeping, the internal temperature is 20 �C, and the external temperature
is 18 �C. Sensory data and user activity, are fed into the fuzzy reasoning system. The
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input variables are fuzzified, depending on the degree of their respective membership
functions. Then, the firing strength of each rule is determined, by combining the fuzzi-
fied inputs. With the example data, the firing strength of the first two rules is high,
and they strongly contribute to the result, while the third rule does not come into
play, since its firing strength is practically zero, and it is therefore irrelevant. After
the defuzzification, which occurs as described in Section 5, with the CoG method, the
system chooses the mode and temperature for the air conditioner, according to the
rules with the highest degree of activation. In our example, the mode chosen will be
Hot, and the desired temperature will be 24 �C.

Finally, we repeated the cross-validation experiment while varying the value of ↵,
so as to fine-tune the ideal value of such parameter. Fig. 7 shows the satisfaction ratio
and energy savings obtained by the smart system compared to the manual one, with
different values of ↵. As expected, the satisfaction ratio decreases when ↵ increases,
registering its maximum value of 0.917 when ↵ is 0, and its minimum (0.736) when
↵ is 1. On the contrary, energy savings increase when raising ↵, from a minimum of
0.351 to an impressive maximum of 0.553, which means that the smart system cuts
energy consumption in half while maintaining the user satisfied. The ideal value of ↵
heavily depends on the application scenario, and on the relative importance assigned
by system administrators to user satisfaction and energy savings.

6.2 Experimental Analysis – Real smart home

The second set of experiments consists of a system run performed on a smart home
that was inhabited for 5 months by a single volunteer, from July 2016 to November
2016. To this end, multiple programmable wireless devices are pervasively deployed in
the environment, providing heterogeneous information about environmental properties
and user’s whereabouts. In particular, temperature (indoor and outdoor), humidity,
pressure, light, CO2, motion and noise sensors were deployed in the smart home in
a non-intrusive manner. In addition, actuators to control lighting and air condition-
ers were also installed, and all appliances were monitored by smart meters. Table 2
summarizes the sensors deployed in the smart home during experiments.

The smart home is divided in 5 rooms, with an average of 5 sensors per room.
Sensors were placed at strategic locations, such as near windows or on the user’s desk,
to minimize intrusiveness while maximizing their effectiveness. Each room was equipped
with a 9000 BTU air conditioner.

The activities identified by the activity recognition module included sleeping, eating,
studying, watching television, reading, listening to music, and working on the computer .

As for the metrics used to evaluate the system, user satisfaction has been assessed
on the basis of the actions performed (for example, the user is unsatisfied if he takes
an action to contradict what the system does).

Based on the previous set of experiments, the best parameter values were selected
to guarantee user comfort and compliance with his preferences, while keeping energy
consumption low.

Fig. 8 shows the system’s behavior in a single room, i.e., the living room, during
a particular week (10 October 2016 - 16 October 2016). We decided to show this
particular time frame to demonstrate the resilience of the system even in extreme
climatic conditions.
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Table 2: List of sensors used in the smart home.

Sensor Type Characteristics
Temperature and relative humidity Temp. range: �40 �C to +123.8 �C

Temp. accuracy: ±0.5 �C at 25 �C
Humidity range: 0 to 100% RH
Absolute RH accuracy: ±3.0% RH

Temperature and pressure Temp. range: �10 �C to +60 �C
Temp. accuracy: ±0.8 �C at 25 �C
Press. range: 400 to 1100mbar
Press. accuracy: ±1.5% at 25 �C

Temperature Range: �40 �C to +125 �C
Temp. accuracy: ±2%

Light Range: 0 to 1847 lx
Spectral responsivity: 400–1000 nm

Passive Infrared (PIR) Motion Sensitivity range: up to 6m,
110� x 70� detection range

Noise Microphone sensitivity: 12.7mV/Pa
Range: 50 dBA to 100 dBA
Accuracy: ±0.5 dBA (1 kHz)
Frequency range: 20Hz–20 kHz

CO2 CO2 range: 0 to 500 ppm
CO2 accuracy: ±30 ppm

Voltage, current, power factor, active
power, reactive power, active energy,
reactive energy

Accuracy: 0.5%

Analyzing the first graph in Fig. 8, we can see that external temperatures on
Thursday and Friday are much higher than in the previous days, with a sudden and
unexpected growth. In fact, the maximum temperature on Wednesday was 22 �C, while
on Thursday and Friday it was 31 �C and 34.3 �C , respectively. This corresponds to an
increase of almost 10 �C in the maximum temperature from one day to the next, which
can be very challenging for a system that plan its actions taking into consideration
historic temperature data.

Nevertheless, the system has proved to be capable of handling unusual situations
(the third graph in Fig. 8 shows that the user is satisfied even on these days of excep-
tional heat). Moreover, the effectiveness of the system is also demonstrated by the fact
that, over the course of a whole week, the user performed only 9 manual actions in the
living room, with an average of 1.29 actions per day, and 32 total actions in the entire
smart home, with an average of 4.57 actions per day. This average remains constant
throughout the tests we have carried out, with an overall average of 4.3 actions per
day across the entire smart home, and 1.52 actions in the living room.

For the rest of the time, the system was able to meet the user’s needs in a trans-
parent and automatic way, saving as much energy as possible. The second graph in the
figure shows that the use of air conditioners has been very limited, at strategic times
during the day, maximizing user satisfaction while maintaining low energy consump-
tion. This was made possible by the system’s continuous preventive planning, which
allowed the system to identify the right moments and ways to dynamically change the
surrounding environment, while respecting the user’s preferences.
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Fig. 8: Average temperature (internal and external), air conditioner status, user satis-
faction and presence in the living room of the smart home during a given week. The
stars indicate when the user performed a manual action.

7 Conclusion

In this paper, we presented a novel hybrid intelligent architecture which exploits het-
erogeneous devices pervasively deployed in the environment to reduce the energy con-
sumption of buildings, making them smarter, while satisfying users’ needs. Our hybrid
approach combines reactive and deliberative components to dynamically learn and up-
date a set of fuzzy rules which allow the system to effectively modify the environment
according to users’ preferences, while ensuring remarkable energy savings.

The effectiveness of the architecture we propose has been demonstrated with exten-
sive experiments that exploit data coming from real sensors located in a smart home
to predict the effect of the intelligent system on energy consumption and environment
conditions, which directly affect the user’s satisfaction. Results confirmed that our
system is able to obtain substantial energy savings while keeping the user satisfied.

The main limitation of the current system is its unsuitability for managing multi-
user scenarios, where users can influence each other, and individual needs and pref-
erences might be conflicting. This issue could be addressed by explicitly modeling
interactions among users, while also taking into account their uncertainty (Bilgin et al.
2012). Another way to solve conflicts in a multi-user environments could be to adopt
of a set of priorities which define a hierarchy between users, as proposed in (Kulkarni
2002).

Nevertheless, it is worth noticing that there are many single-user scenarios in which
the proposed approach could provide a valuable support for managing smart environ-
ments. For instance, the staff of a nursing home could exploit our AmI system to easily
monitor elderly people in a non-intrusive way, according to principles of Ambient as-
sisted living systems (Calvaresi et al. 2017). In such a scenario, data coming from the
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sensors on the edge would reveal the conditions of the physical environment; similarly,
ad-hoc activity/medical sensors could provide relevant information to detect alert sit-
uations. The availability of fog devices close to the final users would allow to analyze
data locally, and act on the environment promptly, even without any human interven-
tion. Conversely, the management of the whole nursing home would take advantage
of the long-term analysis performed by the cloud in order to define the energy saving
policies, supervise the behavior of the AmI modules, and be aware of the effectiveness
of the chosen strategies.

A further limitation of the current system consists in its necessity of collecting
initial training data in order to setup fuzzy controllers. Such data are mainly used
to determine the fuzzy membership functions of the reactive intelligence, whereas the
deliberative intelligence simply relies on data captured during the last 24 hours. In
order to overcome this cold-start problem, we plan to enrich our system with a further
online learning algorithm capable of a dynamic tuning of the membership functions.

Moreover, as future work we will investigate multi-buildings scenarios, trying to un-
derstand possible benefits of dynamically sharing and updating system models among
different buildings, so as to further improve energy savings.

References

Amadeo M, Molinaro A, Paratore SY, Altomare A, Giordano A, Mastroianni C (2017) A cloud
of things framework for smart home services based on information centric networking. In:
Proc. of the 2017 IEEE 14th International Conference on Networking, Sensing and Control
(ICNSC), IEEE, pp 245–250

Amigoni F, Gatti N, Pinciroli C, Roveri M (2005) What planner for ambient intelligence
applications? IEEE Trans on Systems, Man and Cybernetics, Part A: Systems and Humans
35(1):7–21

Atallah L, Yang G (2009) The use of pervasive sensing for behaviour profiling - a survey.
Pervasive and Mobile Computing 5:447–464

Baghban A, Bahadori M, Rozyn J, Lee M, Abbas A, Bahadori A, Rahimali A (2016) Estimation
of air dew point temperature using computational intelligence schemes. Applied thermal
engineering 93:1043–1052

Bagis A (2008) Fuzzy rule base design using tabu search algorithm for nonlinear system mod-
eling. ISA transactions 47(1):32–44

Bhargava K, McManus G, Ivanov S (2017) Fog-centric localization for ambient assisted living.
In: Proc. of the 2017 International Conference on Engineering, Technology and Innovation
(ICE/ITMC), IEEE, pp 1424–1430

Bilgin A, Dooley J, Whittington L, Hagras H, Henson M, Wagner C, Malibari A, Al-Ghamdi
A, Alhaddad MJ, Alghazzawi D (2012) Dynamic profile-selection for zslices based type-2
fuzzy agents controlling multi-user ambient intelligent environments. In: Proc. of the 2012
IEEE International Conference on Fuzzy Systems, pp 1–8

Calvaresi D, Cesarini D, Sernani P, Marinoni M, Dragoni AF, Sturm A (2017) Exploring the
ambient assisted living domain: a systematic review. Journal of Ambient Intelligence and
Humanized Computing 8(2):239–257

Castellano G, Fanelli AM, Mencar C (2002) Generation of interpretable fuzzy granules by a
double-clustering technique. Archives of Control Science 12(4):397–410

Cook DJ (2010) Learning setting-generalized activity models for smart spaces. IEEE Intelligent
Systems 2010(99):1

Cook DJ, Das SK (2007) How smart are our environments? An updated look at the state of
the art. Pervasive and Mobile Computing 3(2):53–73

Cook DJ, Augusto JC, Jakkula VR (2009) Ambient Intelligence: Technologies, applications,
and opportunities. Pervasive and Mobile Computing 5(4):277–298

Corucci F, Anastasi G, Marcelloni F (2011) A WSN-based testbed for energy efficiency in
buildings. In: Proc. of the 2011 IEEE Symposium on Computers and Communications
(ISCC), pp 990–993

DR
AF
T



A Fog-based Hybrid Intelligent System for Energy Saving in Smart Buildings 21

De Paola A, Gaglio S, Lo Re G, Ortolani M (2012) Sensor9k: A testbed for designing and
experimenting with WSN-based ambient intelligence applications. Pervasive and Mobile
Computing 8(3):448 – 466

De Paola A, Ortolani M, Lo Re G, Anastasi G, Das SK (2014) Intelligent management systems
for energy efficiency in buildings: A survey. ACM Comput Surv 47(1):13:1–13:38

De Paola A, Lo Re G, Morana M, Ortolani M (2015) Smartbuildings: an ami system for energy
efficiency. In: Sustainable Internet and ICT for Sustainability (SustainIT), 2015, pp 1–7

De Paola A, Ferraro P, Gaglio S, Lo Re G, Das SK (2017) An adaptive bayesian system
for context-aware data fusion in smart environments. IEEE Trans on Mobile Computing
16(6):1502 – 1515

Denna M, Mauri G, Zanaboni AM (1999) Learning fuzzy rules with tabu search-an application
to control. IEEE Trans on Fuzzy Systems 7(3):295–318

Doctor F, Hagras H, Callaghan V (2005) A fuzzy embedded agent-based approach for realizing
ambient intelligence in intelligent inhabited environments. IEEE Trans on Systems, Man
and Cybernetics, Part A: Systems and Humans 35(1):55–65

European Commission (2017) Energy efficiency in buildings. URL
http://ec.europa.eu/energy/en/topics/energy-efficiency/buildings

Fazzolari M, Alcala R, Nojima Y, Ishibuchi H, Herrera F (2013) Improving a fuzzy associ-
ation rule-based classification model by granularity learning based on heuristic measures
over multiple granularities. In: Proc. of the 2013 IEEE Int. Workshop on Genetic and
Evolutionary Fuzzy Systems (GEFS), pp 44–51

Georgievski I, Nguyen TA, Aiello M (2013) Combining activity recognition and ai planning for
energy-saving offices. In: Proc. of the 2013 IEEE 10th Int. Conf. on Ubiquitous Intelligence
and Computing and 10th Int. Conf. on Autonomic and Trusted Computing (UIC/ATC),
IEEE, pp 238–245

Gruber P, Gwerder M, J T (2001) Predictive control for heating applications. In: Proc. of the
7th REHVA World Congress, Clima 2000. Naples, Italy, pp 1–15

Hagras H, Alghazzawi D, Aldabbagh G (2015) Employing type-2 fuzzy logic systems in the
efforts to realize ambient intelligent environments [application notes]. IEEE Computational
Intelligence Magazine 10(1):44–51

Herrera F (2008) Genetic fuzzy systems: taxonomy, current research trends and prospects.
Evolutionary Intelligence 1(1):27–46

Hinojosa CE, Camargo HA (2013) Multi-objective iterative genetic approach for learning fuzzy
classification rules with semantic-based selection of the best rule. In: IFSA World Congress
and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint, pp 292–297

Hosoya Y, Umano M (2012) Dynamic fuzzy q-learning with facility of tuning and removing
fuzzy rules. In: Proc. of the 2012 IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE)„ IEEE,
pp 1–8

Hosseini R, Qanadli SD, Barman S, Mazinani M, Ellis T, Dehmeshki J (2012) An automatic
approach for learning and tuning gaussian interval type-2 fuzzy membership functions
applied to lung cad classification system. IEEE Transactions on Fuzzy Systems 20(2):224–
234

Kulkarni AA (2002) A reactive behavioral system for the intelligent room. PhD thesis, Mas-
sachusetts Institute of Technology

Lhotska L, Macek J, Peri D (2004) Evaluation of ecg: comparison of decision tree and fuzzy
rules induction. In: European Meetings on Cybernetics and Systems Research (EMCSR),
pp 713–718

Nauck D, Kruse R (1993) A fuzzy neural network learning fuzzy control rules and membership
functions by fuzzy error backpropagation. In: Proc. of the IEEE Int. Conf. on Neural
Networks, IEEE, pp 1022–1027

Navara M, Peri D (2004) Automatic generation of fuzzy rules and its applications in medical
diagnosis. In: Proc. of the 10th Int. Conf. on Information Processing and Management of
Uncertainty, pp 657–663

Nguyen T, Khosravi A, Creighton D, Nahavandi S (2015) Fuzzy system with tabu search
learning for classification of motor imagery data. Biomedical Signal Processing and Control
20:61–70

Nguyen TA, Aiello M (2013) Energy intelligent buildings based on user activity: A survey.
Energy and buildings 56:244–257

Perera C, Qin Y, Estrella JC, Reiff-Marganiec S, Vasilakos AV (2017) Fog computing for
sustainable smart cities: A survey. ACM Computing Surveys (CSUR) 50(3):32
DR
AF
T



22 A. De Paola, P. Ferraro, G. Lo Re, M. Morana, M. Ortolani

Rahmani AM, Gia TN, Negash B, Anzanpour A, Azimi I, Jiang M, Liljeberg P (2018) Exploit-
ing smart e-health gateways at the edge of healthcare internet-of-things: a fog computing
approach. Future Generation Computer Systems 78:641–658

Rasul F, Rahman M, Shelia V, Hill SE, Islam A, Iosiliani O, Loyd N, Hoogenboom G (2015)
Agricultural Weather Network (AgWeatherNet) Science for Society

Sahni Y, Cao J, Zhang S, Yang L (2017) Edge mesh: A new paradigm to enable distributed
intelligence in internet of things. IEEE Access 5:16441–16458

Santini S, Romer K (2006) An adaptive strategy for quality-based data reduction in wireless
sensor networks. In: Proc. of the 3rd international conference on networked sensing systems
(INSS 2006), pp 29–36

Stantchev V, Barnawi A, Ghulam S, Schubert J, Tamm G (2015) Smart items, fog and cloud
computing as enablers of servitization in healthcare. Sensors & Transducers 185(2):121

Stojkoska BLR, Trivodaliev KV (2017a) A review of internet of things for smart home: Chal-
lenges and solutions. Journal of Cleaner Production 140:1454–1464

Stojkoska BR, Trivodaliev K (2017b) Enabling internet of things for smart homes through fog
computing. In: Proc. of the 2017 25th Telecommunication Forum (TELFOR), IEEE, pp
1–4

Stojmenovic I, Wen S (2014) The fog computing paradigm: Scenarios and security issues. In:
Proc. of the 2014 Federated Conference on Computer Science and Information Systems
(FedCSIS), IEEE, pp 1–8

Talbi N, Belarbi K (2013) Designing fuzzy rule base using hybrid elite genetic algorithm and
tabu search: Application for control and modeling. International Journal of Hybrid Intel-
ligent Systems 10(4):205–214

Verma P, Sood SK (2018) Fog assisted-iot enabled patient health monitoring in smart homes.
IEEE Internet of Things Journal PP(99):1–1

Yan Y, Su W (2016) A fog computing solution for advanced metering infrastructure. In: Proc.
of the 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D),
IEEE, pp 1–4

Zadeh LA (1975) The concept of a linguistic variable and its application to approximate
reasoning. Information sciences 8(3):199–249

DR
AF
T


