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Abstract

The work examines upper-ocean response to time-varying winds within
the Ekman paradigm. Here, in contrast to the earlier works we assume the
eddy viscosity to be both time and depth dependent. For self-similar depth
and time dependence of eddy viscosity and arbitrary time dependence of
wind we find an exact general solution to the Navier-Stokes equations
which describes the dynamics of the Ekman boundary layer in terms of
the Green’s function. Two basic scenarios (a periodic wind and an increase
of wind ending up with a plateau) are examined in detail. We show that
accounting for the time dependence of eddy viscosity is straightforward
and that it substantially changes the ocean response, compared to the pre-
dictions of the models with constant-in-time viscosity. We also examine
the Stokes-Ekman equations taking into account the Stokes drift created
by surface waves with an arbitrary spectrum and derive the general solu-
tion for the case of a linearly varying with depth eddy viscosity. Stability
of transient Ekman currents to small-scale perturbations has never been
examined. We find that the Ekman currents evolving from rest quickly
become unstable, which breaks down the assumed horizontal uniformity.
These instabilities proved to be sensitive to the model of eddy viscosity,
they have small (∼ 102 m) spatial scales and can be very fast compared to
the inertial period, which suggests spikes of dramatically enhanced mixing
localized in the vicinity of the water surface. This picture is incompat-
ible with the Ekman paradigm and thus prompts radical revision of the
Ekman-type models.

1 Introduction

The whole ocean-atmosphere system is very sensitive to the processes in the few
metres below the water surface. In particular, the top 2.5m of water column has
the same heat capacity as the whole atmosphere above (e.g. Gill 1982), while
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50% of the surface-penetrating solar radiation is absorbed within the first 0.5
m of the ocean and 50% of the breaking surface wave kinetic energy dissipates
within 20% of the significant wave height from the surface (Soloviev & Lucas
2006). Knowledge of the vertical profiles of near-surface currents is of prime im-
portance for modelling horizontal transport of dispersed substances (pollutants,
algae, chlorophyll, etc.). Yet another strong motivation for studying the pro-
cesses linking the ocean surface processes and its interior is that electromagnetic
remote sensing of the ocean effectively allows us to see the surface only. Fortu-
nately, the physical processes below produce distinguishable surface signatures
which could be deciphered to reveal what is going on beneath. There is a great
variety of processes contributing to the formation of the boundary layer in wa-
ter, ranging from molecular scales to hundreds of kilometres which include, inter
alia, wind, surface gravity and capillary waves and their breaking, air entrain-
ment, surface films, solar heating, shear instabilities, small-scale turbulence,
turbulent diffusion of momentum and heat, density stratification suppressing
the turbulence, Langmuir circulations, subsurface near-inertial waves; the list
is not exhaustive (Soloviev & Lucas 2006, Sullivan & McWilliams 2010). The
Ekman layer plays a prominent role in this list. According to Wang & Huang
(2004) the total global energy input into the Ekman layer is massive- 2.4 TW.

In this work we focus on the fundamentals of a wind generated Ekman
boundary layer. The progress in understanding this boundary layer has been
slow. It began with the unexpected discovery of Nansen’s polar expedition of
1893–96, that the surface current, and, thus, the drift of the floating ice, was
predominantly directed to the right of the wind direction. The first mathemat-
ical model of this phenomenon was proposed in the pioneering work by Ekman
(1905). Ekman reduced the effect of wind to tangential stress and, inter alia, de-
rived a steady solution of the Navier-Stokes equations describing forced uniform
horizontal motion on the f -plane under the assumption of constant eddy viscos-
ity. The Ekman’s classical steady solution predicts the deflection of the surface
current due to the Earth’s rotation to be 45◦ to the right of the wind direction
in the Northern hemisphere (45◦ to the left in the Southern hemisphere) with
the flux integrated over entire depth (‘the Ekman transport’) at ninety degrees
to the right/left of wind direction. Ekman (1905) also analytically described the
development of the Ekman boundary layer from rest. Within the framework of
this model the complete analytical description of the dynamics of the Ekman
current generated by an arbitrarily varying wind was derived in terms of explicit
Green’s function by Gonella (1971). The model was extended to finite depth
(Lewis & Belcher 2004). An overview by Jenkins & Bye (2006) provides a neat
summary of Ekman’s work which has a continuing influence on oceanography.
Observations of wind-driven currents showed that indeed the surface velocity
vertical structure often exhibits a smooth spiral resembling qualitatively the
theoretical Ekman spiral (Price, Weller & Schudlich 1987). However, substan-
tial quantitative discrepancies between the predictions of the original Ekman
model and observations have been reported. In particular, as pointed by Madsen
(1977), Weber (1981) and Lewis & Belcher (2004), the surface current deflection
with respect to wind is usually approximately 10− 30◦ , i.e. noticeably smaller
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than the 45◦ predicted by the steady Ekman solution, while the deflections of
currents at relatively small (∼5 - 20 m) depths are stronger compared to the
classical Ekman solution. It was also noted by Chereskin (1995) and Price et
al. (1987) that, in contrast to the Ekman model, the current speed decreases
with depth more rapidly than the current vector rotates to the right. This mis-
match is important since the eddy viscosity is estimated by fitting observations
to formulae of either the decay of speed with depth or of the velocity rotation
with depth; the estimates obtained in these two ways can differ by an order of
magnitude (Weller 1981; Price et al. 1987; Chereskin 1995; Lenn 2006). Here,
we do not aim at reviewing the observations of Ekman currents summarized
in an overview by Price and Sundermeyer (1999), we just note that there is
an inherent difficulty in extracting the forced Ekman component of the current
from observations. Many more observations are needed. Especially lacking are
observations of the spatio-temporal dynamics of transient Ekman currents. The
overwhelming majority of the observations are provided by point measurements
with often insufficient vertical and temporal resolutions. Fortunately, rapidly
developing gliders (e.g. Merckelbach, Smeed & Griffiths 2010) and the matur-
ing remote sensing techniques, such as, multi-frequency high-frequency radars
(Teague, Vesecky & Hallock 2001; Zhang & Zebiak 2002), new generation of
acoustic Doppler Current Profilers (e.g. Guerra & Thomson 2017) have the
potential to revolutionize the observations of the Ekman currents in the near
future.

On the modelling side, since the eddy viscosity parameterizations and, es-
pecially, the constant eddy viscosity assumption are a strong oversimplification
of a very complicated real picture, there were numerous attempts to improve
the Ekman model by choosing better parameterizations of turbulence. To this
end a better understanding of turbulence phenomenology in the boundary layer
is needed, which in itself is an area of intense ongoing research (see review of
experimental studies in (Csanady2001 and Soloviev & Lucas 2006)). In the
modern large-scale ocean models a range of state of the art turbulence closures
is employed: ‘K-profile parametrization’ (KPP) (Large, McWilliams & Doney
1994; Reichl et al. 2016), ‘generalized Ocean turbulence model’ (Umlauf & Bur-
chard 2005; Canuto et al. 2010). By accounting for stratification, wave breaking
and Langmuir circulations, these models reproduce reasonably well the seasonal
dynamics of the mixed layer (Kantha & Clayson 2004; Harcourt 2015; Reichl et
al. 2016). These closures are widely used in simulations of global and regional
oceanic circulations (e.g. Graham et al. 2018), in the ‘ocean only’ mode or
coupled with waves and atmosphere (Lewis et al. 2018). In the last decade the
spatial and temporal resolutions of atmospheric forcing in the models have been
significantly improved. Thus, the ocean circulation models begin to capture
some features of variability caused by atmospheric forcing at meso-, synoptic
and inertial scales. However, the interpretation of the ocean response to, say,
wind bursts in observations and numerical models is complicated; it requires,
as a prerequisite, a better understanding of such basic processes as the Ekman
response, instabilities induced by unsteady wind and associated unsteady mix-
ing occurring in the Ekman layer. The present work does not compete with
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the advanced numerical models, it aims at re-examining the basic processes by
extending the mathematical framework within the Ekman-type models as far
as possible and at identifying the intrinsic contradictions of this approach.

For the Ekman-type models the fundamental question of how good are the
almost universally adopted Boussinesq eddy viscosity closure and the corre-
sponding parametrization of momentum transfer remains outstanding. This
crucial issue has been partially addressed by means of large-eddy simulations
of steady Ekman boundary layers by Zikanov, Slinn & Dhanak (2003). Their
work does not simulate surface waves and their breaking, but within the frame-
work of such a simplified setting, it confirms the existence of the wall-like layer
below and predicts at what depth the eddy viscosity starts to decrease. Thus,
at least for steady regimes it provides a simple depth and latitude dependent
parametrization of eddy viscosity which we adopt. Note that the viscosity at the
surface and its gradient scale with the friction velocity u∗ differently, namely, as
u2∗ and u∗. Although for the situations with convection (e.g. nocturnal bound-
ary layers) the eddy viscosity closure fails, here we adopt the eddy viscosity
hypothesis and thus a priori exclude the situations with convection. On the
theoretical side the attempts to modify the Ekman model aimed to improve its
performance, while retaining its elegance and simplicity, have never stopped.
Our work, on the one hand, belongs to this line of research, but it ends up
revealing its intrinsic contradictions.

Below, we briefly overview the progress in theoretical studies of Ekman layer
dynamics with different models of the depth dependence of eddy viscosity. Mod-
els with vertical eddy viscosity linearly varying with depth have two major ad-
vantages: first, they are underpinned by a transparent physics (linear viscosity
leads to a logarithmic boundary layer, which, in a certain range of depths, agrees
with available observations (e.g. Csanady 2001); the corresponding reduction of
the Navier-Stokes equations can be solved exactly in terms of the Bessel func-
tions (e.g. Madsen 1977; Lewis & Belcher 2004). Power-law profiles of eddy
viscosity were examined both for finite and infinite depth by Jordan & Baker
(1980), the steady solutions were expressed in terms of the Bessel functions. An
attempt to move away from particular profiles was made by Grisogono (1995),
who suggested to employing the WKB solution assuming slow variation of vis-
cosity with depth; however, in the oceanic boundary layer there is no needed
scale separation.

Following the idea first put forward by Huang (1979), the Stokes drift due
to surface waves was also taken into account; the resulting Stokes-Ekman model
was analysed theoretically (Xu & Bowen 1994; Lewis & Belcher 2004) and nu-
merically by large-eddy simulations (Sullivan & McWilliams 2010). The effect
of the Stokes drift was found to be important, but the existing analysis is based
on the restrictive assumptions of independence of time of both the eddy viscos-
ity and the Stokes drift. What happens without these assumptions is one the
issues addressed below.

Note that the classical steady Ekman (1905) solution is unstable with re-
spect to finite wavelength perturbations; linear stability analysis carried out by
Leibovich & Lele (1985) on the non-traditional f -plane has identified the crit-
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ical Reynolds numbers and parameters of the most unstable modes; however,
since their analysis is confined to the classical Ekman model with constant eddy
viscosity, the same for the basic flow and the small-scale perturbations, it is
not clear how relevant the obtained instabilities for realistic situations are. The
instability of the near-surface current, occurring when the Stokes drift is taken
into account, leads to Langmuir circulations (Craik & Leibovich 1976; Sullivan
& McWilliams 2010); their presence changes not only the vertical distribution
of eddy viscosity but also leads to its horizontal inhomogeneity. Upon spatial
averaging the initially horizontally uniform eddy viscosity becomes anisotropic.
This fundamental implication was first examined by Wirth (2010), who derived
an anisotropic generalization of the steady Ekman solution. The potentially
important idea of the instability of Ekman currents has not been pursued fur-
ther. In particular, the instability of transient Ekman currents has not been
examined, either for constant or depth- and/or time-dependent eddy viscosity.
Throughout this paper we refer to all non-steady currents as “transient”. To
our knowledge, the legitimate question on whether the relatively slow transient
Ekman currents with time scales of O(10−5s) are stable or unstable with respect
to much faster perturbations has never been posed. Therefore, it is not clear
under what conditions the known solutions for transient and steady Ekman cur-
rents can occur in reality or even whether they can occur at all. Here, this gap
will also be addressed.

The ability of the existing simple models of Ekman currents to capture the
response of the oceanic boundary layer to varying-in-time wind stress was ex-
amined by Elipot & Gille (2009) by comparing predictions of nine different
Ekman-type models (three types of eddy viscosity depth dependence and three
forms of boundary conditions at the bottom of the mixed layer aimed to mimic
the effect of a stratified layer below) against the Southern Ocean drifter obser-
vations carried out within the framework of the ongoing Global Drifter Program
(Siedler, Gould & Church 2001; see also http://www.aoml.noaa.gov/phod/dac/
index.php). Some of the tested Ekman-type models proved to be surprisingly
successful in describing variability in the drifter data. However, the reasons
why the least likely models happened to perform better are not clear; the huge
scale of this experiment does not allow one to dismiss these findings as a mere
coincidence and calls for further study.

The unifying feature of the existing theoretical developments of the Ekman
theory is that they do not take into account time dependence of the eddy vis-
cosity caused by varying wind, which is an obvious oversimplification and stark
neglect of a key feature of reality. Here, we extend the Ekman model by consider-
ing time- (and depth-) dependent eddy viscosity. The turbulence in the Ekman
layer is known to vary with time (e.g. Soloviev & Lucas 2006), it is affected by
many physical processes, not fully understood yet. We mention just a few: it
depends on wind through the wind-induced shear and waves, primarily through
wave breaking, which is sensitive to the instantaneous wind and wave age (e.g.
Babanin 2011); the turbulence is affected by solar heating and heat exchange,
which might create density stratification and thus suppress the turbulence; it
might also be affected by near-inertial waves trapped near the surface (Shrira &
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Forget 2015), by convection, etc. Here we do not consider specific mechanisms
of turbulence temporal variability and exclude effects of large-scale motions,
we focus on how a presumed wind-determined time and depth dependence of
eddy viscosity manifests in the dynamics of the resulting Ekman current. We
assume that, to leading order, the eddy viscosity at the surface scales as friction
velocity squared, u2∗, while its gradient scales as u∗, which is supported by the
Zikanov et al. (2003) large-eddy simulations for steady regimes; for sufficiently
slow changes of wind this scaling might capture reality in the absence of density
stratification.The present study is confined to the non-stratified ocean. Even if
the assumed scaling is not exactly true, we are the first to admit that it is also
an oversimplification, still, it is worth exploring the effects due to time- depen-
dent eddy viscosity under this not unreasonable assumption; at the moment we
do not have a better alternative. We show that once the eddy viscosity closure
and tangential stress parametrization of the wind effect have been adopted, the
Ekman equations with viscosity varying both in depth and time admit a broad
class of novel exact solutions describing the dynamics of transient Ekman cur-
rents. These solutions demonstrate the significance of taking into account the
time dependence of the eddy viscosity. This enables us to get a new insight
into the vertical and temporal variability of transient Ekman currents and to
identify the intrinsic limitations of the current Ekman models.

The paper is organized as follows. First, in §2 we formulate the mathematical
model. In §3 we derive a novel broad class of exact solutions of the Navier-Stokes
equations generalizing the Ekman solutions for the situations with time-and-
depth-dependent viscosity; note that the value of viscosity at the surface and
its gradient can be independent functions of time. In §4 we examine two basic
scenarios of varying wind: a gradual increase ending up with a plateau and a
periodic variation. We demonstrate the importance of taking into account the
eddy viscosity time dependence by comparing the obtained transient Ekman
currents in a few basic scenarios of evolution with those obtained with the steady
eddy viscosity models. We show that the transient Ekman currents described by
the exact solutions of the Ekman equations found in §3 are unstable with respect
to small-scale fast perturbations; these instabilities proved to be localized near
the surface and are very sensitive to the adopted models of eddy viscosity. The
general solution for self-similar distributions of eddy viscosity with the power-
law depth dependence and an arbitrary time dependence of the wind is derived in
Appendix A and discussed in §5. In §6 we derive the general solution describing
the transient Ekman current response to an arbitrarily varying wind, taking into
account a time-dependent Stokes drift and a linear dependence of viscosity on
depth. We also show that in this setting a steady Ekman current cannot exist,
even under constant wind and even if the instabilities of §3 do not occur or are
ignored. The bulk of the derivation is given in Appendix B. In the concluding
§6 we summarize our findings and pose the new questions they generate.
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2 The mathematical model

We describe ocean response to varying wind starting with the Navier-Stokes
equations for viscous and horizontally uniform flow on the non-traditional f -
plane under the Boussinesq approximation (e.g. Phillips 1977; Cushman-Roisin
& Beckers 2007). In the Cartesian frame with x directed eastward, y-northward
and z-downward, with the origin at the unperturbed surface of the ocean, the
Reynolds-averaged Navier-Stokes equations for the zonal and meridional veloc-
ities u, v caused by a time-varying horizontally uniform wind stress {τxz(0, t),
τyz(0, t)} take the form

∂u

∂t
− fv =

1

ρ

∂τxz(z, t)

∂z
, (1a)

∂v

∂t
+ fu =

1

ρ

∂τyz(z, t)

∂z
, (1b)

where ρ is water density, f = 2Ω sinφ is the Coriolis parameter (Ω and φ
are, respectively, the Earth’s rotation frequency and latitude). The Reynolds
stresses terms τxz ≡ −ρ〈û ŵ〉, τyz ≡ −ρ〈v̂ ŵ〉 describe the downward transfer
of eastward and northward momentum, here û, v̂ and ŵ are the x−, y−, z−
components of turbulent velocities, 〈 ...〉 means Reynolds’ averaging over tur-
bulent fluctuations. Before the Reynolds averaging, the Navier-Stokes equations
on the non-traditional f -plane, which are our starting point, are nonlinear and
contain terms with the horizontal component of the Earth rotation f̃ = Ω cosφ ,
for the horizontally uniform mean flows in which we are interested in, the non-
linear terms u · ∇u and ‘non-traditional terms’ with f̃ vanish identically, while
nonlinearity of the fluctuations, û · ∇û, and an implicit dependence on f̃ are
retained in the Reynolds stress terms.

We close the equations for the Reynolds-averaged flow by adopting the com-
monly used Boussinesq hypothesis, i.e. we assume the Reynolds stresses to
be proportional to the mean velocity gradient, ∂uuu/∂z, through a single scalar
coefficient, νe(z, t):

ρν(z, t)
∂u

∂z
≡ τxz ≡ −ρ〈û ŵ〉 , ρν(z, t)

∂v

∂z
≡ τyz ≡ −ρ〈v̂ ŵ〉 . (2)

Recall that in our context the use of this closure has been justified in (Zikanov
et al. 2003) through extensive large-eddy simulations, although only for steady
winds. We can also expect it to be applicable for the time-dependent winds for
the time scales exceeding the characteristic scale of the small-scale turbulence
adjustment.

Upon adopting the Boussinesq closure (2) the momentum equations (1) can
be written as,

∂u

∂t
− fv =

1

ρ

∂

∂z

(
ρνe(z, t)

∂u

∂z

)
, (3a)

∂v

∂t
+ fu =

1

ρ

∂

∂z

(
ρνe(z, t)

∂v

∂z

)
. (3b)
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We confine our study to density-uniform flows, which makes the equations above
independent of density. Following Ekman (1905) we introduce a complex hori-
zontal velocity U = u + iv, which enables us to cast the momentum equations
into the following single equation for U(z, t),

∂U

∂t
+ ifU =

∂

∂z

(
νe(z, t)

∂U

∂z

)
. (4)

We stress that this modified Ekman equation represents an exact reduction of
the Navier-Stokes equations for the horizontally uniform non-stratified viscous
flows on the f -plane with time-and depth-dependent viscosity.

The motion has to satisfy the boundary condition of continuity of the shear
stress at the free surface: a horizontally uniform time-dependent wind produces
tangential stress τττ(t) at the ocean surface, so that in our coordinate frame with
the downward z-axis, [

νe(z, t)
∂U

∂z

]
z=0

=
−τττ(t)

ρ
. (5)

The velocity should vanish at the bottom z = H, however, throughout this
paper, we apply the second boundary condition in the form,

∂U

∂z
→ 0 as z →∞ . (6)

Since the effect of friction is confined to the Ekman boundary layer adjacent to
the upper surface we, without loss of generality, may apply the lower boundary
condition in the form (2.6) to all situations where the fluid depth far exceeds
the thickness of the boundary layer.

The initial condition at t = 0 is an arbitrary initial distribution U(z, 0). The
generalization of the Ekman model (4) with the boundary conditions (5) and
(6) provides the basis of the present study focussed upon elucidating the effects
of time- (and depth-) dependent eddy viscosity.

3 Solvable models

As discussed in the introduction, the specific time dependence of the eddy vis-
cosity might depend on a variety of physical mechanisms, not fully understood
yet. For an arbitrary ve(z, t) the only way to proceed is to simulate numerically
the initial-value problem (4, 5, 6). Since the problem is linear, it is a relatively
straightforward numerical task.

In this work we consider the situations that are tractable analytically. In this
section, first, we outline certain classes of time-and depth-dependent eddy vis-
cosity distributions which allow exact solutions of the Ekman equations. Then,
focussing on the flows with eddy viscosity linearly varying with depth, we as-
sume that the eddy viscosity at the surface scales as u2∗, while its gradient scales
as u∗ (u∗ =

√
|τττ |/ρwater is the friction velocity in water). Such a link between
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νe and u∗ has been established for steady non-stratified flows in Zikanov et al.
(2003). Here, we adopt this link, expecting it to hold, at least, for sufficiently
slowly varying winds. Where appropriate, we take the constants of proportion-
ality from the simulations of Zikanov et al. (2003).

3.1 Self-similar eddy viscosity: νe(z, t) = ν0νe1(t)(1+z/α(t))
µ

Consider a class of self-similar parameterizations of eddy viscosity with two
arbitrary functions of time νe1(t) and α(t),

νe(z, t) = ν0νe1(t)(1 + z/α(t))µ, (µ > 0, α > 0). (7)

The substitution,

U(z, t) = e−iftW (Z, T ), T = ν0

∫ t

0

νe1(ξ)dξ, Z = 1 +
z

α(t(T ))
, T1 =

∫ T

0

dζ

α2(t(ζ))
,

(8)

turns the governing equation (4) into the following tractable diffusion equation

∂W

∂T1
=

∂

∂Z

[
Zµ

∂W

∂Z

]
. (9a)

The boundary conditions at the surface and at infinity and the initial conditions in
terms of the new variables take the form:

∂W

∂Z
=
−eift(T1) τ (t(T1))α(t(T1))

ρ νe(z, t(T1))
≡ G(T1) at Z = 1 , (9b)

∂W

∂Z
→ 0 as Z →∞, (9c)

W (Z, T1)|T1=0 = U(z(Z), 0) . (9d)

Details of the derivation and solutions are given in Appendix A, a brief discus-
sion of few examples of solutions is given in §5.

We reiterate that here the eddy viscosity is allowed to depend on two arbi-
trary functions of time, νe1(t) and α(t).

3.2 Eddy viscosity linearly dependent on depth with
Zikanov’s scaling

In this section we focus on the simplest, and, we believe the most relevant for a
non-stratified upper ocean, model of the self-similar class of eddy viscosity dis-
tributions. Here, we examine a time-dependent eddy viscosity linearly varying
with depth employing Zikanov’s scaling,

νe = u2∗(t)

(
g0 +

g1
u∗(t)

z

)
, (10)
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where g0 and g1 are latitude-dependent constants specified in accordance with
Zikanov’s model, or differently, if we have grounds to do so. We employ ansatz
(10) rather than the more general form (7), since this presentation of eddy vis-
cosity enables us to investigate the case ν(0) = 0 earlier considered by Madsen
(1977) for constant-in-time viscosity, which is impossible using (7). Therefore,
we briefly repeat the derivation of the general solution employing (10), which
proves to be easier than modifying the general results based on (7). On substi-
tuting (10) into the Ekman equation and boundary conditions, we, in contrast
to (8), retaining the same independent variables, obtain,

∂W

∂t
= u2∗(t)

∂

∂z

[
g0 +

(
g1
u∗(t)

z

)
∂W

∂z

]
,
(
W (z, t) = e−iftU(t, z)

)
. (11)

∂W

∂z
=
−eiftτ (t)

ρνe(0, t)
at z = 0, (12)

W = 0 as z →∞ (13)

W (z, t)|t=0 = U(z, 0). (14)

Let

Z̃ = g0 +
g1
u∗(t)

z.

Since,

∂W

∂z
=

g1
u∗(t)

∂W

∂Z̃
,

∂2W

∂z2
=

(
g1
u∗(t)

)2
∂2W

∂Z̃2
,

equations (11–14) become

∂W

∂t
= g21

∂

∂Z̃

[
Z̃
∂W

∂Z̃

]
(15)

∂W

∂Z̃
=
−eiftτ (t)

ρ g1 u∗(t)Z̃
at Z̃ = g0, (16)

W = 0 as Z̃ →∞ , (17)

W (Z̃, t)|t=0 = U(z(Z̃), 0)

(
z(Z̃) =

u∗
g0

[Z̃ − g0]

)
. (18)

The Laplace transform with respect to t (L{W (t)} ≡ Ŵ (s)) of (15) yields an
equation of the Bessel type,

g21 Z̃
d2Ŵ

dZ̃2
+ g21

dŴ

dZ̃
− sŴ = −U(z(Z̃), 0). (19)

Its general solution is a sum of the general solution of the homogeneous equation,
Ŵ h, and a particular solution of the inhomogeneous equation, Ŵ p:

Ŵ = Ŵ h + Ŵ p, (20)
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where

Ŵ h(Z̃, t) = c1 I0

[
2

g1

√
s Z̃

]
+ c2K0

[
2

g1

√
s Z̃

]
, (21)

and I0[ζ], K0[ζ] are the modified Bessel functions of the first and second kind
respectively (e.g. Abramowitz & Stegun 1972), while c1, c2 are constants speci-

fied by the boundary conditions. A particular solution Ŵ p is expressed in terms
of the fundamental solutions of the homogeneous equation I0[ζ] and K0[ζ], and
the right-hand side of the inhomogeneous equation

Ŵ p =− 2

g21
I0

[
2

g1

√
s Z̃

] ∫ Z̃

g0

K0

[
2

g1

√
s ξ

]
U(z(ξ), 0) dξ+

2

g21
K0

[
2

g1

√
s Z̃

] ∫ Z̃

g0

I0

[
2

g1

√
s ξ

]
U(z(ξ), 0) dξ. (22)

Hence, the general solution of (19) satisfying the initial condition (18) takes the
form,

Ŵ =I0

[
2

g1

√
s Z̃

] (
c1 −

2

g21

∫ Z̃

g0

K0

[
2

g1

√
s ξ

]
U(z(ξ), 0) dξ

)
+

K0

[
2

g1

√
s Z̃

] (
c2 +

2

g21

∫ Z̃

g0

I0

[
2

g1

√
s ξ

]
U(z(ξ), 0) dξ

)
. (23)

The unspecified constants c1, c2 are determined by applying the boundary con-
ditions. Using the condition at infinity (13) we eliminate c1,

Ŵ = K0

[
2

g1

√
s Z̃

] (
c2 +

2

g21

∫ Z̃

g0

I0

[
2

g1

√
s ξ

]
U(z(ξ), 0) dξ

)
. (24)

To find c2 we apply the transformed condition at the surface,

∂Ŵ

∂Z
|Z̃=g0

= L
{
−eiftτ (t)

ρ g1 u∗(t)Z̃

}
,

which yields,

c2 =

√
g0

√
sK1

[
2
g1

√
s g0
] (L{ eift τ (t)

ρ g0 u∗(t)

}
+

2

g1
I0

[
2

g1

√
sg0

]
K0

[
2

g1

√
sg0

]
U(z(g0), 0)

)
.

(25)

Thus, the general solution of (19) satisfying the boundary and initiate conditions
is:

Ŵ (Z̃, t) = K0

[
2

g1

√
s Z̃

] (
c2 +

2

g21

∫ Z̃

g0

I0

[
2

g1

√
s ξ

]
U(z(ξ), 0) dξ

)
, (26)
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where c2 is given by (25).
The general solution in terms of the original variables U(z, t), t and z is

obtained by inserting Z̃ = g0 + g1
u∗(t)

z into (26) and taking the inverse Laplace

transform,

U(z, t) = e−iftW (z, t), W (z, t) =
1

2πi

∫ c+i∞

c−i∞
W̃ (z, s)est ds; c ≥ 0 . (27)

This is the general solution for a logarithmic boundary layer corresponding to
a linear-in-depth time-dependent eddy viscosity, under arbitrarily varying wind
and with any initial current profile U(z, 0). The solution can be simplified for
particular cases of interest considered below.

3.3 Particular cases

3.3.1 ‘Time-dependent Madsen model’ (g0 = 0)

Consider a particular case when g0 = 0, as the simplest model where we en-
counter effects due to both the depth and time dependence of eddy viscosity.
Whether such a model can capture reality better than a constant-in-time eddy
viscosity is an open question. Madsen (1977) put forward a model with a lin-
early growing with depth and constant in time eddy viscosity. For simplicity
only, we confine our attention to the motions starting from rest, i.e. we assume
U(z, 0) = 0. Here, we do not adhere to the Zikanov’s scaling of the eddy viscos-
ity and present the eddy viscosity as νe = νe1(t)g1 z, where νe1(t) is an arbitrary
function of time (not necessarily u∗(t)), while g1 is kept constant. Then,

U(z, t) = e−iftW (z, T ), W (z, T ) =
1

g1

eift(T ) τ (t(T ))

ρ νe1(t(T ))
∗(T )

1

T
e−z/g1T ,

T =

∫ t

0

νe1(ξ)dξ, (28)

where Υ ∗(T ) Ψ is the convolution of functions Υ and Ψ with respect to T ,

Υ ∗(T ) Ψ =

∫ T

0

Υ(T − ξ)Ψ(ξ)dξ .

For constant νe1 the solution (28) reduces to that of Madsen (1977).

3.3.2 Time-dependent uniform viscosity (g1 = 0)

This is the most direct generalization of the Ekman model with varying-in-time
depth-independent viscosity. In this case, it is easier to get the solution directly
from the basic equations than from the general solution (27). Applying the
Laplace transform in T to the Ekman equation and boundary conditions (4,
5, 6), and, for ultimate simplicity, assuming U(z, 0) = 0, we find the general
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solution in the form

U(z, t) = e−iftW (T, z); T =

∫ t

0

νe1(ξ)dξ, (29a)

where

W (z, T ) =
eift(T ) τ (t(T ))

ρ νe1(t(T ))
∗(T )

e−z
2/4T

√
πT

. (29b)

The obtained solution (29) describes a time-dependent Ekman current in terms
of Green’s function for an infinitely deep homogeneous ocean when the eddy
viscosity varies with time only. When νe1 is constant, the solution coincides
with the Ekman solution.

4 Basic scenarios of the Ekman current response
to varying wind

In this section, to elucidate the effect of the time dependence of the eddy vis-
cosity we examine the basic scenarios of the ocean response to the varying wind
within the framework of models with eddy viscosity linearly varying with depth
(3.4-3.8). We consider two basic scenarios of varying wind (all others can be
viewed just as combinations of these two): (i) an increase or turn of wind ending
up with a plateau, and, (ii) a periodic wind. We examine the Ekman current
response in each of these scenarios within the framework of the system (3.4-3.8)
and compare these predictions with those obtained assuming constant-in-time
eddy viscosity.

4.1 Periodic wind

First, consider ocean response to an idealized breeze; a strictly sinusoidal uni-
directional wind with diurnal period,

U10 = U0
10 sin(Ωt), τ(t) =τ0H(t) Sin(Ωt) |Sin(Ωt)|, (30)

where τ0 = ρaCD|U0
10|2, ρa = 1.25 kgm−3 is the air density, CD is the

drag coefficient taken to be 1.4 × 10−3, H(t) is the Heaviside function, Ω is
the diurnal frequency, and U10 is the wind velocity at 10 m above the still
water level, U0

10 is the amplitude of wind oscillations. In this section νe(z, t) is
νe(z, t) = νe1(t)[g0 + g1z] and by virtue of (5) νe(0, t)∂zU |z=0 = −τττ(t)/ρ.

4.1.1 Dynamics of the Ekman current at the surface

Figure 1 shows an example of the evolution of a mid-latitude Ekman current
at the ocean surface under a periodic unidirectional wind (30) for two models
with time-dependent eddy viscosity (with and without linear depth dependence)
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(a) (b)

Figure 1: Evolution of surface Ekman currents from rest under a suddenly
turned-on periodic wind in three different models of eddy viscosity: the simpli-
fied time-depth dependent viscosity model, νe = az · νe1(t) (νe1(0) = 1), (dot-
dashed line, red online); the time-dependent viscosity model, νe = 0.0125u2∗/f ·
νe1(t) with νe1(0) = 1 (solid line, green online); the Ekman solution with con-
stant eddy viscosity νe = ν0 is plotted by dashed line (blue online). t̃ = ft. (a)
Current speed at the surface |U(0, t)| (taken at depth z = 0.1m) as function of
time (t̃ = ft). (b) The deflection angle Φ(t) between the surface current vector
(taken at depth z = 0.1m) and the wind as function of time. Normalised tangen-
tial stress τ(t)/τ0 is plotted by dotted line (purple online). The parameter values
are: f = 10−4s−1, Ω = 0.7f rad s−1, ν0 ≈ 2 × 10−2m2s−1, g1 = 2 · 10−2ms−1,
ρ = 1027 kgm−3, τ0 = 0.175Nm−2, |U0

10| = 10ms−1.

as well as for the classical Ekman model with constant viscosity as a reference.
More specifically, the first model is a simplified version of the general model of §3
with linear depth dependence, a time-dependent Madsen model, νe = g1z·νe1(t),
where g1 = 2 · 10−2ms−1. In the second model where viscosity depends only
on time, we adopt Zikanov’s scaling for νe: νe = 0.025

2 (u2∗/f) · νe1(t), where
νe1(0) = 1. The constant viscosity ν0 is chosen to be 2 · 10−2m2s−1. Here,
and, for consistency in all subsequent figures, to avoid possible singularity at
the surface, we take the current at depth 0.1 m as the ‘surface current’. There
are noticeable discrepancies between the predictions of all three models, which
fact, in our view, shows the importance of a proper accounting for both the
time and depth dependence of the eddy viscosity. Obviously, the discrepancies
depend on the specific choice of parameters employed in drawing figure 1. At
present we are not prepared to speculate on how representative this particular
choice is, to this end a systematic analysis of the parameter space is needed,
which requires a dedicated work.

For the chosen set of mid-range parameters the time-dependent Madsen
model accounting for both the time and depth dependence of viscosity predicts
the strongest variation of the surface current magnitude and the sharpest turns
of its direction with respect to wind. This is not surprising given the vanishing
viscosity at the surface. The complementary figure 2 illustrates the evolution
of both components of the velocity as a function of z, it shows a high degree of
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Figure 2: Vertical profiles of the x and y velocity components generated by a
suddenly turned-on periodic wind plotted at three sample moments for three
different models of Fig.1: time-depth dependent viscosity model (dot-dashed
line, red online), the time-dependent viscosity model (solid line, green online),
the solution for the classical Ekman model, i.e. with constant eddy viscosity, is
plotted by dashed line (blue online). The parameters and expressions for eddy
viscosity are the same as in Fig.1.

15



2 4 6 8
z (m)0.000

0.001

0.002

0.003

0.004

0.005

ⅆ
2
u

ⅆ z
2
(m-1

s
-1)

t
˜
= 0.25

2 4 6 8
z (m)

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

ⅆ
2
v

ⅆ z
2
(m-1

s
-1)

t
˜
= 0.25

2 4 6 8
z (m)0.000

0.001

0.002

0.003

0.004

0.005

ⅆ
2
u

ⅆ z
2
(m-1

s
-1)

t
˜
= 0.5

2 4 6 8
z (m)

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

ⅆ
2
v

ⅆ z
2
(m-1

s
-1)

t
˜
= 0.5

2 4 6 8
z (m)0.000

0.001

0.002

0.003

0.004

0.005

ⅆ
2
u

ⅆ z
2
(m-1

s
-1)

t
˜
= 0.75

2 4 6 8
z (m)

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

ⅆ
2
v

ⅆ z
2
(m-1

s
-1)

t
˜
= 0.75

Figure 3: The second derivative of the vertical profiles shown in Fig.2. The
notation, the colour code and parameters are the same as in Figures 1 and 2.
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subsurface confinement of the surface flow in this case. Thus, when the motion
is primarily localized in a very thin layer of fluid, it is natural to expect for the
same tangential stress to result in higher velocities and sharper turns. We would
ascribe this feature to an artefact of the time-dependent Madsen model; tak-
ing into account non-zero ν0 comparable to the value in the constant viscosity
model would have decreased the amplitude of the surface velocity oscillations
and would have smoothed them as well. Note a salient feature of the Ekman
response: most of the time the surface current is directed windward, in contrast
to the steady Ekman response characterized by a significant deflection (π/4 in
the classical Ekman model). Overall, the Ekman currents generated by peri-
odic wind (in all models) show very little resemblance to the steady solutions,
although the diurnal period is not small and, a priori, an adiabatic quasi-steady
evolution of the Ekman layer might have been considered as a possibility. The
characteristic time scale of transition to the steady solution is several inertial
periods.

4.1.2 Vertical profiles of the transient Ekman currents caused by
periodic breeze

The discrepancies between the predictions of all three models are not confined
to the ocean surface, the most profound differences occur below. To give an
idea of the flow evolution we draw in figures 2 and 3 instantaneous profiles of
the current and its second derivatives sampled at three consecutive moments
(t̃ = 0.25, 0.5, 0.75). All three models show a gradual increase of the Ekman
current and its slow rotation. Figure 2 shows that the rates of flow acceleration,
the rotation of the current direction and the thickness of the boundary layer:
all differ substantially in the three models. The salient common feature of these
transient velocity profiles is the absence of the vertical spiral typical of the steady
Ekman currents. The difference between the predictions of the three models is
most apparent in the profiles of the second derivatives shown in figure 3.

4.1.3 Instability of the transient Ekman currents caused by periodic
wind

With time the evolving current profiles invariably exhibit inflection points and,
therefore, by virtue of the Rayleigh criterion, might become linearly unstable.
The emergence of inflection points in the current profiles u(z, t) and v(z, t) is
illustrated in figure 3. At the sampled moments the profiles predicted by the
model with time-dependent eddy viscosity do exhibit a change of curvature sign
for all sampled moments, which suggests a possibility of strong, essentially invis-
cid, inflectional instability, while in the time-dependent Madsen model inflection
points develop only at somewhat later times not illustrated by the figure. The
occurrence of inflection points in a flow does not in itself necessarily imply the
existence and importance of instabilities, but it certainly warrants a study of
instabilities of the flow.
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t̃ model of eddy
viscosity

Imω (s−1) k∗ (m−1)

0.25

constant 2.37× 10−5 0.1

time-dependent 6.76× 10−4 0.03

0.5

constant 6.5× 10−7 0.03

time dependent 2.58× 10−5 0.1

0.75

constant 1.1× 10−6 0.02

time-dependent 3.6× 10−5 0.06

Table 1: Parameters of short scale instabilities of transient Ekman currents
generated by a suddenly turned-on periodic wind simulated with three different
eddy viscosity models employed in drawing figures 1,2 and 3. The maximal
growth rates of the instabilities Imω and the corresponding wavenumber k∗

are found by solving the boundary value problem (31) for the samples of the
instantaneous current profiles shown in figures 2 and 3. The parameters of the
”true instabilities” which grow much faster than the basic Ekman current are
shown in bold. The Ekman currents in the time-dependent Madsen model are
stable at the sampled moments and, correspondingly, produce no entries for the
table.
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First we, specify in what sense it is justified to discuss instability of time-
dependent aperiodic flows. The transient Ekman currents we are considering
are functions of z and t. Their characteristic time scale, as suggested by figure
1, is O(1/f). Therefore, assuming separation of scales, we can examine linear
instabilities in an adiabatic approximation, that is choosing for analysis partic-
ular sample moments ts and acting as if the Ekman current were frozen. Such
an approach is justified if there exist instabilities with the growth rates Imω far
exceeding the characteristic inverse time scales of the transient Ekman current,
that is with Imω � f . The justification is provided a posteriori, by first exam-
ining the corresponding boundary value problem for the perturbations on the
transient Ekman current frozen at a chosen sequence of sample moments. If at
a chosen sample moment of time ts there are sufficiently strong instabilities, we
can indeed ignore the dynamics of the corresponding transient Ekman current
itself and conclude that such a current cannot exist in reality. If at t = ts and
at the moments of the previous samplings there are no strong instabilities, we
can expect that our solutions describing transient Ekman currents can faithfully
predict their dynamics, at least up to this moment.

Now consider the dynamics of a small three-dimensional perturbation {ũ(z, t),
ṽ(z, t), w̃(z, t)} on a given transient Ekman current {u(z, t), v(z, t)}, assumed
frozen at a chosen moment t = ts. The smallness of the perturbation enables
us to linearize the Navier-Stokes equations around the Ekman current, which is
horizontally uniform by definition. This fact allows us to perform the Fourier
transform with respect to the horizontal coordinates and, by virtue of the as-
sumed scale separation, with respect to time as well. These assumption lead
to the boundary value problem for each spectral component similar to that in
(Leibovich & Lele 1985). Since we are interested only in the fast perturbations
we neglect the terms due to rotation, then the standard boundary value prob-
lem for the eigenmodes reduces to the Orr-Sommerfield-type equation for the
Fourier amplitude of each spectral component with the no-flux and no-stress
boundary conditions at the surface and vanishing of the perturbations at infin-
ity. The fundamental weakness of the analysis by Leibovich & Lele (1985), to
our knowledge so far not discussed in the literature, is that nothing is known
about the small-scale scale-dependent eddy viscosity affecting the perturbations
under consideration. Without any discussion Leibovich & Lele (1985) adopt the
same value of the constant eddy viscosity for the perturbations as that used for
the basic Ekman current. The small-scale viscosity could be orders of magni-
tude smaller. The boundary value problem based on the Orr-Sommerfield-type
equation shares the same fundamental predicament as well. However, although
we do not know the small-scale viscosity we can expect the dynamics of the
small-scale three-dimensional perturbations to be essentially inviscid, because
of the absence of the no-slip boundary condition at the surface. Therefore, to
leading order in inverse Reynolds number we can neglect the term due to vis-
cosity and consider instead, of the Orr-Sommerfield-type equation, the Rayleigh
equation with the appropriate boundary conditions. Although we do not know
the true Reynolds number for the perturbations, for our purposes it is sufficient
that it is large. For generic parallel inviscid shear flows the occurrence of one
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or more inflection points is only the necessary condition for instability, however
for boundary-layer-type profiles it is both the necessary and sufficient (Tollmien
1935).

In the inviscid setting the boundary value problem formulated in terms of
the perturbation vertical velocity component ˆ̃w(z, kx, ky) takes the form,

(ω − k · u(z))(∂2zz − k
2) ˆ̃w + (∂2zzk · u(z)) ˆ̃w(z) = 0 ˆ̃w(0) = ˆ̃w(∞) = 0, (31)

where ˆ̃w(z, kx, ky) is the eigenmode of the Fourier harmonic with wavevec-
tor {kx, ky}, ω(k) being the eigenvalue. Other notations are standard: k =
{kx, ky}, u = {u(z), v(z)}. Note that although u(z) is specified by two functions
u(z), v(z), for any chosen k the boundary value problem (31) is one-dimensional,
albeit different for each k.

The characteristics of the instabilities are obtained by solving numerically
the above boundary value problem for each instant of time and each possible
wavevector; this has to be repeated for each model of eddy viscosity. Although
the eddy viscosity does not enter the boundary value problem (31), it strongly
affects the Ekman current. On solving the boundary value problem at a chosen
instant, we select the eigenvalues with the maximal growth rates. A system-
atic analysis of these instabilities is a massive time and computer intensive
task which requires a dedicated work. When such inviscid instabilities have
high growth rates, we can expect almost instant (compared to the inertial time
scale) development of larger vortices in the already turbulent flow. Here, we
confine ourselves to a very limited study based on analysis of a few examples
of transient Ekman currents used in drawing figures 1–3. We aim at addressing
just the most basic questions about these instabilities:
(i) Are the instabilities sensitive to the employed viscosity model?
(ii) What are the most unstable characteristic scales of the perturbations and
how fast do they grow?
(iii) What are the directions of the wavevectors of the most unstable perturba-
tions?
(iv) How important are the instabilities for the evolution of Ekman currents?
The answers could be deduced from the results of our preliminary numerical
study of the boundary value problem (31) which are summarized in Table 1,
where the maximal growth rates Imω and the corresponding wavenumber k∗

are given.
First, it is easy to see that the instabilities are very sensitive to the eddy

viscosity model: the profiles obtained with the time-dependent Madsen model
proved to be stable (for the sampled moments). In accordance with our criterion
(Imω � f), only the instability occurring at t̃ = 0.25 in the model with the
time-dependent viscosity is a true instability, that is it evolves much faster
than the characteristic time scale of the unperturbed Ekman current. For the
chosen set of parameters all other ”instabilities” shown in the table can be
ignored as too slow to have a noticeable effect, but it is important to remember
that these ignored instabilities exist and a minor tweak of the parameters can
strongly increase their growth rates and make these sleeping instabilities actual.
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It should be also noted that even weak instabilities might have an order-one
integral effect on the basic flow if a sufficiently broad range of scales is excited.
For the examined sample profiles the most unstable perturbations (both the
true and “sleeping” ones) are propagating perpendicular to the wind and have
characteristic wavelengths of the order of a hundred metres. The fact that in the
example at hand the model with time-dependent viscosity yields at t̃ = 0.25 the
growth time scales which are much faster than the characteristic time scale of the
unperturbed motion, suggests that the instability might completely change the
evolution predicted by the exact solutions of the Ekman equations. The current
might evolve into something not even remotely resembling the transient Ekman
currents our solution predicts. We have not seen such a possibility discussed in
the literature so far. To predict what might happen in reality a direct numerical
simulation study is needed.

In our sample simulations the instabilities in the classical Ekman model, i.e.
with the eddy viscosity constant in time and depth, proved to be very weak,
below the threshold of significance. This could justify their neglect when we
are interested in the time scales of the order of up to a day; the time scales
exceeding several days require a more comprehensive consideration.

The spatial scales of all found instabilities (both the true and “sleeping”
ones) proved to be much larger than the characteristic thickness d of the bound-
ary layer illustrated in figure 2. This enables us to treat the boundary value
problem (31) analytically making use of this disparity of scales. A detailed
asymptotic derivation of the solution of (31) exploiting the smallness of the
thickness-to-wavelength ratio can be found in (Healey 2017). In particular, the
solution provides both the real and imaginary parts of the eigenvalue. Thus,
for each perturbation wavevector k the growth rates can be found explicitly,
then the wavevectors with the fastest growth could be identified. On this ba-
sis the judgement can be made on how unstable a particular transient Ekman
current is at each particular moment and when this instability should be taken
into account. However, even with an analytic solution available a systematic
analysis of the instability parameter space represents a massive task and will be
a subject of a dedicated follow-up study.

4.2 An increase of wind ending up with a plateau

Consider a gradual increase of unidirectional wind ending up with a plateau
with the surface shear stress prescribed in the form,

U10 = U0
10

(
1− e−t/δ

)
, τ(t) = τ0H(t)

(
1− e−t/δ

)2
. (32)

By playing with several time dependencies of a gradual increase of wind it
was found that the specific function describing the increase is not particularly
important and, therefore, in the example we analyse here its functional form
was chosen primarily for the sake of convenience. The characteristic time scale
of wind increase, on the contrary, proved to be essential; we specify it by a
dimensional parameter δ. A few examples of the evolution of Ekman currents
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in the deep ocean caused by a gradual increase of wind are shown in figures 4 and
5. In figure 4 the evolution of the Ekman currents is plotted for several values
of the wind time scale δ for the time-dependent Madsen model of viscosity and
the model with vertically uniform viscosity dependent only on time. This figure
illustrates the evolution of the surface currents (the magnitude and direction).
Although the general pattern of the evolution is qualitatively similar in all cases:
with an increase of wind the magnitude of the surface current also increases with
the same time scale, while its direction is being deflected to the right; an increase
of the current is followed by inertial oscillations. The figure demonstrates the
sensitivity of the response both to the time scale of the wind increase δ and
the choice of the viscosity model. While the magnitude of the surface current
increases noticeably with the decrease of δ, the smaller is δ, the earlier and higher
is the “saturation” plateau in |U(0, t)|, the current orientation with respect to
the wind proved to be the most sensitive to δ, the surface velocity deflection is
the smallest for the fastest growth of wind. A possible interpretation is that the
rotation of the current vector makes the flow acceleration by wind less effective
and thus curtails the growth of its magnitude. The rotation of the current
vector is, at least partly, due to the excitation of inertial oscillations. Overall,
the surface current direction proved to be the most sensitive characteristic.

Figure 5 illustrates the role of the viscosity model in the Ekman response to
the same wind increase pattern. Three models of eddy viscosity are considered:
time-dependent Madsen model, model with vertically uniform time-dependent
viscosity and the model with constant viscosity. The increase of the surface cur-
rent is always followed by inertial oscillations which are most pronounced for the
model with eddy viscosity dependent on time only, and the least pronounced
for the time-dependent Madsen model. The amplitude of the oscillations in-
creases with the decrease of the wind time scale δ. For the time-dependent
Madsen model the viscosity increases with depth, its time dependence smooths
the switch on, which acts similar to an increase of δ and, thus also contributes
to the decrease of inertial oscillations. Note the considerably smaller deflection
predicted by the time-dependent Madsen model compared to the models with
constant and time-only dependent viscosity.

The most profound implications of the obtained solutions are concerned with
the evolving current profiles caused by increasing wind: as in the case of periodic
wind, the evolving profiles invariably exhibit inflection points and are likely to
become strongly linearly unstable. The emergence of inflection points in the cur-
rent profiles u(z, t) and v(z, t) in all three models is illustrated in figure 6. Here,
we do not quantify the growth rates of these instabilities, which for the reasons
we have already discussed goes beyond the scope of this work. We reiterate,
that often such instabilities have high growth rates and we can expect almost
instant (compared to the inertial time scale) development of larger vortices (or
rolls) in the already turbulent flow. Certainly, the Ekman model, which is based
on the assumption of horizontal uniformity, is no longer applicable for such sit-
uations. Note the vertical localization of the expected turbulence spike: in our
sample examples the layers of expected intense mixing occur near the surface,
while most of the models predict enhanced mixing near the bottom of the mixed
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layer. To our knowledge, none of the existing much more sophisticated models
of turbulent closures employed for modelling of the surface boundary-layer dy-
namic can capture such short-lived strongly localized events.

(a) (b)

(c) (d)

Figure 4: Evolution of Ekman currents under growing wind with different wind-
growth timescales δ . The magnitude of the current surface velocity |U(0, t)| and
the angle Φ of its deflection relative to the wind: (a,b) for the time-dependent
vertically uniform viscosity model, (c,d) for the time-dependent Madsen model
of viscosity. The surface velocity is taken at z = 0.1 m. The parameters are the
same as in Fig.1.
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(a) (b)

Figure 5: Evolution of Ekman currents under growing wind for the wind timess-
cale δ = 2h. Comparison between predictions of the models with the time-
dependent vertically uniform viscosity, time-dependent Madsen model and the
constant viscosity. (a) The magnitude of the current surface velocity. (b) The
angle of its deflection with respect to the wind. The surface velocity is taken at
z = 0.1 m. The parameters and expressions for eddy viscosity are the same as
in Fig.1.

Figure 6: The curvatures of the velocity profiles u′′(z, t) and v′′(z, t) as functions
of depth in two models of viscosity: constant (thick lines) and time-dependent
vertically uniform viscosity (thin lines). Three different moments are considered:
t̃ = 2 (solid lines), t̃ = 3 (dashed lines) and t̃ = 5 (dotted lines). The parameters:
δ = 3 hrs, f = 10−4s−1, ν0 = 10−4m2s−1.

5 Transient Ekman currents in time-dependent
viscosity model with νe(z, t) = νe(t)ν0(1+z/α(t))

µ

Although the linear dependence of eddy viscosity with depth we adopted in
the previous sections is supported by both naive translation of the wall layer
ideology and large-eddy simulations by Zikanov et al. (2003), the observations
in the ocean often reveal a more complicated picture. There are a number
of studies which reports observations of a logarithmic layer near the surface
as a universal phenomenon (e.g. Csanady 2001), while other authors report
a more complicated picture (e.g. Kudryavtsev et al. 2008) and some more
complicated empirical parameterizations of νe(z) were put forward (e.g. Large
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et al. 1994). It is not clear how well the aggregated data were controlled
for the absence of solar heating and night convection, which violate our basic
assumptions. In the oceanographic community there is a need for non-linear
with respect to depth parameterizations of νe(z). The implications of nonlinear
parameterization of eddy viscosity for Ekman currents are not clear; there is no
applicable mathematical model. In §3 we sketched the derivation of the general
solution for a wide class of self-similar profiles,

νe(z, t) = ν0νe1(t) [(1 + z/α(t))µ] , (µ > 0), (33)

where α(t) is real and positive and ν0 is constant. For viscosity that is constant
in time Jordan & Baker (1980) derived solutions in terms of Bessel functions for
the steady Ekman current, they also examined the non-steady problem but have
not obtained a compact closed solution. Employing their results as a starting
point in appendix A we obtain solutions (63) for the time- and depth-dependent
profiles given by (33).

Leaving aside the question of whether the obtained solutions occur in reality,
there is also a legitimate question: if transient Ekman currents do occur, how
might a nonlinear depth dependence of viscosity might affect their dynamics.
To our knowledge, there have been no studies of this issue.

To illustrate the effect of an eddy viscosity nonlinear dependence on depth
in the case of constant α we compare the evolution of the Ekman currents for
an example where the motion is starts from rest and is being forced by the same
gradually increasing wind, ending up with a plateau. Figure 7 shows the evolu-
tion of Ekman currents at the surface predicted by five different models of eddy
viscosity: two time-and-depth-dependent viscosity models with linear (µ = 1)
and nonlinear (µ = 3) depth dependence with α constant, two models with the
depth-only dependent viscosity with µ = 1 and µ = 3 and a constant eddy vis-
cosity. While the constant and linear in depth viscosity models were considered
for an infinitely deep ocean, in the models with µ = 3 the depth H was taken
to be large but finite. It has been checked that the chosen value H = 400m is
large enough for the results not to depend noticeably on it. The evolution of
the magnitude of surface velocity proved to be qualitatively the same in all five
models: an increase upon turn on of the wind up to reaching a plateau with
superimposed decaying near-inertial oscillations. The characteristics of the pat-
tern which are the most sensitive to the model of viscosity are the rate of growth
after the turn on of the wind and the height of the plateau. The growth rate and
the height of the plateau are the maximal for the constant viscosity model. The
cubic viscosity models, i.e. with νe(z, t) = νe1(t)

[
ν0(1 + z/α)3

]
, predict some-

what smaller, but close, values of the growth rate and the plateau height for
both the time-depth-dependent and depth-only dependent cases. In the models
with linear depth dependence, the account of time dependence noticeably slows
down and, at the same time, prolongs the growth. The magnitude of the near-
inertial oscillations (with respect to the plateau) is the smallest in the model
with constant-in-time cubic viscosity, while the constant-in-time linear viscosity
leads to the largest amplitude of the oscillations. This is consistent with our
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overall understanding of the picture: the account of viscosity time dependence
acts as an effective increase in the wind time scale δ and hence leads to weaker
inertial oscillations. However, in this context, as figure 7a clearly shows, the ef-
fect of viscosity time dependence, although not negligible, is much weaker than
the effect of the depth dependence.

The behaviour of the deflection angle Φ in the four models, although qualita-
tively similar (the current first rotates to the right and after reaching the max-
imal deflection exhibits decaying oscillations around a certain deflection level),
differs quantitatively quite substantially. The amplitude of these oscillations is
the feature most sensitive to the viscosity dependence: the largest oscillations
(up to ±π/2) occur in the model with time-and-depth-dependent viscosity with
µ = 1, while the model with constant viscosity predicts the smallest (∼ ±0.1π)
oscillations. The models with time-dependent viscosity exhibit noticeably larger
oscillations than their counterparts with viscosities that are constant in time.
At the present we cannot explain all the intricacies of these differences. We do
not know how representative the chosen values of the parameters are. What
the figure makes clear is that the evolution of surface Ekman currents is very
sensitive to the choice of the eddy viscosity parameterization. This is probably
the only conclusion we could make now with confidence. The above discussion
of a single model example, although obviously insufficient for general conclu-
sions, suggests that, because of their sensitivity to the choice of eddy viscosity
parameterization and insufficient constraint of this choice by the available data,
the Ekman models in their present shape are unfit to describe quantitatively
the dynamics of Ekman currents. To advance our understanding, a dedicated
study examining the Ekman layer dynamics in a wider range of models and
parameters is needed.

6 Stokes-Ekman layer in models with time- and
depth-dependent eddy viscosity

The picture of the ocean Ekman current dynamics outlined above does not take
into account the ubiquitous surface waves, despite the common knowledge that
whenever there is wind, wind waves are nearly always present. The exceptions
include the situations with the water surface covered by floating ice, i.e. similar
to those encountered by Nansen (1905) and theoretically investigated by Ekman
(1905). The account of surface waves can essentially affect the Ekman current
dynamics compared to the classical Ekman model, as was first suggested by
Huang (1979). The effect of the wave-induced Stokes drift on Ekman currents
was examined in a substantial number of works (see e.g. Xu & Bowen 1994,
McWilliams, Sullivan & Moeng 1997, Lewis & Belcher 2004, Polton, Lewis &
Belcher 2005; Ardhuin et al. 2009 and Sullivan & McWilliams 2010), it has
been confirmed that this effect can indeed be essential: the deflection of the
current from the wind direction was found to be particularly strongly affected
(McWilliams et al. 1997; Lewis & Belcher 2004). However, in the literature, the
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(a) (b)

Figure 7: Evolution of Ekman currents from rest under growing wind (with
the growth timesscale δ = 2 hrs) ending up with a plateau in five differ-
ent models: two time-depth dependent viscosity models with eddy viscosity
νe(z, t) = νe1(t) [ν0(1 + z/α)µ], where µ = 1 and µ = 3; two models with
νe1(t) = constant, the depth only dependent viscosity models with µ = 1, 3;
the classical Ekman model with constant eddy viscosity ν = ν0. Time is scaled
as in all previous plots: t̃ = ft. (a) Current speed at the surface |U(0, t)| . (b)
The deflection angle Φ(t) (between the surface current and the wind). The pa-
rameter values are: f = 10−4 s−1, ν0 ≈ 0.000625 m2s−1, H = 400 m, α = 50 m ,
ρ = 1027 kg m−3, τ0 = 0.175N m−2, |U10| = 10 m s−1.

consideration was confined to somewhat oversimplified models. In particular,
the eddy viscosity was assumed to be either constant (both in space and time)
and isotropic, or isotropic, constant in time and linearly varying with depth
(Lewis & Belcher 2004), while the wave spectrum was, as a rule, modelled by
a single harmonic; crucially, the Stokes drift dynamics caused by wave field
evolution was ignored. It is indeed plausible to consider a quasi-stationary wave
field subjected to a constant wind for a relatively short period. However, since
the characteristic time scale of the Ekman currents subjected to variable winds
is several inertial periods, for a quantitative study it is as questionable to assume
constant eddy viscosity, as to consider the Stokes drift to be constant in time.
Note that, even under a constant wind the Stokes drift cannot remain constant,
the dominant wavelength increases with time on a time scale which might be
comparable to or smaller than the scale of Ekman layer formation. At present,
there is no study of Ekman currents subjected to variable winds interacting
with an evolving wave field. In this section we partly address this gap. We
consider how a time-dependent Stokes drift with a more realistic vertical profile
of time-dependent viscosity could be incorporated into the picture of Ekman
current dynamics without these too restrictive assumptions.

Accounting for the Stokes drift, the ‘Stokes-Ekman’ equations take the form
(e.g. Xu & Bowen 1994; Sullivan & McWilliams 2010),

∂U

∂t
+ if(U +U s) =

∂

∂z

(
νe(z, t)

∂U

∂z

)
. (34)

where U s = Us(z, t) eU is the Stokes drift due to surface waves as a function
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of time and depth, eU is unit vector in the mean direction of wave propagation
(not necessarily coinciding with the direction of wind), the rest of the notation
remains the same as in the previous sections: U = U(z, t) + iV (z, t), νe =
νe(z, t). To leading order, the Stokes drift is provided by integration in the
wavevector space over all wavevectors of the wave spectrum.

U s(z, t) =
1

2

∫ ωc

0

∫ 2π

0

ωk(ω, θ)E(ω, θ, t)e−2|k|zdωdθ, (35)

where E(ω, θ, t) is the directional energy spectrum (presumed to be given in
our context), ω is the frequency of a monochromatic wave component with a
wavevector k, ωc is a cutoff frequency; the specific choice of the cutoff scale
is of little significance. Strictly speaking, the z-dependence of each spectral
component is not exponential, as is well known from available solutions of the
boundary value problem for waves upon a sheared current (e.g. Kirby & Chen
1989). The, usually neglected in this context, O(kU |(z=0)/ω) correction de-
pends on the profile and direction of the Ekman current. The neglect of the
dependence of surface mode vertical structure on the boundary-layer profile de-
couples U s from U(z, t) and dramatically simplifies the problem. Although
here we follow the established practice and also neglect the effect of the Ekman
current on the mode structure, we seem to be the first to note that in doing
so we are neglecting a wave–current interaction mechanism which might prove
important for wave modelling over large distances and, therefore, is worth of
being investigating. Such a study, however, requires a dedicated work.

In contrast to the purely local ocean response in the classical Ekman model,
the time dependence of the directional wave spectrum E(ω, θ, t), as a rule, is
determined not by the local wind but by the history of wind over a large area
(e.g. Komen et al. 1996). Here, assuming it to be known from a wave model,
we just note that the characteristic time scale of U s could be either comparable
to characteristic time scales of wind variability or, as a rule, exceed them.

It is convenient to rewrite equation (34) as the standard Ekman equation
with an added ‘forcing’ right-hand side due to the Stokes drift,

∂U

∂t
+ ifU − ∂

∂z

(
νe(z, t)

∂U

∂z

)
= −i f U s(z, t) . (36)

The term ifUs is sometimes referred to as the ‘Coriolis-Stokes force’. The flow is
subjected to the same boundary conditions given by (5,6). The initial condition
specifies the velocity field at the initial moment t = 0: U(z, 0).

The general solution of (36) for arbitrary U s(z, t) and U(z, 0) satisfying the
boundary conditions (5,6) is derived in Appendix B. The solution given by (73),
(74) and (76) is expressed in terms of integrals of the modified Bessel func-
tions I0 and K0. The formulae provide complete analytical solution describing
transient Ekman currents caused by an arbitrarily changing wind under the as-
sumption of a time-dependent eddy viscosity linearly increasing with depth.
To apply the obtained formulae, the time dependence of the Stokes drift has to
be prescribed. To this end, one has to know the history of the evolution of the
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wave spectra over a considerable area. For example, if we are interested in de-
scribing the Ekman current dynamics on time scales of 10 hours or 10 days, we
would need to model the evolution of wave spectra over fetches of approximately
4·102 or 104 km and to know the wave spectra history over 10 hours or 10 days re-
spectively. Since wave modelling on such a scale is routinely carried out by global
and regional wave models, it is tempting to add an Ekman current block to the
existing wave models. Wave spectrum evolution is, in turn, affected by Ekman
currents. To our knowledge the feedback effect of Ekman currents on the wave
field evolution has never been discussed and quantified in the literature; it might
be noticeable for large fetches. Now we have got at our disposal a new tool which,
by providing a better description of these currents, might help in improving wave
modelling. Although the use of a ‘WAM’ or ‘Wavewatch’-type wave model (e.g.,
www.bodc.ac.uk/data/documents/nodb/254628/, https://polar.ncep.noaa.gov/
waves/wavewatch/) with an Ekman current block looks straightforward, it goes
beyond the scope of the present work and requires a dedicated study. Here, in
the spirit of this work, which is an entirely analytical study, we confine our-
selves to a single qualitative conclusion which, to our knowledge, has not been
mentioned in the literature: accounting for the Stokes drift makes the existence
of the steady Ekman current impossible, since, even under a steady wind, the
wave field always continues to evolve. The question on how the Ekman layer
evolves due to nonlinear evolution of the wave field will be elaborated elsewhere.

7 Concluding remarks

Our main conclusions could be summarized as follows. We showed that the Ek-
man theory could be extended to take into account time- and depth-dependent
eddy viscosity, which is expected to be a better reflection of reality. Under the
assumption of self-similar time- and depth-dependent eddy viscosity, which in-
cludes as a subclass the situations with arbitrary power-law depth dependence
of eddy viscosity and arbitrary time dependence of the wind, we found exact
general solution to the Ekman equations with time-and depth-dependent viscos-
ity. This general solution describes the dynamics of the Ekman boundary layer
in terms of an explicit Green’s function expressed via modified Bessel functions.
This novel broad class of exact solutions to the Navier-Stokes equations is of
interest per se.

From the viewpoint of possible applications, our examination of the ba-
sic scenarios demonstrates that taking into account both the depth and time
dependences of the eddy viscosity substantially affect the Ekman current re-
sponse. We did not attempt to explore the parameter space and, hence, do not
know how representative the examples of evolution we investigated are. For the
fundamental reasons we discuss below, we are reluctant to draw any specific
conclusions on the effect of accounting for the time and depth dependence of
the eddy viscosity.

The solutions describing transient Ekman currents in models with time-and
depth-dependent eddy viscosity were further extended by taking into account
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the time-and-depth- dependent Stokes drift created by evolving wave spectra.
The general solution of the corresponding Stokes-Ekman equations has been
derived to fill the gap in the existing literature. Possibilities for the coupling of
existing wave models with the Stokes-Ekman equations and as yet unaccounted
for mechanisms of coupling were also discussed.

In nature, the eddy viscosity (recall that it is merely a parametrization)
does depend on time, although the dependence might be more complicated
than the scaling in terms of the u∗ we adopted. There is a potential to extend
our approach by considering non-local in time relations between wind and eddy
viscosity, which we did not explore here. A natural first step in this direction
would be to consider a time-dependent eddy viscosity with a time delay, which
we have not attempted here.

In this work we did not attempt a comparison with data. The fact that our
solutions for time-dependent linear-in-depth viscosity predict noticeably smaller
surface current deflection to the wind direction, which better agrees with the
observations, is not sufficient to be treated as a vindication of our approach. The
data are too scattered and each case has to be thoroughly studied before any far
reaching conclusions are made. A salient feature of the Ekman currents forced
by the varying wind is that the obtained transient solutions do not resemble the
steady solutions, for example, they do not develop the Ekman spirals, even if
the wind is varying slowly.

Probably our most significant finding is that of the intrinsic contradictions
of the Ekman-type models and all their generalizations used for modelling of the
oceanic surface boundary layer. To our knowledge, these contradictions, which
we briefly discuss below, have not been mentioned in the literature. Subjected to
a growing or turning wind, the Ekman current response develops profiles which
are likely to become unstable. We found that these instabilities are of small scale
(with wavelengths ∼ 102 m) but with the wavelengths far exceeding the charac-
teristic thickness of the Ekman currents (this separation of scales enables one to
find the characteristics of the instabilities asymptotically). They proved to be
very sensitive to the adopted model of eddy viscosity. Crucially, the instabilities
are fast compared to the inertial time scale and, thus, to the characteristic times
scales of the Ekman current dynamics. This raises questions about the funda-
mentals of the Ekman type models. Only during its stable initial phase could
the Ekman current evolution from rest could be faithfully captured within the
framework of the Ekman paradigm. When strong instabilities occur, we could
expect a substantial deviation from the obtained Ekman solutions; horizontally
and vertically localized dramatically enhanced ‘spike’ mixing (compared to the
models assuming merely diffusion of momentum) in the corresponding parts of
the water column is the most likely outcome. Thus, we could expect two-scale
mixing characterized by widely separated temporal scales: ‘normal’ diffusion of
momentum and a ‘spike mixing’ caused by the inflectional instabilities. The fast
evolving part of the current profile is expected to reach a stable configuration
at the time scale of instability, then only the slow evolution of the current will
continue, until the varying wind creates another instance of a strongly unstable
inflectional profile. An immediate implication of this new qualitative picture is
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that a gusty wind should produce a broader boundary layer than a smooth wind
of comparable strength. The occurrence of such strong instabilities of transient
Ekman currents undermines the very existence of the Ekman paradigm. The
instabilities violate the basic assumption of the presumed horizontal uniformity
of the flow. In principle, it might still be possible to preserve Ekman models by
interpreting them in a coarse grain sense (averaging over certain time and spa-
tial scales and using a bulk viscosity). For example, the presence of Langmuir
circulations, which breaks down the key assumption of horizontal isotropy of
the eddy viscosity is dealt with by considering non-diagonal tensor of Reynolds
stresses (Wirth 2010). However, at present it is not clear how to apply such an
averaging and how the scale of averaging is linked to the parameters of Lang-
muir circulations. This example is aimed just to highlight a general lack of
clarity regarding the scales of spatial and temporal averaging implicit in the
Ekman type models. We conclude that, at present, the Ekman models cannot
be seriously considered as rational models (after the occurrence of instability),
since we do not know when/whether they work and with what accuracy. Hence,
to preserve the established Ekman paradigm, it needs a radical revision.

Although the prime motivation for this work came from the oceanic surface
boundary-layer context, the implications of the findings are not confined to the
upper ocean. The Ekman layers are ubiquitous and our findings, and especially
the general questions we raised, might be relevant in many other contexts as
well. The present work has just highlighted the problem, the issue certainly
needs further study and will be explored elsewhere.
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Appendix A. Time-dependent viscosity model
with νe(z, t) = νe(t)ν0(1 + z/α(t))µ

Here, we provide the derivation of the general solution for the following class of
self-similar profiles,

νe(z, t) = ν0νe1(t) [(1 + z/α(t))µ] , (µ > 0), (37)

where α(t) is real and positive and ν0 is constant.
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Consider the standard Ekman equations

∂U

∂t
+ ifU =

∂

∂z

(
νe(z, t)

∂U

∂z

)
, (38)

∂U

∂z
=
−τ (t)

ρνe(z, t)
at z = 0, (39)

U = 0 as z →∞, (40)

for a class of self-similar eddy viscosity distributions (37). The substitution,

U(z, t) = e−iftW (z, T ), T = ν0

∫ t

0

νe1(ξ) dξ, (41)

turns the Ekman system (38) into a more tractable one,

∂W

∂T
=
∂

∂z

[(
1 +

z

α(t)

)µ
∂W

∂z

]
, (42)

∂W

∂z
=
−eift(T )τ (t(T ))

ρνe(z, t(T ))
at z = 0, (43)

W = 0 as z →∞. (44)

Introducing new independent variables,

Z = 1 +
z

α(t(T ))
; T1 =

∫ T

0

1

α2(t(ζ))
dζ,

and noting that,

∂W

∂z
=

1

α(t(T ))

∂W

∂Z
,

∂2W

∂z2
=

1

α2(t(T ))

∂2W

∂Z2
,

enables us to simplify the system (42-44) into,

∂W

∂T1
=

∂

∂Z

[
Zµ

∂W

∂Z

]
(45)

∂W

∂Z
=
−eift(T1) α(t(T1)) τ (t(T1)

ρ ν0 νe1(t(T1))Zµ
= G(T1) at Z = 1, (46)

W = 0 as Z →∞. (47)

By taking the Laplace transform of (45) with respect to T1 (L{W (T1)} = Ŵ (s))
we find,

Zµ
d2Ŵ

dZ2
+ µZµ−1

dŴ

dZ
− sŴ = 0. (48)
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One more change of variables,

Ŵ = Sσ1 Ψ(S1); S1 =
1

|1− µ/2|
Z1−µ/2; σ =

1

2

(
1− µ

1− µ/2

)
(49)

yields,

dŴ

dZ
= Sσ1

dΨ

dS1

dS1

dZ
+ σ Sσ−11

dS1

dZ
Ψ(S1), (50)

and,

d2W̃

dZ2
=Sσ1

(
dS1

dZ

)2
d2Ψ

dS2
1

+

[
Sσ1

d2S1

dZ2
+ 2σ Sσ−11

(
dS1

dZ

)2
]
dΨ

dS1
+[

σ Sσ−11

d2S1

dZ2
+ σ (σ − 1)Sσ−21

(
dS1

dZ

)2
]

Ψ(S1). (51)

On substituting (49), (50) and (51) into equation (48), we obtain,

d2Ψ

dS2
1

+ S−11

dΨ

dS1
−

((
µ− 1

2− µ

)2

S−21 + s

)
Ψ(S1) = 0. (52)

Yet another change of independent variable,

ζ = i S1

√
s (53)

turns equation (52) into the Bessel equation,

ζ2
d2Ψ

dζ2
+ ζ

dΨ

dζ
+

(
ζ2 −

(
µ− 1

2− µ

)2
)

Ψ(ζ) = 0. (54)

Its general solution in terms of Bessel functions is (e.g. Abramowitz & Stegun
1972),

Ψ = c1 Jσ1
(ζ) + c2 Yσ1

(ζ); ζ = i S1

√
s; σ1 =

∣∣∣∣ 1− µ
−2 + µ

∣∣∣∣ . (55)

Then, the general solution of (48) can be written as,

Ŵ (Z, s) =Sσ1 Ψ(S1)

=Sσ1
(
c1 Jσ1(i S1

√
s) + c2 Yσ1(i S1

√
s)
)

=Sσ1
(
c1 i

σ1 Iσ1(S1

√
s) + c2 Yσ1(i S1

√
s)
)
, (56)

where

Iv(x) = i−v Jv(ix), S1 =
1

|1− µ/2|
Z1−µ/2, σ =

1

2

(
1− µ

1− µ/2

)
, σ1 = |σ| .

(57)
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The boundary condition at infinity implies c1 = 0, hence,

Ŵ (Z, s) = c2 S
σ
1 Yσ1

(i S1

√
s). (58)

Making use of the Laplace form of the surface boundary condition (46),

dŴ

dZ
= L{G(T1)} at Z = 1,

provides us with c2,

c2 =
L{G(T1)}

A
, (59)

where

A =− i(2 + µ)
√
s

|1− µ/2|σ+1

(
Yσ1−1

(
i
√
s

|1− µ/2|

)
− Yσ1+1

(
i
√
s

|1− µ/2|

))
+

1− µ
2|1− µ/2|σ

Yσ1

(
i
√
s

|1− µ/2|

)
. (60)

Thus, the general solution of the system (45- 47) in terms of Z and T1 is

W (Z, T1) =
1

2π i

∫ c+i∞

c−i∞
esT1 Ŵ (Z, s) ds; c ≥ 0 (61)

where,

W̃ (Z, s) = c2 S
σ
1 Yσ1(i S1

√
s), S1 =

1

|1− µ/2|
Z1−µ/2, (62)

and c2 is given by (59) and (60). Finally, we can return to the original variables
z, t, U ,

z = α(t)(Z − 1), T1 =

∫ T

0

1

α2(t(ζ))
dζ, (63)

T = ν0

∫ t

0

νe1(ξ) dξ, U(z, t) = e−iftW (z, T ). (64)

This is the most general solution to the Ekman current initial-value problem
obtained so far. For constant α it is straightforward to extend it for a fluid of
finite depth. However, the solution becomes more complicated (c1 is no longer
zero but a lengthy expression) and in view of the revealed intrinsic contradictions
of the Ekman paradigm discussed in §7, we feel little incentive to provide more
complicated formulae or elaborate dynamics of the Ekman currents described
by the solution (58)-(64), at least until these fundamental contradictions are
somehow resolved.
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Appendix B. Ekman response to varying wind
within the Stokes-Ekman model with time-and-
depth-dependent eddy viscosity. The derivation

Our starting point is the Stokes-Ekman equations satisfying the standard bound-
ary conditions (5,6),

∂U

∂t
+ if(U +U s) =

∂

∂z

(
νe(z, t)

∂U

∂z

)
(65)

where U s = Us(z, t) eU is the Stokes drift due to surface waves as a function
of time and depth is given by (5.2), eU is unit vector in the mean direction of
wave propagation, the rest of the notations we retain from the previous sections:
U = U(z, t) + iV (z, t), νe = νe(z, t). Here we presume Us(z, t) and νe(z, t) to
be given.

Here, in contrast to §3.2, instead of continuing our consideration of self-
similar distributions of eddy viscosity (37), we confine our analysis to simpler
separable eddy viscosity distributions: νe(z, t) = νe1(t) g(z) and later on con-
sider the simplest case only. Using the substitution:

U(z, t) = e−iftW (z, T ) ; (T =

∫ t

0

νe1(ξ)dξ ), (66)

we rewrite the Ekman equation (36) as an inhomogeneous equation with a time-
and depth-dependent right-hand side which we denote as F 1(z, t),

∂W

∂T
− ∂

∂z

(
g(z)

∂W

∂z

)
=
−if eift(T )U s(z, t(T ))

νe1(t(T ))
≡ F 1(z, T ) . (67)

Taking the Laplace transform with respect to T (L{W (T )} = Ŵ (s)) yields,

d

dz

(
g(z)

dŴ

dz

)
− sŴ = −F̂ 1(z, s)−W (z, 0) ≡ −F̂ 2(z, s) , (68)

where W (z, 0) is the velocity profile at the initial moment which we presume
to be given. Thus arbitrary non-zero initial conditions are incorporated into
the right hand-side. Now, for simplicity and by virtue of arguments of §3, we
confine ourselves to linear g(z) : g(z) = g1(z + z0). More general separable and
self-similar profiles (37) could be handled similarly.

The general solution is a sum of the general solution of the homogeneous
equation Ŵ h(z, s) derived in §3.2 and a particular solution Ŵ p(z, s) of equation
(68), thus,

Ŵ (z, s) = Ŵ h(z, s) + Ŵ p(z, s) . (69)
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Since the fundamental solutions of the homogeneous equation are known, it is
straightforward to find a particular solution of the inhomogeneous equation,

d2Ŵ

dz2
+

1

z + z0

dŴ

dz
− s

g1(z + z0)
Ŵ =

−F̂ 2(z, s)

g1(z + z0)
. (70)

A particular solution of this equation can be expressed in terms of modified
Bessel functions I0 and K0,

Ŵ p =
2

g1

∫ z

0

F̂ 2(η, s)

(
− I0

[
2

√
(z + z0)s

g1

]
K0

[
2

√
(η + z0)s

g1

]
+

K0

[
2

√
(z + z0)s

g1

]
I0

[
2

√
(η + z0)s

g1

])
dη . (71)

Then, the general solution satisfying the boundary condition at infinity (W̃ →
0 as z →∞) becomes,

Ŵ (z, s) = K0

[
2

√
(z + z0)s

g1

](
c2 + (2/g1)

∫ z

0

F̂ 2(η, s) I0

[
2

√
(η + z0)s

g1

]
dη

)
.

(72)

The arbitrary constant c2 is specified by the boundary condition at the surface.
To this end, the first derivative of the obtained general solution at z = 0

dŴ

dz
=

2

g1
I0

[
2

√
(z + z0)s

g1

]
K0

[
2

√
(z + z0)s

g1

]
F̂ 2(z, s)−

√
s√

g1 (z + z0)
K1

[
2

√
(z + z0)s

g1

](
c2 + (2/g1)

∫ z

0

F̂ 1(η, s) I0

[
2

√
(η + z0)s

g1

]
dη

)
(73)

is substituted into the boundary condition at the surface ( Ŵ ′(0, s) = F̂ (s),

F̂ (s) = L[F (T )] ), which yields the needed closed expression for c2,

c2 =

√
g1z0

√
sK1

[
2
√

sz0
g1

] ( 2

g1
I0

[
2

√
sz0
g1

]
K0

[
2

√
sz0
g1

]
F̂ 1(0, s)− F̂ (s)

)
. (74)

Finally, by substituting (74) into (73) we can now express the solution in terms
of the original variables by taking the inverse Laplace transform,

U(z, t) = e−iftW (z, T ) ; T =

∫ t

0

νe1(ξ)dξ , (75)

where

W (z, T ) =
1

2π i

∫ β+i∞

β−i∞
Ŵ (z, s) esT ds; β ≥ 0. (76)
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with Ŵ (z, s) and c2 given by (73) and (74). We reiterate, that, from the
technical viewpoint, more general self-similar eddy viscosity distributions (37)
could be handled in the same way.
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