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Multi-level Dual-attention Based CNN for Macular
Optical Coherence Tomography Classification

Sapna S Mishra, Bappaditya Mandal, and N. B. Puhan

Abstract—In this letter, we propose a multi-level dual-attention
model to classify two common macular diseases, age-related mac-
ular degeneration (AMD) and diabetic macular edema (DME)
from normal macular eye conditions using optical coherence
tomography (OCT) imaging technique. Our approach unifies
the dual-attention mechanism at multi-levels of the pre-trained
deep convolutional neural network (CNN). It provides a focused
learning mechanism by taking into account both multi-level
features based attention focusing on the salient coarser features
and self-attention mechanism attending higher entropy regions
of the finer features. Our proposed method enables the network
to automatically focus on the relevant parts of the input images
at different levels of feature subspaces. This leads to a more
locally deformation-aware feature generation and classification.
The proposed approach does not require pre-processing steps
such as extraction of region of interest, denoising and retinal
flattening, making the network more robust and fully automatic.
Experimental results on two macular OCT databases show the
superior performance of our proposed approach as compared to
the current state-of-the-art methodologies.

Index Terms—Attention mechanism, Age-related Macular De-
generation (AMD), Diabetic Macular Edema (DME), Multi-level
dual-attention, Optical Coherence Tomography (OCT)

I. INTRODUCTION

Acular region present in the retina of the eye is mainly

responsible for the central vision. Degraded macular
health results in poor vision or loss of sight. Two such dis-
eases that adversely affect the macula are age-related macular
degeneration (AMD) and diabetic macular edema (DME) [1],
[2]. These diseases, if left untreated, may lead to partial or
complete vision loss. The progression of the diseases can be
restricted or slowed down with proper care and necessary
supplements, if detected in early stages [3], [4]. Due to the
sight-threatening effects of these diseases, intensive research is
being carried out to develop computer-assisted techniques for
timely and accurate diagnosis of these diseases. The optical
coherence tomography (OCT) is an imaging technique used
to capture a three-dimensional view of the tissues in order to
resolve the depth information [5]. Employing OCT imaging
technique for acquiring macular images helps to perform the
objective layer-wise analysis of the macula which makes the
detection of AMD and DME easier. During the scanning
process, captured images are corrupted by speckle noise and
suffer random inclinations which make the analysis of OCT-
scans a very difficult task.
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Over the last decade, numerous handcrafted feature based
methods have been proposed for macular OCT classification
[6]-[10]. Authors in [6] classified the OCT volumes based
on histogram of gradients of images but the method required
retinal flattening and region of interest (Rol) extraction which
affect the adaptability of the technique. Similarly, in [7],
authors used linear binary pattern features for classification
where motion blurred and shadowed scans are neglected.
These conventional methods are database specific and semi-
automatic in nature. These problems have been alleviated by
the deep convolutional neural network (CNN) learning based
methods which automatically extract the features and gives
superior performance in many medical-image classification
applications [11], [12]. In [13], a CNN is used to classify the
surrogates generated using the statistical features of each OCT
B-scan, however it involves a time-consuming denoising step.
While in [14], a mixture of CNNs (experts) model is used
for classification. It utilizes retinal flattening and volume of
interest generation. Karri et al. [15] and Ji et al. [16] employed
transfer learning for macular OCT classification where they
fine-tuned GoogleNet and InceptionV3 network, respectively.

A common problem to these existing methodologies is that
they involve pre-processing steps such as denoising, retinal
flattening and Rol extraction which make the methods less
automated, database dependent and time-consuming in nature.
To develop a fully automated and robust technique, we need to
eliminate these steps. Attention mechanism has been explored
for image captioning [17], voice activity detection [18], speech
emotion recognition [19] and question answering [20]. For
biomedical imaging, attention has been used for report genera-
tion [21], disease classification [22], [23], organ segmentation
[24] and localization [25]. In [26], authors have introduced
attention mechanism for macular OCT classification where
the proposed deep network requires a large number of model
parameters, but their performance evaluation is limited.

II. HYBRID ATTENTION MECHANISM

In recent works, dual-attention has been examined for scene
segmentation [27], visual question answering [28] and image
classification [29]. Our multi-level dual-attention mechanism
(DAM) consists of two attention blocks which utilize the
information from different convolution layers of a deep CNN
as shown in Fig. 1. Unlike the existing modules, where the
inputs are taken from a single convolution layer and do not
consider the crucial information in coarser scales, our attention
modules impart focus on the salient features of the input image
in two different feature subspaces, allowing the network to
learn relevant features in coarser as well as finer subspaces.
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Fig. 1.
represents the convolutional layer, maxpool stands for max-pooling layer and
FC(3) denotes the fully connected layer with the number of neurons = 3. The
first two numbers in the bracket of each Conv and Maxpool layer represents
the filter dimensions while the last number in the Conv layers denotes the
number of channels in that layer. The solid red lines show skip connections
while the dotted red lines denote the skip connection with dimension increase.

Architecture of the proposed multi-level DAM network. Conv

A. Preparing the ‘Deep Network’

For our proposed network, the ResNet50 architecture [30]
has been chosen as the base model. Although replacing the
base model with other deep pre-trained networks does not
significantly affect the network performance as shown in
subsection IV-B. The layers of ResNet learns the residual
of the desired function with the help of the added skip
connections and hence are trained to explicitly fit a residual
mapping. The fully connected layer, average pooling layer and
last convolutional layer of the ResNet have been removed. The
initial framework is pre-trained on the ImageNet database [31].
The pre-trained weights are fine-tuned using the OCT database
images. This approach of transfer learning guides the network
to converge faster and overcomes the challenge of lack of large
datasets. The features are extracted from different intermediate
layers of the architecture and fed to the attention modules, as
shown in Fig. 1. The complete architecture includes attention
modules, a flatten, a dropout of 0.25 to prevent overfitting and
a final dense layer activated by softmax function.

B. Multi-level Dual Attention Mechanism (DAM)

The proposed multi-level DAM aims to improve the per-
formance of the existing network without using any external
assistance. In [32], multi-head attention (MHA) has been
used for machine translation working over 1-dimensional data.
In our approach, we have extended its implications on 2-
dimensional images that are classified based on spatial infor-
mation involving deformations in the macular regions. Unlike

MHA, the coefficients here are obtained using the feature
maps of convolutional layers and a dual attention mecha-
nism is developed. The proposed model includes attention
modules, multi-level features based attention module and self-
attention module which employ scaled scalar dot product for
the computation of the alignment score. The multi-level DAM
is formulated as:

@yt = P(downsample(norm(®r,,,, ) + norm(®g,,,,)),

1
where ®p,,, denotes reshaped output of multi-level fea-
tured based attention module and ®g,,, —is the reshaped
output of self-attention module. ¥ denotes the ReLL.U function,
norm( fut) represents normalization function to convert the
attended feature, f,¢+ to have mean = 0 and standard deviation
= 1. downsample(f) denotes downsampling of the input f
by 2, f by performing maxpooling over it. The output of
the multi-level DAM is the addition of normalised coarser
and finer attended features. Hence. it utilizes information
from various intermediate levels which leads to multi-level
deformation-aware feature generation.

1) Multi-level Features Based Attention Module: The multi-
level features based attention module requires three input
tensors where the first two inputs are used to calculate the
attention coefficients which then attend the weights of the
third tensor, as shown in Fig. 1. The first attention module
takes reshaped output matrices of three different layers of the
network as the inputs, /4, Ip and I¢.

Multi-level features based attention module is formulated as

Dy, =[14(196 x 256), I5(196 x 256), Ic(196 x 256)] —
[FC4(256), FCp(256), FCc(256)] — [Ra

({196 x 256} = {196 x 32 x 8}), Rp({196 x 256}

= {196 x 32 x 8}), Rc({196 x 256} = {196 x 32

®(a,b)

Vi

8} = {196 x 256}) — Add(out, Ic) — FC(32),

(2)

where R({z} = {y}) denotes reshape layer, reshaping input
of shape {z} to {y}. Fully connected layers are implied by
FC(n) with n being the number of neurons. The subscripts in
reshape and fully connected layers depict that it is in either A*"
or B! or C*" input path. ®(g, h) signifies batch dot product
of the tensors g and h, dj denotes the number of channels of
the input feature and o indicates the softmax function. a, b
and c are the outputs of layers R4, Rp, and R, respectively.
Add(i, j) performs addition of matrices ¢, j. Here,

T4 = Ti(¥(bn(O(Conwv3_4a)))) 3)
and, Ty = R({14 x 14 x 256} = {196 x 256}),  (4)

x 8} — ® ;e | — R({196 x 32x

where bn denotes batch normalization and O(l) represents
output feature of layer, /. Similarly,

I = Ty((bn(O(Con3_5h)))), 5
Ic = T1(¢(bn(O(Conv3_6b)))). (6)
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Here, names of the layers are in accordance with the Fig. 1. In
this module, the matrix /o is attended by the reshaped outputs
of the two prior layers, 4 and Ip. These inputs undergo dot
product function followed by scaling by a factor of \/dj. The
coefficients are generated after passing this resultant through
softmax function which optimizes the weights to impart higher
probabilities to higher entropy regions that contribute more
in the task of classification. These attention coefficients are
then multiplied with linearly transformed I~ and the product
is added to I itself. Finally, the module is appended by
a dense layer which is activated by ReLU function which
bestows an additional non-linearity to the attained weights.
This approach assists the model to establish a complex re-
lationship between the three layers and generates focused
features. The coefficients of the module depend on the target
labels and accordingly dictate the weights of the base CNN.
This technique enables the network to utilize the information
of coarser features preventing loss of any useful information.
Thus, the network is trained to yield more focussed features
as input to the classifier leading to better convergence.

2) Self-attention Module: The self-attention module is em-
ployed after the final feature extraction layer of the base
model. In contrary to the first module, here the output of same
convolutional layer acts as the attended feature as well as is
employed for computing the attention coefficients, and hence
named as self-attention. This technique aims for focussing on
finer features of CNN, previous to the classification layer and
to improve the network’s performance. It is represented as,

Dp, =[14(49 x 512), Ip(49 x 512),1c(49 x 512)] —
[FC4(512), FCR(512), FCo(512)] — [Ra({49
x 512} = {49 x 64 x 8}), Rp({49 x 512} =
{49 x 64 x 8}), Rc({49 x 512} = {49 x 64 x 8})]
— @(a(Q%))c) — R({49 x 64 x 8} =
{49 x 512}) — Add(out, Ic) — FC(32)

@)
where 14 = Ip = I = I, T = To(¢(bn(O(Conv4d_2b)))),
Ty = R({7x 7 x 512} = {49 x 512}). 8)

The multi-level attention layer is designed with a larger
input size, shown in (2) whereas the self-attention module is
developed for finer features so, has a smaller input, shown in
(7). The obtained output features of both the attention modules
are reshaped into 4-dimensional tensors, ®r and ®p
and their addition is given in (1).

atty atty

III. EXPERIMENTAL SETUP AND RESULTS
A. Evaluation Protocol

We have performed experiments on two databases: Duke
[6] and NEH [14] database, using two evaluation protocols.
The first protocol is leave patient(s) out (LPO), followed from
[13], where one and two volumes of each case are taken
out randomly as the test set for Duke and NEH database,
respectively. The remaining portion is divided into training and

validation set as 80% and 20%, respectively. The experimental
process is repeated 10 times with randomly selected test cases
and average of the experiments are reported. The second
protocol is 5-fold cross-validation (CV) [14]. The models are
trained using 8 GB NVIDIA GeForce GTX 1080 GPU. The
parameters used for training and testing of the models are as
follows: batch size = 16, number of epochs = 100 for LPO
protocol and 50 for each fold of 5-fold CV, decay = 1le — 6
and momentum = 0.9. The SGD optimizer is used with the
categorical cross-entropy loss function. The adaptive learning
rate technique is adopted, initialized with 0.001.

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON DUKE
DATABASE. HERE, 1 DENOTES MOTION BLURRED AND SHADOWED SCANS
NOT CONSIDERED AND * DENOTES ROI EXTRACTED. TOP PART OF TABLE
PRESENTS THE RESULTS FOR 5-FOLD CV PROTOCOL WHEREAS BOTTOM
PART IS FOR LPO PROTOCOL.

Methods
Wang et al. T [7]
(5-fold CV)
MCME * [14] (5-fold CV) -
Multi-level DAM (5-fold CV) | 99.97 (+/- 0.06)
SurrogateAssisted [13] (LPO) 88.45
Multi-level DAM (LPO) 95.57

Accuracy (%) Precision (%) Recall (%) Fl-score | AUC

98.00 98.00

97.78
99.97 (+/- 0.06)

0.984

0.9771 0.999
0.9996 1.0

98.33
99.97 (+/- 0.06)

95.29 96.04 0.956 | 0.9974

B. Results on Duke Database

Duke database contains 45 volumes of OCT B-scans ob-
tained from 15 subjects of each class and has a total of 3241
scans. Each scan (image) is resized to 224 x 224 and self
replicated three times to obtain a three channel input for the
network. In the learning phase, some of the resized OCT
scans are horizontally flipped and translated by +£40 pixels,
generating an augmented training set. This helps in tackling
the translation problem and reduces the inconsistency of a
different number of right and left eyes in the database. Some
random samples are rotated and added to counter the effect
of inclination in the scans. The network is trained using the
OCT scans and scan-level results are presented in this paper.

Table I shows the performance of the proposed method on
the Duke database in terms of accuracy, precision, recall, F1-
score and area under region of operating curve (AUC) using
both the protocols as compared to other existing methods for
3-class macular OCT classification where its superior perfor-
mance can be observed. Moreover, DAM does not require
the tedious Rol selection process, computationally expensive
denoising and retinal flattening pre-processing steps. The
deformation-aware feature generation leads to improved clas-
sification performance of the network. Fine-tuned ResNet50
(without attention) architecture yields an average accuracy
of 95% using 5-fold CV protocol and 71% using LPO pro-
tocol and has around 23.88 millions of model parameters,
whereas our DAM network has 23.54 million parameters.
Hence, the proposed multi-level DAM has lesser number of
model parameters and better performance than the baseline
ResNet50 and outperforms the existing state-of-the-art using
both the protocols, as shown in Table I. Removal of pre-
processing steps such as denoising and retinal flattening makes
our method faster than the methods involving these steps
whereas the elimination of Rol extraction leads to a more
robust network.
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TABLE I

PERFORMANCE COMPARISON OF DIFFERENT METHODS ON NEH
DATABASE USING 5-FOLD CV PROTOCOL. * DENOTES ROI EXTRACTED.

Methods Accuracy (%) Precision (%) Recall (%) Fl-score | AUC
WCME* [10] - 95.21 (+/- 3.2) 94.6 (+/- 3.4) 0.9458 0.986
MCME* [14] 99.39 (+/- 1.21) 99.36 (+/- 1.33) 0.9934 0.998
LACNN [26] - 99.33(+/- 1.49) 99.39 (+/- 1.49) 0.993 0.994

Multi-level DAM | 99.62 (+/- 0.42) | 99.60 (+/- 0.39) | 99.62 (+/- 0.42) 0.996 | 0.9997

C. Results on NEH Database

The NEH database contains OCT volumes of 48 AMD, 50
DME, and 50 Normal cases. It consists up of a total of 4230
B-scans acquired from Noor eye hospital, Tehran. Similar to
the Duke database, the data augmentation technique has been
adopted here. Table II shows the performance comparison of
the proposed network on the NEH database with the existing
works using the 5-fold CV protocol. It can be deduced that
the proposed method outperforms the current state-of-the-art
methodologies in terms of given metrics on this database. For
the LPO protocol, accuracy, precision and recall of 93.03%,
93.86% and 92.26% respectively, are obtained. AUC of 0.991
and Fl-score of 0.928 have been achieved. There is no
present work in the literature using the LPO protocol on NEH
database to compare the obtained results. Fine-tuned ResNet50
architecture [30] yields an average accuracy of 64.45% for 5-
fold CV and 59% for LPO protocol.

It is evident from Tables I and II that our proposed multi-
level DAM consistently outperforms all other existing methods
including the fine-tuned original ResNet50 architecture in
both the databases. It yields deformation-aware predictions
which produce superior results. The removal of pre-processing
steps gives added superiority to our network by making it
fully automatic, more generic and faster. Besides, incorporated
attention mechanism eliminates the need for Rol extraction
which reduces the chances of missing the pathology symptoms
outside the peripheral region of the scan.

IV. ANALYSIS AND DISCUSSIONS

A. Analysis using Attention maps

Input Conv3_4a Conv3_6b Conv4_2b Flatten

= - ’. - ,_I" ¢ 4 %} "~ B
DME [ L Sl T e s e -_—
Normal= | ===

Fig. 2. Attention maps for samples of each case from Duke database obtained
from various layers of the proposed Multi-level DAM network. Here, blue
color denotes the highest attention while red denotes the lowest attention.

The attention maps of various intermediate layers used for
attention modules along with the flatten layer of the proposed
DAM network have been illustrated in Fig. 2 as well as
in Supp A of the supplementary material attached with this
paper where attention maps for samples of NEH database

are also shown. Fig. 2 and the analysis in Supp A show
that the relevant morphological deformations are automatically
highlighted by the network and the focus converges as we
move towards the classification layer. In Fig. 2, the attention
maps show both coarser and finer focus over relevant regions
of the input scans. Further, comparison of the attention maps
of fine-tuned ResNet50 model and the proposed DAM network
has been carried out in Supp A where better convergence of
our network has been observed. Similarly, experimental results
and analysis of advantages of dual attention over single self-
attention module are presented in Supp B of supplementary.

B. Selection of Deep Networks, Input Image Size and Cross-
database Analysis

TABLE III
PERFORMANCE OF MULTI-LEVEL DAM WITH DIFFERENT BASE
PRE-TRAINED DEEP LEARNED NETWORKS.

Model Parameters Duke Database NEH Database
Base Network (in millions) Acuuracy (%) | Precision (%) | Recall (%) | Accuarcy (%) | Precision (%) | Recall (%)
VGG-Face 16.35 100 100 100 99.81 99.81 99.81
ResNet50 99.97 99.97 99.97 99.62
VGG16 16.35 100 100 100 99.26 99.25

Pre-trained

We have conducted several experiments to show that our
proposed multi-level DAM can work with pre-trained deep
networks, such as VGG-Face [33], ResNet50 and VGG16
[34]. The results including the number of model parameters
are shown in Table III for the 5-fold CV protocol. It is
evident from the experimental results that the selection of deep
pre-trained framework for the proposed architecture does not
affect much its diagnostic accuracy when evaluated on two
macular OCT datasets. Supp C in the supplementary shows
the experimental results with varying input image size, from
where it is evident that reducing the input image size to one
quarter leads to a slight reduction in performance on both
the databases. Table IV in the supplementary, Supp D, shows
the experimental results on cross-database analysis using our
DAM approach on Duke and NEH databases.

V. CONCLUSIONS AND FUTURE WORK

This work proposes a multi-level DAM that helps in the
robust classification of macular diseases: AMD and DME
from normal macular imaging using retinal OCT scans.
Our proposed multi-level DAM approach takes into account
both multi-level features based attention arising from locally
deformation-aware feature generation and self-attention mech-
anism focusing on higher entropy regions of the finer features.
The newly developed DAM trains the network to focus on the
relevant regions of the OCT B-scans and reduces the number
of parameters of the base CNN. The proposed method does
not require any pre-processing steps, such as Rol extraction,
denoising and retinal flattening and hence a fully automatic
and end-to-end trainable model is developed. Experimental
results and detail analysis of our proposed approach show su-
periority over state-of-the-art methodologies. The effectiveness
of the model can be explored for diagnosis of other macular
pathologies with symptoms in peripheral region [3], [4].
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Supplementary

SuprpP A

Fig. 1 shows the attention maps obtained from Conv4_2b
layer of network for a sample of each disease taken from
NEH database. The convergence pattern of the network can
be observed from the given figure highlighting the relevant
regions for each case. Fig. 2 illustrates the difference between
the attention maps of the fine-tuned ResNet50 (without atten-
tion) network and the multi-level DAM architecture. It can be
inferred from the figure that the maps of our method is more
populated towards the macular part of the scan and has focus
towards the higher entropy regions.

Normal

(a) Input

(b) Attention maps
from Conv 4_2b
layer

Fig. 1. Attention maps for different samples of NEH database from Conv4_2b
layer of the network. Here, blue color denotes the highest attention while red
denotes the lowest attention.

Conv3_da  Conv3 6b  Conva_2b Conv3_da

Conv3_6b

Convd_2b

(a) ResNet50 (b) Multi-level DAM

Fig. 2. Comparison of attention maps of different samples of NEH database
obtained from ResNet50 and multi-level DAM networks. Here, blue color
denotes the highest attention while red denotes the lowest attention.

Suprp B

A comparison of the dual attention mechanism with a single
self-attention module based network has also been presented in
Fig. 3 as well as in Tables I and II. It can be observed from the
given figure that the dual attention mechanism produces more
focussed maps than the self-attention based network hence
illustrating the effectiveness of our proposed method. Tables
I and II depict marginal improvement in the performance in
case of dual attention technique for 5-fold CV protocol and
good improvement for LPO protocol on both the databases.

TABLE 1
COMPARISON OF MULTI-LEVEL DAM WITH A SINGLE ATTENTION BASED

TABLE I
COMPARISON OF MULTI-LEVEL DAM WITH A SINGLE ATTENTION BASED
MODEL FOR ONE TEST CASE OF LPO PROTOCL

Duke Database NEH Database

Networks

Accuracy (%) | Precision (%) | Recall (%) | Accuracy (%) | Precision (%) | Recall (%)
Multi-level DAM 97.38 97.41 97.59 97.91 98.14 97.13
With self attention module only 94.38 94.52 94.84 96.86 96.93 95.62
Normal Normal

(a) Conv 4_2b (b) Flatten

With self-attention
module only

Fig. 3. Comparison of attention maps of different samples of Duke database
obtained from multi-level DAM and single self-attention module based
networks. Here, blue color denotes the highest attention while red denotes
the lowest attention.

Supp C

We have carried out experiments to study the effect of
resizing the scans on the classification performance which is
reported here in Table III. The resizing leads to a marginal
decrease in performance of the network but gives slight reduc-
tion in number of model parameters. Hence, there is a slight
trade-off between obtained performance and the computation
involved with the change in size of the input images.

TABLE III
PERFORMANCE OF MULTI-LEVEL DAM WITH DIFFERENT DIMENSIONS OF
INPUT OCT SCANS.

Input Size Model Parameters Duke pgtabasc NEH ]V)L?[abusc

(in millions) Acuuracy (%) | Precision (%) | Recall (%) | Accuarcy (%) | Precision (%) | Recall (%)
512 x 512 23.56 100 100 100 99.86 99.86 99.86
384 x 384 23.55 100 100 100 99.72 99.72 99.72
224 x 224 23.54 99.97 99.97 99.97 99.62 99.60 99.62
198 x 198 23.54 99.97 99.97 99.97 99.10 99.16 99.10

Supp D

Cross-database analysis of the proposed model has been
shown in Table IV. It can be noted that the performance on
Duke database when the network is trained on NEH database
is better, however, vice-versa case does not hold true. The
overall performance is far below that of the well-practised
protocols and requires new research direction for developing
generic network models.

TABLE IV
CROSS DATABASE ANALYSIS OF THE PROPOSED NETWORK.

MODEL FOR 5-FOLD CV PROTOCOL. Performance Metrics | Trained of Duke tested on NEH | Trained on NEH tested on Duke
Accuracy (%) 43.59 66.58
Networks - o Duke '?“}l‘db“(';;) e . e P‘f‘“‘b‘:f;) R Precision (%) 51.48 82.07
ccuracy (%) | Precision (%) | Recall (%) | Accuracy (%) | Precision (%) | Recall (%
Multi-level DAM 99.97 99.97 99.97 99.62 99.60 99.62 Recall (%) 46.74 61.10

With self attention module only 99.91 99.91 99.91 99.60 99.60 99.60
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