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Abstract

Introduction

Lung clearance index (LCI) is a sensitive measure of early lung disease, but adoption into

clinical practice has been slow. Challenges include the time taken to perform each test. We

recently described a closed-circuit inert gas wash-in method that reduces overall testing

time by decreasing the time to equilibration. The aim of this study was to define a normative

range of LCI in healthy adults and children derived using this method. We were also inter-

ested in the feasibility of using this system to measure LCI in a community setting.

Methods

LCI was assessed in healthy volunteers at three hospital sites and in two local primary

schools. Volunteers completed three washout repeats at a single visit using the closed cir-

cuit wash-in method (0.2% SF6 wash-in tracer gas to equilibrium, room air washout).

Results

160 adult and paediatric subjects successfully completed LCI assessment (95%) (100 in

hospital, 60 in primary schools). Median coefficient of variation was 3.4% for LCI repeats

and 4.3% for FRC. Mean (SD) LCI for the analysis cohort (n = 53, age 5–39 years) was 6.10

(0.42), making the upper limit of normal LCI 6.8. There was no relationship between LCI and

multiple demographic variables. Median (interquartile range) total test time was 18.7 (16.0–

22.5) minutes.
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Conclusion

The closed circuit method of LCI measurement can be successfully and reproducibly mea-

sured in healthy volunteers, including in out-of-hospital settings. Normal range appears sta-

ble up to 39 years. With few subjects older than 40 years, further work is required to define

the normal limits above this age.

Introduction

Multiple breath washout (MBW) is now a well-researched technique to assess lung physiology.

Supported by international guidelines, it has been used as an endpoint in therapeutic trials and

is now being measured for clinical use in a handful of specialist units[1–5]. Most of the clinical

and research use of MBW has been in the field of cystic fibrosis (CF) with lung clearance index

(LCI) being the best described derived outcome[6]. There are particular perceived advantages

of using LCI over the more traditional FEV1 in the CF population: it appears to be highly sensi-

tive to early disease[7], is reproducible[8], and is sensitive to clinically meaningful changes[9,

10].

An important characteristic noted in early research of LCI was that it appeared to have a

stable upper limit of normal in younger patients[11, 12]. A stable range of normal means that

any disease-related change over time can easily be identified. The evolution of the technique

however has revealed that different systems produce different measures of LCI and functional

residual capacity (FRC) due to differences in tracer gas (e.g. nitrogen or sulphur hexafluoride

(SF6)) [13, 14] as well as more subtle changes in equipment deadspace[15], gas analyser

response time and signal alignment [16, 17]. Studies in older adults using nitrogen washout

have also indicated that, along with other markers of lung function and airway elasticity, there

is an age-related increase in markers of ventilation heterogeneity, including nitrogen-LCI[18,

19].

One of the major factors limiting the wider adoption of LCI is the time taken to complete a

test. The final result is derived from an average of three repeated tests, and additional tests may

be required in younger subjects or in case of poor quality tests in order to produce repeatable

results. Longer physiology testing times disrupt clinic scheduling and may not be tolerated by

younger children. When researchers tried to limit the test time to 20 minutes using nitrogen

washout in children with CF too few children obtained successful results, with the required

minimum of two or more repeats achieved in only 40% of participants[20]. To enable the

wider clinical adoption of LCI would require reduction in time taken to perform the test and

increased flexibility in where testing occurs. Closed circuit wash-in methodologies could

achieve these outcomes and for that reason our centre has developed and refined this method-

ology. This involves the wash-in of tracer gas from a sealed bag of air enriched with O2 and SF6

[21], enabling a higher concentration of tracer gas (SF6) to be drawn into the lungs at the start

of wash-in. The final mixed alveolar SF6 concentration is therefore reached more quickly than

with a conventional open circuit wash-in [21, 22]. Since the O2/SF6 mix is supplied from a

small cylinder within the device, the system is portable and can be mounted on a medical cart

with its own battery power supply. This enables it to be taken to patients in hospital, and opens

the possibility of performing measurements in community settings.

The Innocor™ analyser has been available to measure LCI for over a decade, but the closed

circuit system we have developed and report here differs in terms of deadspace and response

time from that originally described[11]. The washout analysis has also evolved, and now

LCI in healthy volunteers
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incorporates consideration of re-inspired tracer. In preparation for its use in a longitudinal

clinical study, the aims of this study were to:

1. Evaluate the range of LCI values seen in healthy subjects.

2. Calculate the upper limits of normal for LCI using this device, and define the relationship

between LCI and key demographic variables (subject height and weight/bmi, age and

gender).

3. Assess the feasibility of using the closed circuit device to perform measurements in a com-

munity setting.

Methods

Study design and recruitment

This was an observational study of healthy subjects completing LCI assessment on a single

occasion at three hospitals and two local schools (one primary school and one secondary

school). The hospitals were: Wythenshawe Hospital, Manchester, UK (WH); Royal Manches-

ter Children’s Hospital (RMCH); and Royal Stoke University Hospital (RSUH). Adult subjects

were only assessed at WH, whereas paediatric subjects were assessed at all three sites. Measure-

ments were performed on one of three identically set up and calibrated Innocor gas analysers,

using a closed circuit wash-in. These were mounted on battery-supplied medical carts to allow

portable measurements within hospital (see Fig 1). The device used at RSUH was also trans-

ported in a protective case and taken to two local schools in Staffordshire to measure LCI in

the community. There were three different teams responsible for LCI assessment (one cover-

ing RMCH and WH, one for RSUH, and one for community measurements), but all were

trained and supervised by the same researcher to the same training standard.

Subjects were recruited by advertisement in hospitals from amongst staff and patient rela-

tives, from an outpatient fracture clinic (RSUH) and by contact through the schools. Subjects

were over the age of 5 years, were non-smokers or ex-smokers of>6months with less than 5

pack year smoking history, with no history of asthma or wheeze requiring any inhaler use in

the last 12m. Additional exclusions included history of cardiac disease, pertussis, tuberculosis,

or prematurity (<34 weeks). All participants provided assent, and parents and adult volunteers

provided signed informed consent. This study was approved by the Lancaster NHS Research

Ethics Committee (study reference 14/NW/1195) and the Keele University Ethics Committee.

Participants were recruited between December 2014 and November 2018.

Study assessment

Multiple breath washout was performed using a closed circuit Innocor™ system (PulmoTrace

ApS, Glamsberg, Denmark), as previously described [21]. Participants wore a nose-clip and

breathed through the apparatus using a mouthpiece. Wash-in was performed from a sealed

bag filled with a mixture of room air and test gas (94% O2, 1% SF6 and 5% N2O) up to a total

bag volume of 3L. Switching between air and bag was controlled by fast-operating pneumatic

valves triggered at the end of expiration, under the direction of the operator. A carbon dioxide

(CO2) scrubber was placed in sequence between the bag and patient, so that expired air was

depleted of CO2 prior to re-inspiration. Initial bag volume was adjusted to be approximately

equal to estimated FRC based on subject height, with test gas bolus of 30–40% total bag volume

and balance room air. The bag volume and test gas bolus fraction could be increased if longer

wash-in was required. At the start of wash-in, participants took 5–6 slow deep inhalations

LCI in healthy volunteers
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before returning to tidal breathing. Final washin concentration of expired SF6 was between

approximately 0.1 and 0.4%, depending on the starting concentration in the bag and the ratio

of bag volume to FRC. It is assumed that LCI is independent of these small changes in tracer

gas concentration. Once equilibrium was reached (difference between inspired and expired

SF6 concentrations <1%, adjusted for CO2 removal), wash-in was continued for a further 30–

60 seconds to ensure washin was complete, as previously described [22]. During wash-in,

inspired CO2 and O2 concentrations were continuously monitored. Inspired CO2 was typically

<2% at end of wash-in, and inspired O2>20%. At the end of wash-in, the participants were

Fig 1. Innocor closed circuit MBW system, mounted on medical cart with on-board power supply for portable

MBW measurements.

https://doi.org/10.1371/journal.pone.0229300.g001
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switched to room air and instructed to maintain tidal breathing. Washout was continued until

the expired end-tidal SF6 concentration reached <2.5% of the starting concentration. Expired

gas was dispersed by use of a fan directed at the patient and exhalation port. There was no

requirement for a delay between end of washout and start of next wash-in, and subjects started

the next test as soon as they were able (this is a feature of all exogenous MBW systems). Dis-

traction was provided in the form of a screen showing age-appropriate movies or TV shows.

In the case of adults, visual feedback of inspiratory volumes was available to aid reproducibility

of breathing patterns, and typically set at 10-15ml/kg. Both children and adults used identical

patient interfaces and mouthpieces, with the only difference being that a smaller filter was

used in children (subjects <18yrs).

Subjects completed three washouts. If one or more tests were obviously compromised (e.g.

evidence of leak), then additional tests were added. Detailed analysis and quality control were

performed offline (see below). Following MBW testing, all adult volunteers and those children

assessed at RMCH and WH also completed spirometry. This was not carried out in the school

volunteers or at RSUH. Spirometry was performed using an Easyone handheld spirometer

(NDD Medizintechnik AG, Zurich, Switzerland), according to ERS/ATS guidelines [23]. Nor-

mal ranges for spirometry were those from the Global Lung Initiative[24].

Washout analysis

The Innocor device provides measurements of LCI and FRC, which was used in real-time to

check test repeatability, but for this study a separate offline washout analysis package was used,

prepared in-house (software version 6, release date 11/11/16) in Igor Pro v6 (Wavemetrics

Inc., Lake Oswego, OR, USA). This is based on the same washout analysis package already

deployed in several other clinical studies and clinical trials [4, 14, 25]. In this latest version, the

alignment of flow and gas concentrations (performed as a daily calibration step) were checked

against those actually measured during washout, and were adjusted to match in the event of

differences between alignments of>10ms. Adjustment was also made for re-inspired SF6, and

cumulative expired volume was adjusted to account for total equipment deadspace, as per con-

sensus guidelines [1]. FRC is quoted as FRC at the airway opening and was adjusted for pre-

gas sampling deadspace (total 62ml adults, 58ml children, differing only in the choice of filter),

for re-inspired SF6, and for BTPS.

The final LCI and FRC measurements quoted are the average of at least two reproducible

repeats, as measured using the offline software package described above. Repeats were

excluded if there was evidence of leak, or in case of large differences seen in LCI or FRC mea-

surements (>25% from median) [1]. Washout test time was taken from the length of the wash-

out file. This is the total time to complete all wash-in and washout tests, including any interval

between tests, and analyser warm-up time (60 seconds). It does not include time taken to

explain the test to the participants, or time taken to clean the apparatus between volunteers.

Statistical analysis

Data were analysed using Prism (GraphPad Software Inc., San Diego, CA, USA) and R v3.0.2

(R Foundation for Statistical Computing, Vienna, Austria). Normal distribution was assessed

using the Shapiro-Wilk normality test. Data are presented as mean (SD) or median (interquar-

tile range [IQR]) unless otherwise stated. An upper limit of normal (ULN) corresponding to

the 95th centile (i.e. mean +1.64 x standard deviation) was used as recommended by the Global

Lung Function Initiative [24]. Repeatability of testing was defined by the within visit coeffi-

cient of variation of washout repeats (CoV), defined as the standard deviation divided by the

mean. The final dataset contains LCI values derived from only two successful repeats, a

LCI in healthy volunteers
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scenario in which the CoV may not be appropriate[1]. Values for CoV are therefore given for

both the entire dataset as well as separately for those with all three measurements. Average LCI

in different populations were compared using t-tests or ANOVA (for more than two groups).

For comparison of different centres, the paediatric populations measured at the two Manches-

ter sites by the same team (WH and RMCH) were merged (here described as LCI RMCH). For

non-parametric data, Mann-Whitney U test was used to compare groups. Bland-Altman was

used to compare measured to predicted FRC, using separate reference equation for adult[26]

and paediatric populations[27]. Univariate regressions were used to examine the relationship

between LCI and key demographics (age, gender, height, weight and BMI). Multivariable

regressions were considered in the event of significant univariate findings. Due to the discrep-

ancy between the numbers of adults and children and also the lack of those aged over 40, sensi-

tivity analyses were performed for individual subsets (aged <18, aged�18 and aged<40). A p-

value <0.05 was considered to be statistically significant.

Results

One hundred and seventy two subjects were recruited (82 males). The data from four subjects

were not used due to equipment technical factors (n = 3) or clinical reasons (n = 1) and have

not been analysed further. Of the remaining 168 subjects, 160 successfully completed LCI mea-

surements (95%) and eight were excluded due to failure to produce measurements or poor

repeatability. Demographic data are presented in Table 1. Overall there were only 5 ex-smok-

ers, average 0.4 pack years (maximum 4 pack years). Due to its small size, this group have not

been analysed separately.

Success of LCI measurements

The eight participants who were excluded because they were unable to generate usable data

were all children, median (IQR) age 10.0 (7.5–12.5) yrs.

144 subjects (90%) achieved a completed assessment with three washout repeats, 15 subjects

required 1–3 additional repeat measurements at the same sitting. In two cases, for logistic or

technical reasons, a third repeat was omitted.

Table 1. Summary demographics of the study population. Data are shown on the left for all subjects, including

those with unsuccessful measurements, and on the right for the population used to derive the normal range (those with

successful measurements, aged 5-39yrs).

Study population All included subjects Subjects <40yrs with valid LCI

Number of subjects 168 153

Male: Female 79:89 72:81

Median Age (range) yrs 13 (5–59) 13 (5-39yrs)

Median age (range, n) for ADULTS 29 (18–59), n = 52
Median age (range, n) for CHILDREN 11 (5–18), n = 116

Median BMI (IQR) (kg/m2) 20.0 (17.2–23.1) 19.8 (17.1–22.8)

Median FEV1 z score (IQR) L/s -0.24 (-0.88 to 0.31) (n = 81) -0.26 (-0.88 to 0.25) (n = 75)

Median FVC z score (IQR) L -0.25 (-0.77 to 0.28) -0.27 (-0.72 to 0.25)

Median FEF25-75 z score (IQR) L/s -0.32 (-0.81 to 0.52) -0.30 (-0.81 to 0.42)

Mean FEV1/FVC (SD) 0.84 (0.06) 0.85 (0.06)

Mean LCI (SD) 6.13 (0.46) (n = 160) 6.10 (0.42) (n = 153)

FEV1: forced expiratory volume in 1 second; LCI: lung clearance index; SD: standard deviation, IQR: interquartile

range, BMI: body mass index, FVC: forced vital capacity, FEF25-75: forced expiratory flow over 25–75% of expired

volume.

https://doi.org/10.1371/journal.pone.0229300.t001
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58 individual washout repeats (11.6% of the total) were subsequently excluded due to insuf-

ficient quality control or repeatability. In the final analysis, 37 (24%) of subjects LCI values

were derived from two repeats and 117 (76%) from three repeats.

Median (IQR) CoV for all included LCI measurements was 3.4 (1.8–5.2)%, or 3.3 (1.9 to

4.9)% for those with three measurements. Median CoV for all FRC measurements was 4.3

(2.4–6.3)%, or 4.3 (2.5–6.4)% for those with three measurements.

Lung clearance index in healthy subjects

It was apparent from inspecting the data that LCI measurements in those aged over 40 years

appeared to be more dispersed than in younger subjects. Although it seems likely that LCI may

be higher and more varied in this older group, given the small number of subjects (n = 7) it is

not possible make a confident statement regarding the LCI trend in those aged over 40 years.

We therefore repeated the analysis, including only those aged under 40 years at the time of

measurement. Mean (SD) for this cohort (n = 153) was 6.10 (0.42), making the upper limit of

normal (ULN) 6.8 (see Table 1).

Comparison of LCI between adults and children

Linear regression models showed no relationship between age and LCI in either the full dataset

or the subsets of children or adults (β = 0.004, -0.005 and 0.019 respectively) (Fig 2). Mean

(SD) LCI in children (<18yrs) was 6.13 (0.36), compared to an adult aged under 40 mean of

6.03 (0.53). Due to the wider SD in these adults, the ULN for children could be calculated as

6.72 compared to 6.90 in adults. However there are fewer subjects in the adult cohort (n = 46

vs 107), which may partially explain this difference. Given the minimal differences between

the two calculations, and lack of age-related influence on mean LCI, we therefore propose 6.8

as the ULN for LCI (measured using this system) for all subjects aged between 5–39 years

inclusive.

Fig 2. Lung clearance index (LCI) measurements against age for healthy volunteers from the four centres. Central

dotted line represents mean, with upper and lower limits of normal shown by upper and lower dotted lines

respectively. RSUH: Royal Stoke University Hospital; RMCH: Royal Manchester Children’s Hospital.

https://doi.org/10.1371/journal.pone.0229300.g002
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Effect of other demographic variables on LCI

LCI was not significantly different between male and female subjects (mean difference = 0.074,

95% CI 0.071 to -0.219, p = 0.313) or between the paediatric measurements at the three differ-

ent centres (p = 0.883). No relationship was found between LCI and height (β = -0.002,

p = 0.427) across the entire population, Fig 3. This was also true if the adult and paediatric LCI

populations were considered separately (β<0.001, p = 0.961; β = -0.003, p = 0.182, respec-

tively). Likewise there was no association between LCI and BMI in either the full dataset

(β 0.005, p = 0.467) or for the adult or paediatric populations separately (S1 Table in S1 Data).

Spirometry data were incomplete (n = 81), but there were no significant correlations identified

between any spirometric index (FEV1 z score, FVC z score, FEF25-75 z score, FEV1/FVC) and

LCI (all r2<0.015, p>0.28).

Functional residual capacity

The relationship between height and FRC is shown in Fig 4. As expected for a measure of lung

volume, this increased exponentially with height from a minimum of 0.65L to a maximum of

4.76L (a 7 fold increase). FRC from washout was compared to predicted FRC[26, 27]. There

was no significant difference between measured FRC from MBW and that derived from the

prediction equations (median difference of 0.04L, p = 0.2). On Bland-Altman comparison,

there was no evidence of consistent or size-related bias, with a mean (SD) difference of 0.06

(0.56) L, or 0.9% of predicted FRC, in favour of the prediction equations (see S1 Fig in

S1 Data).

Test time

Median (IQR) overall test time was 18.7 (16.0–22.5) minutes. Test time was shorter in chil-

dren, with a median time of 17.8 minutes, compared to 23.5 minutes in adults (p<0.0001).

There was a weak but statistically significant correlation of test time with age (r2 = 0.29,

p<0.0001) (Fig 5).

Fig 3. Lung clearance index (LCI) measurements against subject height for healthy volunteers. The upper limit of

normal LCI is shown as a dotted line. Paediatric subjects are indicated by round circles, and adult subjects by crosses.

Male and female subjects are indicated by blue and red circles symbols respectively.

https://doi.org/10.1371/journal.pone.0229300.g003
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Fig 4. Functional residual capacity (FRC) measurements against subject height for healthy volunteers. Male and

female subjects are indicated by blue and red circles respectively.

https://doi.org/10.1371/journal.pone.0229300.g004

Fig 5. Plot of total test time in minutes against age of subject (years). Test time includes the time taken to complete

all washout repeats, including those subsequently excluded from lung clearance index analysis, as well as the interval

between washout repeats.

https://doi.org/10.1371/journal.pone.0229300.g005
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Discussion

This is the first time such a large cohort of healthy volunteer data has been described using SF6

with a closed circuit wash-in to achieve a more rapid and efficient test. These data will provide

more accurate understanding of disease severity in clinical studies conducted using this

method. The results highlight one of the strengths of LCI as an outcome measure using this

method, as there is a stable range of normality across most of this age range. This is especially

important for longitudinal paediatric studies, where large changes in lung volumes related to

growth can make it difficult to identify disease-related change. With LCI, however, change

over time can be confidently ascribed to disease processes or treatment effect. Finally, we

have described for the first time the use of a genuinely portable system, operated by a single

researcher in a community setting.

The range of normal described here is very similar to that for previous cohorts involving

SF6 as the tracer gas. However the mean and upper limit of normal are both lower in this study

compared to those described with the same tracer gas in comparable populations. These range

from an upper limit of normal LCI of 7.5 [12] to 7.2 [28] using a mass spectrometer (both in

subjects up to 18 years old), and 7.4 using an Innocor system with the open circuit wash-in in

subjects up to 58 years [11]. The current washout system however has been updated from that

used in the earlier study using an Innocor device [11]. In particular, the patient interface has

now changed so that, whilst total deadspace remains similar, the post-capillary deadspace has

increased to 4.5ml. The analysis therefore now adjusts for re-inspired SF6 volume, as well as

adjusting the expired volumes for equipment deadspace (as recommended in guidelines that

were not available when this earlier study was conducted) [1]. In addition, the method of signal

alignment has been refined and standardised, so that the daily calibration is now checked

against the alignment seen in washout and adjusted if this has not been correctly calculated.

This method is significantly different from that previously described where the alignment was

altered to artificially enhance the signal response time [11]. Thus, although the central method-

ology is unchanged, it is not unexpected that the final adjusted outputs, which align the analy-

sis with the latest consensus guidelines, are slightly different from those described over 10

years earlier.

Unlike previous studies, we have also not seen a convincing change in LCI with age. There

is an important caveat here however, namely that the number of subjects 40 years and older

was very limited (n = 7). Previous studies have shown increases in LCI at either end of the age

spectrum. Lum et al. described increased SF6-LCI in very young controls, possibly due to the

effects of deadspace and posture, but these subjects were younger than the lower limit of the

current study [12]. Using an SF6 washout system, Fuchs et al. also did not show any relation-

ship between LCI and age up to 20 yrs[29]. On the other hand, lung elasticity declines with

age, and this is associated with increases in FEV1/FVC, increased trapped gas (RV/TLC), and

increases in a number of markers of ventilation heterogeneity including LCI[19]. Kjellberg

et al. reported on nitrogen-LCI from 400 healthy adult controls up to the age of 71 years, mea-

sured using an Exhalyser D device [18]. Mean and ULN LCI were higher than that reported

here and increased linearly with age from 17 years. More recently Anagnostopolou et al

described nitrogen LCI from 180 children aged 6-18yrs [30]. Mean (SD) LCI was 7.04 (0.45).

Although mean LCI increased with age (0.5 units over 12yrs), this was less than described by

Kjellberg in older subjects [18] and, similar to our approach, the authors concluded that a

fixed ULN was appropriate. Htun et al. and Verbanck et al have separately reported on nitro-

gen-LCI in similar populations using a different non-commercial nitrogen washout system

[19, 31, 32]. The normal range for LCI in both cases was different, but in contrast to the Exha-

lyser D data, seemed to show relatively stable ULN for LCI below 40 years, with LCI only

LCI in healthy volunteers

PLOS ONE | https://doi.org/10.1371/journal.pone.0229300 February 25, 2020 10 / 14

https://doi.org/10.1371/journal.pone.0229300


increasing above this age. Verbanck et al. in particular showed rapid increase in LCI above

about the age of 50 years, associated with an increasing spread of values [32]. Our own data

show that, at least for the younger patients, SF6-LCI is similar to nitrogen-LCI in having a sta-

ble ULN. We have few subjects above 40 years, but in this older age group the LCI data appear

also to be more dispersed, with three measurements being above the group ULN. It seems

likely that increasing ventilation heterogeneity is therefore a feature of ageing lungs, and a

static ULN is unlikely to be applicable for older adults. It would therefore be sensible to view

MBW results for the over 40 year olds with caution, and recommend that more work should

be done in this age group.

In this study we have observed a wider spread of normal range data in adults, despite the

mean LCI being almost identical between the two groups with no age-related dependence. The

net effect of this small increase in data spread is to generate an ULN for LCI of 6.7 for children

and 6.9 for adults. However, given the small differences between these values, and the smaller

dataset in adults contributing to this spread, it is reasonable to propose a fixed ULN of 6.8 for

the healthy subjects from 5-39yrs.

As expected, there was an exponential increase in lung volume (FRC) with height. Previ-

ously reported nitrogen-MBW systems have substantially over-estimated FRC in vivo[14, 17],

despite convincing data on in vitro accuracy[33]. This error appears to be more pronounced in

disease but has also been seen in healthy subjects[13]. The reasons for this are unclear, and

may relate to the contribution of body nitrogen to the washout or to issues with specific analy-

ser technologies[34, 35]. In this study however, we saw no consistent deviation in FRC values

from those predicted, with a mean difference of only 0.06L from predicted FRC.

The other significant development described here is the use of LCI in a community setting.

The use of a compact and robust analyser, combined with a gas source stored in small on-

board cylinders, means that we were able to package the entire system into a transport case

and take it directly into schools. This is important for community based assessments of MBW

which could include measurements carried out in workplaces or family doctor surgeries. The

small cylinders used in this study typically provide enough tracer gas for 5–10 sets of washout

measurements (depending on subject size). The wash-in protocol deployed here allows for

highly efficient wash-in within 2–3 minutes. Overall, the median time to complete all three

tests was under 19 minutes, however this would likely be higher in populations with lung dis-

ease as more abnormal gas mixing would require a longer wash-in and washout [14]. Overall

success rates were high, and that in children (93%) is higher than the success rate of 83%

recently described in a multi-centre of four experienced LCI centres [30].

The data described here refer to the Innocor system and the use of SF6 as a tracer gas. They

cannot be used to identify normal ranges in subjects performing a nitrogen washout. Com-

monly deployed nitrogen washout systems seem to generate much higher values of LCI and

FRC than SF6 washouts [13, 14] due to differences in the behaviour of the tracer gases [13], the

washout of body nitrogen during testing [35, 36], and the equipment itself[17]. The data analy-

sis package was developed in-house, and is not the same as that shipped with the Innocor

device. However it has been developed from that deployed in multiple previous studies[4, 37],

including the CF gene therapy trial[25], and updated to incorporate consensus recommenda-

tions [1]. It has not been possible to compare LCI using our data analysis package with that of

the Innocor system due to differences in flow-gas delay correction. All washouts in this dataset

were reviewed and analysed by an experienced operator (AH).

In conclusion, we have described the first large scale use of the closed circuit washout

method, in a sizeable cohort of healthy controls. We have established the baseline for norma-

tive LCI, and shown that this is stable across the age range 5–39 years. We have also shown

LCI in healthy volunteers
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that it is possible to take MBW measurements out of a clinical setting, and that these can be

conducted efficiently and reproducibly even in a community setting such as a school.
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