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Abstract vi

Abstract

The thesis deals with 1D and 2D scalar equations governing the dynamic be-

haviour of coated elastic structures. Low-frequency vibration of a composite rod,

beam, rectangular plate and circular plate are studied. The main focus is on physical

effects that occur in composite elastic structures with a thin coating. We start with

two auxiliary 1D problems for two-component rods and beams.

Then elastic waves localised near the edge of a semi-infinite plate reinforced by a

strip plate are considered within the framework of the 2D classical Kirchhoff theory

for plate bending. The boundary value problem for the strip plate is subject to an

asymptotic analysis assuming that a typical wave length is much greater the strip

thickness. As a result, effective conditions along the interface, corresponding to a

plate reinforced by a beam with a narrow rectangular cross-section, are established.

They support an approximate dispersion relation perturbed from that for the homo-

geneous plate with a free edge. The accuracy of the approximate dispersion relation

is tested by comparison with the numerical data obtained from the ’exact’ matrix re-

lation for a composite plate. The effect of the problem parameters on the localisation

rate is studied.

In addition, edge bending waves on a thin isotropic semi-infinite plate reinforced by

a beam are considered within the framework of the classical plate and beam theories.

The boundary conditions at the plate edge incorporate both dynamic bending and

twisting of the beam. A dispersion relation is derived along with its long-wave ap-

proximation. The effect of the problem parameters on the cut-off frequencies of the



wave in question is studied asymptotically. The obtained results are compared with

calculations for the case when the reinforcement takes the form of a plate strip.

Finally, a circular plate reinforced by a thin annular strip of the same thickness is

considered. Asymptotic treatment of a strip circular plate with a free outer edge and

its inner edge subject to prescribed deflection and rotation is presented. The effective

boundary conditions are derived, and approximate dispersion relation is deduced.
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Chapter 1

Introduction

Low-frequency mechanical vibrations of composite elastic structures have

been the subject of extensive studies, see e.g. the classical textbooks [51],[85], and

also [142] for a recent account. In the last few decades, composite elastic structures

have attracted significant interest of scientists due to the appearance of new appli-

cations connected to the development of multi-layered structures with high contrast

in the geometrical and mechanical properties. Multi-layered composite structures

with high-contrast material parameters possess many industrial applications. For

instance, in aircraft and aerospace engineering, multi-layered structures are widely

used, see e.g. [21],[22],[97]. Other obvious applications include solar panels and

laminated glass [15],[100]. We also mention a related sub-area of acoustic metama-

terials, see [32] and [132]. In addition, there are promising applications of coated

structures, related to rapidly developing fields in modern engineering and technol-

ogy, in particular, associated with structural mechanics and biomedical sciences, see

e.g. [23],[28],[54],[86],[106],[109],[121], [135].
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Chapter 1. Introduction 2

Composite elastic structures are produced by combining two or more materials. These

may often have high-contrast properties, say, in stiffness, density and geometrical pa-

rameters. The main reason for the popularity of layered structures is that by putting

two or more materials together one may result in a structure with unique proper-

ties which are different from each of the individual materials’ properties. Thus, the

desirable properties of multi-layered structures, for example, increasing stiffness and

at the same time reducing the overall weight the of structure, can be obtained by

choosing an appropriate combination of materials. This provides a motivation for

investigation of the dynamics of such composite and layered elastic structures.

Propagation of waves in elastic sandwich plates are still among the popular research

directions of elasticity. Many types of sandwich plates have been the subject of

interest for a long period due to their wide implementation in civil and aircraft engi-

neering. The first analytical investigation of bending and buckling in sandwich plates

was seemingly made by Reissner in [117]. He considered a plate consisting of a core

layer with two facing membranes both identical, where his analysis relied on assump-

tion that the face-parallel stresses in the core and the face stresses over the thickness

of the membranes are negligible. Then, Reissner’s problem was modified, and the

governing equations for the sandwich plates with orthotropic cores were related to

the bi-harmonic equations from classical plate theory, see [30].
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Later, numerous papers studying vibrations in sandwich plates have appeared, using

mainly numerical computations, however, asymptotic methods have been employed

as well, for a review of these achievements see [26],[53],[103]. Among the relatively

recent contributions on the subject we mention [7],[15],[20],[27],[67],[94] dealing with

analysis of the dispersion phenomenon in sandwich structures. It is known that

the asymptotic structures in a single-layered plate for bending, extension, thickness

stretch resonance and thickness shear resonance phenomenon are preserved within

the multi-layer problem. A step forward in study of wave propagation in layered

structures has been made through a recently developed multiparametric analysis,

incorporating high-contrast properties, allowing unexpected low cut-off frequencies,

and, as a result, requiring special two-mode long-wave low frequency theories for the

bending of sandwich plates, see [67], resulting on the simpler considerations for elastic

rods [68],[72].

The presence of a thin layer in composite elastic structures, including coated ones,

stimulates the use of asymptotic methods in order to rely on a small geometric param-

eter, typically the ratio between the thickness of the layer and a typical length, which

emerges naturally in the analysis. Asymptotic methods have also been very popu-

lar in statics and low-frequency dynamics of thin plates [4],[43],[47],[116] and shells

[13],[14],[48],[80]. A number of contributions, applying asymptotic methods in more

general dynamic problems considering long-wave high-frequency [49],[52],[60] and

short-wave high-frequency [118] regions. In addition, the method of direct asymptotic
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integration of the equations in elasticity [50],[58],[59], were also applied in more gen-

eral dynamic problems with high-frequency approximations considered for both long-

and short-wave limits. We also mention here papers [5],[6],[10],[11],[12],[40] develop-

ing asymptotic approaches to contact problems in layered structures, pre-stressed

and anisotropic materials investigated in [2],[25],[59],[63],[83], [102],[111],[112],[119],

and bodies with clamped faces studied in [57],[62]. We also note the deep parallels

between long-wave asymptotic theories for functionally graded waveguides and peri-

odic structures observed in [33].

One of the popular asymptotic methods in modelling the effect of a thin coating

is to derive the so-called ”effective boundary conditions”, imposed on the interface

between the coating and substrate. Over the last few decades, a number of studies

of effective boundary conditions have been presented. Originally, Tiersten in [131]

was the first to derive such conditions using adhoc considerations originating from

the classical theory of plate extension. Three decades later the problem was revis-

ited in [24] and suggested that the results of [131] are not asymptotically consistent.

A perturbation scheme in [34], accounting for the influence of the coating, revealed

that the extra terms in [24] are in fact of a higher order, and also justified at leading

order the consistency of the original effective boundary conditions in [131]. It can be

seen that the boundary conditions in [24] were also discussed after the publication of

the critical comments in [34], e.g. see [46],[95],[141] along with [110],[143]. Among

numerous publications on the subject, we mention [18],[19],[101],[140]. Recently, the

refined effective boundary conditions were proposed in [74]. The effective boundary
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conditions illustrating the effect of an isotropic elastic layer are established in [137],

anisotropic elastic layer in [149],[150], and in particular orthotropic elastic layer in

[136],[139].

The effective boundary conditions provide an approximate formulation for studying

surface wave propagation in coated elastic solids, see e.g. [34],[66],[138], and also a

recent achievement [73], allowing surface waves in case of a coated half-space with a

clamped surface. One of the novel results in this thesis is related to consideration of

other types of localised waves in coated solids, i.e. bending edge waves.

Localised elastic waves have a long and interesting history. It began with the famous

paper [115] by Lord Rayleigh, describing the waves propagating along the surface of

an elastic half-space and decaying away into the interior. Then, after the discovery of

the Rayleigh wave in an elastic half-space, edge waves in semi-infinite elastic plates

were considered. Generally, edge waves occurring in elastic structures, can be divided

into two main parts, namely, into flexural and extensional edge waves. The exten-

sional edge waves are longitudinal ones propagating along the edge of a material, see

e.g. [113] and references therein. We also mention the fundamental contribution [43]

which derived the approximate boundary conditions at the free edge of the Kirch-

hoff plate. Konenkov [79] was the first to demonstrate the existence of flexural edge

waves in a semi-infinite isotropic thin elastic plate, see [104] discussing the interesting

history of discovery of flexural edge waves. It indicated that Konenkov discovered
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these waves within the framework of Kirchhoff plate theory. Unfortunately, his re-

sult was not widely known in the western scientific circles limited by the scarcity

of Soviet literature available at that time. After 14 years, the bending edge waves

were rediscovered independently by Sinha in [126] and Thurston and McKenna in

[130]. As found recently, there was also an earlier underlying work [55] within the

framework of the stability of elastic plates, for more details and a more recent review

of achievements see [84]. A related problem of edge resonance has been studied in

[45],[107],[120],[123],[133],[152].

In the following years, the edge bending wave on an elastic plate has received much

attention, taking into consideration effects of anisotropy, contact with elastic founda-

tions, and three dimensional dynamic phenomena. We also mention [44] and [93] deal-

ing with edge waves propagating along the edge of unsymmetrical plates. Among con-

siderations of edge waves within 3D formulation of elasticity, we cite [44],[69],[81] and

[151]. Another recent approach is related to development of asymptotic parabolic-

elliptic models for edge bending waves [64],[65],[70]. The latter consists of a parabolic

beam-like equation along the edge complemented with a ‘pseudo-static’ elliptic equa-

tion describing decay over the interior. They enable one extract the edge wave con-

tribution from the overall dynamic response and appear to be in line with a general

physical idea of edge wave phenomena. Its generalisation to the wave on a stiffened

edge of ‘plate-beam’ structures appears to be of interest.

Stiffened plates are important components of civil, aerospace and naval structures
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[42],[77],[98],[105],[125]. In spite of numerous contributions analysing their dynamic

behaviour, e.g. see [31],[89],[90],[92],[99],[114],[144],[147], the bending wave localised

near a reinforced plate edge has not yet been investigated. Such a wave has been

studied in a great detail for a homogeneous plate with a traction free edge, beginning

with the paper [79], see also the review articles [84] and [104] along with more recent

publications [61],[71] dealing with an elastically supported plate.

In contrast to the non-dispersive Rayleigh wave on an elastic half-space described by

a hyperbolic-elliptic formulations, the edge bending wave on a plate demonstrates dis-

persion governed by a specialised parabolic-elliptic model [65], [70]. Another distinct

feature for the bending edge wave is their remarkably low decay rate, degenerating

at zero Poisson ratio, see the references above. It might be expected that an edge

reinforcement would control the localisation of the edge wave. In many cases the

reinforcement apparently can be modelled by a plate strip or a beam attached to the

edge governed by 1D or 2D equations, respectively.

Static and dynamic behaviour of stiffened plates was intensively studied in numerous

publications within the framework of the classical bending theories for plates and

beams also taking into consideration beam torsion, see e.g. [37],[38],[91],[108],[122].

At the same time, to the best of the authors’ knowledge, edge waves in stiffened

plates have only been analysed in two papers [17],[96], dealing with a semi-infinite

strip with simply supported sides. Bending vibrations of an elastic strip were earlier

investigated in various setups, e.g. see [78]. We also mention the recent contributions
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[8] and [9] treating a semi-infinite plate reinforced by a beam or flexural strip along

the edge, more details of which will be presented in Chapters 3 and 4.

A further extension of our results is related to circular plates, originating from Airy

in [3]. One of the first studies of flexural vibrations of axially symmetric circular

disks was by Deresiewicz and Mindlin [35] where they have used the classical thin

plate theory as well as Mindlin plate theory to obtain mode shapes for free circular

disks. The free vibration of axisymmetric orthotropic non-uniform circular discs with

shear deformation has been studied in [128] using Chebyshev collocation technique

and Mindlin plate theory. A number of papers dealing with circular plates, include in

particular [29],[41] studying vibrations of plates with clamped edges, [56],[127],[153]

analysing vibrations within 3D framework, also accounting for the effects of nonlinear-

ity [129],[134], variable thickness [124],[145], edge supports [16],[88], as well as study-

ing vibrations in circular plates within the framework of Mindlin theory [87],[146].

The waves localised near the edge of a circular disk were studied by Destrade and Fu

in [36].

The present study is concerned with analysis of the propagation of flexural edge waves

in case of the edge stiffened by thinly coated plate. The particular focus of this work

is on physical effects which occur in composite coated elastic structures. First, two

auxiliary problems for a composite rod and composite beam will be considered in

Chapter 2. The continuity conditions are assumed between the components. The

analysis is carried out for the case of one end being fixed, and another subject to

external loading. Starting from the equations of motion for harmonic waves, the
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expressions for displacements for the left and right components are determined. The

asymptotic analysis is carried out by using the asymptotic integration method to

obtain the effective stress in rod and moment and shear force in the beam on the

interface between the components. In other words, the effective boundary condi-

tions are derived, replacing the effect of the loading through the geometrically small

components. In addition, the exact solution is also expanded in Taylor series and

compared with the asymptotic results in order to have additional verification of the

solution.

In Chapter 3 we restrict ourselves to a semi-infinite plate perfectly bonded with a

narrow strip plate of the same thickness, within the framework of the Kirchoff theory.

We develop an asymptotic approach based on the derivation of effective conditions

along the structure’s interface, similarly, in a sense, to the developments for a coated

elastic half-space, e.g. see [34], justifying at leading order the widely known effective

conditions in [131] established using adhoc arguments.

The main part of this Chapter 3 is concerned with asymptotic treatment of a flexural

strip with a free upper edge and its lower edge subject to prescribed deflection and

rotation. The long-wave limit is analysed assuming that a typical wavelength is

much greater than the strip width. In contrast to a coated half-space, the simplest

effective conditions for a reinforced plate follow only from a fourth order asymptotic

expansion in small width for deflection, since the shear force at the lower edge of

interest is proportional to the fourth order deflection derivative. The consistency

of the derived effective conditions is tested by comparison with the leading-order
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behaviour of the exact space and time-harmonic solution of the original problem for

a flexural strip. As might be expected, the derived effective boundary conditions

may be re-written in terms of a beam attached to the edge of the plate. The last

formulation was previously used for static and dynamic analysis of reinforced plates,

e.g. see [38],[39],[91],[108].

The proposed conditions are then adapted for obtaining an approximate dispersion

relation for the sought for edge wave. An explicit correction, expressing the effect of

the reinforcement, readily comes from the shortened relation and seems to be useful

for a better qualitative insight into the influence of the density and stiffness of the

plate strip material on edge wave propagation. Approximate results are displayed

along with the numerical data calculated from the full dispersion relation for a com-

posite plate taking the form of the determinant of a six-order matrix. The influence

of the density and stiffness of the plate strip material on the edge wave propagation

is discussed. In addition, we extend our work in two cases which are a clamped and

mixed upper edge, with its lower edge subject to prescribed deflection and rotation.

Chapter 4 is concerned with bending vibrations localised along the edge of a semi-

infinite plate, stiffened by a beam. A dispersion relation is derived together with its

long-wave asymptotic approximations. At the leading order the latter coincides with

the dispersion relation for the plate bending wave on a free edge [79]. Next order

solution reveals the influence of stiffening on the edge wave localisation. Using the

results of Chapter 3, a comparison of the dispersion relation for a plate reinforced

by a beam with a narrow rectangular cross-section and that for a plate reinforced
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by a flexural strip is performed, justifying the adapted ‘plate-beam’ formulation. As

might be expected the theory for a plate stiffened by a narrow beam is only valid

over the long-wave region, and as we move outside of it, the distinction between the

plate and beam reinforcement results becomes more pronounced.

The effect of material and geometric parameters on edge wave localisation is also

investigated. A special focus is on the asymptotic evaluation of the cut-offs of the

studied edge wave which have been earlier discovered in [17],[96]. The possible situa-

tion when the cut-offs are located outside the range of validity of the adapted classical

structural theories is addressed.

Finally, in Chapter 5 we extend the previous results to a finite circular plate per-

fectly bonded with a narrow annular strip plate of the same thickness. We focus

on asymptotic treatment of a thin annular plate strip with a free outer edge and its

inner edge subject to prescribed deflection and rotation. Following a usual procedure

described in Chapter 3, the effective boundary conditions are derived, along with the

approximate dispersion relation. Then we conclude in Chapter 6.



Chapter 2

Harmonic vibrations of a

composite beam and rod

This chapter describes harmonic vibrations of a composite beam and rod. In

Section 2.1, we review harmonic vibrations of a composite rod. We obtain the ex-

act solution for a two component rod in dimensionless variables and investigate it

asymptotically. We also tested the asymptotic results obtained. In Section 2.2, we

extend our work to investigation of vibrations in a composite beam. At the right end

of a composite beam, two cases of the boundary conditions are imposed. In the first

one we assume no transverse shear force at the right end while in the second case we

consider no moment in the same end. To do this we introduced appropriate scaling

for frequencies together with corresponding dimensionless spatial variables and ob-

tained the exact solution for a two component beam. Next, the asymptotic analysis

is carried out by using the asymptotic integration method to obtain the effective mo-

ment and shear force in the beam on the interface between the components. Then,

12
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the validation of the asymptotic results are obtained and comparison of asymptotic

solution and exact solution is presented.

2.1 Harmonic axial vibrations of a composite rod

2.1.1 Problem statement

x

0

12

l - H

F

Figure 2.1: A composite rod

For the 1D analysis of laminated structures we start with rather basic problem con-

sidering a linear elastic two-component rod of finite length. Both components are

assumed to be isotropic. Let the x axis be taken to lie along the rod with the length

of the components (l−H) and H with a force F applied at the right end of the rod.

(see Figure 2.1).

Hereinafter the index 1 will be used to denote problem parameters and variables

corresponding to the right component, whereas the index 2 will denote the same for

the left component.

The equations of motion can be written in the form [82]

d2uj
dx2

+
ω2

c2j
uj = 0, j = 1, 2 (2.1)
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where uj are the longitudinal displacements, cj =
√

Ej
ρj

are the wave speeds, Ej are

the Young’s moduli, ρj are the material densities for the relevant component of the

rod and ω is frequency.

The boundary conditions are taken in the form

u2 = 0 at x = 0,

E1
du1
dx

= F at x = l. (2.2)

Traction and displacement continuity at the interface between the components is

given by

u1 = u2 at x = l −H,

and

E1
du1
dx

= E2
du2
dx

at x = l −H. (2.3)

The general solution of the linear ordinary differential equations with constant coef-

ficient (2.1) is given by

uj = A(j) cos
ω

cj
x+B(j) sin

ω

cj
x, j = 1, 2 (2.4)

where A(j) and B(j) are arbitrary constants.

Substituting (2.4) into the boundary conditions (2.2) and continuity relations (2.3)
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leads to A(2) = 0 and the system of three simulate equations



−s sin(s) s cos(s) 0

cos(s1) sin(s1) − sin(s2)

−E1

c1
sin(s1)

E1

c1
cos(s1)

−E2

c2
cos(s2)





A(1)

B(1)

B(2)


=



Fl

E1

0

0


, (2.5)

where s =
ωl

c1
, s1 =

ω(l −H)

c1
, s2 =

ω(l −H)

c2
, which possesses non-trivial solutions.

Using Cramer’s rule, we get the exact solution as

u1 =

c1F

(
E1c2 sin(s2) cos

(
ωx

c1
− s1

)
+ E2c1 cos(s2) sin

(
ωx

c1
− s1

))
E1ω (E1c2 sin (s− s1) sin(−s2) + E2c1 cos (s− s1) cos(−s2))

, (2.6)

u2 =

c1c2F sin

(
xω

c2

)
E1c2ω sin (s− s1) sin(−s2) + E2c1ω cos (s− s1) cos(−s2)

, (2.7)

where A(j) and B(j) are presented in Appendix A.1.
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2.1.2 Dimensionless equations

In order to investigate exact solutions asymptotically, we convert all variables into

dimensionless form. We introduce the following dimensionless variables

ξ1 = (
x

l
− 1)

1

ε
+ 1, ξ2 =

x

l −H
, Ω =

ωl

c1
and ε =

H

l
� 1 is assumed to be small.

Now we can rewrite the exact solutions (2.6) and (2.7) in dimensionless form as

u1 =
E1Fl sin(cΩ(ε− 1)) cos (ξ1Ωε)− E2cF l cos(cΩ(ε− 1)) sin (ξ1Ωε)

E2
1Ω sin(Ωε) sin(cΩ(1− ε))− E1E2cΩ cos(Ωε) cos(cΩ(ε− 1))

, (2.8)

u2 =
Fl sin (cξ2Ω(1− ε))

E2cΩ cos(Ωε) cos(cΩ(ε− 1))− E1Ω sin(Ωε) sin(cΩ(1− ε))
, (2.9)

where c =
c1
c2

.

In order to confirm our result we are setting x = l − H which implies ξ1 = 0 and

ξ2 = 1 when ε→ 0 into (2.8) and (2.9), we obtain

u1 = u2 =
Fl

E2cΩ
tan(cΩ),

which is an additional verification of the solution.
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2.1.3 Asymptotic analysis of a composite rod

In this section, we apply an asymptotic approach to obtain an approximate solution

for a two-component rod. In particular, we restrict our attention to perturbation

scheme for u1. To this aim, we use dimensionless variables in the above section to

rewrite the equation of motion (2.1) as

d2u1
dξ21

+ ε2Ω2u1 = 0, (2.10)

subject to

u1 = uH , at ξ1 = 0,

du1
dξ1

= ε
lF

E1

at ξ1 = 1, (2.11)

where function uH =
Fl

E2cΩ
tan(cΩ) is a given displacement on the interface.

A deflection u1 can be expanded into an asymptotic series in terms of ε as

u1 = u
(0)
1 + u

(1)
1 ε+ u

(2)
1 ε2 + u

(3)
1 ε3 + u

(4)
1 ε4 + . . . (2.12)

Substituting expansion (2.12) into the boundary value problem (2.10)-(2.11), we ar-

rive at the problem formulated for various asymptotic orders n = 0, 1, 2, . . . , namely

d2u
(n)
1

dξ21
+ Ω2u

(n−2)
1 = 0, (2.13)
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subject to

u
(n)
1 = u

(n)
H , ξ1 = 0,

du
(n)
1

dξ1
=
l(n)F (n)

E
(n)
1

at ξ1 = 1,

(2.14)

where quantities with the negative superscript are set to be equal to zero. The only

non-zero components u
(n)
H and

l(n)F (n)

E
(n)
1

are u
(0)
H = uH and

l(1)F (1)

E
(1)
1

=
lF

E1

, respectively.

Substituting subsequently n = 0, 1, 2, 3 and 4 into (2.13)-(2.14) we obtain corrections

for a displacement u1 in the form

u
(0)
1 = uH ,

u
(1)
1 =

lF

E1

ξ1,

u
(2)
1 = Ω2uH

(
− 1

2
ξ21 + ξ1

)
,

u
(3)
1 =

lF

E1

Ω2
(
− 1

6
ξ31 +

1

2
ξ1

)
,

u
(4)
1 = Ω4uH

( 1

24
ξ41 −

1

6
ξ31 +

1

3
ξ1

)
.

(2.15)

Finally, using expansion (2.15) together with the following relation

σ1 =
E1

H

du1
dξ1

(2.16)

to obtain stress on the interface at ξ1 = 0 in the form

σ1 = F +
Ω2E1

l
uHε+

1

2
FΩ2ε2 +

1

3

E1Ω
4

l
uHε

3 + ..... (2.17)
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Thus, the original problem may be reduced to consideration of the left component

only with the effective force (2.17).

2.1.4 Testing of asymptotic results

In order to validate the asymptotic results obtained in the previous section, consider

a problem for the right component over the domain l − H 6 x 6 l. We take the

equation of motion (2.10) subject to boundary conditions (2.11). The solution of the

formulated problem is then sought for in the form (2.4) for j = 1, and we finally

arrive at a set of two linear algebraic equations which can be written in a matrix

form as

 − sin(Ω) cos(Ω)

cos((1− ε)Ω) sin((1− ε)Ω)


A(1)

B(1)

 =


Fl

E1Ω

uH

 . (2.18)

The sought for constants A(1) and B(1) are presented in Appendix A.2.

Next, we rewrite the solution (2.4) for u1 in terms of dimensionless variables and

expand it into Taylor series about ε = 0 arriving at the asymptotic expansion

u1 = uH +
Flξ1
E1

ε− 1

2

(
(ξ1 − 2) ξ1Ω

2uH
)
ε2 − (Flξ1 (ξ21 − 3) Ω2)

6E1

ε3

+
1

24
ξ1
(
(ξ1 − 4) ξ21 + 8

)
Ω4uHε

4 +O
(
ε5
)
. (2.19)

Clearly, the remainder also includes higher powers of Ω. It can be easily confirmed

that formula (2.19) coincides with asymptotic solution (2.12) which is an additional

verification of the asymptotic solution.
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Let us now test the stress on the interface at ξ1 = 0. Substituting (2.19) into (2.16),

we obtain (2.17) as expected.

Now, we would like to find the asymptotic solution for the left component. We can

rewrite the equation of motion (2.1) in the following form

d2u2
dξ22

+ (1− ε)2c2Ω2u2 = 0, (2.20)

subject to

u2 = 0, at ξ2 = 0,

du2
dξ2

=
Fl

E2

(1− ε) +
FlΩ2

2E2

ε2(1− ε) +
Ω2E1

E2

ε(1− ε)(1 +
1

3
Ω2ε2)u2 at ξ2 = 1.

(2.21)

We also rewrite the general solution (2.4) in dimensionless variables for j = 2 as

u2 = A(2) cos(Ωc(1− ε)ξ2) +B(2) sin(Ωc(1− ε)ξ2). (2.22)

Substituting (2.22) into the boundary conditions (2.21) leads to A(2) = 0 and

B(2) =
1

m1

(Fl
E2

(1− ε)(1 +
Ω2ε2

2
)
)

,

where

m1 = Ωc(1− ε) cos((1− ε)cΩ)− Ω2E1

E2

ε(1− ε)(1 +
1

3
Ω2ε2) sin((1− ε)cΩ).

Then we get the asymptotic solution for the left component as

u2 = − 3Fl (Ω2ε2 + 2) sin (cξ2Ω(1− ε))
2Ω (E1Ωε (Ω2ε2 + 3) sin(cΩ(1− ε))− 3cE2 cos(cΩ(ε− 1)))

, (2.23)
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where we assume that Ω is not a resonant frequency, so that the denominator is

non-zero. Now, we introduce new dimensionless variable

ũ2 =
u2
l

E2

F
.

Thus, we can rewrite the scaled displacement ũ2, following from the exact solution

(2.9) and the asymptotic solution (2.23) for the left component as

ũ2 =
sin (cξ2Ω(1− ε))

cΩ cos(Ωε) cos(cΩ(ε− 1))− EΩ sin(Ωε) sin(cΩ(1− ε))
, (2.24)

ũ2 = − 3 (Ω2ε2 + 2) sin (cξ2Ω(1− ε))
2Ω (EΩε (Ω2ε2 + 3) sin(cΩ(1− ε))− 3c cos(cΩ(ε− 1)))

+O (ε) , (2.25)

where E =
E1

E2

. Figures 2.2-2.7 demonstrate the exact solution of the left component

ũ2 (2.24), compared with the asymptotic solution (2.25) for the same component for

the values E = 1, c = 1 and several values of Ω and ε. Clearly, with large values of

the frequency Ω the oscillations are becoming more dense. Note that the substantial

difference between approximate and exact solutions in Figure 2.7 is possibly due to the

higher order powers of Ω in the reminder of (2.19). Also, for reasonably small values

of ε, e.g. Figures 2.5, 2.6 the asymptotic solutions is providing a good approximation.

In order to illustrate it further, we present the following Figures 2.8-2.12 showing the

maximum error over 0 ≤ ξ2 ≤ 1 between the exact solution (2.24) and the asymptotic

solution (2.25) with respect to Ω and ε. All Figures 2.8-2.12 demonstrate that the

maximum error is monotonically increasing for increasing frequency.
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0.8

ũ2

ξ2

Figure 2.2: Comparison of asymptotic solution (2.25) (dashed line) and exact
solution (2.24) (solid line) for Ω = 1, ε = 0.6.

0.0 0.2 0.4 0.6 0.8 1.0
0
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ũ2

ξ2

Figure 2.3: Comparison of asymptotic solution (2.25) (dashed line) and exact
solution (2.24) (solid line) for Ω = 1.5, ε = 0.6.
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0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0
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1.0

ξ2

ũ2

ξ2

Figure 2.4: Comparison of asymptotic solution (2.25) (dashed line) and exact
solution (2.24) (solid line) for Ω = 8, ε = 0.1.

0.0 0.2 0.4 0.6 0.8 1.0
-0.2
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0.1

0.2

ξ2

ũ2
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Figure 2.5: Comparison of asymptotic solution (2.25) (dashed line) and exact
solution (2.24) (solid line) for Ω = 10, ε = 0.1.
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Figure 2.6: Comparison of asymptotic solution (2.25) (dashed line) and exact
solution (2.24) (solid line) for Ω = 20, ε = 0.05.
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Figure 2.7: Comparison of asymptotic solution (2.25) (dashed line) and exact
solution (2.24) (solid line) for Ω = 50, ε = 0.05.
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Figure 2.8: The maximum error between asymptotic solution (2.25) and exact
solution (2.24) for ε = 0.6.
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Figure 2.9: The maximum error between asymptotic solution (2.25) and exact
solution (2.24) for ε = 0.1.
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Ω

2.×10-6

4.×10-6

6.×10-6

8.×10-6

0.00001

max error

(0 < ξ2 < 1)

ϵ = 0.05

Figure 2.10: The maximum error between asymptotic solution (2.25) and exact
solution (2.24) for ε = 0.05.
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Figure 2.11: The maximum error between asymptotic solution (2.25) and exact
solution (2.24) for Ω = 1.
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Figure 2.12: The maximum error between asymptotic solution (2.25) and exact
solution (2.24) for Ω = 1.5.
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2.2 Harmonic vibrations of a composite beam

2.2.1 Formulation of the problem

x0

12

l - H

G

N

Figure 2.13: A composite beam

In this section we extend our work from a rod to a beam. We consider a linear elastic

two-component beam of finite length with the components labelled of 1 and 2. These

two-components are characterised with the same geometric small parameter ε � 1

as for a rod. Let the x axis be taken to lie along the beam with the length of the

components (l −H) and H and a moment G applied, along with the modified shear

force N at the right end. (see Figure 2.13). In view of the linearity of the problem,

below we consider two cases separately. In the first case the excitation is purely

moment-type, i.e. N = 0, G 6= 0. The second case is associated with excitation due

to the modified shear force only, thus G = 0, N 6= 0.

Hereinafter the index 1 will be used to denote the quantities corresponding to the

right component, whereas the index 2 will denote the same for the left component.

The equation of motion can be written in the form

Dj
∂4wj
∂x4

− 2ρjhω
2wj = 0, j = 1, 2 (2.26)
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where wj are the transverse displacements, Dj =
2Ejh

3

3(1− ν2j )
are bending stiffness, Ej

are the Young’s moduli, ρj are the material densities for relevant components of the

beam and ω is frequency.

The boundary conditions at the clamped left end of a beam are taken in the form

w2 = 0,
∂w2

∂x
= 0, at x = 0. (2.27)

At the right end of a beam two cases of the boundary conditions are imposed .

We consider two cases. In the first one we assume no transverse shear force at the

end (N = 0),

D1
∂2w1

∂x2
= G,

∂3w1

∂x3
= 0, at x = l, (2.28)

and in the second case we assume no moment at the end (G = 0),

∂2w1

∂x2
= 0, D1

∂3w1

∂x3
= N, at x = l. (2.29)

Traction and displacement continuity relations at the interface between the compo-

nents are given by

w1 = w2,
∂w1

∂x
=
∂w2

∂x
, D1

∂2w1

∂x2
= D2

∂2w2

∂x2
,

D1
∂3w1

∂x3
= D2

∂3w2

∂x3
at x = (l −H). (2.30)

The general solution of linear ordinary differential equations (2.26) is given by

wj = α
(j)
1 sinh(βjx) + α

(j)
2 cosh(βjx) + α

(j)
3 cos(βjx) + α

(j)
4 sin(βjx), j = 1, 2 (2.31)
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where α
(j)
i , i = 1− 4 are arbitrary constants and βj =

(
2ρjhω

2

Dj

) 1
4

.

2.2.2 First case (excitation by bending moment)

Substituting general solution (2.31) into the boundary conditions (2.27), (2.28) and

continuity relations (2.30) leads to the relations α
(2)
3 = −α(2)

2 , α
(2)
4 = −α(2)

1 , which

simplifies the original 8 × 8 system to a set of six linear algebraic equations which

can be written in a matrix form as

Qb · α = Ub, (2.32)

where α =
(
α
(1)
1 , α

(1)
2 , α

(1)
3 , α

(1)
4 , α

(2)
1 , α

(2)
2

)T
, Ub =

(
0,

G

D1β2
1

, 0, 0, 0, 0

)T
are vectors

and Qb is a 6× 6 matrix with the non-zero components given by

Qb
11 = cosh(β1l), Q

b
12 = sinh(β1l), Q

b
13 = sin(β1l), Q

b
14 = − cos(β1l),

Qb
21 = sinh(β1l), Q

b
22 = cosh(β1l), Q

b
23 = − cos(β1l), Q

b
24 = − sin(β1l),

Qb
31 = sinh(β1(l −H)), Qb

32 = cosh(β1(l −H)),

Qb
33 = cos(β1(l −H)), Qb

34 = sin(β1(l −H)),

Qb
35 = sin(β2(l −H))− sinh(β2(l −H)),

Qb
36 = cos(β2(l −H))− cosh(β2(l −H)),
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Qb
41 = β1 cosh(β1(l −H)), Qb

42 = β1 sinh(β1(l −H)),

Qb
43 = −β1 sin(β1(l −H)), Qb

44 = β1 cos(β1(l −H)),

Qb
45 = β2(cos(β2(l −H))− cosh(β2(l −H))),

Qb
46 = −β2(sin(β2(l −H)) + sinh(β2(l −H))),

Qb
51 = D1β

2
1 sinh(β1(l −H)), Qb

52 = D1β
2
1 cosh(β1(l −H)),

Qb
53 = −D1β

2
1 cos(β1(l −H)), Qb

54 = −D1β
2
1 sin(β1(l −H)),

Qb
55 = −D2β

2
2(sin(β2(l −H)) + sinh(β2(l −H)),

Qb
56 = −D2β

2
2(cos(β2(l −H)) + cosh(β2(l −H))),

Qb
61 = D1β

3
1 cosh(β1(l −H)), Qb

62 = D1β
3
1 sinh(β1(l −H)),

Qb
63 = D1β

3
1 sin(β1(l −H)), Qb

64 = −D1β
3
1 cos(β1(l −H)),

Qb
65 = −D2β

3
2(cos(β2(l −H)) + cosh(β2(l −H))),

Qb
66 = D2β

3
2(sin(β2(l −H))− sinh(β2(l −H))). (2.33)

The sought for constants α
(1)
1 , α

(1)
2 , α

(1)
3 , α

(1)
4 , α

(2)
1 , α

(2)
2 are presented in Appendix B.1.

Using Cramer’s rule to solve (2.32), we get the exact solution as

w1 =
(
−
(

1

2
− i

2

)
G
(
−
(

(1 + i) cos ((l − x)β1) + i cos (((1 + i)H − il + ix)β1)

− cos (((1 + i)H − l + x)β1)− (1 + i) cosh ((l − x)β1)− i cosh
(

((1 + i)H − il

+ix)β1

)
+ cosh (((1 + i)H − l + x)β1)

)(
cos ((l −H)β2) cosh ((l −H)β2)

−1
)
D2

1β
4
1 + 2D1D2β2

(
i
(

cosh ((H − l + x)β1) sin (Hβ1)− cos ((H − l + x)β1)
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× sinh (Hβ1)
)

(sin ((1 + i)(l −H)β2)− sinh ((1 + i)(l −H)β2)) β
2
1

−
(

cos (((1 + i)H − il + ix)β1) + i cos (((1 + i)H − l + x)β1)

+ cosh
(

((1 + i)H − il + ix)β1

)
+ i cosh (((1 + i)H − l + x)β1)

)
sin ((l −H)β2)

× sinh ((l −H)β2) β2β1 −
(

cosh (Hβ1) sin ((H − l + x)β1) + cos (Hβ1)

× sinh ((H − l + x)β1)
)(

sin ((1 + i)(l −H)β2) + sinh ((1 + i)(l −H)β2)
)
β2
2

)
β1

+
(

(1 + i) cos ((l − x)β1)− i cos (((1 + i)H − il + ix)β1)

+ cos (((1 + i)H − l + x)β1)− (1 + i) cosh ((l − x)β1)

+i cosh (((1 + i)H − il + ix)β1)− cosh (((1 + i)H − l + x)β1)
)(

cos ((l −H)β2)

× cosh ((l −H)β2) + 1
)
D2

2β
4
2

))(
D1β

2
1

(
2 (cos (Hβ1) cosh (Hβ1)− 1)

× (cos ((H − l)β2) cosh ((H − l)β2)− 1)D2
1β

4
1

+D1D2β2

(
(sin ((1 + i)Hβ1) + sinh ((1 + i)Hβ1))

(sin ((1 + i)(H − l)β2)− sinh ((1 + i)(H − l)β2)) β2
1

−4 sin (Hβ1) sin ((H − l)β2) sinh (Hβ1) sinh ((H − l)β2) β2β1

+ (sin ((1 + i)Hβ1)− sinh ((1 + i)Hβ1))

(sin ((1 + i)(H − l)β2) + sinh ((1 + i)(H − l)β2)) β2
2

)
β1 + 2

(
cos (Hβ1)

× cosh (Hβ1) + 1
)

(cos ((H − l)β2) cosh ((H − l)β2) + 1)D2
2β

4
2

))−1

, (2.34)
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and

w2 =
(
G
(

2 (sinh (β2x)− sin (β2x))
(
β2
1D1

(
β1 (sin (β1H) + sinh (β1H))

×
(

cos (β2(H − l))− cosh (β2(H − l))
)
− β2 (cos (β1H)− cosh (β1H))

× (sin (β2(H − l)) + sinh (β2(H − l)))
)

+ β2
2D2

(
β1 (sin (β1H)− sinh (β1H))

× (cos (β2(H − l)) + cosh (β2(H − l))) + β2 (cos (β1H) + cosh (β1H))

× (sinh (β2(H − l))− sin (β2(H − l)))
))
− (cosh (β2x)− cos (β2x))

×
(

2β2
1D1

(
β1

(
sin (β1H) + sinh (β1H)

)
(sinh (β2(H − l))− sin (β2(H − l)))

−β2 (cos (β1H)− cosh (β1H)) (cos (β2(H − l))− cosh (β2(H − l)))
)

−2β2
2D2

(
β1 (sin (β1H)− sinh (β1H)) (sin (β2(H − l)) + sinh (β2(H − l)))

+β2 (cos (β1H) + cosh (β1H)) (cos (β2(H − l)) + cosh (β2(H − l)))
))))

×
(

4β2

(1

2
β2β1D1D2

(
β2
1 (sin ((1 + i)β1H) + sinh ((1 + i)β1H))

×
(

sin ((1 + i)β2(H − l))− sinh ((1 + i)β2(H − l))
)

−4β2β1 sin (β1H) sinh (β1H) sin (β2(H − l)) sinh (β2(H − l))

+β2
2 (sin ((1 + i)β1H)− sinh ((1 + i)β1H))

(
sin ((1 + i)β2(H − l))

+ sinh ((1 + i)β2(H − l))
))

+ β4
1D

2
1 (cos (β1H) cosh (β1H)− 1)

× (cos (β2(H − l)) cosh (β2(H − l))− 1) + β4
2D

2
2 (cos (β1H) cosh (β1H) + 1)

× (cos (β2(H − l)) cosh (β2(H − l)) + 1)
))−1

. (2.35)
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2.2.2.1 Dimensionless equations

We convert all variables into dimensionless form in order to investigate the exact solu-

tion asymptotically. We introduce the following dimensionless variables and problem

parameters

Ω4 =
2ρ1hω

2l4

D1

, ξ1 = (
x

l
− 1)

1

ε
+ 1, ξ2 =

x

l −H
and ε =

H

l
� 1. (2.36)

Now we can rewrite the exact solutions (2.34) and (2.35) in the dimensionless form

as

w1 =
(
−
(

1

2
+
i

2

)
Gl2
(
υ4(cos(υ(ε− 1)ρΩ) cosh(υ(ε− 1)ρΩ) + 1)

×
(

cos (εΩ (ξ1 − 1)) + cosh(εΩ) (cos (εΩξ1)− cosh (εΩξ1))− cos(εΩ) cosh (εΩξ1)

− sin (εΩξ1) sinh(εΩ) + (sinh(εΩ)− sin(εΩ)) sinh (εΩξ1)
)
D2

2ρ
4 + 2υ

(
sinh(εΩ)

×
(

cosh(υ(ε− 1)ρΩ) sin(υ(ε− 1)ρΩ)
(
υ2 cos(εΩ) cosh (εΩ (ξ1 − 1)) ρ2

+ cos (εΩξ1)− sin(εΩ) sinh (εΩ (ξ1 − 1))
))

+ sinh(υ(ε− 1)ρΩ)

×
(
− cos(υ(ε− 1)ρΩ) cos (εΩξ1) + υρ

(
cosh (εΩ (ξ1 − 1)) (υρ cos(εΩ)

× cos(υ(ε− 1)ρΩ) + sin(εΩ) sin(υ(ε− 1)ρΩ)− sin(υ(ε− 1)ρΩ) sin (εΩξ1)
)

+(cos(υ(ε− 1)ρΩ) sin(εΩ)− υρ cos(εΩ) sin(υ(ε− 1)ρΩ)) sinh (εΩ (ξ1 − 1))
))

+ cosh(εΩ)
(

cosh(υ(ε− 1)ρΩ) sin(υ(ε− 1)ρΩ)
(
υ2ρ2

(
sin (εΩξ1)

+ cos(εΩ) sinh (εΩ (ξ1 − 1))
)
− cosh (εΩ (ξ1 − 1)) sin(εΩ)

)
+ sinh(υ(ε− 1)ρΩ)

(
cosh (εΩ (ξ1 − 1)) (cos(υ(ε− 1)ρΩ) sin(εΩ)

−υρ cos(εΩ) sin(υ(ε− 1)ρΩ)) + υρ
(
− cos (εΩξ1) sin(υ(ε− 1)ρΩ)
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+υρ cos(υ(ε− 1)ρΩ) sin (εΩξ1) + (υρ cos(εΩ) cos(υ(ε− 1)ρΩ)

+ sin(εΩ) sin(υ(ε− 1)ρΩ)) sinh (εΩ (ξ1 − 1))
))))

D1D2ρ− (cos(υ(ε− 1)ρΩ)

× cosh(υ(ε− 1)ρΩ)− 1)
(

cos (εΩ (ξ1 − 1)) + cos(εΩ) cosh (εΩξ1)

− cosh(εΩ) (cos (εΩξ1) + cosh (εΩξ1)) + sin (εΩξ1) sinh(εΩ)

+(sin(εΩ) + sinh(εΩ)) sinh (εΩξ1)
)
D2

1

))(
Ω2υ1

(
(1 + i)υ4

×(cos(εΩ) cosh(εΩ) + 1)(cos(υ(ε− 1)ρΩ) cosh(υ(ε− 1)ρΩ) + 1)D2
2ρ

4

+υ
(

cosh(εΩ) sin(εΩ)
( (
υ2ρ2 + i

)
sin((1 + i)υ(ε− 1)ρΩ)

+
(
υ2ρ2 − i

)
sinh((1 + i)υ(ε− 1)ρΩ)

)
−(1 + i) sinh(εΩ)

( (
υ2ρ2 − 1

)
cos(εΩ) cosh(υ(ε− 1)ρΩ) sin(υ(ε− 1)ρΩ)

+
( (
υ2ρ2 + 1

)
cos(εΩ) cos(υ(ε− 1)ρΩ)

+2υρ sin(εΩ) sin(υ(ε− 1)ρΩ)
)

sinh(υ(ε− 1)ρΩ)
))
D1D2ρ+ (1 + i)(cos(εΩ)

× cosh(εΩ)− 1)(cos(υ(ε− 1)ρΩ) cosh(υ(ε− 1)ρΩ)− 1)D2
1

))−1

, (2.37)

and

w2 =
(
Gl2
(

(sinh (υξ2ρΩ(1− ε))− sin (υξ2ρΩ(1− ε)))
(
υ3D2ρ

3(cos(Ωε)

+ cosh(Ωε))(sin(υρΩ(1− ε))− sinh(υρΩ(1− ε))) + υ2D2ρ
2(sin(Ωε)

− sinh(Ωε))(cos(υρΩ(ε− 1)) + cosh(υρΩ(ε− 1)))

+υD1ρ(cos(Ωε)− cosh(Ωε))(sin(υρΩ(1− ε)) + sinh(υρΩ(1− ε)))

+D1(sin(Ωε) + sinh(Ωε))(cos(υρΩ(ε− 1))− cosh(υρΩ(ε− 1)))
)
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− (cosh (υξ2ρΩ(ε− 1))− cos (υξ2ρΩ(ε− 1)))
(
− υ3D2ρ

3(cos(Ωε)

+ cosh(Ωε))(cos(υρΩ(ε− 1)) + cosh(υρΩ(ε− 1))) + υ2D2ρ
2(sin(Ωε)

− sinh(Ωε))(sin(υρΩ(1− ε)) + sinh(υρΩ(1− ε)))

+D1(sin(Ωε) + sinh(Ωε))(sin(υρΩ(1− ε))− sinh(υρΩ(1− ε)))

−υD1ρ(cos(Ωε)− cosh(Ωε))(cos(υρΩ(ε− 1))

− cosh(υρΩ(ε− 1)))
)))(

2υρΩ2
(
υ4D2

2ρ
4(cos(Ωε) cosh(Ωε) + 1)(cos(υρΩ(ε− 1))

× cosh(υρΩ(ε− 1)) + 1) + υD1D2ρ
(
− sinh(Ωε)

(
sinh(υρΩ(ε− 1))

( (
υ2ρ2 + 1

)
× cos(Ωε) cos(υρΩ(ε− 1)) + 2υρ sin(Ωε) sin(υρΩ(ε− 1))

)
+
(
υ2ρ2 − 1

)
cos(Ωε) sin(υρΩ(ε− 1)) cosh(υρΩ(ε− 1))

)
+

(
1

2
+
i

2

)
sin(Ωε) cosh(Ωε)

( (
1− iυ2ρ2

)
sin((1 + i)υρΩ(ε− 1)) +

(
−1− iυ2ρ2

)
× sinh((1 + i)υρΩ(ε− 1))

))
+D2

1(cos(Ωε) cosh(Ωε)− 1)(cos(υρΩ(ε− 1))

× cosh(υρΩ(ε− 1))− 1)
))−1

, (2.38)

where υ =

(
D1

D2

) 1
4

and ρ =

(
ρ2
ρ1

) 1
4

.

Now, we test our result by setting x = l − H, implies that ξ1 = 0 and ξ2 = 1, into

(2.37) and (2.38) for ε→ 0, we obtain

w1 = w2 =
Gl2 sin(υρΩ) sinh(υρΩ)

υ2D2ρ2Ω2(cos(υρΩ) cosh(υρΩ) + 1)
,

which is an additional verification of the solutions.
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2.2.2.2 Asymptotic analysis a composite beam

In this section, we apply an asymptotic approach to obtain an approximate solution

for linear elastic two-component beam. We restrict our attention to perturbation

scheme applied to w1. To this end, we use dimensionless variables (2.36) to rewrite

the equation of motion (2.26) to get

∂4w1

∂ξ41
− ε4Ω4w1 = 0, (2.39)

subject to

w1 = wH , (1− ε)∂w1

∂ξ1
= εwHξ1 , at ξ1 = 0,

D1
∂2w1

∂ξ21
= ε2Gl2,

∂3w1

∂ξ31
= 0, at ξ1 = 1,

(2.40)

where functions

wH =
Gl2 sin(υρΩ) sinh(υρΩ)

υ2D2ρ2Ω2(cos(υρΩ) cosh(υρΩ) + 1)

and

wHξ1 =
Gl2 cos(υρΩ) sinh(υρΩ) +Gl2 sin(υρΩ) cosh(υρΩ)

υD2ρΩ + υD2ρΩ cos(υρΩ) cosh(υρΩ)

are given on the interface.

Deflection w1 can be expanded into an asymptotic series in terms of ε as

w1 = w
(0)
1 + w

(1)
1 ε+ w

(2)
1 ε2 + w

(3)
1 ε3 + w

(4)
1 ε4 + . . . (2.41)
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Substituting expansion (2.41) into the boundary value problem (2.39)-(2.40), we ar-

rive at the problem formulated at the various asymptotic orders n = 0, 1, 2, . . . ,

namely

∂4w
(n)
1

∂ξ41
− Ω4w

(n−4)
1 = 0, (2.42)

subject to

w
(n)
1 = w

(n)
H , ξ1 = 0,

∂w
(n)
1

∂ξ1
− ∂w

(n−1)
1

∂ξ1
= w

(n)
Hξ1

at ξ1 = 0,

D1
∂2w

(n)
1

∂ξ21
= G(n)l(n) at ξ1 = 1,

∂3w
(n)
1

∂ξ31
= 0 at ξ1 = 1,

(2.43)

where quantities with the negative superscript are set to be equal to zero. The

only non-zero components w
(n)
H , w

(n)
Hξ1

and G(n)l(n) are w
(0)
H = wH , w

(1)
Hξ1

= wHξ1 and

G(2)l(2) = Gl2, respectively.

Substituting subsequently n = 0, 1, 2, 3 and 4 into (2.42)-(2.43) we obtain

w
(0)
1 = wH ,

w
(1)
1 = wHξ1ξ1,

w
(2)
1 = wHξ1ξ1 +

1

2

Gl2

D1

ξ21 ,

w
(3)
1 = wHξ1ξ1,

w
(4)
1 = wHξ1ξ1 +

1

4
Ω4wHξ

2
1 −

1

6
Ω4wHξ

3
1 +

1

24
Ω4wHξ

4
1 .

(2.44)
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Finally, using expansion (2.44) together with the following relations

M1 =
D1

H2

∂2w1

∂ξ21
, (2.45)

N1 =
D1

H3

∂3w1

∂ξ31
, (2.46)

to obtain moment and shear force on the interface at ξ1 = 0 in the form

M1 = G+
D1Ω

4

2l2
wHε

2 + . . . , (2.47)

N1 = −D1Ω
4

l3
wHε+ . . . (2.48)

These formulae above present the expansion of the moment and shear force for ε on

the interface.

2.2.2.3 Testing of asymptotic formulae

In order to validate the asymptotic results obtained in the previous section, consider

the right component over the domain l − H 6 x 6 l. We take equation of motion

(2.39) subject to boundary conditions (2.40). The solution of the formulated problem

is then sought for in the form (2.31) for j = 1, and we finally arrive at a set of four

linear algebraic equations which can be written in a matrix form as

Q̄b · ᾱ = Ūb, (2.49)
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where ᾱ =
(
ᾱ
(1)
1 , ᾱ

(1)
2 , ᾱ

(1)
3 , ᾱ

(1)
4

)T
, Ūb = (0, Gl2, wH , wHξ1)

T
are vectors and Q̄b is a

4× 4 matrix with its non-zero components given by

Q̄b
11 = cosh(Ω), Q̄b

12 = sinh(Ω),

Q̄b
13 = sin(Ω), Q̄b

14 = − cos(Ω),

Q̄b
21 = Ω2D1 sinh(Ω), Q̄b

22 = Ω2D1 cosh(Ω),

Q̄b
23 = −Ω2D1 cos(Ω), Q̄b

24 = −Ω2D1 sin(Ω),

Q̄b
31 = sinh((1− ε)Ω), Q̄b

32 = cosh((1− ε)Ω),

Q̄b
33 = cos((1− ε)Ω), Q̄b

34 = sin((1− ε)Ω),

Q̄b
41 = (1− ε)Ω cosh((1− ε)Ω), Q̄b

42 = (1− ε)Ω sinh((1− ε)Ω),

Q̄b
43 = −(1− ε)Ω sin((1− ε)Ω), Q̄b

44 = (1− ε)Ω cos((1− ε)Ω). (2.50)

The sought for constants ᾱ
(1)
i , i = 1, 2, 3 and 4 are presented in Appendix B.2.

Next, we rewrite solution (2.31) for w1 in terms of dimensionless variables and expand

it into Taylor series about ε = 0 arriving at the asymptotic expansion

w1 = wH + ξ1wHξ1ε+

(
Gl2ξ21
2D1

+ ξ1wHξ1

)
ε2 + wHξ1ξ1ε

3

+

(
1

24
ξ21 ((ξ1 − 4) ξ1 + 6) Ω4wH + ξ1wHξ1

)
ε4 +O

(
ε5
)
. (2.51)

It can be easily checked that formula (2.51) coincides with asymptotic solution (2.44)

which is an extra validation of the presented derivation.

Let us now test the moment and shear force on the interface at ξ1 = 0, substituting
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(2.51) into (2.45) and (2.46) we obtain (2.47) and (2.48).

Now, we seek to find the asymptotic solution for the left component. We rewrite the

equation of motion (2.26) in the following form

∂4w2

∂ξ42
− υ4ρ4Ω4(1− ε)4w2 = 0, (2.52)

subject to

w2 = 0, at ξ2 = 0,

∂w2

∂ξ2
= 0, at ξ2 = 0,

∂2w2

∂ξ22
− 1

2
υ4Ω4w2(1− ε)2ε2 =

Gl2

D2

(1− ε)2, at ξ2 = 1,

∂3w2

∂ξ32
+ υ4Ω4w2(1− ε)3ε = 0, at ξ2 = 1.

(2.53)

We also rewrite the general solution (2.31) in dimensionless variables for j = 2 as

w2 = α
(2)
1 sinh(ρυΩ(1− ε)ξ2) + α

(2)
2 cosh(ρυΩ(1− ε)ξ2) + α

(2)
3 cos(ρυΩ(1− ε)ξ2)

+α
(2)
4 sin(ρυΩ(1− ε)ξ2). (2.54)
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Substituting (2.54) into the boundary conditions (2.53) leads to the fourth order

system



0 1 1 0

1 0 0 1

m̃ m̃1 −m̃2 −m̃3

m̃4 m̃5 m̃6 m̃7





α
(2)
1

α
(2)
2

α
(2)
3

α
(2)
4


=



0

0

Gl2

D2

0


, (2.55)

where

m̃ = (ρ2υ2Ω2 − 1

2
Ω4ε2) sinh(ρυΩ(1− ε)),

m̃1 = (ρ2υ2Ω2 − 1

2
Ω4ε2) cosh(ρυΩ(1− ε)),

m̃2 = (ρ2υ2Ω2 +
1

2
Ω4ε2) cos(ρυΩ(1− ε)),

m̃3 = (ρ2υ2Ω2 +
1

2
Ω4ε2) sin(ρυΩ(1− ε)),

m̃4 = (ρ3υ3 cosh(ρυΩ(1− ε)) + Ωε sinh(ρυΩ(1− ε)),

m̃5 = (ρ3υ3 sinh(ρυΩ(1− ε)) + Ωε cosh(ρυΩ(1− ε)),

m̃6 = (ρ3υ3 sin(ρυΩ(1− ε)) + Ωε cos(ρυΩ(1− ε)),

m̃7 = (ρ3υ3 cos(ρυΩ(1− ε))− Ωε sin(ρυΩ(1− ε)).
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Above system has non-trivial solution provided that the related determinant equals

zero, using Cramer’s rule, we get the asymptotic solution for the left component as

w2 =
((1

2
− i

2

)
Gl2
(
ρ3υ3

(
cos ((1− iξ2) ρυΩ(ε− 1))

+i (cos ((1 + iξ2) ρυΩ(ε− 1))− (1− i) cos ((ξ2 − 1) ρυΩ(ε− 1)))
)

−ρ3υ3
(

cosh ((1− iξ2) ρυΩ(ε− 1)) + i
(

cosh ((1 + iξ2) ρυΩ(ε− 1))

−(1− i) cosh ((ξ2 − 1) ρυΩ(ε− 1))
))

+ Ωε
(

sin ((1− iξ2) ρυΩ(ε− 1))

+i sin ((1 + iξ2) ρυΩ(ε− 1)) + (1 + i) sin ((ξ2 − 1) ρυΩ(ε− 1))
)

+Ωε
(

sinh ((1− iξ2) ρυΩ(ε− 1)) + i sinh ((1 + iξ2) ρυΩ(ε− 1))

+(1 + i) sinh ((ξ2 − 1) ρυΩ(ε− 1))
)))(

D2ρ
2υ2Ω2

(
2ρ3υ3

+2 cosh(ρυΩ(ε− 1))
(
ρ3υ3 cos(ρυΩ(ε− 1)) + Ωε sin(ρυΩ(ε− 1))

)
−Ωε sinh(ρυΩ(ε− 1))(ρυΩε sin(ρυΩ(ε− 1)) + 2 cos(ρυΩ(ε− 1)))

))−1

.

(2.56)

Now, we introduce new dimensionless variable

w̃2 =
w2

l2
D2

G
.

Thus, we can rewrite the exact solution (2.38) and the asymptotic solution (2.56) for

the left component as
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w̃2 =
((

(sinh (υξ2ρΩ(1− ε))− sin (υξ2ρΩ(1− ε)))
(
υ3ρ3(cos(Ωε)

+ cosh(Ωε))(sin(υρΩ(1− ε))− sinh(υρΩ(1− ε))) + υ2ρ2(sin(Ωε)

− sinh(Ωε))(cos(υρΩ(ε− 1)) + cosh(υρΩ(ε− 1)))

+υ5ρ(cos(Ωε)− cosh(Ωε))(sin(υρΩ(1− ε)) + sinh(υρΩ(1− ε)))

+υ4(sin(Ωε) + sinh(Ωε))(cos(υρΩ(ε− 1))− cosh(υρΩ(ε− 1)))
)

− (cosh (υξ2ρΩ(ε− 1))− cos (υξ2ρΩ(ε− 1)))
(
− υ3D2ρ

3(cos(Ωε)

+ cosh(Ωε))(cos(υρΩ(ε− 1)) + cosh(υρΩ(ε− 1))) + υ2ρ2(sin(Ωε)

− sinh(Ωε))(sin(υρΩ(1− ε)) + sinh(υρΩ(1− ε)))

+υ4(sin(Ωε) + sinh(Ωε))(sin(υρΩ(1− ε))− sinh(υρΩ(1− ε)))

−υ5ρ(cos(Ωε)− cosh(Ωε))(cos(υρΩ(ε− 1))− cosh(υρΩ(ε− 1)))
)))

×
(

2υρΩ2
(
υ4D2

2ρ
4(cos(Ωε) cosh(Ωε) + 1)(cos(υρΩ(ε− 1))

× cosh(υρΩ(ε− 1)) + 1) + υ5ρ
(
− sinh(Ωε)

(
sinh(υρΩ(ε− 1))

( (
υ2ρ2 + 1

)
× cos(Ωε) cos(υρΩ(ε− 1)) + 2υρ sin(Ωε) sin(υρΩ(ε− 1))

)
+
(
υ2ρ2 − 1

)
cos(Ωε) sin(υρΩ(ε− 1)) cosh(υρΩ(ε− 1))

)
+

(
1

2
+
i

2

)
sin(Ωε) cosh(Ωε)

( (
1− iυ2ρ2

)
sin((1 + i)υρΩ(ε− 1))

+
(
−1− iυ2ρ2

)
sinh((1 + i)υρΩ(ε− 1))

))
+ υ8(cos(Ωε) cosh(Ωε)− 1)

×(cos(υρΩ(ε− 1)) cosh(υρΩ(ε− 1))− 1)
))−1

, (2.57)

and
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w̃2 =
((1

2
− i

2

)(
ρ3υ3

(
cos ((1− iξ2) ρυΩ(ε− 1))

+i (cos ((1 + iξ2) ρυΩ(ε− 1))− (1− i) cos ((ξ2 − 1) ρυΩ(ε− 1)))
)

−ρ3υ3
(

cosh ((1− iξ2) ρυΩ(ε− 1)) + i
(

cosh ((1 + iξ2) ρυΩ(ε− 1))

−(1− i) cosh ((ξ2 − 1) ρυΩ(ε− 1))
))

+ Ωε
(

sin ((1− iξ2) ρυΩ(ε− 1))

+i sin ((1 + iξ2) ρυΩ(ε− 1)) + (1 + i) sin ((ξ2 − 1) ρυΩ(ε− 1))
)

+Ωε
(

sinh ((1− iξ2) ρυΩ(ε− 1)) + i sinh ((1 + iξ2) ρυΩ(ε− 1))

+(1 + i) sinh ((ξ2 − 1) ρυΩ(ε− 1))
)))(

ρ2υ6Ω2
(

2ρ3υ3

+2 cosh(ρυΩ(ε− 1))
(
ρ3υ3 cos(ρυΩ(ε− 1)) + Ωε sin(ρυΩ(ε− 1))

)
−Ωε sinh(ρυΩ(ε− 1))(ρυΩε sin(ρυΩ(ε− 1)) + 2 cos(ρυΩ(ε− 1)))

))−1

+O (ε) . (2.58)

Figures 2.14-2.18 demonstrate the exact solution of the left component w̃2 (2.57) and

the asymptotic solution (2.58) for ρ = 1, υ = 1 and several values of Ω and ε. It

can be seen that with reasonably small values of epsilon, the asymptotic solutions

are providing a good approximation. The following Figures 2.19-2.23 showing the

maximum error over 0 ≤ ξ2 ≤ 1 between the exact solution (2.57) and the asymptotic

solution (2.58) with respect to Ω and ε. All Figures 2.19-2.23 demonstrate that the

maximum error is monotonically increasing for increasing frequency.
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Figure 2.14: Comparison of asymptotic solution (2.58) (dashed line) and exact
solution (2.57) (solid line) for Ω = 1, ε = 0.5.
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Figure 2.15: Comparison of asymptotic solution (2.58) (dashed line) and exact
solution (2.57) (solid line) for Ω = 1.5, ε = 0.5.
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Figure 2.16: Comparison of asymptotic solution (2.58) (dashed line) and exact
solution (2.57) (solid line) for Ω = 1.5, ε = 0.1.
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Figure 2.17: Comparison of asymptotic solution (2.58) (dashed line) and exact
solution (2.57) (solid line) for Ω = 10, ε = 0.05.
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Figure 2.18: Comparison of asymptotic solution (2.58) (dashed line) and exact
solution (2.57) (solid line) for Ω = 20, ε = 0.05.
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Figure 2.19: The maximum error between asymptotic solution (2.58) and exact
solution (2.57) for ε = 0.05.



Chapter 2. Harmonic vibrations of a composite beam and rod 49

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Ω

0.005

0.010

0.015

0.020

max error

(0 < ξ2 < 1)

ϵ = 0.1

Figure 2.20: The maximum error between asymptotic solution (2.58) and exact
solution (2.57) for ε = 0.1.
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Figure 2.21: The maximum error between asymptotic solution (2.58) and exact
solution (2.57) for ε = 0.5.
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Figure 2.22: The maximum error between asymptotic solution (2.58) and exact
solution (2.57) for Ω = 1.
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Figure 2.23: The maximum error between asymptotic solution (2.58) and exact
solution (2.57) for Ω = 1.5.
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2.2.3 Second case (excitation by modified shear force)

Substituting (2.31) into the boundary conditions (2.29) and (2.30), we finally arrive

at a set of six linear algebraic equations which can be written in a matrix form as

Qb · γ = Ub, (2.59)

where γ =
(
γ
(1)
1 , γ

(1)
2 , γ

(1)
3 , γ

(1)
4 , γ

(2)
1 , γ

(2)
2

)T
, Ub =

(
N

D1β3
1

, 0, 0, 0, 0, 0

)T
are vectors and

Qb is a 6× 6 matrix with the non-zero components given as (2.33).

Using Cramer’s rule to solve (2.59) and using the dimensionless variables (2.36), we

get the exact solution as

w1 = −
((1

4
+
i

4

)
Nl3

(
υ4(2 cos(υ(ε− 1)ρΩ) cosh(υ(ε− 1)ρΩ) + 2)

×
(

sin (εΩ (ξ1 − 1)) + cosh(εΩ) sin (εΩξ1)− cos (εΩξ1) sinh(εΩ)

+ cosh (εΩξ1) (sin(εΩ) + sinh(εΩ))− (cos(εΩ) + cosh(εΩ)) sinh (εΩξ1)
)
D2

2ρ
4

−4υ
(

cosh(εΩ)
(

cosh(υ(ε− 1)ρΩ) sin(υ(ε− 1)ρΩ)

×
(
υ2 sin(εΩ) sinh (εΩ (ξ1 − 1)) ρ2 + cos (εΩξ1) + cos(εΩ) cosh (εΩ (ξ1 − 1))

)
− sinh(υ(ε− 1)ρΩ)

(
cos(υ(ε− 1)ρΩ) cos (εΩξ1)

+ cosh (εΩ (ξ1 − 1)) (cos(εΩ) cos(υ(ε− 1)ρΩ)

+υρ sin(εΩ) sin(υ(ε− 1)ρΩ)) + υρ sin(υ(ε− 1)ρΩ) sin (εΩξ1)

+υρ(cos(εΩ) sin(υ(ε− 1)ρΩ)− υρ cos(υ(ε− 1)ρΩ) sin(εΩ)) sinh (εΩ (ξ1 − 1))
))
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+ sinh(εΩ)
(

cosh(υ(ε− 1)ρΩ) sin(υ(ε− 1)ρΩ)
(
υ2
(

cosh (εΩ (ξ1 − 1)) sin(εΩ)

+ sin (εΩξ1)
)
ρ2 + cos(εΩ) sinh (εΩ (ξ1 − 1))

)
+ sinh(υ(ε− 1)ρΩ)

(
υρ
(
− cos (εΩξ1) sin(υ(ε− 1)ρΩ)

+ cosh (εΩ (ξ1 − 1)) (υρ cos(υ(ε− 1)ρΩ) sin(εΩ)− cos(εΩ) sin(υ(ε− 1)ρΩ))

+υρ cos(υ(ε− 1)ρΩ) sin (εΩξ1)
)
− (cos(εΩ) cos(υ(ε− 1)ρΩ)

+υρ sin(εΩ) sin(υ(ε− 1)ρΩ)) sinh (εΩ (ξ1 − 1))
)))

D1D2ρ

+(2 cos(υ(ε− 1)ρΩ) cosh(υ(ε− 1)ρΩ)− 2)
(
− sin (εΩ (ξ1 − 1))

+ cosh(εΩ) sin (εΩξ1) + cosh (εΩξ1) (sin(εΩ)− sinh(εΩ))− cos (εΩξ1) sinh(εΩ)

+(cosh(εΩ)− cos(εΩ)) sinh (εΩξ1)
)
D2

1

))(
Ω3D1

(
(1 + i)υ4

×(cos(εΩ) cosh(εΩ) + 1)(cos(υ(ε− 1)ρΩ) cosh(υ(ε− 1)ρΩ) + 1)D2
2ρ

4

+υ
(

cosh(εΩ) sin(εΩ)
( (
υ2ρ2 + i

)
sin((1 + i)υ(ε− 1)ρΩ)

+
(
υ2ρ2 − i

)
sinh((1 + i)υ(ε− 1)ρΩ)

)
−(1 + i) sinh(εΩ)

( (
υ2ρ2 − 1

)
cos(εΩ) cosh(υ(ε− 1)ρΩ) sin(υ(ε− 1)ρΩ)

+
((
υ2ρ2 + 1

)
cos(εΩ) cos(υ(ε− 1)ρΩ) + 2υρ sin(εΩ) sin(υ(ε− 1)ρΩ)

)
× sinh(υ(ε− 1)ρΩ)

))
D1D2ρ+ (1 + i)(cos(εΩ) cosh(εΩ)− 1)(cos(υ(ε− 1)ρΩ)

× cosh(υ(ε− 1)ρΩ)− 1)d21

))−1

, (2.60)
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and

w2 =
(
Nl3

(
(cosh (υξ2ρΩ(ε− 1))− cos (υξ2ρΩ(ε− 1)))

(
− υ3D2ρ

3(sin(Ωε)

+ sinh(Ωε))(cos(υρΩ(ε− 1)) + cosh(υρΩ(ε− 1)))

−υ2D2ρ
2(cos(Ωε) + cosh(Ωε))(sin(υρΩ(1− ε)) + sinh(υρΩ(1− ε)))

+υD1ρ(sinh(Ωε)− sin(Ωε))(cos(υρΩ(ε− 1))− cosh(υρΩ(ε− 1)))

−D1(cos(Ωε)− cosh(Ωε))(sin(υρΩ(1− ε))− sinh(υρΩ(1− ε)))
)

−
(

sinh (υξ2ρΩ(1− ε))− sin (υξ2ρΩ(1− ε))
)(
υ3D2ρ

3(sin(Ωε)

+ sinh(Ωε))(sin(υρΩ(1− ε))− sinh(υρΩ(1− ε)))

−υ2D2ρ
2(cos(Ωε) + cosh(Ωε))(cos(υρΩ(ε− 1)) + cosh(υρΩ(ε− 1)))

+υD1ρ(sin(Ωε)− sinh(Ωε))(sin(υρΩ(1− ε)) + sinh(υρΩ(1− ε)))

−D1(cos(Ωε)− cosh(Ωε))(cos(υρΩ(ε− 1))− cosh(υρΩ(ε− 1)))
)))

×
(

2υρΩ3
(
υ4D2

2ρ
4(cos(Ωε) cosh(Ωε) + 1)(cos(υρΩ(ε− 1)) cosh(υρΩ(ε− 1)) + 1)

+υD1D2ρ
(
− sinh(Ωε)

(
sinh(υρΩ(ε− 1))

( (
υ2ρ2 + 1

)
cos(Ωε) cos(υρΩ(ε− 1))

+2υρ sin(Ωε) sin(υρΩ(ε− 1))
)

+
(
υ2ρ2 − 1

)
cos(Ωε) sin(υρΩ(ε− 1))

× cosh(υρΩ(ε− 1))
)

+

(
1

2
+
i

2

)
sin(Ωε) cosh(Ωε)

( (
1− iυ2ρ2

)
× sin((1 + i)υρΩ(ε− 1)) +

(
− 1− iυ2ρ2

)
sinh((1 + i)υρΩ(ε− 1))

))
+D2

1(cos(Ωε) cosh(Ωε)− 1)(cos(υρΩ(ε− 1)) cosh(υρΩ(ε− 1))− 1)
))−1

, (2.61)

where υ =

(
D1

D2

) 1
4

and ρ =

(
ρ2
ρ1

) 1
4

.

In order to check our result we are setting x = l−H which implies ξ1 = 0 and ξ2 = 1

when ε→ 0 into (2.60) and (2.61), we obtain
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w1 = w2 =
Nl3(cos(υρΩ) sinh(υρΩ)− sin(υρΩ) cosh(υρΩ))

υ3D2ρ3Ω3(cos(υρΩ) cosh(υρΩ) + 1)
,

which is an additional verification of the solutions.

2.2.3.1 Asymptotic analysis a composite beam

Consider the equation of motion (2.39) subject to

w1 = wH , (1− ε)∂w1

∂ξ1
= εwHξ1 , at ξ1 = 0,

∂2w1

∂ξ21
= 0, D1

∂3w1

∂ξ31
= ε3Nl3, at ξ1 = 1,

(2.62)

where functions

wH =
Nl3(cos(υρΩ) sinh(υρΩ)− sin(υρΩ) cosh(υρΩ))

υ3D2ρ3Ω3(cos(υρΩ) cosh(υρΩ) + 1)

and

wHξ1 = − Nl3 sin(υρΩ) sinh(υρΩ)

υ2D2ρ2Ω2(cos(υρΩ) cosh(υρΩ) + 1)

are given on the interface.

The deflection w1 can be expanded into an asymptotic series in terms of ε as (2.41).

Substituting expansion (2.41) into the boundary value problem (2.39)-(2.62), we ar-

rive at the problem formulated at the various asymptotic orders n = 0, 1, 2, . . . ,
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namely

∂4w
(n)
1

∂ξ41
− Ω4w

(n−4)
1 = 0, (2.63)

subject to

w
(n)
1 = w

(n)
H , ξ1 = 0,

∂w
(n)
1

∂ξ1
− ∂w

(n−1)
1

∂ξ1
= w

(n)
Hξ1

at ξ1 = 0,

∂2w
(n)
1

∂ξ21
= 0 at ξ1 = 1,

D1
∂3w

(n)
1

∂ξ31
= N (n)l3(n) at ξ1 = 1,

(2.64)

where quantities with the negative superscript are set to be equal to zero. The only

non-zero components w
(n)
H , w

(n)
Hξ1

and N (n)l3(n) are w
(0)
H = wH , w

(1)
Hξ1

= wHξ1 and

N (3)l3(3) = Nl3, respectively.

Substituting subsequently n = 0, 1, 2, 3, 4 into (2.63)-(2.64) we obtain

w
(0)
1 = wH ,

w
(1)
1 = wHξ1ξ1,

w
(2)
1 = wHξ1ξ1,

w
(3)
1 = wHξ1ξ1 −

1

2

Nl3

D1

ξ21 +
1

6

Nl3

D1

ξ31 ,

w
(4)
1 = wHξ1ξ1 +

1

4
Ω4wHξ

2
1 −

1

6
Ω4wHξ

3
1 +

1

24
Ω4wHξ

4
1 .

(2.65)
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Finally, using expansion (2.65) together with the relations (2.45) and (2.46) to obtain

moment and shear force on the interface at ξ1 = 0 in the form

M1 = −Nlε+
D1Ω

4

2l2
wHε

2 + ..., (2.66)

N1 = N − D1Ω
4

l3
wHε+ .... (2.67)

Note that the formula above which present expansion of moment and shear force on

the interface will use later to find the asymptotic solution for the left component.

2.2.3.2 Testing of asymptotic formulae

In order to validate the asymptotic results obtained in the previous section, consider

the right component over the domain l − H 6 x 6 l. We take equation of motion

(2.39) subject to boundary conditions (2.62). The solution of the formulated problem

is then sought for in the form (2.31) for j = 1, and we finally arrive at a set of four

linear algebraic equations which can be written in a matrix form as

Q̄b · γ̄ = Ūb, (2.68)

where γ̄ =
(
γ̄
(1)
1 , γ̄

(1)
2 , γ̄

(1)
3 , γ̄

(1)
4

)T
, Ūb = (Nl3, 0, wH , wHξ1)

T
are vectors and Q̄b is a

4×4 matrix with its non-zero components given as (2.50) and the sought for constants

γ
(1)
i , i = 1, 2, 3, 4 are presented in Appendix B.3.
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Next, we rewrite solution (2.31) for w1 in terms of dimensionless variables and expand

it into Taylor series about ε = 0 arriving at the asymptotic expansion

w1 = wH + ξ1wHξ1ε+ ξ1wHξ1ε
2 +

(
l3N (ξ1 − 3) ξ21

6D1

+ ξ1wHξ1

)
ε3

+

(
1

24
ξ21 ((ξ1 − 4) ξ1 + 6) Ω4wH + ξ1wHξ1

)
ε4 +O

(
ε5
)
. (2.69)

It can be easily checked that formula (2.69) coincides with asymptotic solution (2.65)

which is an extra validation of the presented derivation.

Let us now test the moment and shear force on the interface at ξ1 = 0, substituting

(2.69) into (2.45) and (2.46) we obtain (2.66) and (2.67).

Now, we seek to find the asymptotic solution for the left component. We rewrite the

equation of motion (2.26) as (2.52) subject to

w2 = 0, at ξ2 = 0,

∂w2

∂ξ2
= 0, at ξ2 = 0,

∂2w2

∂ξ22
− 1

2
Ω4υ4w2(1− ε)2ε2 =

Nl3

D2

(1− ε)2ε, at ξ2 = 1,

∂3w2

∂ξ32
+ Ω4υ4w2(1− ε)3ε =

Nl3

D2

(1− ε)3, at ξ2 = 1.

(2.70)

We also rewrite the general solution (2.31) in dimensionless variables for j = 2 as

(2.54).
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Substituting (2.54) into the boundary conditions (2.70) leads to the fourth order

system



0 1 1 0

1 0 0 1

m̃ m̃1 −m̃2 −m̃3

m̃4 m̃5 m̃6 m̃7





α
(2)
1

α
(2)
2

α
(2)
3

α
(2)
4


=



0

0

Nl3

D2

ε

Nl3

D2


, (2.71)

where

m̃ = (ρ2υ2Ω2 − 1

2
Ω4υ4ε2) sinh(ρυΩ(1− ε)),

m̃1 = (ρ2υ2Ω2 − 1

2
Ω4υ4ε2) cosh(ρυΩ(1− ε)),

m̃2 = (ρ2υ2Ω2 +
1

2
Ω4υ4ε2) cos(ρυΩ(1− ε)),

m̃3 = (ρ2υ2Ω2 +
1

2
Ω4υ4ε2) sin(ρυΩ(1− ε)),

m̃4 = (ρ3 cosh(ρυΩ(1− ε)) + Ωυε sinh(ρυΩ(1− ε)),

m̃5 = (ρ3 sinh(ρυΩ(1− ε)) + Ωυε cosh(ρυΩ(1− ε)),

m̃6 = (ρ3 sin(ρυΩ(1− ε)) + Ωυε cos(ρυΩ(1− ε)),

m̃7 = (ρ3 cos(ρυΩ(1− ε))− Ωυε sin(ρυΩ(1− ε)).

Above system has non-trivial solution provided that the related determinant is non-

zero. Then, using Cramer’s rule, we get the asymptotic solution for the left compo-

nent as
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w2 =
((1

4
+
i

4

)
l3N

(
(1− i)υΩ

(
2ρ2υΩ + ε2

(
υ3Ω3 + 2

))
sin
((
ξ2 − 1

)
ρυΩ

×(ε− 1)
)

+ (1− i)υΩ
(
ε2
(
υ3Ω3 + 2

)
− 2ρ2υΩ

)
sinh

(
(ξ2 − 1) ρυΩ(ε− 1)

)
−iυ4Ω4ε2 sin

(
(1− iξ2) ρυΩ(ε− 1)

)
+ υ4Ω4ε2 sin

(
(1 + iξ2) ρυΩ(ε− 1)

)
−iυ4Ω4ε2 sinh

(
(1− iξ2) ρυΩ(ε− 1)

)
+ υ4Ω4ε2 sinh

(
(1 + iξ2) ρυΩ(ε− 1)

)
−2iυΩε2 sin

(
(1− iξ2) ρυΩ(ε− 1)

)
+ 2υΩε2 sin

(
(1 + iξ2) ρυΩ(ε− 1)

)
−2iυΩε2 sinh

(
(1− iξ2) ρυΩ(ε− 1)

)
+ 2υΩε2 sinh

(
(1 + iξ2) ρυΩ(ε− 1)

)
+2ρ3ε

(
− i cos

(
(1− iξ2) ρυΩ(ε− 1)

)
+ cos

(
(1 + iξ2) ρυΩ(ε− 1)

)
−(1− i) cos

(
(ξ2 − 1) ρυΩ(ε− 1)

))
+ 2iρ3ε cosh

(
(1− iξ2) ρυΩ(ε− 1)

)
−2ρ3ε cosh

(
(1 + iξ2) ρυΩ(ε− 1)

)
+ (2− 2i)ρ3ε cosh

(
(ξ2 − 1) ρυΩ(ε− 1)

)
−2iρ2υ2Ω2 sin

(
(1− iξ2) ρυΩ(ε− 1)

)
+ 2ρ2υ2Ω2 sin

(
(1 + iξ2) ρυΩ(ε− 1)

)
+2iρ2υ2Ω2 sinh

(
(1− iξ2) ρυΩ(ε− 1)

)
− 2ρ2υ2Ω2 sinh

(
(1 + iξ2) ρυΩ

×(ε− 1)
)))(

D2ρ
2υ2Ω2

(
2ρ3 + 2 cosh(ρυΩ(ε− 1))

(
ρ3 cos(ρυΩ(ε− 1))

+υΩε sin(ρυΩ(ε− 1))
)
− υΩε sinh(ρυΩ(ε− 1))(ρυΩε sin(ρυΩ(ε− 1))

+2 cos(ρυΩ(ε− 1)))
))−1

. (2.72)

Now, we introduce new dimensionless variable

w̃2 =
w2

l3
D2

N
.

Thus, we can rewrite the exact solution (2.61) and the asymptotic solution (2.72) for
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the left component as

w̃2 =
((

(cosh (υξ2ρΩ(ε− 1))− cos (υξ2ρΩ(ε− 1)))
(
− υ3ρ3(sin(Ωε)

+ sinh(Ωε))(cos(υρΩ(ε− 1)) + cosh(υρΩ(ε− 1)))− υ2ρ2(cos(Ωε)

+ cosh(Ωε))(sin(υρΩ(1− ε)) + sinh(υρΩ(1− ε)))

+υ5ρ(sinh(Ωε)− sin(Ωε))(cos(υρΩ(ε− 1))− cosh(υρΩ(ε− 1)))

−υ4(cos(Ωε)− cosh(Ωε))(sin(υρΩ(1− ε))− sinh(υρΩ(1− ε)))
)

−
(

sinh (υξ2ρΩ(1− ε))− sin (υξ2ρΩ(1− ε))
)(
υ3ρ3(sin(Ωε) + sinh(Ωε))

×(sin(υρΩ(1− ε))− sinh(υρΩ(1− ε)))− υ2D2ρ
2(cos(Ωε)

+ cosh(Ωε))(cos(υρΩ(ε− 1)) + cosh(υρΩ(ε− 1))) + υ5ρ(sin(Ωε)

− sinh(Ωε))(sin(υρΩ(1− ε)) + sinh(υρΩ(1− ε)))

−υ4(cos(Ωε)− cosh(Ωε))(cos(υρΩ(ε− 1))− cosh(υρΩ(ε− 1)))
)))

×
(

2υρΩ3
(
υ4ρ4(cos(Ωε) cosh(Ωε) + 1)(cos(υρΩ(ε− 1)) cosh(υρΩ(ε− 1)) + 1)

+υ5ρ
(
− sinh(Ωε)

(
sinh(υρΩ(ε− 1))

( (
υ2ρ2 + 1

)
cos(Ωε) cos(υρΩ(ε− 1))

+2υρ sin(Ωε) sin(υρΩ(ε− 1))
)

+
(
υ2ρ2 − 1

)
cos(Ωε) sin(υρΩ(ε− 1))

× cosh(υρΩ(ε− 1))
)

+

(
1

2
+
i

2

)
sin(Ωε) cosh(Ωε)

( (
1− iυ2ρ2

)
× sin((1 + i)υρΩ(ε− 1)) +

(
− 1− iυ2ρ2

)
sinh((1 + i)υρΩ(ε− 1))

))
+υ8(cos(Ωε) cosh(Ωε)− 1)(cos(υρΩ(ε− 1)) cosh(υρΩ(ε− 1))− 1)

))−1

,

(2.73)

and
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w̃2 =
((1

4
+
i

4

)(
(1− i)υΩ

(
2ρ2υΩ + ε2

(
υ3Ω3 + 2

))
sin
((
ξ2 − 1

)
ρυΩ(ε− 1)

)
+(1− i)υΩ

(
ε2
(
υ3Ω3 + 2

)
− 2ρ2υΩ

)
sinh

(
(ξ2 − 1) ρυΩ(ε− 1)

)
−iυ4Ω4ε2 sin

(
(1− iξ2) ρυΩ(ε− 1)

)
+ υ4Ω4ε2 sin

(
(1 + iξ2) ρυΩ(ε− 1)

)
−iυ4Ω4ε2 sinh

(
(1− iξ2) ρυΩ(ε− 1)

)
+ υ4Ω4ε2 sinh

(
(1 + iξ2) ρυΩ(ε− 1)

)
−2iυΩε2 sin

(
(1− iξ2) ρυΩ(ε− 1)

)
+ 2υΩε2 sin

(
(1 + iξ2) ρυΩ(ε− 1)

)
−2iυΩε2 sinh

(
(1− iξ2) ρυΩ(ε− 1)

)
+ 2υΩε2 sinh

(
(1 + iξ2) ρυΩ(ε− 1)

)
+2ρ3ε

(
− i cos

(
(1− iξ2) ρυΩ(ε− 1)

)
+ cos

(
(1 + iξ2) ρυΩ(ε− 1)

)
−(1− i) cos

(
(ξ2 − 1) ρυΩ(ε− 1)

))
+ 2iρ3ε cosh

(
(1− iξ2) ρυΩ(ε− 1)

)
−2ρ3ε cosh

(
(1 + iξ2) ρυΩ(ε− 1)

)
+ (2− 2i)ρ3ε cosh

(
(ξ2 − 1) ρυΩ(ε− 1)

)
−2iρ2υ2Ω2 sin

(
(1− iξ2) ρυΩ(ε− 1)

)
+ 2ρ2υ2Ω2 sin

(
(1 + iξ2) ρυΩ(ε− 1)

)
+2iρ2υ2Ω2 sinh

(
(1− iξ2) ρυΩ(ε− 1)

)
− 2ρ2υ2Ω2 sinh

(
(1 + iξ2) ρυΩ(ε− 1)

))
(
ρ2υ2Ω2

(
2ρ3 + 2 cosh(ρυΩ(ε− 1))

(
ρ3 cos(ρυΩ(ε− 1)) + υΩε sin(ρυΩ(ε− 1))

)
−υΩε sinh(ρυΩ(ε− 1))(ρυΩε sin(ρυΩ(ε− 1)) + 2 cos(ρυΩ(ε− 1)))

))−1

. (2.74)

Figures 2.24-2.27 demonstrate the exact solution of the left component w̃2 (2.73) and

asymptotic solution (2.74) for ρ = 1, υ = 1 and several values of Ω and ε. As an

example Figure 2.28 shows the maximum error over 0 ≤ ξ2 ≤ 1 between the exact

solution (2.73) and the asymptotic solution (2.74) for Ω = 1. Clearly, as in the

previous case of a rod the maximum error is monotonically increasing for increasing

ε.
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Figure 2.24: Comparison of asymptotic solution (2.58) (dashed line) and exact
solution (2.57) (solid line) for Ω = 1, ε = 0.1.
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Figure 2.25: Comparison of asymptotic solution (2.58) (dashed line) and exact
solution (2.57) (solid line) for Ω = 1.5, ε = 0.1.
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Figure 2.26: Comparison of asymptotic solution (2.58) (dashed line) and exact
solution (2.57) (solid line) for Ω = 1, ε = 0.5.
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Figure 2.27: Comparison of asymptotic solution (2.58) (dashed line) and exact
solution (2.57) (solid line) for Ω = 1.5, ε = 0.5.
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Figure 2.28: The maximum error between asymptotic solution (2.58) and exact
solution (2.57) for Ω = 1.
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In conclusion, 1D problems for a composite rod and composite beam have been con-

sidered in this chapter. In section 2.1, we studied harmonic axial vibrations of a

composite rod. We assumed the boundary conditions (2.2), corresponding to the

fixed left end and the right end subject to external loading, and also the continuity

conditions (2.3) are assumed, corresponding to the perfect contact of two compo-

nents. Then, we obtained the exact solutions (2.8), (2.9) for a two component rod in

dimensionless variables. The asymptotic integration method has been used to obtain

the effective stress (2.17) on the interface between the components. Comparison of

asymptotic solution (2.25) and exact solution (2.24) has been performed, showing

a good agreement. In section 2.2, harmonic vibrations of a composite beam have

been investigated. Two cases of the boundary conditions have been imposed, one

corresponding to absence of the modified transverse shear force at the right end and

another one with no bending moment at the same end. Exact solutions have been

obtained for both sections. Then, a perturbation scheme has been established. The

effective moment and shear force (2.47), (2.48),(2.66), (2.67) on the interface between

the components have been derived. Finally, comparisons between the asymptotic so-

lutions and the exact solutions have been presented for both cases.



Chapter 3

The elastic bending wave on the

edge of a semi-infinite plate

reinforced by a free strip plate

In this chapter, elastic waves localised near the edge of a semi-infinite plate reinforced

by a strip plate are considered within the framework of the 2D classical theory for

plate bending. In Section 3.1, the governing relations are presented, and then the

exact dispersion relation for a composite plate is derived. In Section 3.2, the boundary

value problem for the strip plate is subject to asymptotic analysis, assuming that a

typical wavelength is much greater than the strip thickness. As a result, effective

conditions along the interface corresponding to a plate reinforced by a beam with

a narrow rectangular cross-section are established. In Section 3.3, the asymptotic

results are validated by considering a model boundary value problem for a strip

plate. Finally, in Section 3.4, the approximate dispersion relation is derived. The

66
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accuracy of the approximate dispersion relation is tested by comparison with the

numerical data obtained from the ‘exact’ matrix relation for a composite plate. The

effect of the problem parameters on the localisation rate is also studied.

3.1 Statement of the problem

Consider a thin isotropic elastic semi-infinite plate of thickness 2h, reinforced by a

strip plate of the same thickness and width H with h << H. The origin of the

Cartesian coordinate system is chosen to be on the midplane of the composite plate

with the x−axis directed along the edge of a strip plate and y−axis directed into the

interior as shown in Figure 3.1.

Figure 3.1: A semi-infinite plate with the edge coated by a strip plate.

The governing equation of motion in the classical Kirchhoff theory can be written as

[9]

Dj

(
∂4wj
∂x4

+ 2
∂4wj
∂x2∂y2

+
∂4wj
∂y4

)
+ 2ρjh

∂2wj
∂t2

= 0, j = 1, 2, (3.1)
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where t is time, wj are midplane deflections, ρj are mass densities, and Dj are bending

stiffnesses given by

Dj =
2Ejh

3

3(1− νj)
,

where Ej are the Young’s moduli and νj are the Poisson’s ratios; hereinafter index 1

is used to denote parameters corresponding to the strip plate, whereas index 2 stays

for the semi-infinite plate.

The boundary conditions on the free edge y = 0 are imposed in such a way that both

bending moment and modified shear force are set to zero, i.e.

∂2w1

∂y2
+ ν1

∂2w1

∂x2
= 0,

∂3w1

∂y3
+ (2− ν1)

∂3w1

∂x2∂y
= 0. (3.2)

The continuity conditions along the interface y = H for perfectly bonded plates are

taken as

w1 = w2,

∂w1

∂y
=
∂w2

∂y
,

D1

(∂2w1

∂y2
+ ν1

∂2w1

∂x2

)
= D2

(∂2w2

∂y2
+ ν2

∂2w2

∂x2

)
,

D1

(∂3w1

∂y3
+ (2− ν1)

∂3w1

∂x2∂y

)
= D2

(∂3w2

∂y3
+ (2− ν2)

∂3w2

∂x2∂y

)
.

(3.3)

The conventional harmonic travelling wave solution of plate bending equation (3.1)

is given by

wj(x, y, t) = wj(y)ei(kx−ωt), j = 1, 2, (3.4)
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where ω is the frequency and k is wave number.

Substituting the latter into (3.1), we have

d4wj(y)

dy4
− 2k2

d2wj(y)

dy2
+ (k4 − 2ρhω2

Dj

)wj(y) = 0. (3.5)

Then

wj(y) = C
(j)
1 ekλ1jy + C

(j)
2 e−kλ1jy + C

(j)
3 ekλ2jy + C

(j)
4 e−kλ2jy, (3.6)

where λ1j =
√

1 + γj, λ2j =
√

1− γj, γj =
ω

k2

√
2ρjh

Dj

.

As a result, the deflection of each of the plate may be presented as

wj(x, y, t) = ei(kx−wt)
(
C

(j)
1 ekλ1jy + C

(j)
2 e−kλ1jy + C

(j)
3 ekλ2jy + C

(j)
4 e−kλ2jy

)
, (3.7)

where C
(j)
1 , C

(j)
2 , C

(j)
3 and C

(j)
4 are arbitrary constants. For the decaying at infinity

solution corresponding to the sought for edge bending wave, we set C
(2)
1 = C

(2)
3 = 0.

From the definition of λ2j it follows that 1− γj ≥ 0, j = 1, 2 and using γ1 =

√
ρ

D
γ2,

where D =
D1

D2

, ρ =
ρ1
ρ2

, resulting in a condition for material parameters of the plates

ρ1
ρ2
≤ D1

D2

.

This condition ensures localized waves.

Next, we insert formulae (3.7) into the boundary conditions (3.2) and continuity rela-

tions (3.3) leads to a homogeneous system of order six with the non-zero components
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of 6× 6 matrix M given by

M11 = M12 = λ211 − ν1, M13 = M14 = λ221 − ν1

M21 = −M22 = λ11(λ
2
11 + ν1 − 2),

M23 = −M24 = λ21(λ
2
21 + ν1 − 2),

M31 = λ11e
λ11δ, M32 = −λ11e−λ11δ, M33 = λ21e

λ21δ,

M34 = −λ21e−λ21δ, M35 = λ12e
−λ12δ, M36 = λ22e

−λ22δ,

M41 = eλ11δ, M42 = e−λ11δ, M43 = eλ21δ,

M44 = e−λ21δ, M45 = −e−λ12δ, M46 = −e−λ22δ,

M51 = D(λ211 − ν1)eλ11δ, M52 = D(λ211 − ν1)e−λ11δ,

M53 = D(λ221 − ν1)eλ21δ, M54 = D(λ221 − ν1)e−λ21δ,

M55 = −(λ212 − ν2)e−λ12δ, M56 = −(λ222 − ν2)e−λ22δ,

M61 = Dλ11(λ
2
11 + ν1 − 2)eλ11δ, M62 = −Dλ11(λ211 + ν1 − 2)e−λ11δ,

M63 = Dλ21(λ
2
21 + ν1 − 2)eλ21δ, M64 = −Dλ21(λ221 + ν1 − 2)e−λ21δ,

M65 = λ12(λ
2
12 + ν2 − 2)e−λ12δ, M66 = λ22(λ

2
22 + ν2 − 2)e−λ22δ,

where

D =
D1

D2

, ρ =
ρ1
ρ2
, δ = kH, (3.8)

and a relation

γ1 =

√
ρ

D
γ2
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has been used, which has non-zero solutions provided that det (M) = 0. As a result,

we deduce the dispersion relation

D2
(
− sinh(δλ11) sinh(δλ21)(ν1 − λ211)2λ621 + 2

(
cosh(δλ11) cosh(δλ21)− 1

)
×λ11(λ211 − ν1)(λ211 + ν1 − 2)λ521 − sinh(δλ11) sinh(δλ21)

×
(
λ611 + 4(ν1 − 2)λ411 − (ν1 − 2)(3ν1 + 2)λ211 + 2(ν1 − 2)ν21

)
λ421

−4
(

cosh(δλ11) cosh(δλ21)− 1
)
λ11(λ

2
11 − ν1)(λ211 + ν1 − 2)λ321

+ sinh(δλ11) sinh(δλ21)
(

2ν1λ
6
11 + (ν1 − 2)(3ν1 + 2)λ411

+4(ν1 − 2)2ν1λ
2
11 − (ν1 − 2)2ν21

)
λ221 + 2

(
cosh(δλ11) cosh(δλ21)− 1

)
×(ν1 − 2)ν1λ11(ν1 − λ211)(λ211 + ν1 − 2)λ21 − sinh(δλ11) sinh(δλ21)

×ν21λ211(λ211 + ν1 − 2)2
)

+D
(
λ11λ21

((
(λ222 − 2)λ211 + 2ν2

)
λ421

+
(

(λ222 − 2)λ211(λ
2
11 − 4)− 4ν2

)
λ221 + 2ν31(λ222 + 2ν2 − 2) + 2ν2λ

2
11(λ

2
11 − 2)

+λ212(ν1 − λ211)(ν1 − λ221)
(
λ211 + λ221 + 2ν1 − 4

)
+ 2λ12λ22(ν1 − 1)

×
(
− λ411 + 2λ211 − λ421 + 2λ221 + 2(ν1 − 2)ν1

)
− ν21

(
(λ211 + λ221 + 4)λ222

+12ν2 − 2(λ211 + λ221 + 4)
)

+ ν1

(
− (λ222 − 2)

(
λ411 − 4λ211 + λ421 − 4λ221

)
−2ν2

(
λ411 − 2λ211 + λ421 − 2λ221 − 4

)))
+ sinh(δλ21)

(
cosh(δλ11)(λ12 + λ22)λ11

×(λ11 − λ21)(λ11 + λ21)
(
λ12λ22(λ

2
11 + ν1 − 2)(ν1 − λ221)− (ν1 − λ211)λ221

×(λ221 + ν1 − 2)
)

+ sinh(δλ11)
(
ν2(ν1 − λ211)λ621 +

(
2(λ222 + ν2 − 2)λ411

+
(

(2− 3ν1)ν2 − (λ222 − 2)(ν1 + 2)
)
λ211 + ν1

(
ν1(λ

2
22 + 3ν2 − 2)− 4ν2

))
λ421

+
(
− ν2λ611 +

(
(2− 3ν1)ν2 − (λ222 − 2)(ν1 + 2)

)
λ411 − 2(ν1 − 2)

(
ν1(2λ

2
22
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+3ν2 − 4)− 2ν2

)
λ211 + (ν1 − 2)ν1

(
ν1(λ

2
22 + 2ν2 − 2)− 2ν2

))
λ221

+ν1λ
2
11(λ

2
11 + ν1 − 2)

(
ν1(λ

2
22 + 2ν2 − 2) + ν2(λ

2
11 − 2)

)
+ λ212

(
2λ411

−(ν1 + 2)λ211 + ν21

)
λ421 +

(
− (ν1 + 2)λ411 − 4(ν1 − 2)ν1λ

2
11 + (ν1 − 2)ν21

)
λ221

+ν21λ
2
11(λ

2
11 + ν1 − 2)

)
+ λ12λ22

(
(ν1 − λ211)λ621 +

(
2λ411 + (2− 3ν1)λ

2
11

+ν1(3ν1 − 4)
)
λ421 +

(
− λ611 + (2− 3ν1)λ

4
11 − 2(ν1 − 2)(3ν1 − 2)λ211

+2(ν1 − 2)(ν1 − 1)ν1

)
λ221 + ν1λ

2
11(λ

2
11 + ν1 − 2)(λ211 + 2ν1 − 2)

)))
+ cosh(δλ21)λ21

(
sinh(δλ11)(λ12 + λ22)(λ11 − λ21)(λ11 + λ21)

(
λ211(λ

2
11 + ν1 − 2)

×(ν1 − λ221)− λ12λ22(ν1 − λ211)(λ221 + ν1 − 2)
)

+ cosh(δλ11)λ11

(
−
(

(λ222 − 2)

×λ211 + 2ν2

)
λ421 +

(
4ν2 − (λ222 − 2)λ211(λ

2
11 − 4)

)
λ221 − 2ν31(λ222 + 2ν2 − 2)

−2ν2λ
2
11(λ

2
11 − 2)− λ212(ν1 − λ211)(ν1 − λ221)(λ211 + λ221 + 2ν1 − 4)− 2λ12λ22

×(ν1 − 1)
(
− λ411 + 2λ211 − λ421 + 2λ221 + 2(ν1 − 2)ν1

)
+ ν21

(
(λ211 + λ221 + 4)λ222

+12ν2 − 2(λ211 + λ221 + 4)
)

+ ν1

(
(λ222 − 2)(λ411 − 4λ211 + λ421 − 4λ221)

+2ν2(λ
4
11 − 2λ211 + λ421 − 2λ221 − 4)

))))
+
(
− ν22 −

(
(λ12 + λ22)

2 − 2
)
ν2

+λ12λ22(λ12λ22 + 2)
)(
− λ11λ521 + sinh(δλ11) sinh(δλ21)

(ν1 − λ211)λ421 + λ11

(
2 cosh(δλ11) cosh(δλ21)(λ

2
11 − 1) + 2

)
λ321

− sinh(δλ11) sinh(δλ21)
(
λ411 + 2(ν1 − 2)λ211 − (ν1 − 2)ν1

)
λ221

+λ11

(
− λ411 + 2λ211 + 2ν21 − 4ν1 − 2 cosh(δλ11) cosh(δλ21)(

λ211 + (ν1 − 2)ν1

))
λ21 + sinh(δλ11) sinh(δλ21)ν1λ

2
11(λ

2
11 + ν1 − 2)

)
= 0. (3.9)
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Equation (3.9) at H = 0 coincides with Konenkov’s dispersion relation [79], [34].

Indeed, we obtain from (3.9)

λ212λ
2
22 + 2(1− ν2)λ12λ22 − ν22 = 0,

resulting in

λ12λ22 =
√

1− c4, (3.10)

with

c =
[
(1− ν2)

(
3ν2 − 1 + 2

√
2ν22 − 2ν2 + 1

)] 1
4
.

The last dispersion relation can be re-written as

D2k
4c4 = 2ρ2hω

2. (3.11)

The goal of the chapter is to derive a perturbation to the above mentioned Konenkov’s

edge bending wave on a homogeneous plate, assuming that H � l, where l is a typical

wave length for a travelling harmonic wave. Instead of studying a pretty tedious

dispersion relation (3.9), in what follows we reduce the influence of the plate strip

to effective boundary conditions along the interface y = H, similarly to those for a

coated elastic half-space, e.g. see [34].
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3.2 Effective Boundary Conditions

In order to obtain effective boundary conditions we first aim at expressing the bending

moment and the modified shear force at the interface y = H through given deflection

and angle of rotation. The strip plate is considered separately as shown in Figure

3.2, having traction free upper face and prescribed displacement and rotation angle

on the lower surface of the plate. Thus, for the strip plate we are solving the equation

of motion (3.1) subject to the traction free boundary conditions (3.2) at y = 0. At

the interface y = H we have

w1|y=H = wH ,
∂w1

∂y

∣∣∣∣
y=H

=
1

l
GH , (3.12)

where functions wH = wH(x, t) and GH = GH(x, t) are assumed to be known.

x

y

H

Figure 3.2: A strip plate with free upper side and loaded lower side considered
separately

Below, we adapt the asymptotic methodology similar to that for thin elastic struc-

tures, e.g. see [1], [34] and references therein. First, introduce the following dimen-

sionless variables

ξ =
x

l
, η1 =

y

H
, τ =

√
D1

2ρ1h

t

l2
, (3.13)
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where τ has been introduce in such a way that it would asymptotically balance a

fourth order plate bending equation.

In terms of new variables the governing equation (3.1) becomes

∂4w1

∂η41
+ 2ε2

∂4w1

∂ξ2∂η21
+ ε4

(
∂4w1

∂ξ4
+
∂2w1

∂τ 2

)
= 0, (3.14)

subject to the boundary conditions

∂2w1

∂η21
+ ε2ν1

∂2w1

∂ξ2
= 0 ,

∂3w1

∂η31
+ ε2(2− ν1)

∂3w1

∂ξ2∂η1
= 0 at η1 = 0,

w1 = wH ,
∂w1

∂η1
= εGH at η1 = 1,

(3.15)

where a small parameter ε has been introduced as

ε =
H

l
.

A deflection w1 can be expanded into an asymptotic series in terms of ε as

w1 = w
(0)
1 + w

(1)
1 ε+ w

(2)
1 ε2 + w

(3)
1 ε3 + w

(4)
1 ε4 + . . . (3.16)

Substituting expansion (3.16) into the boundary value problem (3.14)-(3.15), we ar-

rive at the problem formulated for various asymptotic orders n = 0, 1, 2, . . . , namely

∂4w
(n)
1

∂η41
+ 2

∂4w
(n−2)
1

∂ξ2∂η21
+
∂4w

(n−4)
1

∂ξ4
+
∂2w

(n−4)
1

∂τ 2
= 0, (3.17)
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subject to

∂2w
(n)
1

∂η21
+ ν1

∂2w
(n−2)
1

∂ξ2
= 0 ,

∂3w
(n)
1

∂η31
+ (2− ν1)

∂3w
(n−2)
1

∂ξ2∂η1
= 0 at η1 = 0,

w
(n)
1 = w

(n)
H ,

∂w
(n)
1

∂η1
= G

(n)
H at η1 = 1,

(3.18)

where quantities with the negative superscript are set to be equal to zero. The only

non-zero components w
(n)
H and G

(n)
H are w

(0)
H = wH and G

(1)
H = GH , respectively.

Substituting subsequently n = 0, 1, 2, 3, 4 into (3.17)-(3.18) we obtain

w
(0)
1 = wH ,

w
(1)
1 = GH(η1 − 1),

w
(2)
1 = −ν1(η1 − 1)2

2

∂2wH
∂ξ2

,

w
(3)
1 =

∂2GH

∂ξ2

(
(ν1 − 2)

6
η31 +

ν1
2
η21 +

(2− 3ν1)

2
η1 −

4− 5ν1
6

)
,

w
(4)
1 =

1

24

(
(2ν1 − 1)

∂4wH
∂ξ4

− ∂2wH
∂τ 2

)
η41 +

ν1(ν1 − 2)

6

∂4wH
∂ξ4

η31

+
ν21
4

∂4wH
∂ξ4

η21 +
1

6

(∂2wH
∂τ 2

− (6ν21 − 4ν1 − 1)
∂4wH
∂ξ4

)
η1

+
1

24
(14ν21 − 10ν1 − 3)

∂4wH
∂ξ4

− 1

8

∂2wH
∂τ 2

.

(3.19)

Now, using expansion (3.16) together with continuity conditions for moments and

shear forces on the interface, we obtain effective boundary conditions for the semi-

infinite plate at η2 = ε in the form

D2

(
(2− ν2)

∂3w2

∂ξ2∂η2
+
∂3w2

∂η32

)
= −εD1

(
(1− ν21)

∂4w2

∂ξ4
+
∂2w2

∂τ 2

)
,

D2

(
ν2
∂2w2

∂ξ2
+
∂2w2

∂η22

)
= −εD12(1− ν1)

∂3w2

∂ξ2∂η2
.

(3.20)
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Returning back to the original variables, effective boundary conditions at y = H can

be re-written as

D2

(
(2− ν2)

∂3w2

∂x2∂y
+
∂3w2

∂y3

)
= −D1H

(
(1− ν21)

∂4w2

∂x4
+

2ρ1h

D1

∂2w2

∂t2

)
,

D2

(
ν2
∂2w2

∂x2
+
∂2w2

∂y2

)
= −D1H 2(1− ν1)

∂3w2

∂x2∂y
.

(3.21)

The right hand sides of the above equations can be re-written to demonstrate anal-

ogy with the problem for a semi-infinite plate reinforced by a beam with a narrow

rectangular cross-section 2h×H, taking the form

D2

(
(2− ν2)

∂3w2

∂x2∂y
+
∂3w2

∂y3

)
= −E1Iy

∂4w2

∂x4
− ρ1A

∂2w2

∂t2
,

D2

(
ν2
∂2w2

∂x2
+
∂2w2

∂y2

)
= −G1Jt

∂3w2

∂x2∂y
,

(3.22)

where A is the area of the beam’s cross section, G1 =
E1

2(1 + ν1)
is the shear modulus

of the beam, Iy is the area moment of inertia, and Jt is the torsional constant, given

by

A = 2hH, Iy =
2

3
Hh3, Jt =

8

3
Hh3.

To conclude, the formulae (3.22) are, to within the inertial terms, identical to the

boundary conditions in [38],[39],[91],[108], written for a beam with an arbitrary cross-

section. It is worth noting that the rotation inertia does not appear at the second

equation (3.22) at the leading order approximation.



Chapter 3. The elastic bending wave on the edge of a semi-infinite plate reinforced
by a strip plate 78

3.3 Testing of effective boundary conditions

For validating the asymptotic results obtained in the previous section, consider a

model boundary value problem for a strip plate over the domain 0 6 y 6 H. We take

an equation of motion (3.1) for j = 1 subject to homogeneous boundary conditions

(3.2) at y = 0 and impose the boundary conditions

w1|y=H = wH ,
∂w1

∂y

∣∣∣∣
y=H

= kGH , (3.23)

at y = H with functions wH(x, t) and GH(x, t) specified as travelling waves wH =

Aei(kx−ωt) and GH = Bei(kx−ωt), respectively.

The solution of the formulated problem is then sought for in the form (3.7) for j = 1,

and we finally arrive at a set of four linear algebraic equations which can be written

in a matrix form as

Q · C = U, (3.24)
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where C =
(
C

(1)
1 , C

(1)
2 , C

(1)
3 , C

(1)
4

)T
, U = (0, 0, A, kB)T are vectors and Q is a 4 × 4

matrix with the components given by

Q11 = Q12 = (λ211 − ν1), Q13 = Q14 = (λ221 − ν1),

Q21 = −Q22 = λ311 − (2− ν1)λ11,

Q23 = −Q24 = λ321 − (2− ν1)λ21,

Q31 = eλ11δ, Q32 = e−λ11δ, Q33 = eλ21δ, Q34 = e−λ21δ,

Q41 = λ11e
λ11δ, Q42 = −λ11e−λ11δ,

Q43 = λ21e
λ21δ, Q44 = −λ21e−λ21δ.

The sought for constants C
(1)
i , i = 1, 2, 3, 4 are presented in Appendix C.1.

Next, re-write a solution (3.7) for w1 in terms of dimensionless variables and expand it

into Taylor series about δ = 0, where δ is defined in (3.8), arriving at the asymptotic

expansion

w1 = ei(ξ−γ1τ)
(
A+ δB(η1 − 1) + δ2A

ν1
2

(η1 − 1)2

− δ3B
6

(η1 − 1)2 ((ν1 − 2)η1 + 5ν1 − 4)

+ δ4
A

24
(η1 − 1)2

(
(γ21 + 2ν1 − 1)η21 + (2γ21 + 4ν21 − 4ν1 − 2)η1

+ 3γ21 + 14ν21 − 10ν1 − 3
))

+ ....

(3.25)

It can be easily demonstrated, that at ε = δ, i.e. at l = 1/k the last formula coincides

with the expansion (3.16) with the coefficients (3.19), in which functions wH and GH

are defined as wH = Aei(ξ−γ1τ) and GH = Bei(ξ−γ1τ).
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Let us now test the derived effective boundary conditions for the chosen wH and GH .

To this end, express first the continuity conditions (3.3) as

D2

(
(2− ν2)

∂3w2

∂ξ2∂η2
+
∂3w2

∂η32

)
= δ−1D1

(
(2− ν1)

∂3w1

∂ξ2∂η1
+ δ−2∂

3w1

∂η31

)
,

D2

(
ν2
∂2w2

∂ξ2
+
∂2w2

∂η22

)
= D1

(
ν1
∂2w1

∂ξ2
+ δ−2∂

2w1

∂η21

)
.

(3.26)

Substituting expansion (3.25) into the right hand sides of the above equations, and

keeping only O(δ) terms, we obtain effective boundary conditions (3.20), where w2 =

wH = Aei(ξ−γ1τ) and
∂w2

∂η2
= GH = Bei(ξ−γ1τ) are inserted into the right hand side of

equations (3.20), namely

D2

(
(2− ν2)

∂3w2

∂ξ2∂η2
+
∂3w2

∂η32

)
= δD1A(γ21 + ν21 − 1) +O(δ2),

D2

(
ν2
∂2w2

∂ξ2
+
∂2w2

∂η22

)
= −δ2D1B(ν1 − 1) +O(δ2).

Clearly, the right hand side of the last equations is small as δ −→ 0, showing the

effect of a thin coating plate. The purpose of approach is restricted to the long wave

domain given by the strong inequality δ � 1.
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3.4 Approximate dispersion relation

We aim at finding an asymptotic dispersion relation over the domain H 6 y 6 ∞

by using the derived effective boundary conditions (3.21) together with equation of

motion (3.1). The solution is sought for in the form of a travelling harmonic wave

(3.7). As a result, we deduce an approximate dispersion relation, which could be

re-written in dimensionless variables as

2(1− ν2)
√

1− γ22 + 1− γ22 − ν22

+ δ

√
2

(
1 +

√
1− γ22

)(
D

(
1− ν21 + 2(1− ν1)

√
1− γ22

)
− ργ22

)
= 0.

(3.27)

Setting δ = 0 in the above equation, we obtain the well-known dispersion relation of

the bending wave on a free edge of a semi-infinite homogeneous plate [79]. Introducing

new notation

φ =

√
1− γ22
ν22

, (3.28)

above equation (3.27) can be presented in the form

ν22
(
φ2ν22 + 2φ(1− ν2)− 1

)
+ δ
√

2 (1 + φν22)
(
D(1− ν1)(1 + ν1 + 2φν22)− ρ

(
1− φ2ν42

) )
= 0.

(3.29)

In this equation δ = kH ∼ H

l
� 1 where l ∼ 1

k
is a typical wavelength which is

much greater due the original assumption. Expanding φ into a series about δ = 0

φ = φ0 + φ1δ + . . . (3.30)
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and substituting it into dispersion relation (3.29), we obtain

φ0 =
−1 + ν2 +

√
2ν22 − 2ν2 + 1

ν22
,

φ1 = −
√

1 + φ0ν22

(
D(1− ν1)(1 + ν1 + 2φ0ν

2
2)− ρ(1− φ2

0ν
4
2)
)

√
2ν22(φ0ν22 − ν2 + 1)

,

where φ0 corresponds to Konenkov’s wave on a free edge of a homogeneous semi-

infinite plate, while φ1 is associated with the correction due to the effect of a strip

plate.

Figures 3.3 and 3.4 demonstrate the solutions of the exact dispersion relation (3.9)

and its asymptotic expansion (3.30) for several values of the relative stiffness D and

relative density ρ of the strip plate. In Figure 3.3 the function φ is plotted at ρ = 1.0

and D = 1.0, 1.1, 1.3. In Figure 3.4 D = 1.0 and ρ = 1.0, 0.95, 0.8. Figure 3.3

shows that decay of φ is greater at larger D and, hence, the localisation of the edge

wave becomes more pronounced. Similarly, in Figure 3.4, the decay rate decreases at

larger ρ, and as a result, the edge wave has a greater spread over the interior.
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Figure 3.3: Comparison of asymptotic expansion (3.30) (dashed line) and exact
dispersion relation (3.9) (solid line) for ρ = 1.0 and D = 1.0, 1.1, 1.3.
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Figure 3.4: Comparison of asymptotic expansion (3.30) (dashed line) and exact
dispersion relation (3.9) (solid line) for D = 1.0 and ρ = 1.0, 0.95, 0.8.
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To summarize this chapter, a semi-infinite plate with the edge reinforced by a strip

plate has been studied. For a strip plate, an asymptotic procedure has been developed

to derive effective boundary conditions at the interface. The associated approximate

dispersion relation for edge bending waves have been analysed. The obtained results

have been compared with the exact solution of the original problem for a composite

plate. The results obtained in this chapter motivated us for considering a simpler

setup, namely, a plate with edge reinforced by a beam, which is exposed in the next

chapter 4.



Chapter 4

The edge bending wave on a plate

reinforced by a beam

The chapter is organized as follows. In Section 4.1, the edge bending wave on a thin

isotropic semi-infinite plate reinforced by a beam is considered within the framework

of the classical plate and beam theories. The boundary conditions at the plate edge

incorporate both dynamic bending and twisting of the beam. Then, in Section 4.2, a

dispersion relation is derived along with its long-wave approximation. The effect of

the problem parameters on the cutoffs of the wave in question is studied asymptoti-

cally. Finally, in Section 4.3, an illustrative example of comparison of the dispersion

curves for a composite plate-plate structure and a plate reinforced by a beam is pre-

sented.

85
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4.1 Statement of the problem

Consider a thin isotropic elastic plate stiffened by an elastic beam along the edge.

The Cartesian coordinate system is chosen in such a way that x and y are in the

midplane of the plate with x going along the interface, see Figure 4.1. The equation

Figure 4.1: Plate reinforced by a beam

of motion for the midplane deflection w2 in the classical theory for plate bending is

D2

(
∂4w2

∂x4
+ 2

∂4w2

∂x2∂y2
+
∂4w2

∂y4

)
+ 2ρ2h

∂2w2

∂t2
= 0, (4.1)

where D2 is bending stiffness of the plate, h is the half thickness of the plate, and t

is time. Also, in what follows ρj are mass densities, Ej are Young’s moduli, Gj are

shear moduli, νj are Poisson’s ratios, j = 1, 2. Indexes 1 and 2 correspond to the

beam and plate, respectively.
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The boundary conditions for the plate edge y = 0 maybe obtained by considering the

beam flexure and twisting, see for example [108], resulting in

E1Iy
∂4w2

∂x4
+ ρ1A

∂2w2

∂t2
= −D2

(∂3w2

∂y3
+ (2− ν2)

∂3w2

∂x2∂y

)
,

G1Jt
∂3w2

∂x2∂y
− ρ1J

∂3w2

∂t2∂y
= −D2

(∂2w2

∂y2
+ ν2

∂2w2

∂x2

)
,

(4.2)

where Iy and J are the area and polar moments of inertia of the beam’s cross section,

Jt is the torsional constant, and A is the area of the beam’s cross section.

4.2 Dispersion relation

The solution of the equation (4.1) is sought for in the form of a conventional harmonic

travelling wave as

w2(x, y, t) = w2(y)ei(kx−ωt), (4.3)

where ω is frequency, and k is wave number. Substituting (4.3) into (4.1), we arrive

at the edge wave in the form

w2(y) = C1e
−kλ1y + C2e

−kλ2y,

where C1 and C2 are arbitrary constants, and

λ1 =
√

1 + γ2, λ2 =
√

1− γ2, γ2 =
ω

k2

√
2ρ2h

D2

.
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Now, on substituting (4.3) into the boundary conditions (4.2) we arrive at the 2× 2

set of linear equations, leading to the general exact dispersion relation

(λ1λ2 + 1)2 − ν2(λ1 + λ2)
2 − (1− ν2)2

− (λ1 + λ2)(α1γ
2
2ρ− β2λ1λ2 − β1)δh

− β2(α1γ
2
2ρ− β1)δ2h − α2γ

2
2ρλ1λ2(λ1 + λ2)δ

3
h

+ α2γ
2
2ρ(α1γ

2
2ρ− β1)δ4h = 0,

(4.4)

where

β1 =
E1Iy
hD2

, β2 =
G1Jt
hD2

, α1 =
A

2h2
, α2 =

J

2h4
,

and δh = kh, ρ =
ρ1
ρ2

.

Setting δh = 0 in (4.4) and returning back to original variables we get the well known

relation for a free plate edge, see e.g. [79]

D2k
4c4 = 2ρ2hω

2,

where

c =
[
(1− ν2)

(
3ν2 − 1 + 2

√
2ν22 − 2ν2 + 1

)]1/4
.

Let us next introduce a new unknown function by

φ =

√
1− γ22
ν22

, (4.5)

corresponding to the appropriately normalised attenuation rate which is not sensitive
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to the value of a Poison’s ratio. This is seemingly the most relevant characteristic of

slowly decaying edge bending waves. Hence, equation (4.4) can be re-written as

(1 + ν22φ)2 − 2ν2(1 + ν22φ)− (1− ν2)2

−
√

2(1 + ν22φ)
(
α1ρ

(
1− ν42φ2

)
− β2ν22φ− β1

)
δh

− β2
(
α1ρ(1− ν42φ2)− β1

)
δ2h

− α2ν
2
2ρ(1− ν42φ2)φ

√
2(1 + ν22φ)δ3h

+ α2ρ
(
α1ρ(1− ν42φ2)− β1

) (
1− ν42φ2

)
δ4h = 0.

(4.6)

At φ = 0 (γ2 = 1) we have for cut-off values

ν22 + (α1ρ− β1)
(√

2δh + β2δ
2
h − α2ρδ

4
h

)
= 0. (4.7)

Over the range of validity of thin plate theory (δh � 1) we get at leading order

δ∗h ≈
ν22√

2(β1 − α1ρ)
. (4.8)

Thus, in the considered case of no contrast in material parameters (α1 ∼ β1 ∼ ρ ∼ 1),

the cut-offs under investigation (at zero wave number) should satisfy 0 < δ∗h � 1,

provided that ν2 � 1 and β1 > α1ρ. Higher-order cut-offs, considered in paper [17]

are outside of the validity of the present consideration.
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Next, expanding φ into a series about δh = 0

φ = φ0 + φ1δh + . . . (4.9)

and substituting into the dispersion relation (4.6), we obtain

φ0 =
ν2 − 1 +

√
2ν22 − 2ν2 + 1

ν22
, (4.10)

and

φ1 =

(
(1− ν42φ2

0)ρα1 − β1 − β2ν22φ0

)√
2(1 + ν22φ0)

2ν42φ0 − 2(ν2 − 1)ν22
. (4.11)

It is worth noting that (4.8) and (4.9)-(4.11) do not contain the parameter α2 involv-

ing rotational inertia of the beam. This is inline with the asymptotic analysis of a

similar problem for the edge reinforcement in the form of a plate strip in [9]. In ad-

dition, (4.8) also does not depend on parameter β2, expressing the effect of torsional

rigidity.
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4.3 Example (Comparison of the dispersion curves

for a composite plate-plate structure and a

plate reinforced by a beam)

In this section we present the results of numerical comparison of the dispersion curves

for a plate reinforced by a beam and a composite ‘plate-plate’ structure, in order to

validate the ‘plate-beam’ model in the previous section. To this end, consider bending

of a semi-infinite Kirchhoff plate reinforced by a strip plate along the edge as shown

in Figure 4.2, assuming that for the strip plate H � h. For the latter, the equation

of motion follows from (4.1) by substituting 1 instead of 2 in all the suffices.

Figure 4.2: Plate reinforced by a strip plate

Traction free boundary conditions on the edge y = 0 are given by

∂2w1

∂y2
+ ν1

∂2w1

∂x2
= 0,

∂3w1

∂y3
+ (2− ν1)

∂3w1

∂x2∂y
= 0. (4.12)
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The continuity conditions at y = H are

w1 = w2,

∂w1

∂y
=
∂w2

∂y
,

D1

(∂2w1

∂y2
+ ν1

∂2w1

∂x2

)
= D2

(∂2w2

∂y2
+ ν2

∂2w2

∂x2

)
,

D1

(∂3w1

∂y3
+ (2− ν1)

∂3w1

∂x2∂y

)
= D2

(∂3w2

∂y3
+ (2− ν2)

∂3w2

∂x2∂y

)
.

The related dispersion equation is

det M = 0, (4.13)

with the non-zero components of the 6× 6 matrix M given in Appendix C.2, where

the notation

D =
D1

D2

is introduced.

For a plate reinforced by a beam with a narrow rectangular cross section the quantities

Iy, J , Jt, and A in (4.2) are defined as

Iy =
2

3
h3H, J =

1

6
hH3, Jt =

8

3
h3H, A = 2hH.

Taking into account the relations

Dj =
2Ejh

3

3(1− ν2j )
, Gj =

Ej
2(1 + νj)

, j = 1, 2,
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we have

α1 = η, α2 =
1

12
η3, β1 = D(1− ν21)η, β2 = 2D(1− ν1)η, (4.14)

where η = H/h. Substituting the above formulae into (4.6) we obtain dispersion

equation

(1 + ν22φ)2 − 2ν2(1 + ν22φ)− (1− ν2)2 −
√

2(1 + ν22φ)×(
ρ(1− ν42φ2)−D(1− ν1)(1 + ν1 + 2ν22φ)

)
δH

− 2D(1− ν1)
(
ρ(1− ν42φ2)−D(1− ν21)

)
δ2H

− 1

12
(1− ν42φ2)ν22ρφ

√
2(1 + ν22φ)δ3H

+
1

12
(1− ν42φ2)ρ(ρ(1− ν42φ2)−D(1− ν21))δ4H = 0,

(4.15)

where δH = kH � 1. Now, the cut-off at leading order is given by the formula

δ∗H ≈
ν22√

2(D(1− ν21)− ρ)
, (4.16)

which readily follows from (4.8) and is valid provided that ν22 � 1 and D(1−ν21) > ρ.

Also, the asymptotic expansion for φ, analogous to (4.9), becomes

φ = φ̃0 + φ̃1δH + . . . , (4.17)
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where φ̃0 = φ0 in (4.10) and

φ̃1 =
√

2(1 + ν22φ0)×(
ρ(1− ν42φ2

0)−D(1− ν1)(1 + ν1 + ν22φ0)
)

2ν22(1− ν2 + ν22φ0)
.

In Figures 4.3 and 4.4 the function φ is plotted against dimensionless wave number

δH . In these figures the dispersion curves for a plate reinforced by a beam (4.15) and

by a strip plate (4.13) are plotted together with those corresponding to the two term

asymptotic approximations (4.17). Numerical examples are presented for ν1 = 0.31

and ν2 = 0.35.

As might be expected, both beam approximation (4.15) and its two-term asymptotics

(4.17) are robust only over the long wave range (δH � 1), see the curves for D = 2.3

in Figure 4.3 and ρ = 0.2 in Figure 4.4, for which the asymptotic formulae (4.16) gives

δ∗H = 0.08 and δ∗H = 0.12, respectively. Outside the long wave range, the deviation

between the results for plate and beam edge reinforcement become more substantial.

In particular, as follows from formula (4.7) with (4.14) the beam reinforcement does

not assume a cut-off under the condition D(1 − ν21) − ρ = 0 since the analysis is in

the long-wave low-frequency region, which is satisfied for the curves corresponding

to D = 1.11 in Figure 4.3 and ρ = 0.9 in Figure 4.4. At the same time, for both of

these scenarios the strip plate reinforcement predicts cut-offs at δ∗H ∼ 1.
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Figure 4.3: Comparison of dispersion relations (4.13) (solid line), (4.15) (dashed
line) and asymptotic expansion (4.17) (dotted line) for ρ = 1.0 and D = 2.3, 1.25,
1.11.
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Figure 4.4: Comparison of dispersion relations (4.13) (solid line), (4.15) (dashed
line) and asymptotic expansion (4.17) (dotted line) for D = 1.0 and ρ = 0.2, 0.7,
0.9.
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In this chapter we have studied edge bending waves in a plate with an edge reinforced

by a beam. We have also compared these results with those achieved in chapter 3 for

a more general setup of reinforcement by a strip plate. Predictably, it is shown that

the beam model is a good approximation in case of narrow strip reinforcement.



Chapter 5

The elastic bending wave on the

edge of a semi-infinite circular

plate reinforced by an annular

plate

This chapter is developing the previous results taking into account the effect of cur-

vature. More specifically, it is concerned with the propagation of bending edge waves

on a thin isotropic elastic circular plate perfectly bonded with a narrow annular plate

of the same thickness. We focus on the asymptotic treatment of a narrow plate with

a free outer edge and its inner edge subject to prescribed deflection and angle of

rotation. In Section 5.1, a review of the equations of motion and statement of the

problem are presented. Then, the exact dispersion relation is obtained. In Section

5.2, we introduce appropriate scaling for the space variables and derive the effective

97
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boundary conditions. Finally, in Section 5.3, the approximate dispersion relation

is deduced and comparison of approximate dispersion relation and exact dispersion

relation is demonstrated.

5.1 Statement of the problem

Consider a thin isotropic elastic circular plate of thickness 2h and radius R, reinforced

by an annular plate of the same thickness and width H with h << H as shown in

Figure 5.1.

Figure 5.1: A semi-infinite circular plate with the edge coated by an annular
plate.

The equation of motion can be written as

Dj

(
∂4wj
∂r4

+
2

r2
∂4wj
∂r2∂θ2

+
1

r4
∂4wj
∂θ4

+
2

r3
∂3wj
∂r∂θ2

+
2

r

∂3wj
∂r3

+
1

r2
∂2wj
∂r2

)
+2ρjh

∂2wj
∂t2

= 0, j = 1, 2, (5.1)

where t is time, wj are deflections, ρj are mass densities, andDj are bending stiffnesses

given by

Dj =
2Ejh

3

3(1− νj)
,
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where Ej are the Young’s moduli and νj are the Poisson’s ratios; hereinafter index

1 is used to denote parameters corresponding to the annular plate, whereas index 2

stays for the inner plate.

The boundary conditions on the free edge r = R are imposed in such a way that

both bending moment and modified shear force are set to zero,

∂2w1

∂r2
+
ν1
r

∂w1

∂r
+
ν1
r2
∂2w1

∂θ2
= 0,

∂3w1

∂r3
+

1

r

∂2w1

∂r2
+

1

r2
∂3w1

∂r∂θ2
= 0. (5.2)

The continuity conditions along the interface r = R−H for perfectly bonded plates

are taken as

w1 = w2,

∂w1

∂r
=
∂w2

∂r
,

D1

(∂2w1

∂r2
+
ν1
r

∂w1

∂r
+
ν1
r2
∂2w1

∂θ2

)
= D2

(∂2w2

∂r2
+
ν2
r

∂w2

∂r
+
ν2
r2
∂2w2

∂θ2

)
,

D1

(∂3w1

∂r3
+

1

r

∂2w1

∂r2
+

1

r2
∂3w1

∂r∂θ2

)
= D2

(∂3w2

∂r3
+

1

r

∂2w2

∂r2
+

1

r2
∂3w2

∂r∂θ2

)
.

(5.3)

The solutions of plate bending equation (5.1) is given by

wj(r, θ, t) = wj(r) cos(kθ)eiwt, j = 1, 2, (5.4)

where ω is the frequency and k is circumferential wave number.

Substituting the latter into (5.1), we have

[( ∂2
∂r2

+
1

r

∂

∂r
− k2

r2

)2
− λ4j

]
wj(r) = 0. (5.5)



Chapter 5. The elastic bending wave on the edge of a circular plate reinforced by an
annular plate 100

Then we get [145]

wj(r) = C
(j)
1 Jk(λjr) + C

(j)
2 Yk(λjr) + C

(j)
3 Ik(λjr) + C

(j)
4 Kk(λjr), (5.6)

where λ2j = ω

√
2ρjh

Dj

, and Jk(λjr), Yk(λjr) are Bessel functions and Ik(λjr), Kk(λjr)

are modified Bessel functions.

As a result, the deflection of each of the plate may be presented as

wj(r, θ, t) =
(
C

(j)
1 Jk(λjr) + C

(j)
2 Yk(λjr) + C

(j)
3 Ik(λjr) + C

(j)
4 Kk(λjr)

)
cos(kθ)eiwt,

(5.7)

where C
(j)
1 , C

(j)
2 , C

(j)
3 and C

(j)
4 are arbitrary constants. For a solid plate with no

hole at r = 0, one requires that C
(2)
2 = C

(2)
4 = 0, Since Yk(λjr) and Kk(λjr) becomes

unbounded as r −→ 0.

Next, we insert formulae (5.7) into the boundary conditions (5.2) and continuity rela-

tions (5.3) leads to a homogeneous system of order six with the non-zero components

of 6× 6 matrix S given by
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S11 = Ω2(ε− 1)2(Jk−2(Ω)− 2Jk(Ω) + Jk+2(Ω))− 4ν1(Ω(ε− 1)Jk−1(Ω)

+ k(k − ε+ 1)Jk(Ω)),

S12 = Ω2(ε− 1)2(Yk−2(Ω)− 2Yk(Ω) + Yk+2(Ω))− 4ν1(Ω(ε− 1)Yk−1(Ω)

+ k(k − ε+ 1)Yk(Ω)),

S13 = Ω2(ε− 1)2(Ik−2(Ω) + 2Ik(Ω) + Ik+2(Ω))− 4ν1(Ω(ε− 1)Ik−1(Ω)

+ k(k − ε+ 1)Ik(Ω)),

S14 = 4ν1(Ω(ε− 1)Kk−1(Ω) + k(−k + ε− 1)Kk(Ω)) + Ω2(ε− 1)2(Kk−2(Ω)

+ 2Kk(Ω) +Kk+2(Ω)),

S21 = 4k2(Jk+1(Ω)− Jk−1(Ω)) + Ω(ε− 1)(Ω(ε− 1)(Jk−3(Ω)− 3Jk−1(Ω)

+ 3Jk+1(Ω)− Jk+3(Ω))− 2(Jk−2(Ω)− 2Jk(Ω) + Jk+2(Ω))),

S22 = 4k2(Yk+1(Ω)− Yk−1(Ω)) + Ω(ε− 1)(Ω(ε− 1)(Yk−3(Ω)− 3Yk−1(Ω)

+ 3Yk+1(Ω)− Yk+3(Ω))− 2(Yk−2(Ω)− 2Yk(Ω) + Yk+2(Ω))),

S23 = Ω(ε− 1)(Ω(ε− 1)(Ik−3(Ω) + 3(Ik−1(Ω) + Ik+1(Ω)) + Ik+3(Ω))

− 2(Ik−2(Ω) + 2Ik(Ω) + Ik+2(Ω)))− 4k2(Ik−1(Ω) + Ik+1(Ω)),

S24 = 4k2(Kk−1(Ω) +Kk+1(Ω))− Ω(ε− 1)(2(Kk−2(Ω) + 2Kk(Ω) +Kk+2(Ω))

+ Ω(ε− 1)(Kk−3(Ω) + 3(Kk−1(Ω) +Kk+1(Ω)) +Kk+3(Ω))),

S31 = Jk(Ω(1− ε)), S32 = Yk(Ω(1− ε)),

S33 = Ik(Ω(1− ε)), S34 = Kk(Ω(1− ε)),

S35 = −Jk(ρDΩ(1− ε)), S36 = −Ik(ρDΩ(1− ε)),
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S41 = −1

2
Ω(ε− 1)ε(Jk−1(Ω− εΩ)− Jk+1(Ω− εΩ)),

S42 = −1

2
Ω(ε− 1)ε(Yk−1(Ω− εΩ)− Yk+1(Ω− εΩ)),

S43 = −1

2
Ω(ε− 1)ε(Ik−1(Ω− εΩ) + Ik+1(Ω− εΩ)),

S44 =
1

2
Ω(ε− 1)ε(Kk−1(Ω− εΩ) +Kk+1(Ω− εΩ)),

S45 = ε(DρΩ(ε− 1)Jk−1(−D(ε− 1)ρΩ) + kJk(−D(ε− 1)ρΩ)),

S46 = ε(DρΩ(ε− 1)Ik−1(−D(ε− 1)ρΩ) + kIk(−D(ε− 1)ρΩ)),

S51 = D4ε2
(

(ν1 − 1) (Ω− Ωε)Jk−1(Ω− εΩ)

−
(
k(k + 1)ν1 − k(k + 1) + Ω2(ε− 1)2

)
Jk(Ω− εΩ)

)
,

S52 =
1

4
D4ε2

(
4ν1((Ω− Ωε)Yk−1(Ω− εΩ)− k(k + 1)Yk(Ω− εΩ))

+ Ω2(ε− 1)2(Yk−2(Ω− εΩ)− 2Yk(Ω− εΩ) + Yk+2(Ω− εΩ))
)
,

S53 =
1

4
D4ε2

(
4ν1((Ω− Ωε)Ik−1(Ω− εΩ)− k(k + 1)Ik(Ω− εΩ))

+ Ω2(ε− 1)2(Ik−2(Ω− εΩ) + 2Ik(Ω− εΩ) + Ik+2(Ω− εΩ))
)
,

S54 =
1

4
D4ε2

(
4ν1(Ω(ε− 1)Kk−1(Ω− εΩ)− k(k + 1)Kk(Ω− εΩ))

+ Ω2(ε− 1)2(Kk−2(Ω− εΩ) + 2Kk(Ω− εΩ) +Kk+2(Ω− εΩ))
)
,

S55 = ε2
( (
D2ρ2Ω2(ε− 1)2 + k(k + 1)ν2 − k(k + 1)

)
Jk(−D(ε− 1)ρΩ)

+D (ν2 − 1) ρΩ(ε− 1)Jk−1(−D(ε− 1)ρΩ)
)
,

S56 = ε2
(
D (ν2 − 1) ρΩ(ε− 1)Ik−1(−D(ε− 1)ρΩ)

−
(
D2ρ2Ω2(ε− 1)2 + k2 − (k + 1)kν2 + k

)
Ik(−D(ε− 1)ρΩ)

)
,



Chapter 5. The elastic bending wave on the edge of a circular plate reinforced by an
annular plate 103

S61 = D4ε3
(
k
(
−2k + Ω2(ε− 1)2 − 1

)
Jk(Ω− εΩ)

+ Ω(ε− 1)(Ω(ε− 1)− 1)(Ω(ε− 1) + 1)Jk−1(Ω− εΩ)
)
,

S62 = − 1

8Ω(ε− 1)
D4ε3

((
16k

(
−2k2 + k + 1

)
+ 8(2(k − 1)k + 1)Ω2(ε− 1)2

− 7Ω4(ε− 1)4
)
Yk−1(Ω− εΩ) + Ω4(ε− 1)4Yk−3(Ω− εΩ)

− 2Ω(ε− 1)
(
4k(2k + 1)− (5k − 2)Ω2(ε− 1)2

)
Yk−2(Ω− εΩ)

)
,

S63 = D4ε3
(

Ω(1− ε)
(
Ω2(ε− 1)2 + 1

)
Ik−1(Ω− εΩ)

− k
(
2k + Ω2(ε− 1)2 + 1

)
Ik(Ω− εΩ)

)
,

S64 =
1

8Ω(ε− 1)
D4ε3

(
Ω4(ε− 1)4Kk−3(Ω− εΩ)− 2Ω(ε− 1)

(
(5k − 2)Ω2(ε− 1)2

+ 4k(2k + 1)
)
Kk−2(Ω− εΩ) +

(
8(2(k − 1)k + 1)Ω2(ε− 1)2 + 16(k − 1)k(2k + 1)

+ 7Ω4(ε− 1)4
)
Kk−1(Ω− εΩ)

)
,

S65 = −1

2
ε3
(
−DρΩ(ε− 1)

(
−2D2ρ2Ω2(ε− 1)2 + k2 + 2

)
Jk−1(−D(ε− 1)ρΩ)

− k(2(−DρΩ(ε− 1) + k + 1)(DρΩ(ε− 1) + k + 1)Jk(−D(ε− 1)ρΩ)

+DkρΩ(ε− 1)Jk+1(−D(ε− 1)ρΩ))
)
,

S66 =
1

2
ε3
(
DρΩ(ε− 1)

(
D2ρ2Ω2(ε− 1)2 + 1

)
(Ik−1(−D(ε− 1)ρΩ)

+ Ik+1(−D(ε− 1)ρΩ)) + 4k2Ik(−D(ε− 1)ρΩ)
)
,

where

Ω = λ1l,

λ2 = λ1ρD,

D =

(
D1

D2

)1/4

,

ρ =

(
ρ2
ρ1

)1/4

,

(5.8)
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which has non-zero solutions provided that

det (S) = 0. (5.9)

5.2 Effective Boundary Conditions

The goal of the section is to obtain effective boundary conditions by expressing the

bending moment and the modified shear force at the interface r = R − H through

given deflection and angle of rotation. First, let us take in a separate consideration

the annular plate, having traction free outer edge and prescribed displacement and

rotation angle on the inner edge. Thus, for the annular plate we are solving the

equation of motion (5.1) subject to the traction free boundary conditions (5.2) at

r = R. At the interface r = R−H we have

w1|r=l−H = wH ,
∂w1

∂r

∣∣∣∣
r=R−H

=
1

R−H
GH , (5.10)

where functions wH = wH(θ, t) and GH = GH(θ, t) are assumed to be known. Ac-

cordingly, we introduce the following variables

R1 = (
r

R
− 1)

1

ε
+ 1, R2 =

r

R−H
, τ =

√
D1

2ρ1h

t

R2
, ε =

H

R
<< 1. (5.11)
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In terms of new variables the governing equation (5.1) becomes

∂4w1

∂R4
1

+ ε
(

4(R1 − 1)
∂4w1

∂R4
1

+ 2
∂3w1

∂R3
1

)
+ ε2

(
6(R1 − 1)2

∂4w1

∂R4
1

+ 2
∂4w1

∂R2
1∂θ

2

+6(R1 − 1)
∂3w1

∂R3
1

+
∂2w1

∂R2
1

)
+ ε3

(
4(R1 − 1)3

∂4w1

∂R4
1

+ 4(R1 − 1)
∂4w1

∂R2
1∂θ

2

+2
∂3w1

∂R1∂θ2
+ 6(R1 − 1)2

∂3w1

∂R3
1

+ 2(R1 − 1)
∂2w1

∂R2
1

)
+ ε4

(
(R1 − 1)4

∂4w1

∂R4
1

+2(R1 − 1)2
∂4w1

∂R2
1∂θ

2
+
∂4w1

∂θ4
+ 2(R1 − 1)

∂3w1

∂R1∂θ2
+ 2(R1 − 1)3

∂3w1

∂R3
1

+(R1 − 1)2
∂2w1

∂R2
1

+
∂2w1

∂τ 2

)
+ ε5

(
4(R1 − 1)

∂2w1

∂τ 2

)
+ ε6

(
6(R1 − 1)2

∂2w1

∂τ 2

)
+ε7

(
4(R1 − 1)3

∂2w1

∂τ 2

)
+ ε8

(
(R1 − 1)4

∂2w1

∂τ 2

)
= 0, (5.12)

subject to the boundary conditions

∂2w1

∂R2
1

+ εν1
∂w1

∂R1

+ ε2ν1
∂2w1

∂θ2
= 0 ,

∂3w1

∂R3
1

+ ε
∂2w1

∂R2
1

+ ε2
∂3w1

∂R1∂θ2
= 0 at R1 = 1,

w1 = wH ,
∂w1

∂R1

− ε∂w1

∂R1

= εGH at R1 = 0.

(5.13)

A deflection w1 can be expanded into an asymptotic series in terms of ε as

w1 = w
(0)
1 + w

(1)
1 ε+ w

(2)
1 ε2 + w

(3)
1 ε3 + w

(4)
1 ε4 + . . . (5.14)
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Substituting expansion (5.14) into the boundary value problem (5.12)-(5.13), we ar-

rive at the problem formulated for various asymptotic orders n = 0, 1, 2, . . . , namely

∂4w
(n)
1

∂R4
1

+ 2
∂3w

(n−1)
1

∂R3
1

+ 2
∂4w

(n−2)
1

∂R2
1∂θ

2

+
∂2w

(n−2)
1

∂R2
1

+ 2
∂3w

(n−3)
1

∂R1∂θ2
+
∂4w

(n−4)
1

∂θ4
+
∂2w

(n−4)
1

∂τ 2

+(R1 − 1)
(

4
∂4w

(n−1)
1

∂R4
1

+ 6
∂3w

(n−2)
1

∂R3
1

+ 4
∂4w

(n−3)
1

∂R2
1∂θ

2

+2
∂2w

(n−3)
1

∂R2
1

+ 2
∂3w

(n−4)
1

∂R1∂θ2
+ 4

∂2w
(n−5)
1

∂τ 2

)
+(R1 − 1)2

(
6
∂4w

(n−2)
1

∂R4
1

+ 6
∂3w

(n−3)
1

∂R3
1

+ 2
∂4w

(n−4)
1

∂R2
1∂θ

2
+
∂2w

(n−4)
1

∂R2
1

+ 6
∂2w

(n−6)
1

∂τ 2

)
+(R1 − 1)3

(
4
∂4w

(n−3)
1

∂R4
1

+ 2
∂3w

(n−4)
1

∂R3
1

+ 4
∂2w

(n−7)
1

∂τ 2

)
+(R1 − 1)4

(∂4w(n−4)
1

∂R4
1

+
∂2w

(n−8)
1

∂τ 2

)
= 0, (5.15)

subject to

∂2w
(n)
1

∂R2
1

+ ν1
∂w

(n−1)
1

∂R1

+ ν1
∂2w

(n−2)
1

∂θ2
= 0 ,

∂3w
(n)
1

∂R3
1

+
∂2w

(n−1)
1

∂R2
1

+
∂3w

(n−2)
1

∂R1∂θ2
= 0 at R1 = 1,

w
(n)
1 = w

(n)
H ,

∂w
(n)
1

∂R1

− ∂w
(n−1)
1

∂R1

= G
(n)
H at R1 = 0,

(5.16)

where quantities with the negative superscript are set to be equal to zero. The only

non-zero components w
(n)
H and G

(n)
H are w

(0)
H = wH and G

(1)
H = GH , respectively.
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Substituting subsequently n = 0, 1, 2, 3, 4 into (5.15)-(5.16) we obtain

w
(0)
1 = wH ,

w
(1)
1 = GHR1,

w
(2)
1 = −1

2
ν1

(∂2wH
∂θ2

+GH

)
R2

1 +GHR1,

w
(3)
1 =

1

6

(
ν1
∂2wH
∂θ2

+ ν1GH −
∂2GH

∂θ2

)
R3

1

+
1

2

(
ν1(ν1 − 1)

∂2wH
∂θ2

+ ν1(ν1 − 2)GH + (1− ν1)
∂2GH

∂θ2

)
R2

1 +GHR1,

w
(4)
1 =

1

24

(
(2ν1 − 1)

∂4wH
∂θ4

− ν1
∂2wH
∂θ2

− ν1GH + 2ν1
∂2GH

∂θ2
− ∂2wH

∂τ 2

)
R4

1

+
1

6

(
(1− ν1)

∂4wH
∂θ4

+ ν1(1− ν1)
∂2wH
∂θ2

+ ν1(2− ν1)GH −
∂2GH

∂θ2
+
∂2wH
∂τ 2

)
R3

1

+
1

2

(1

2
(ν21 − 1)

∂4wH
∂θ4

− ν1(ν21 −
3

2
ν1 +

1

2
)
∂2wH
∂θ2

− ν1(ν21 −
5

2
ν1 +

5

2
)GH

− (
5

2
ν1 −

3

2
ν21 − 1)

∂2GH

∂θ2
− 1

2

∂2wH
∂τ 2

)
R2

1 +GHR1.

(5.17)

Now, using expansion (5.14) together with the continuity conditions for moments and

shear forces on the interface, we obtain effective boundary conditions for the infinite

plate at R2 = 1 in the form
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D2

(∂2w2

∂R2
2

+ ν2
∂w2

∂R2

+ ν2
∂2w2

∂θ2

)
= D1

(
ν1(ν1 − 3)

∂2w2

∂θ2
+ ν1(ν1 − 4)

∂w2

∂R2

+ (1− ν1)
∂3w2

∂θ2∂R2

)
ε,

D2

(∂3w2

∂R3
2

+
∂2w2

∂R2
2

+
∂3w2

∂θ2∂R2

)
= D1

(
(1− ν1)

∂4w2

∂θ4
− ν1

(∂2w2

∂θ2
+
∂w2

∂R2

)
+ (3− ν1)

∂3w2

∂θ2∂R2

+
∂2w2

∂τ 2

)
ε.

(5.18)

Thus, at the interface we have above the effective boundary conditions in terms of

displacements. We note that there is an additional term at the right hands at these

formula, demonstrating the influence of the coating. Clearly, in case of a soft annular

plate, when D1 is small, effect of the coating is also diminished.

5.3 Approximate dispersion relation

We aim at finding an asymptotic dispersion relation over the domain 0 6 r 6 R−H

by using the derived effective boundary conditions (5.18) together with equation of

motion (5.1). The solution is sought for in the form of (5.7). As a result, we deduce

an approximate dispersion relation, which could be re-written in dimensionless vari-

ables as



Chapter 5. The elastic bending wave on the edge of a circular plate reinforced by an
annular plate 109

(
2D4k4ν1ε− k

(
2D4k3ε− k2 + k + 1

)
+D4Ω4ε− (k + 1)k2ν2

)
Jk(D(ε− 1)ρΩ)

× Ik(D(ε− 1)ρΩ) +
(
−D8k6ν21ε

2 +D8
(
−k6

)
ε2 −D4k4ε+D4Ω4

(
ε
(
D4k2ε− 1

)
+ ρ4(ε− 1)4

)
+D2ρ2Ω2(ε− 1)2

(
2D4k3ε− k(k + 2) + 1

)
+ ν2

(
−k2

(
D4k2ε+ 1

)
+D4Ω4ε+D2k(k + 2)ρ2Ω2(ε− 1)2

)
+D4k2ν1ε

(
2D4k4ε−D4Ω4ε− 2D2kρ2Ω2

× (ε− 1)2 + k2ν2 + k2
)

+ k2
)
Jk(D(ε− 1)ρΩ)Ik−1(D(ε− 1)ρΩ) + Jk−1(D(ε− 1)ρΩ)

×
(

2D3ρ3Ω3(ε− 1)3
(
D4k2ν1ε+D4

(
−k2

)
ε− ν2 + 1

)
Ik−1(D(ε− 1)ρΩ)

+
(
D8k6ν21ε

2 −D4Ω4
(
ε
(
D4k2ε− 1

)
+ ρ4(ε− 1)4

)
+ k2

(
D8k4ε2 +D4k2ε− 1

)
+D2ρ2Ω2(ε− 1)2

(
2D4k3ε− k(k + 2) + 1

)
−D4k2ν1ε

(
2D4k4ε−D4Ω4ε

+ 2D2kρ2Ω2(ε− 1)2 + k2ν2 + k2
)

+ ν2

(
D4k4ε−D4Ω4ε

+D2(k + 2)kρ2Ω2(ε− 1)2 + k2
))
Ik(D(ε− 1)ρΩ)

)
= 0.

(5.19)

Figures 5.2-5.5 demonstrate the exact dispersion relation (5.9) and the approximate

dispersion relation (5.19) for ε = 0.05, ν1 = 0.31, ν2 = 0.35 and several values of the

relative stiffness D and relative density ρ of the annular plate. Since the solution is

periodic along the angle, we only plot sets of discrete points, depicting the frequency

Ω over the wave number k. Clearly the presented sequence show monotonic increase

behaviour.
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Figure 5.2: Comparison of approximate dispersion relation (5.19) (blue square)
and exact dispersion relation (5.9) (red circle) for ρ = 1 and D = 1.
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Figure 5.3: Comparison of approximate dispersion relation (5.19) (blue square)
and exact dispersion relation (5.9) (red circle) for ρ = 0.95 and D = 1.
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Figure 5.4: Comparison of approximate dispersion relation (5.19) (blue square)
and exact dispersion relation (5.9) (red circle) for ρ = 0.8 and D = 1.
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Figure 5.5: Comparison of approximate dispersion relation (5.19) (blue square)
and exact dispersion relation (5.9) (red circle) for ρ = 1 and D = 1.3.
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In this chapter the previously achieved results have been developed further, for the

case of a circular plate with reinforcement of annular shape. Effective boundary

conditions were derived, leading to an approximate dispersion relation. The exact

and asymptotic results have been compared, illustrating the validity of the derived

explicit approximations.



Chapter 6

Conclusions

In this thesis, low-frequency vibrations of coated elastic structures have been inves-

tigated. First, harmonic vibrations of a composite rod and a composite beam have

been considered. Exact and approximate solutions found using asymptotic methods

have been analysed. Effective boundary conditions for thin end attachments have

been derived. They appeared to be useful for tackling more general 2D problems for

thin plates in the main body of the thesis.

An asymptotic procedure for a strip plate leading to effective boundary conditions

(3.21) is established. Along with the traditional long-wavelength assumption, it

adapts the time scale specific to bending waves, see (3.13). It is also worth noting

that the derivation of leading-order effective boundary condition relies on a fourth-

order expansion of the deflection, see (3.16), because of a peculiarity of the studied

113
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boundary value problem (3.1),(4.12), and (3.12) for a plate strip. The proposed ef-

fective conditions are tested in Section 4 by asymptotic analysis of the exact solution

for a plate strip subject to a kinematic loading in the form of travelling harmonic

waves along its lower face.

The aforementioned effective boundary conditions may be interpreted in terms of a

beam with a narrow rectangular cross-section perfectly bonded to the edge of a semi-

infinite plate, see equations (3.22). Therefore, these conditions may also be derived

using a less formal physical approach similarly to the derivation in [131] for a coated

half-space, starting from the classical theory for plate extension.

The approximate dispersion relation (3.27) is derived starting from the effective

boundary conditions (3.21). It perturbs the well-known dispersion relation (3.11)

for the edge bending wave on a homogeneous plate. A good agreement between

exact and approximate solutions is demonstrated numerically using the dispersion

relation (3.9) for a composite plate. In addition, the influence of the relative stiff-

ness and density of a strip plate on the localisation of the edge wave is investigated,

indicating a possibility for the edge wave control.

We studied the edge wave problem for a semi-infinite plate reinforced by a beam

taking into account both bending and twisting vibrations of the beam. The explicit

asymptotic formulae for the cut-offs of the edge waves are presented. The validity

of the chosen approximate formulation starting from the classical plate and beam

theories is also addressed. A detailed dispersion relation is obtained and the long-

wave approximation is derived. The numerical results are validated by comparison

with the more general dispersion relation for a reinforcement in the form of a strip
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plate, which is also treated on the basis of the 2D Kirchhoff theory. The developed

framework may be extended to more general setups including anisotropic structures

as well as more elaborated structure models, e.g. see [104, 148].

We also studied the elastic bending wave on the edge of a circular plate reinforced

by an annular plate. We focused on the asymptotic treatment of a narrow plate with

a free outer edge and its inner edge subject to prescribed deflection and rotation.

We derived the effective boundary conditions along with approximate dispersion re-

lations.

The developed setup allows various extensions and generalisations. In particular, a

similar problem may be formulated for elastic waves localised near a reinforced edge

of a thin shell, e.g. see [76]. Also, strong contrast in the material properties of the

components of a composite structure may be analysed. It is of particular interest

to consider the high-contrast setup, having ”soft” coating subject to clamped edge

boundary conditions, developing further results achieved recently for the Rayleigh

wave, see [75]. Finally, the derived effective conditions appear to be of interest for a

broad range of problems for thin plates.
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The constants in the system of equations (2.5) are

A(1) =
∆1

∆
, B(1) =

∆2

∆
, A(2) =

∆3

∆
, B(2) =

∆4

∆
, (1)

where

∆ =
lω
(
E1c2 sin

(
Hω
c1

)
sin
(
ω(H−l)
c2

)
+ E2c1 cos

(
Hω
c1

)
cos
(
ω(H−l)
c2

))
c21c2

, (2)

∆1 = Fl

sin
(
ω(l−H)
c2

)
cos
(
ω(l−H)
c1

)
c1

−
E2 sin

(
ω(l−H)
c1

)
cos
(
ω(l−H)
c2

)
E1c2

 , (3)

∆2 = Fl

sin
(
ω(l−H)
c1

)
sin
(
ω(l−H)
c2

)
c1

+
E2 cos

(
ω(l−H)
c1

)
cos
(
ω(l−H)
c2

)
E1c2

 , (4)

∆3 = 0, (5)
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∆4 =
Fl

c1
. (6)



Appendix A.2

The constants in the system of equations (2.18) are

A(1) =
∆∗

1

∆∗ , B(1) =
∆∗

2

∆∗ , (7)

where

∆∗ = − cos (Ω1ε) , (8)

∆∗
1 =

F sin (Ω1(1− ε))
e1Ω1

− uH cos (Ω1) , (9)

∆∗
2 = −F cos (Ω1(ε− 1))

e1Ω1

− uH sin (Ω1) . (10)
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The constants in (2.32) are

α
(1)
1 =

∆̄1

∆̄
, α

(1)
2 =

∆̄2

∆̄
, α

(1)
3 =

∆̄3

∆̄
, α

(1)
4 =

∆̄4

∆̄
, α

(2)
1 =

∆̄5

∆̄
, α

(2)
2 =

∆̄6

∆̄

where

∆̄ = −4β3
1β2D1

(1

2
β2β1D1D2

(
β2
1 (sin ((1 + i)β1H) + sinh ((1 + i)β1H))

× (sin ((1 + i)β2(H − l))− sinh ((1 + i)β2(H − l)))

− 4β2β1 sin (β1H) sinh (β1H) sin (β2(H − l)) sinh (β2(H − l))

+ β2
2 (sin ((1 + i)β1H)− sinh ((1 + i)β1H))

× (sin ((1 + i)β2(H − l)) + sinh ((1 + i)β2(H − l)))
)

+ β4
1D

2
1 (cos (β1H) cosh (β1H)− 1) (cos (β2(H − l)) cosh (β2(H − l))− 1)

+ β4
2D

2
2 (cos (β1H) cosh (β1H) + 1) (cos (β2(H − l)) cosh (β2(H − l)) + 1)

)
,
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∆̄1 = (1 + i)β1β2G
(
iβ4

1D
2
1

(
sin (β1((1 + i)H − il))

+ sinh (β1(−l + (1 + i)H)) + (1 + i) sinh (β1l)
)

× (cos (β2(l −H)) cosh (β2(l −H))− 1) + 2β2β1D1D2

(
β2
1 sin (β1H) sinh (β1(l −H))

× (sinh ((1 + i)β2(l −H))− sin ((1 + i)β2(l −H)))

+ β2β1 sin (β2(l −H)) sinh (β2(l −H)) (sin (β1((1 + i)H − il))− sinh (β1(−l + (1 + i)H)))

+ iβ2
2 cos (β1H) cosh (β1(l −H)) (sin ((1 + i)β2(l −H)) + sinh ((1 + i)β2(l −H)))

)
+ iβ4

2D
2
2 (sin (β1((1 + i)H − il)) + sinh (β1(−l + (1 + i)H))− (1 + i) sinh (β1l))

× (cos (β2(l −H)) cosh (β2(l −H)) + 1)
)
,

∆̄2 = (−1− i)β1β2G
(
β4
1D

2
1

(
cos (β1((1 + i)H − il))

− i cosh (β1(−l + (1 + i)H))− (1− i) cosh (β1l)
)

× (cos (β2(l −H)) cosh (β2(l −H))− 1)

+ β4
2D

2
2

(
cos (β1((1 + i)H − il))− i cosh (β1(−l + (1 + i)H))

+ (1− i) cosh (β1l)
)

(cos (β2(l −H)) cosh (β2(l −H)) + 1)

+ 2β2β1D1D2

(
iβ2

2 cos (β1H) sinh (β1(l −H))

× (sin ((1 + i)β2(l −H)) + sinh ((1 + i)β2(l −H)))

+ β2
1 sin (β1H) cosh (β1(l −H))

(
sinh ((1 + i)β2(l −H))

− sin ((1 + i)β2(l −H))
)

+ β2β1 sin (β2(l −H)) sinh (β2(l −H))

× (cosh (β1(−l + (1 + i)H))− i cos (β1((1 + i)H − il)))
))
,
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∆̄3 = β1β2(−G)
(

(−1 + i)β4
1D

2
1

(
cos (β1(−l + (1 + i)H)) + i cosh (β1((1 + i)H − il))

− (1 + i) cos (β1l)
)

(cos (β2(l −H)) cosh (β2(l −H))− 1)

− (1− i)β4
2D

2
2 (cos (β1(−l + (1 + i)H)) + i cosh (β1((1 + i)H − il)) + (1 + i) cos (β1l))

× (cos (β2(l −H)) cosh (β2(l −H)) + 1) + (2 + 2i)β2β1D1D2

(
β2
1 sinh (β1H)

× cos (β1(l −H)) (sin ((1 + i)β2(l −H))− sinh ((1 + i)β2(l −H)))

+ iβ2
2 cosh (β1H) sin (β1(l −H)) (sin ((1 + i)β2(l −H)) + sinh ((1 + i)β2(l −H)))

+ β2β1 sin (β2(l −H)) sinh (β2(l −H))
(

cos (β1(−l + (1 + i)H))

− i cosh (β1((1 + i)H − il))
)))

,

∆̄4 = (−1− i)β1β2G
(
− iβ4

1D
2
1

(
sin (β1(−l + (1 + i)H)) + sinh (β1((1 + i)H − il))

+ (1 + i) sin (β1l)
)

(cos (β2(l −H)) cosh (β2(l −H))− 1)

+ 2β2β1D1D2

(
β2
1 sinh (β1H) sin (β1(l −H)) (sin ((1 + i)β2(l −H))− sinh ((1 + i)β2(l −H)))

+ β2β1 sin (β2(l −H)) sinh (β2(l −H)) (sinh (β1((1 + i)H − il))− sin (β1(−l + (1 + i)H)))

− iβ2
2 cosh (β1H) cos (β1(l −H)) (sin ((1 + i)β2(l −H)) + sinh ((1 + i)β2(l −H)))

)
− iβ4

2D
2
2 (sin (β1(−l + (1 + i)H)) + sinh (β1((1 + i)H − il))− (1 + i) sin (β1l))

× (cos (β2(l −H)) cosh (β2(l −H)) + 1)
)
,
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∆̄5 = −2β3
1D1G

(
β2
1D1

(
β1

(
sin (β1H) + sinh (β1H)

)
× (cos (β2(H − l))− cosh (β2(H − l)))

− β2 (cos (β1H)− cosh (β1H)) (sin (β2(H − l)) + sinh (β2(H − l)))
)

+ β2
2D2

(
β1 (sin (β1H)− sinh (β1H)) (cos (β2(H − l)) + cosh (β2(H − l)))

+ β2 (cos (β1H) + cosh (β1H)) (sinh (β2(H − l))− sin (β2(H − l)))
))
,

∆̄6 = β3
1D1G

(
2β2

1D1

(
β1 (sin (β1H) + sinh (β1H))

(
sinh (β2(H − l))

− sin (β2(H − l))
)
− β2 (cos (β1H)− cosh (β1H))

× (cos (β2(H − l))− cosh (β2(H − l)))
)

− 2β2
2D2

(
β1 (sin (β1H)− sinh (β1H))

× (sin (β2(H − l)) + sinh (β2(H − l)))

+ β2 (cos (β1H) + cosh (β1H)) (cos (β2(H − l)) + cosh (β2(H − l)))
))
.
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The constants in (2.49) are

ᾱ
(1)
1 =

∆̄∗
1

∆̄∗ , ᾱ
(1)
2 =

∆̄∗
2

∆̄∗ , ᾱ
(1)
3 =

∆̄∗
3

∆̄∗ , ᾱ
(1)
4 =

∆̄∗
4

∆̄∗ , ᾱ
(2)
1 =

∆̄∗
5

∆̄∗ , ᾱ
(2)
2 =

∆̄∗
6

∆̄∗

where

∆̄∗ = −2D1Ω
3(ε− 1)(cos(Ωε) cosh(Ωε) + 1),

∆̄∗
1 =

(
−1

2
+
i

2

)
Ω
(
−D1Ω

(
Ω(ε− 1)wH(sin(Ω(ε+ i)) + (1 + i) sinh(Ω− Ωε)

+ sinh(Ω + iΩε)) + (1 + i)wHξ1(cosh(Ω− Ωε)− sinh(Ω) sin(Ωε)

+ cosh(Ω) cos(Ωε))
)
−Gl2(ε− 1)((1 + i) sinh(Ω) + sinh(Ω− (1 + i)Ωε)

+ i sinh(Ω− (1− i)Ωε))
)
,
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∆̄∗
2 = D1Ω

2
(
wHξ1(− sinh(Ω− Ωε)− sinh(Ω) cos(Ωε) + cosh(Ω) sin(Ωε))

− Ω(ε− 1)wH(cosh(Ω− Ωε) + sinh(Ω) sin(Ωε) + cosh(Ω) cos(Ωε))
)

−
(1

2
− i

2

)
Gl2Ω(ε− 1)((1 + i) cosh(Ω) + cosh(Ω− (1 + i)Ωε)

+ i cosh(Ω− (1− i)Ωε)),

∆̄∗
3 = D1Ω

2
(

Ω(−(ε− 1))wH(cos(Ω− Ωε)− sin(Ω) sinh(Ωε)

+ cos(Ω) cosh(Ωε))− wHξ1(sin(Ω− Ωε)− cos(Ω) sinh(Ωε) + sin(Ω) cosh(Ωε))
)

+

(
1

2
− i

2

)
Gl2Ω(ε− 1)((1 + i) cos(Ω) + cos(Ω− (1 + i)Ωε)

+ i cos(Ω− (1− i)Ωε)),

∆̄∗
4 = D1Ω

2
(
wHξ1(cos(Ω− Ωε) + sin(Ω) sinh(Ωε) + cos(Ω) cosh(Ωε))ε)

− Ω(ε− 1)wH(sin(Ω− Ω + cos(Ω) sinh(Ωε) + sin(Ω) cosh(Ωε))
)

+

(
1

2
− i

2

)
Gl2Ω(ε− 1)((1 + i) sin(Ω) + sin(Ω− (1 + i)Ω + i sin(Ω− (1− i)Ωε)).



Appendix B.3

The constants in (2.68) are

γ̄
(1)
1 =

∆̄∗∗
1

∆̄∗∗ , γ̄
(1)
2 =

∆̄∗∗
2

∆̄∗∗ , γ̄
(1)
3 =

∆̄∗∗
3

∆̄∗∗ , γ̄
(1)
4 =

∆̄∗∗
4

∆̄∗∗ , γ̄
(2)
1 =

∆̄∗∗
5

∆̄∗∗ , γ̄
(2)
2 =

∆̄∗∗
6

∆̄∗∗

where

∆̄∗∗ = −2D1Ω
3(ε− 1)(cos(Ωε) cosh(Ωε) + 1),

∆̄∗∗
1 = Nl3

(
−1

2
+
i

2

)
Ω
(
−D1Ω

(
Ω(ε− 1)wH(sin(Ω(ε+ i)) + (1 + i) sinh(Ω− Ωε)

+ sinh(Ω + iΩε)) + (1 + i)wHξ1(cosh(Ω− Ωε)− sinh(Ω) sin(Ωε)

+ cosh(Ω) cos(Ωε))
)
− (ε− 1)((1 + i) sinh(Ω) + sinh(Ω− (1 + i)Ωε)

+ i sinh(Ω− (1− i)Ωε))
)
,
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∆̄∗∗
2 = D1Ω

2Nl3
(
wHξ1(− sinh(Ω− Ωε)− sinh(Ω) cos(Ωε) + cosh(Ω) sin(Ωε))

− Ω(ε− 1)wH(cosh(Ω− Ωε) + sinh(Ω) sin(Ωε) + cosh(Ω) cos(Ωε))
)

−
(1

2
− i

2

)
Ω(ε− 1)((1 + i) cosh(Ω) + cosh(Ω− (1 + i)Ωε)

+ i cosh(Ω− (1− i)Ωε)),

∆̄∗∗
3 = D1Ω

2Nl3
(

Ω(−(ε− 1))wH(cos(Ω− Ωε)− sin(Ω) sinh(Ωε)

+ cos(Ω) cosh(Ωε))− wHξ1(sin(Ω− Ωε)− cos(Ω) sinh(Ωε) + sin(Ω) cosh(Ωε))
)

+

(
1

2
− i

2

)
Ω(ε− 1)((1 + i) cos(Ω) + cos(Ω− (1 + i)Ωε)

+ i cos(Ω− (1− i)Ωε)),

∆̄∗∗
4 = D1Ω

2Nl3
(
wHξ1(cos(Ω− Ωε) + sin(Ω) sinh(Ωε) + cos(Ω) cosh(Ωε))ε)

− Ω(ε− 1)wH(sin(Ω− Ω + cos(Ω) sinh(Ωε) + sin(Ω) cosh(Ωε))
)

+

(
1

2
− i

2

)
Ω(ε− 1)((1 + i) sin(Ω) + sin(Ω− (1 + i)Ω + i sin(Ω− (1− i)Ωε)).



Appendix C.1

The constants in (3.24) are

C
(1)
1 =

N1

N
, C

(1)
2 =

N2

N
, C

(1)
3 =

N3

N
, C

(1)
4 =

N4

N
, (11)

where

N = 2 cosh(δ(λ11 − λ21))(λ11 + λ21)
2

× ((−λ211 + ν1)λ
2
21 − 2λ11(ν1 − 1)λ21 + ν1(λ

2
11 + ν1 − 2))

− 2 cosh(δ(λ11 + λ21))(λ11 − λ21)2

× ((−λ211 + ν1)λ
2
21 + 2λ11(ν1 − 1)λ21 + ν1(λ

2
11 + ν1 − 2))

− 4λ21λ11(−λ411 − λ421 + 2ν21 + 2λ211 + 2λ221 − 4ν1),
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N1 = (Aλ21 +B)(λ11 + λ21)e
−δλ21

× ((−λ211 + ν1)λ
2
21 − 2λ11(ν1 − 1)λ21 + ν1(λ

2
11 + ν1 − 2))

+ (Aλ21 −B)(λ11 − λ21)eδλ21

× ((−λ211 + ν1)λ
2
21 + 2λ11(ν1 − 1)λ21 + ν1(λ

2
11 + ν1 − 2))

− 2(Aλ11 +B)λ21(λ
2
21 + ν1 − 2)(−λ221 + ν1)e

−δλ11 ,

N2 = (Aλ21 +B)(λ11 − λ21)e−δλ21

× ((−λ211 + ν1)λ
2
21 + 2λ11(ν1 − 1)λ21 + ν1(λ

2
11 + ν1 − 2))

+ (Aλ21 −B)(λ11 + λ21)e
δλ21

× ((−λ211 + ν1)λ
2
21 − 2λ11(ν1 − 1)λ21 + ν1(λ

2
11 + ν1 − 2))

− 2(Aλ11 −B)λ21(λ
2
21 + ν1 − 2)(−λ221 + ν1)e

δλ11 ,
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N3 = (Aλ11 +B)(λ11 + λ21)e
−δλ11

× ((−λ221 + ν1)λ
2
11 − 2λ11(ν1 − 1)λ21 + ν1(λ

2
21 + ν1 − 2))

− (Aλ11 −B)(λ11 − λ21)eδλ11

× ((−λ221 + ν1)λ
2
11 + 2λ11(ν1 − 1)λ21 + ν1(λ

2
21 + ν1 − 2))

− 2(Aλ21 +B)λ11(λ
2
11 + ν1 − 2)(−λ211 + ν1)e

−δλ21 ,

N4 = −(Aλ11 +B)(λ11 − λ21)e−δλ11

× ((−λ221 + ν1)λ
2
11 + 2λ11(ν1 − 1)λ21 + ν1(λ

2
21 + ν1 − 2))

+ (Aλ11 −B)(λ11 + λ21)e
δλ11

× ((−λ221 + ν1)λ
2
11 − 2λ11(ν1 − 1)λ21 + ν1(λ

2
21 + ν1 − 2))

− 2(Aλ21 −B)λ11(λ
2
11 + ν1 − 2)(−λ211 + ν1)e

δλ21 .
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The entries of the matrix M in (4.13) are given by

M11 = M12 = λ211 − ν1, M13 = M14 = λ221 − ν1

M21 = −M22 = λ11(λ
2
11 + ν1 − 2),

M23 = −M24 = λ21(λ
2
21 + ν1 − 2),

M31 = λ11e
λ11δH , M32 = −λ11e−λ11δH ,

M33 = λ21e
λ21δH , M34 = −λ21e−λ21δH ,

M35 = λ12e
−λ12δH , M36 = λ22e

−λ22δH ,

M41 = eλ11δH , M42 = e−λ11δH , M43 = eλ21δH ,

M44 = e−λ21δH , M45 = −e−λ12δH , M46 = −e−λ22δH ,

M51 = D(λ211 − ν1)eλ11δH , M52 = D(λ211 − ν1)e−λ11δH ,

M53 = D(λ221 − ν1)eλ21δH , M54 = D(λ221 − ν1)e−λ21δH ,

M55 = −(λ212 − ν2)e−λ12δH , M56 = −(λ222 − ν2)e−λ22δH ,

M61 = Dλ11(λ
2
11 + ν1 − 2)eλ11δH ,
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M62 = −Dλ11(λ211 + ν1 − 2)e−λ11δH ,

M63 = Dλ21(λ
2
21 + ν1 − 2)eλ21δH ,

M64 = −Dλ21(λ221 + ν1 − 2)e−λ21δH ,

M65 = λ12(λ
2
12 + ν2 − 2)e−λ12δH ,

M66 = λ22(λ
2
22 + ν2 − 2)e−λ22δH ,

where

λ1j =
√

1 + γj, λ2j =
√

1− γj,

and

γj =
ω

k2

√
2ρjh

Dj

, j = 1, 2.
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