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Abstract

Multivariate meta-analysis, which jointly analyzes multiple and possibly correlated outcomes in a 

single analysis, is becoming increasingly popular in recent years. An attractive feature of the 

multivariate meta-analysis is its ability to account for the dependence between multiple estimates 

from the same study. However, standard inference procedures for multivariate meta-analysis 

require the knowledge of within-study correlations, which are usually unavailable. This limits 

standard inference approaches in practice. Riley et al. proposed a working model and an overall 

synthesis correlation parameter to account for the marginal correlation between outcomes, where 

the only data needed are those required for a separate univariate random-effects meta-analysis. As 

within-study correlations are not required, the Riley method is applicable to a wide variety of 

evidence synthesis situations. However, the standard variance estimator of the Riley method is not 

entirely correct under many important settings. As a consequence, the coverage of a function of 

pooled estimates may not reach the nominal level even when the number of studies in the 

multivariate meta-analysis is large. In this paper, we improve the Riley method by proposing a 

robust variance estimator, which is asymptotically correct even when the model is misspecified 

(i.e., when the likelihood function is incorrect). Simulation studies of a bivariate meta-analysis, in 

a variety of settings, show a function of pooled estimates has improved performance when using 

the proposed robust variance estimator. In terms of individual pooled estimates themselves, the 

standard variance estimator and robust variance estimator give similar results to the original 

method, with appropriate coverage. The proposed robust variance estimator performs well when 

the number of studies is relatively large. Therefore, we recommend the use of the robust method 

for meta-analyses with relatively large number of studies (e.g., m ≥ 50 ). When the sample size is 

relatively small, we recommend the use of the robust method under the working independence 

assumption. We illustrate the proposed method through two meta-analyses.
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1 Introduction

Multivariate meta-analysis, which jointly analyzes multiple and possibly correlated 

outcomes in a single analysis, is becoming increasingly popular in recent years (Jackson et 
al. , 2011a). The multivariate random-effects meta-analysis accounts for two types of 

correlations: the within-study correlation ρWi and the between-study correlation ρB. The 

within-study correlation ρWi exists because different effects are sometimes estimated using 

the same set of subjects, such as the overall and disease-free survival of cancer patients. The 

between-study correlation ρB allows the true underlying outcome effects to be correlated. 

Typically, a “two-stage” approach for inference is adopted. At the first stage, analyses of 

each study are performed and the multivariate summary measures and their covariance 

matrices are obtained. At the second stage, these reported summary measures are combined 

by a random-effects model. The overall “pooled” effect sizes or their comparative measures 

can be inferred using maximum likelihood (ML) or restricted maximum likelihood (REML) 

estimation. For excellent reviews of multivariate meta-analysis, see Van Houwelingen et al. 
(2002) and Jackson et al. (2011b).

Practically, a common difficulty in multivariate meta-analysis is that within-study 

correlations ρWi are required, which are not always reported and are difficult to obtain even 

on request (Ishak et al. , 2008; Borenstein et al. , 2009; Hartung et al. , 2011). In addition, 

calculation of the within- study correlation may not be easy and sometimes requires more 

computationally intensive methods such as bootstrap or joint modelling (Daniels & Hughes, 

1997; Riley et al. , 2014). Such a challenge is acknowledged by the review paper by Jackson 

et al. (2011b), “perhaps the greatest difficulty applying the multivariate meta-analysis model 

in practice is that the within-study correlations are required by the model and are typically 

unknown.” In such situations, sensitivity analysis with imputed within-study correlations 

and Bayesian methods with informative prior distributions have been proposed (Berkey et 
al. , 1995; Nam et al. , 2003). Wei & Higgins (2012) proposed a practical method, for a 

variety of settings, for deriving the within-study correlations based on information about the 

likely patient-level correlations between underlying outcomes. However, such patient-level 

correlations my themselves not be available, and indeed none of the aforementioned 

methods entirely revolve the common practical difficulty that within-study correlations are 

unknown.

In order to handle the aforementioned difficulty, Riley et al. (2008) proposed a novel model 

(referred to as Riley method hereafter) to account for the total marginal correlation between 

outcomes. Specifically, Riley et al. proposed the use of a synthesis correlation parameter ρS 

to describe the overall marginal correlation between outcomes so that within-study 

correlations are not required. It has been demonstrated (through a simulation study (Riley et 
al. , 2008)) that the Riley method produces appropriate pooled estimates that are very close 

to fully hierarchical REML model where the within-study correlations are known and has 

better performance than separate univariate meta-analysis. However, as acknowledged by the 

original authors, the Riley model is not a fully hierarchical random-effects model. It can 

only be thought as a working model when the true data generating mechanism is a random-

effects model. Hence, the standard variance estimator (i.e., the inverse of observed Fisher 

information) is not entirely correct under many important settings. As a consequence, the 
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coverage of the confidence intervals of the pooled estimates or functions of the pooled 

estimates may not reach the nominal level even when the number of studies in meta-analysis 

is very large.

The goal of this paper is to improve the Riley method by proposing a robust variance 

estimator, which is also known as Huber Sandwich variance estimator or the empirical 

variance estimator. Originally introduced by Huber (1967) and White (1982), robust 

variance estimator is a common tool used for variance estimation of parameter estimates. 

The key idea of robust variance estimator is to use a so-called working covariance matrix in 

the variance estimation step, which combines corresponding empirical version of the 

variance estimation in a sandwich form. The sandwich algorithm yields variances for the 

parameters that are asymptotically correct even when the model is misspecified and the 

likelihood function are incorrect. The robust variance estimator has been commonly used in 

the context of generalized estimating equations (e.g., Liang & Zeger (1986), Liang et al. 
(1992) and Diggle et al. (1994)) and multivariate survival analysis (e.g., Lin (1994)). Under 

the framework of weighted least squares, Hedges et al. (2010) proposed a robust variance 

estimation (RVE) approach to combine statistically dependent effect size estimates in meta-

regression, which has been widely used both in applications and in the methodological 

literature. As a method of moment, one advantage of the RVE approach is it makes very few 

assumptions. Tipton (2015) further developed small sample adjustments to the RVE 

estimator, which perform well in a wide variety of settings. Alternatively, Chen et al. (2015) 

proposed a pseudolikelihood was constructed to overcome the unknown within-study 

correlation problem in the fully hierarchical multivariate model, and a sandwich type 

variance estimator for the parameter estimates was then proposed. This work was limited, 

however, because it assumes missing data are missing completely at random, and the 

separate pooled estimates were the same in the multivariate analysis as separate univariate 

analyses (in other words, no borrowing of strength could occur in the estimation of the 

separate pooled estimates, and thus a crucial advantage of the multivariate method was not 

available). Therefore, it is important to incorporate the use of the robust variance estimator 

for the Riley method, which does allow borrowing of strength toward the individual pooled 

estimates and accommodates a missing at random assumption. The robust variance estimator 

is asymptotically correct even when the likelihood function is incorrect as in the Riley 

model. We will 1) show that the robust variance estimator retains good performance 

compared with the standard variance estimator when the Riley model is correctly specified; 

and 2) demonstrate the improved performance of the robust variance estimator in terms of 

coverage even when the Riley model is misspecified. Focus is primarily on the statistical 

properties of functions of the pooled estimates, but brief consideration of the separate pooled 

estimates themselves is also given.

This paper is organized as follows. In Section 2, we describe the standard REML estimation 

for multivariate meta-analysis, the Riley method with standard variance estimator, and the 

proposed robust variance estimator. In Section 3, we conduct simulation studies in a 

bivariate meta-analysis setting to compare the Riley method with standard variance 

estimator, the Riley method with robust variance estimator, and the RVE-JKH method 

proposed by Hedges et al. (2010) with Jackknife adjustment introduced in Tipton (2015), in 

terms of the pooled estimates and a function of pooled estimates. We apply the proposed 
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method to two meta-analyses in Section 4. Finally, we provide a brief discussion in Section 

5.

2 Method

2.1 Bivariate random-effects meta-analysis

To simplify our presentation, we focus on the same settings as in Riley et al. (2008), that is, 

the bivariate random-effects meta-analysis. We consider a meta-analysis with m studies and 

two outcomes of interest. For the ith study, denote Yij and sij as the summary measure for 

the jth outcome of interest and the associated within-study standard error respectively, i = 1,

…, m, and j = 1, 2. Each summary measure Yij is an estimate of the true underlying study-

specific effect size θij, j=1, 2. The bivariate effect sizes θi1 and θi2 are independently drawn 

from a bivariate normal distribution with overall mean (β1, β2), between-study variation 

τ1
2, τ2

2  and the between-study correlation ρB.

Under the conventional normal distribution assumption and when the within-study 

correlations ρWi are known, inference on the overall effect sizes (β1, β2) can be based on the 

marginal model

Yi2

Yi1 N β2

β1 , Vi , Vi = Si1Si2ρW
i
+ τ1τ2ρB

si1
2 + τ1

2

si2
2 + τ2

2

Si1Si2ρWi
+ τ1τ2ρB

. (1)

For simplicity notation, denote Yi = (Yi1, Yi2)T, β = (β1, β2)Τ, η * = β1, τ1
2, β1, τ2

2, ρB
T

. The 

restricted likelihood of η* can be written as

logL η* = − 1
2 log ∑

i = 1

m
Vi

−1 + ∑
i = 1

m
log Vi + (Yi − β)TVi

−1(Yi − β) .

The parameters η* can be estimated by the restricted maximum likelihood (REML) 

approach as described in Van Houwelingen et al. (2002). The between-study variances 

τ1
2, τ2

2  are usually modeled in their log-scale, so that they are forced to be non-negative. 

REML can be implemented using Newton-Raphson or quasi-Newton methods, as in 

“mvmeta” package in STATA (White, 2011) or R (Gasparrini & Gasparrini, 2014). Such 

methods of implementing REML rarely suffer convergence issues. However, in practice, the 

standard likelihood inference based on the REML method requires within-study correlation 

estimates ρWi, which are rarely available, as discussed above (Jackson et al. , 2011b; Riley et 
al. , 2008).

2.2 Riley method and robust variance estimator

To circumvent the problem of lack of knowledge on ρWi, Riley et al. (2008) proposed the 

following marginal model
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Y i1
Y i2

N
β1
β2

, Φi , Φi =
ψ1

2 + si1
2 ρS (ψ1

2 + si1
2 )(ψ2

2 + si2
2 )

ρS (ψ1
2 + si1

2 )(ψ2
2 + si2

2 ) ψ2
2 + si2

2
, (2)

where ψ j
2 account for the additional variation beyond the within-study variances si j

2 , j = 1, 2, 

and ρS accounts for the marginal correlation between Yi1 and Yi2, which is an amalgamation 

of the within-study correlations and the between-study correlation. We therefore refer to ρS 

as the synthesis correlation parameter. Denote η = (β1, T1
2, β2, T2

2, ρS)T . Riley et al. (2008) 

proposed to base the inference on the restricted log-likelihood defined as

logLRiley(η) = − 1
2 log ∑

i = 1

m
Φi

−1 + ∑
i = 1

m
log Φi + (Yi − β)TΦi

−1(Yi − β) . (3)

Let ∇η log LRiley(η) and ∇η
2 log LRiley (η) denote the first and second partial derivatives of 

log LRiley (η) with respect to η. Let η denote the solution of the score equation ∇η log 

LRiley(η) = 0. By Taylor expansion around η,

0 ≈ ∇ηlogLRiley(η) + (η − η)T ∇η
2logLRiley(η)

m(η − η) ≈ m − 1
m ∇η

2logLRiley(η)
−1 1

m ∇ηlogLRiley(η)T

We have shown that

m(η − η) D N(0, H(η)−1J(η)H(η)−1), (4)

where Η (η) and J (η) denote the sensitivity matrix E − ∇η
2logLRiley(η)  and the variability 

matrix cov {∇η log LRiley(η)} (Varin, 2008). The derivation can be found in Section 5 of the 

Supplementary Materials. By information equality, when the model is correctly specified, Η 
(η)−1 + J (η) = 0. Equivalently, the information matrix can be expressed in either Η (η)−1 or 

J (η). Hence, the standard variance estimator for η is H η −1, where Ĥ(η) is an empirical 

estimate of Η (η).

We note that model (2) is equivalent to model (1) if and only if Vi = Φi, that is

si j
2 + τ j

2 = si j
2 + ψ j

2, j = 1, 2,

Si1Si2ρWi
+ τ1τ2ρB = ρS ψ1

2 + si1
2 ψ2

2 + si2
2 .
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However, the above equations may not hold in practice even approximately, when there is a 

lot of heterogeneity in within-study variation (i.e., si1
2  and si2

2 ) or in within-study correlation 

(i.e., ρWi), or when the within-study and between-study correlations considerably differ in 

magnitude. When model (1) is the true underlying model, model (2) is not correctly 

specified and can be considered as a working model. The Riley method has been shown, 

through simulation, to produce appropriate pooled estimates that are very close to fully 

hierarchical REML model and have better performance than those from separate univariate 

meta-analysis (Riley et al. , 2008). However, simulations were mainly restricted to situations 

where the known within-study variances were all similar in magnitude to each other and not 

large relative to the between-study variances; further, all within-study and between-study 

correlations were usually 0.8. Thus further interrogation in other situations is needed, 

because as its standard variance estimation is not entirely correct, this may lead to 

inappropriate coverage in some other settings, especially when considering functions of the 

pooled estimates.

Following equation (4), a sandwich type algorithm yields variances for the parameters that 

are asymptotically correct even when the model is misspecified the likelihood function are 

incorrect. Therefore, we suggest using the so-called working covariance matrix in the 

variance estimation step, which combines the corresponding empirical version of the 

variance estimation in a sandwich form. By replacing the estimator η in equation (4) with its 

estimate, the robust variance estimate for η is calculated by

H η −1J η H η −1,

where Ĥ(η) and Ĵ(η) are empirical estimates of H(η) and J(η), respectively. A simple R 

code with a working example is provided in the supplementary materials.

3 Simulation studies

In Riley et al. (2008), different simulation settings were considered to give useful insights 

into the comparative performance of the different models. The performance of Riley model 

with standard variance estimator were evaluated, and compared with two separate univariate 

random-effects models (not requiring the within-study correlations), and the general 

bivariate random-effects model (requiring the within-study correlations). REML estimation 

was used to fit each model. The Riley model within standard covariance estimator maintains 

the individual weighting of each study in the analysis but includes only one hybrid measure 

of the within-study and between-study correlations. The major advantage of the Riley 

method is that the data required to fit the model are the same as are needed for a separate 

univariate meta-analysis endpoint, and the within-study correlations are not required. The 

previous simulation results suggested that the Riley model with standard variance estimator 

produced appropriate pooled estimates with little bias, unless the between-study correlation 

is very close to 1 or 1. We conduct simulation studies to compare the coverage of confidence 

intervals for β1, β2 and β1 – β2 as estimated from the Riley method with either the standard 

variance estimator or the robust variance estimator, firstly where the data are generated from 

model (1) and then secondly where the data are generated from model (2). We will show 
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that: 1) when the true data generating mechanism is model (1), even when the number of 

studies is relatively large, the coverage of the Riley method with standard variance estimator 

cannot achieve the nominal level for β1 – β2; and 2) on the other hand, the robust variance 

estimator can effectively improve the coverage of the Riley method for β1 – β2 and can 

correctly achieve the nominal level.

3.1 Simulation settings and data generation

It is worth mentioning that in section 3.1 of Riley et al. (2008), there was a discussion on the 

comparison between model (1) and model (2). Specifically, when the within-study variations 

si1
2 , si2

2  are relatively small, model (2) is approximately the same as model (1). Another 

situation where two models are similar is when the within-study variations si1
2 , si2

2  are 

relatively large and the within-study correlation ρWi is approximately constant across 

studies. In practice, these two conditions are often not met, and we conducted simulations to 

evaluate the differences in coverage in a variety of settings, when using the standard variance 

estimator and the robust variance estimator. Specifically, we vary the values for four factors 

that are considered important in practice: 1) the number of studies ranged from 25 to 100 to 

represent meta-analysis of small to large number of studies; 2) si j
2  is sampled from: 

subscenario T1 (i.e., a mixture of a scaled chi-squared distribution corresponding to sample 

size of 4 and 20), subscenario T2 (i.e., a mixture of a scaled chi-squared distribution 

corresponding to sample size of 500 and 1000), and subcenario T3 (i.e., a non-mixture chi-

squared distribution corresponding to sample size of 1000); 3) τ j
2 is ranging from 0.25 to 5 to 

represent small to large between-study variations relative to the size of within-study 

variations; 4) within-study correlation (ρWi) and between-study correlation (ρB) are sampled 

under nine different scenarios. Specifically, for scenarios 1–3, both ρWi and ρB are set to 

constant across studies; for scenarios 4–6, within-study correlation ρWi has different values 

across studies; for scenarios 7–9, we consider heterogeneity in between-study correlation ρB 

(i.e., ρB is sampled from mixture of two or three different values). Note that under scenarios 

7–8, even model (1) is misspecified, as the first half of studies share one between-study 

correlation, and the other half of studies share a different between-study correlation. 

Scenario 9 is similar but with three subgroups of studies. It is worth mentioning that we 

choose a mixture of two different chi-square distributions to represent the situations when 

the within-study variances follows different distributions. This is possible when the effect 

sizes of a meta-analysis come from two different types of studies, for example, case-control 

study and cohort study. As we know, the sample size required for cohort studies is often 

larger than that for the case-control studies. In such case, it is reasonable to generate the 

within-study variances from a mixture of two distributions. In addition, the advantage of the 

proposed method with robust variance estimator is in model misspecification. Therefore, it is 

important to consider the scenarios when the assumption of Riley model for the within-study 

variances does not hold.

We set the overall effect sizes to be β1 = β2 = 0. For each simulation setting, we generate 

5000 samples from the true model, which is model (1) for scenarios 1–6, or a mixture of 

different model (1)s in scenarios 7 to 9. In each sample, we generated effect estimates (Yi1 
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and Yi2) for each study in the meta-analysis conditional on the sampled variances for that 

study (si1 and si2), and the specified τ j
2 and the specified within- and between-study 

correlations.

For each sample, the Riley method was applied using REML , and the variances estimated 

using the standard estimator approach and also the robust variance estimator approach. The 

results were then summarized across the 5000 samples in each settings, in terms of the 

coverage of the pooled estimates and the coverage of the difference in the pooled estimates. 

We do not summarize biases because the Riley method with standard variance estimator and 

that with robust variance estimator actually share the same point estimator, and the biases 

are small in all scenarios as previously shown (Riley et al. , 2008).

We consider additional simulation settings when the true data generating mechanism is 

model (2). Similarly to the heterogeneity settings of between-study and within-study 

correlations for model (1), the marginal correlation (ρS) is sampled under six different 

heterogeneity scenarios. Specifically, for scenarios 10–12, ρS is set to constant across 

studies; for heterogeneity scenarios 13–15, ρS has different values across studies.

In addition to misspecification of the variance-covariance structure, we also consider 

multivariate t distribution as the true underlying model for the data generation. Specifically, 

in Section 3.4, we consider the similar settings as in the aforementioned normal model, but 

the random effects are generated from a multivariate t distribution.

3.2 Simulation results for scenarios 1 to 9

Results for β1 – β2—Figure 1 summarizes the coverage of confidence intervals for β1 – 
β2 estimated from Riley methods with standard variance estimator and robust variance 

estimator when the between-study variance τ1
2 = τ2

2 = 0.25. The coverage is calculated using a 

t distribution with m – 1 degrees of freedom, where m is the number of studies. For 

scenarios 1–3, when the within-study correlation (ρWi) is set to be −0.5, and between-study 

correlation (ρB) is set to –0.5, 0 and 0.5, the coverage of the Riley method with standard 

variance estimator is similar to that with robust variance estimator (range of coverage 

percentage: [92%, 96%]). For scenarios 4 to 9 when either within-study correlation (ρWi) or 

between-study correlation (ρB) has different values across studies, the Riley method with 

robust variance estimator has uniformly better coverage than that with standard variance 

estimator under all sample size settings (ranges of coverage percentage: [93%, 96%] for the 

former and [90%, 93%] for the latter). This suggests that the robust variance estimator 

improves the coverage of the Riley method under most of the settings considered (especially 

when within-study correlations and/or between study correlations vary across studies). Most 

importantly, the coverage of the Riley method with robust variance estimator converges to 

the nominal level of 95% as the number of studies increases under all scenarios.

Figure 2 and 3 summarize the coverage of confidence intervals for β1 – β2 estimated from 

the Riley method with standard variance estimator and robust variance estimator when the 

between-study variance τ1
2 = τ2

2 = 0.5 and 5, respectively. The findings are similar to that in 
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Figure 1 when the between-study variance τ1
2 = τ2

2 = 0.25, in that the robust variance 

estimator improve the coverage of the Riley method under most of the settings considered 

and the coverage of the Riley method with robust variance estimator converges to the 

nominal level of 95% as the number of studies increases under all scenarios.

Results for β1 and β2—Figure 4 summarizes the coverage of confidence intervals for β1 

estimated from the Riley method with standard variance estimator and with robust variance 

estimator when the between-study variance τ1
2 = τ2

2 = 0.25. We do not show results from β2, 

because the performance of the two methods for β2 are similar to that for β1. It is interesting 

to observe that while improving the coverage of the function of effect sizes (e.g., β1 – β2), 

the Riley method with robust variance estimator does not improve the coverage of the 

individual pooled estimates(e.g., β1 or β2), as the coverage is very similar regardless of 

whether the robust or standard variance estimator is used.

3.3 Simulation results for scenarios 10 to 15

Results for β1 – β2—Figure 5 summarizes the coverage of confidence intervals for β1 – 

β2 estimated from the Riley method with standard variance estimator and the Riley method 

with robust variance estimator when the between-study variance τ1
2 = τ2

2 = 0.25 For scenarios 

10 to 12 when the marginal correlation (ρS) is set to –0.5, 0, or 0.5, coverage of the Riley 

method with standard variance estimator is similar to that with robust variance estimator 

(range of CP: [92%, 96%]). For scenarios 13 to 15 when the marginal correlation (ρS) has 

different values across studies, the Riley method with robust variance estimator has 

uniformly better coverage than that with standard variance estimator under all sample size 

settings (ranges of CP: [92%, 96%] for the former and [88%, 92%] for the latter). This 

suggests that when the true date generating mechanism is model (2), the robust variance 

estimator has similar coverage performance as the standard variance estimator when the 

marginal correlation (ρS) is constant across studies, and has better coverage performance 

than the standard variance estimator when there is heterogeneity in marginal correlation ρS.

Results for β1 and β2—The coverage of confidence intervals for β1 estimated from the 

Riley method with standard variance estimator and with robust variance estimator when the 

between-study variance τ1
2 = τ2

2 = 0.25 are summarized in Figure S1 of the supplementary 

materials. Similar findings are observed from scenarios 10 to 15 as those from previous 

scenarios in that the coverage is very similar regardless of whether the robust or standard 

variance estimator is used, indicating that the Riley method with robust variance estimator 

does not improve the coverage of the individual pooled estimates.

3.4 Results for β1 – β2 when the true underlying model is multivariate t distribution

The strength of the robust variance estimators is that they allow model misspecification. In 

this subsection, we consider multivariate t distribution as the true underlying model for the 

data generation. Specifically, we consider the settings similar to Scenarios 1–3 in Section 

3.1, but the random effects are generated from a multivariate t distribution. The within-study 

variance si j
2  is sampled from: subscenario T1, a mixture of a scaled chi-squared distribution 
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corresponding to sample size of (40, 20); subscenario T2, a mixture of a scaled chi-squared 

distribution corresponding to sample size of (500, 1000); and subscenario T3, a non-mixture 

chi-squared distribution corresponding to sample size of 1000.

In this situation, the Riley model is misspecified. Figure 6 summarizes the coverage of 

confidence intervals for β1 – β2 estimated from the Riley method with robust variance 

estimator for Scenario Τ1. The results suggests that the robust variance estimator performs 

well in that the ranges of coverage percentage is [90%, 96%], even for meta-analysis with 

small number of studies (m = 10). We observe that the coverage of Riley method with robust 

variance estimator converges to the nominal level of 95% as the number of studies increases. 

The results for Scenario T2 and T3 are summarized in Table 2. Similar findings can be 

observed in that under all the simulation settings considered, the proposed Riley method 

with robust variance estimator is reasonably robust with coverage percentage close to the 

nominal level.

The normal distribution is commonly assumed for the random-effects in hierarchical models. 

However, this assumption does not always hold in practice. Using alternative random-effects 

distributions has been considered several times by others. Recently, Lee & Thompson (2008) 

explored the use of t distribution and the skew extensions as more flexible alternative for the 

normal assumption, and implemented the model using Markov Chain Monte Carlo methods. 

This method allowed for potential skewing and heavy tails in random-effects distributions 

and has been applied to meta-analysis and health-professional variation. When outliers or 

other unusual estimates are included in the analysis, the use of alternative random effect 

distributions has previously been proposed. Baker & Jackson (2008) proposed an alternative 

random-effect distributions when outliers or other unusual estimates are included in the 

meta-analysis and the normal assumption for random effects does not hold. Specifically, 

Baker & Jackson (2008) proposed a model for long-tailed distributed random effect, where 

the outliers are included with a reduced weight. The hierarchical approach is usually used to 

model the between-study variation. Recently, Baker & Jackson (2015) proposed two novel 

marginal distributions to model heterogeneous datasets. One of the main advantages of using 

the proposed marginal distributions is that the numerical integration is not needed to evaluate 

the likelihood. Copula models have also been used in multivariate meta-analysis. An 

comprehensive introduction of copula theory can be found in Nelsen (2007). Danaher & 

Smith (2011) described the use of copula models in multivariate settings. Recently, Kuss et 
al. (2014) proposed a model in the meta-analysis of diagnostic accuracy. This method linked 

the marginal beta-binomial distributions by bivariate copula. Given the literature above, 

modelling alternative random-effects models is another way to go, in addition to the uses of 

the robust variances.

3.5 The RVE-JKH method by Hedges et al. (2010) and Tipton (2015) vs. the proposed Riley 
model

Hedges et al. (2010) provided robust variance estimation (RVE) approach to combine 

statistically dependent effect size estimates in meta-regression, and Tipton (2015) further 

investigated possible approaches to adjust the robust variance estimator when the number of 

studies is small. To use the RVE approach, we can re-write the bivariate model in the 
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regression form: Y i j=X1i jβ1 + X2i jβ2 + ϵi j, for j = 1, 2 and i = 1,... ,m, where X1ij and X2ij are 

dummy variables indicating the outcome. Similarly, Yij = β1 + X2ijβ3 + ϵij allows for testing 

hypotheses of the form H0 : β3 = β1 – β2 = 0. It is worth mentioning that under the 

framework of weighted least squares, the RVE approach incorporates weights, while the RR 

approach does not. Another difference between the two approach is that the RVE method 

assumes the same between-study variation for all outcomes while the RR approach allows 

different between-study variation. However, since the purpose of this paper does not focus 

on the estimation of the between-study variance, it is of interest to compare the performance 

of the RVE method and that of the Riley method with robust variance estimator. As 

suggested by Tipton (2015), the bias reduced linearization estimator (RVE-MBB) for 

weighted least squares proposed by McCaffrey et al. (2001) and the jackknife estimator 

(RVE-JKH) proposed by MacKinnon & White (1985) perform well in a wide variety of 

situations. The RVE-MBB adjustment has been well implemented in the RVE analysis. 

However, in this work, we only implemented RVE-JKH approach because it does not require 

the specification of a working model. Correlated effects weights are used in RVE-JKH 

approach. To calculate coverage probability, we use the t-distribution with m – p degrees of 

freedom, as recommended by Hedges (2010) and Tipton (2015). For the REML method and 

the proposed Riley method with robust variance estimator, we used the t-distribution with 

m-1 degrees of freedom. The R codes for implementing the RVE-JKH method and 

calculating the coverage probability are provided in Supplementary Materials.

We have conducted additional simulation studies to compare the proposed Riley method 

with robust variance estimator and the RVE-JKH method. More specifically, we have 

included two scenarios: Scenario 1) the data are generated based on the multivariate normal 

distribution, and the within-study variance si j
2  is sampled from a scaled chi-squared 

distribution corresponding to sample size of 1000; and Scenario 2) the data are generated 

based on the multivariate t distribution, and the within-study variance si j
2  is sampled from: 

subscenario T1 (a mixture of a scaled chi-squared distribution corresponding to sample size 

of 4 and 20), subscenario T2 (a mixture of a scaled chi-squared distribution corresponding to 

sample size of 500 and 1000), and subscenario T3 (a non-mixture chi-squared distribution 

corresponding to sample size of 1000). We consider the setting when the true model 

mechanism is model (1) and the between-study variance τ1
2 = τ2

2 = 0.5, the between-study 

correlation ρb = 0.5 and the within-study correlation ρWi = –0.5. Because the simulations in 

previous subsections suggest the use of the proposed approach for relatively large sample, in 

this work, we only focus the performance comparison between the RR and RVE-JKH 

approaches on large sample (m = 50), while acknowledging that extending RR approach to 

correct for the small sample issue will be a topic of future research.

The results are summarized in Table 1 and Table 2. Under all the simulation settings 

considered, the three methods under comparison provide unbiased estimates of β1, β2 and Δ 

= β1 – β2. In regards to the coverage probability, the proposed Riley method with robust 

variance estimator is reasonably robust in that the range of the coverage percentage is 

[95.7%, 96.2%]. The RVE-JKH method provides relatively larger coverage percentage 

[97.5%, 99.7%]. The possible reason is that the true data generation mechanism is based on 
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model (1), while the RVE-JKH method assumes a different working model in the meta-

regression form. Therefore, it tends to provide higher model-based standard errors. In 

addition, we observe that the RVE-JKH method provides larger ESE compared with the 

REML method and the RR method for T1 while the standard errors from the three methods 

are similar for T2 and T3. Note that for T1, T2 and T3, the within-study variances are 

sampled from a mixture of a scaled chi-squared distribution corresponding to sample size (4, 

20), (500, 1000), and a non-mixture chi-squared distribution with sample size 1000, 

respectively. Hence the variation of the within-study variances for T1 are larger than those 

for T2 and T3, which is one possible reason that the ESE differs larger more for RVE-JKH 

vs. RR and REML in T1.

3.6 Summary

In summary, the simulation studies empirically confirm the theory of Huber (1967) that the 

robust variance estimator can improve the coverage of the Riley method, which is a working 

model, especially when functions of the pooled estimates are of interest. Since the robust 

variance estimator can be easily computed and has better coverage performance for β1 – β2 

under both models (1) and (2), we recommend its use for practical investigators wishing to 

use the Riley method to derive functions of the pooled estimates. In terms of the individual 

pooled estimates (β1 and β2) themselves, the original Riley method with standard variance 

estimator and the Riley method with robust variance estimator are very similar in terms of 

coverage. So either variance estimator can be used for inferences. Considering all settings in 

the simulation studies, the RR method performs robustly no matter if the focus is hypothesis 

tests on β1, β2 or β1 – β2, and under both correctly model or misspecification scenarios, 

while we do not observe such robust performance for standard Riley method. One limitation 

of the proposed robust variance estimator is that it performs well when the number of studies 

is relatively large. As shown in Figure S2 of the supplementary materials, variances of 

estimated parameters may be underestimated for small number of studies (i.e., m < 15). In 

addition, in the case that researchers prefer a test with lower Type I errors than higher ones, 

small sample adjustments may be also needed for meta-analysis with moderate number of 

studies (i.e., m < 50). Therefore, we recommend the use of the robust method for meta-

analyses with relatively large number of studies.

4 Data analysis

4.1 Effectiveness of surgery and adjuvant chemotherapy for gastric cancers

Gastric cancer, also called stomach cancer, is a cancer developing from the lining of the 

stomach. It is the fourth most common malignancy in the word. While the most effective 

treatment for gastric cancer is surgery, efforts has been made to explore different adjuvant 

therapies because of the recurrence after curative resection. It has been shown that 

postoperative adjuvant chemotherapy reduced the risk of death than surgery alone (Paoletti 

et al. , 2010). While overall survival (OS) is usually considered as the gold standard when 

investigating the effectiveness of surgery and adjuvant chemotherapy for gastric cancers, it 

has the disadvantage of requiring the extended follow-up period. Oba et al. (2013) conducted 

a meta-analysis of data from 3838 individual patients randomized in 17 trials on curatively 

resected gastric cancer to investigate whether disease-free survival (DFS) is a valid surrogate 

Hong et al. Page 12

Res Synth Methods. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for OS. It is important, therefore, to study the difference between the log hazard ratio of 

surgery and adjuvant chemotherapy for DFS, denoted by Yi1, and the log hazard ratio of 

surgery and adjuvant chemotherapy for OS, denoted by Yi2.

Since the within-study correlations are not available, model (1) could not be applied. We 

therefore conduct a meta-analysis of this data using the univariate random-effects model 

(URMA), the Riley method with standard variance estimator and the Riley method with 

robust variance estimator. As shown in Table 1, for pooled estimator of individual effect 

sizes β1 and β2, the Riley method with standard variances estimator and that with robust 

variance estimator coincide in both point estimates and 95% confidence intervals, while the 

univariate meta-analysis provides greater point estimates and narrower 95% confidence 

intervals. The overall difference between log hazard ratio for DFS and log hazard ratio for 

OS (β1 – β2) is estimated as 0.062 (95% CI: (0.029, 0.096)) using the Riley method with 

standard variance estimator, and 0.062 (95% CI: (0.026, 0.098)) using the Riley method with 

robust variance estimator. We observe that the Riley method with robust variance estimator 

provides a wider 95% confidence interval than the Riley method with standard variance 

estimator. This observation is consistent with our simulation studies in that the model based 

standard errors are on average larger from robust method (Figure S3 of the supplementary 

materials) in terms of the function of the pooled estimates, and the robust variance estimator 

improves the Riley method in variance estimation. It is also worth mentioning that the Riley 

method with either standard variance estimator or robust variance estimator provide different 

results in statistical significance from that of the URMA method.

4.2 MYCN as a prognostic tumor marker in neuroblastoma

Neuroblastoma is one of the most common extracranial solid tumor occurring in children, 

which commonly originates from undifferentiated neural crest cells (Rossi et al. , 1994). The 

MYCN gene, belonging to the MYC family of transcription factors, plays an important role 

in making protein and formatting tissues and organs during embryonic development. The 

amplification of MYCN oncogene is commonly found in neuroblastoma (Bénard et al. , 
2008). Riley et al. (2004) conducted a meta-analysis to investigate whether MYCN gene is 

in relation to the disease-free survival (DFS) and overall survival (OS) of neuroblastoma. In 

this meta-analysis, 17 studies reported both DFS and OS estimates, 25 studies only reported 

DFS, 39 studies only reported OS, and 70 studies reported neither DFS nor OS. It is 

important to study the difference between the log hazard ratio of MYCN for DFS, denoted 

by Yi1, and the log hazard ratio of MYCN for OS, denoted by Yi2.

We conduct meta-analyses of this data using the univariate random-effects model, the Riley 

method with standard variance estimator and the Riley method with robust variance 

estimator. The REML method is not feasible in this example due to the lack of the 

knowledge of the within-study correlation ρWi. Note that only a proportion of studies have 

all outcomes reported, and the remaining studies have some of outcomes missing. Under the 

Missing Completely at Random assumption, we allocated very large within-study variances 

(e.g., 106) to the missing observations, where the missing study outcomes are set to be zero 

(Jackson et al. , 2010). As shown in Table 2, for pooled estimator of individual effect sizes 

β1 and β2, the Riley method with standard variances estimator and that with robust variance 
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estimator coincide in point estimates, while the univariate meta-analysis provides smaller 

point estimates. The overall difference between log hazard ratio for DFS and log hazard ratio 

for OS (β1 – β2) is estimated as −0.010(95% CI: (–0.341, 0.322)) using the Riley method 

with standard variance estimator, and −0.010 (95% CI: (–0.533, 0.514)) using the Riley 

method with robust variance estimator. This example again shows the discrepant standard 

error and confidence intervals of β1 – β2 for the robust and standard methods. In this 

example, the standard error is larger from the robust method, resulting in a wider confidence 

interval compared with the standard method.

5 Discussion

In this paper, we proposed a robust variance estimator to improve the Riley method with 

standard variance estimator for bivariate meta-analysis when within-study correlations are 

unknown. Our procedure uses a working covariance matrix combining the empirical version 

of the variance estimation in the sandwich form. The proposed method has a variety of 

advantages, including 1) the often unknown within-study correlations are not required when 

using the Riley method; 2) borrowing of strength between parameters under a missing 

random assumption, which is a key advantage of the multivariate approach; 3) variances for 

the parameters that are asymptotically correct even when the model is misspecified.

In this work, the range of the between-study and within-study correlation is set to [–0.8, 

0.8], which is common in practice. However, as acknowledged by Riley et al. (2008), the 

performance of Riley method is unstable when the between-study correlation is close to 1 or 

– 1 especially when the between-study heterogeneity is relatively small. More work is 

needed to deal with the remaining issues in such settings. The proposed RR approach 

produces similar results to RVE-JKH for large sample. However, one limitation is that 

variances of its estimated parameters may be underestimated for small number of studies 

(i.e, m =< 15). As pointed by the reviewer of this paper, researchers would prefer that a test 

has lower Type I errors than higher in standard statistical theory. In that case, small sample 

adjustments may be also needed for meta-analysis with moderate number of studies (i.e., m 
< 50). Therefore, we recommend the use of the proposed RR approach for meta-analyses 

with relatively large number of studies (i.e., m ≥ 50). As inspired by Tipton (2015), 

improving the Riley method with robust variance estimator by incorporating small sample 

adjustments in both variance estimator and degrees of freedom of the t-test are future topics 

of interest.

Alternative methods to deal with the unknown within-study correlations have been proposed 

under Bayesian framework. Recently, Yao et al. (2015) developed a method to carry out 

Bayesian inference for multivariate meta-regression setting when the within-study 

correlation is missing. Specifically, in the within-study covariance matrix, the off-diagonal 

elements are missing, and are sampled from the appropriate full conditional distribution in a 

Markov Chain Monte Carlo scheme. In addition, Yao et al. (2015) proposed different 

structures of the within-study covariance matrix, which allow for borrowing strength across 

different treatment arms and trials.
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There are several potential topics of future. In this work, we set the missing values at 0, 

assigned very large within-study variances, and use a degree of freedoms as m – 1 to 

calculate the coverage probability. Similar approach was used by Jackson et al. (2010). 

Alternatively, as in the RVE case, the missing data can be considered as unbalanced 

outcomes, which can affect degree of freedoms. It is of interest to see if the approach used in 

this work will produce better results by adjusting the degree of freedom.

In many applications study level covariates are available, such as mean age, percentage 

female, and year of publication. These covariates may be incorporated in the meta-analysis 

in order to explain some of the between-study variation. Hedges et al. (2010) provided 

robust variance estimation approach to combine statistically dependent effect size estimates 

in meta-regression. Extending Riley model with robust variance estimator to include 

covariates will be a topic of future research. Recently, Tipton (2015) investigated possible 

approaches to adjusting the robust variance estimator when the number of studies is small 

and found two estimators that perform better than the standard robust variance estimation 

approach in a wide variety of settings. Extending Riley model to adjust for the small sample 

size will be another topic of future research.

In addition, besides the Riley model, the robust variance estimator approach can be 

combined with other models for meta-analyses when the model is misspecified and the 

standard variance estimator is not correct (Chen et al. , 2015). Furthermore, because some 

models for network meta-analyses can be fitted as regression models, the proposed approach 

may also be useful in the network meta-analyses setting (White et al. , 2012). Very recently, 

Efthimiou et al. (2014) developed models for multiple correlated outcomes in a network of 

interventions. Specifically, they revised the models for performing multiple outcomes 

multivariate meta-analysis when there are only two treatment under comparison and 

generalized the methods for multi-arm studies. However, as acknowledged by Efthimiou et 

al, one major limitation for the models is that several assumptions are required when 

simplifying the structure of the variance-covariance matrices. The proposed robust variance 

estimator can be useful in this situation to correct the variance estimation.

To summarize, we develop a simple and robust variance estimator for handling correlated 

out-come data in meta-analyses when the full likelihood approach fails because of unknown 

within-study correlations and therefore a working model is required. Our method has been 

found to perform well when the number of studies is moderate, and provides an improved 

tool for all those involved in performing and interpreting multivariate meta-analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Coverage of confidence intervals for β1 – β2 estimated from the Riley method with standard 

variance estimator and the Riley method with robust variance estimator under scenarios 1–9 

(denoted as S1–S9) for different settings of within-study correlation (ρWi) and between-

study correlation (ρB). The between-study variations τ1
2, τ2

2  are set at 0.25, representing a 

relatively small between-study/within-study variation ratio (small VR). The red line refers to 

Riley method with robust variance estimator and the blue line refers to the Riley method 

with standard variance estimator.
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Figure 2: 
Coverage of confidence intervals for β1 – β2 estimated from the Riley method with standard 

variance estimator and the Riley method with robust variance estimator under scenarios 1–9 

(denoted as S1–S9) for different settings of within-study correlation (ρWi) and between-

study correlation (ρB). The between-study variations τ1
2, τ2

2  are set at 0.5, representing a 

relatively moderate between-study/within-study variation ratio (moderate VR). The red line 

refers to Riley method with robust variance estimator and the blue line refers to the Riley 

method with standard variance estimator.
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Figure 3: 
Coverage of confidence intervals for β1 – β2 estimated from the Riley method with standard 

variance estimator and the Riley method with robust variance estimator under scenarios 1–9 

(denoted as S1–S9) for different settings of within-study correlation (ρWi) and between-

study correlation (ρB). The between-study variations τ1
2, τ2

2  are set at 5, representing a 

relatively large between-study/within-study variation ratio (large VR). The red line refers to 

Riley method with robust variance estimator and the blue line refers to the Riley method 

with standard variance estimator.
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Figure 4: 
Coverage of confidence intervals of β1 estimated from the Riley method with standard 

variance estimator and the Riley method with robust variance estimator under scenarios 1–9 

(denoted as S1–S9) for different settings of marginal correlation (ρS)· The between-study 

variations τ1
2, τ2

2  are set at 0.25, representing a relatively large between-study/within-study 

variation ratio (large VR). The red line refers to Riley method with robust variance estimator 

and the blue line refers to the Riley method with standard variance estimator.
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Figure 5: 
Coverage of confidence intervals of β1 – β2 estimated from the Riley method with standard 

variance estimator and the Riley method with robust variance estimator under scenarios 10–

15 (denoted as S10–S15) for different settings of marginal correlation (ρS). The between-

study variations τ1
2, τ2

2  are set at 0.25, representing a relatively moderate between-study/

within-study variation ratio (moderate VR). The red line refers to Riley method with robust 

variance estimator and the blue line refers to the Riley method with standard variance 

estimator.

Hong et al. Page 22

Res Synth Methods. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 
Coverage of confidence intervals of β1 – β2 estimated from the Riley method with robust 

variance estimator when the true underlying distribution is bivariate t distribution. The red 

line refers to Riley method with robust variance estimator.
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Table 1:

Results of the Riley method with robust variance estimator (RR) and the Hedge method (RVE-JKH) in biases, 

empirical standard error (ESE), model based standard error (MBSE) and coverage probability (CP) for β1, β2 

and Δ = β1 – β2 in 600 simulations based on data generated from Normal distribution. The number of studies 

is set to 50. The within-study variance si j
2  is sampled from a scaled chi-squared distribution corresponding to 

sample size of 1000.

Distribution Method Bias ESEΔ MBSEΔ CPΔ (%)

β1 β2 Δ

Normal RR 0.009 0.020 −0.011 0.192 0.221 95.7

RVE-JKH 0.007 0.020 0.012 0.192 0.298 99.7
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Table 2:

Results of the REML method, the Riley method with robust variance estimator (RR) and the Hedge method 

(RVE-JKH) in biases, empirical standard error (ESE), model based standard error (MBSE) and coverage 

probability (CP) for β1, β2 and Δ = β1 – β2 in 600 simulations based on data generated from multivariate t 

distribution. The number of studies is set to 50. The within-study variance si j
2  is sampled from 1) T1: a mixture 

of a scaled chi-squared distribution corresponding to sample size (4, 20); 2) T2: a mixture of a scaled chi-

squared distribution corresponding to sample size (500, 1000); 3) T3: a non-mixture chi-squared distribution 

corresponding to sample size of 1000.

Distribution Method Bias ESEΔ MBSEΔ CPΔ (%)

β1 β2 Δ

T1 REML −0.007 −0.004 −0.003 0.150 0.138 94.8

RS −0.007 −0.004 −0.003 0.150 0.390 96.2

RVE-JKH 0.003 0.003 −0.001 0.332 0.284 97.5

T2 REML 0.000 0.006 −0.006 0.153 0.155 96.5

RS 0.000 0.006 −0.006 0.153 0.151 95.2

RVE-JKH 0.000 0.006 0.006 0.153 0.220 99.7

T3 REML 0.001 0.004 −0.003 0.153 0.154 96.7

RS 0.001 0.005 −0.003 0.153 0.153 95.8

RVE-JKH 0.001 0.004 0.003 0.153 0.220 99.7
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Table 3:

Results of the Riley method with standard variance estimator (Riley Standard), the Riley method with robust 

variance estimator (Riley Robust), univariate random-effects meta-analysis (URMA), and the REML method 

applied to the adjuvant chemotherapy study.

method β1(95%CI) β2(95%CI) β1 − β2 (95%CI)

Riley Standard −0.219(−0.302,−0.135) −0.281(−0.381,−0.181) 0.062(0.029, 0.096)

  Robust −0.219(−0.292,−0.145) −0.281(−0.371,−0.191) 0.062(0.026, 0.098)

UMRA −0.209(−0.210,−0.207) −0.270(−0.300,−0.244) 0.061(−0.054, 0.177)*

REML – – –

*
directly calculated without accounting for the correlations.
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Table 4:

Results of the Riley method with standard variance estimator (Riley Standard), the Riley method with robust 

variance estimator (Riley Robust), univariate meta-analysis (UMRA), and the REML method applied to the 

MYCN study.

method β1(95%CI) β2(95%CI) β1 − β2 (95%CI)

Riley Standard 1.142(0.928, 1.355) 1.152(0.903, 1.400) −0.010(−0.341, 0.322)

  Robust 1.142(0.765, 1.519) 1.152(0.738, 1.565) −0.010(−0.533, 0.514)

UMRA 1.140(0.766,1.502) 1.147(0.750,1.545) −0.008(−0.315, 0.299)*

REML - - -

*
directly calculated without accounting for the correlations.
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