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ABSTRACT16

T Coronae Borealis (T CrB) is a recurrent, symbiotic nova system currently in qui-17

escence between its periodic ≈ 80 yrs cycle of eruptions. Observations during inter-18

outburst epochs provide an opportunity to study properties of the accretion disc and19

the M red giant. Here we present new irradiated (black body veiling) models, incorpo-20

rating modern molecular opacities and line lists, of spectra derived from high resolution21

(22,000 <∼ R <∼ 120,000) optical echelle observations obtained at two epochs, one prior22
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to, and one post, the 2015 re-brightening event at similar spectroscopic system phase.23

We find a lithium abundance in the secondary at both epochs to be comparable. The24

non-irradiated (classical) model atmospheres yield a lithium abundance, A(Li) = 1.3 ±25

0.1. The irradiated model (veiled) atmospheres, which are likely a better representation26

of the system in which the white dwarf and accretion disc illuminate the red giant, give27

A(Li) = 2.4 ± 0.1.28

Keywords: Novae (1127): Recurrent Novae (1366): Astrochemistry (75): Chemical29

abundances (224): High resolution spectroscopy (2096)30

1. INTRODUCTION31

T Coronae Borealis (T CrB) is a well-known member of the recurrent nova (RN) class of objects.32

It is a binary system consisting of an MIII red giant (RG) and a white dwarf (WD) companion whose33

mass is close to the Chandrasekhar limit (see Kraft 1958; Shahbaz et al. 1997). Optical spectroscopy34

of the RG at quiescence reveals typical M-giant absorption features, with Balmer and He emission35

lines superimposed (see Kenyon & Garcia 1986; Anupama & Miko lajewska 1999; Mondal et al. 2020).36

It has undergone RN eruptions in 1866 and 1946.37

In 2015, T CrB entered a high photometric state (Munari et al. 2016), with marked changes in38

the V and B light curves that persist to the present day. Comparison of the post-2015 photometric39

behavior with that immediately prior to the 1946 RN eruption prompted Munari et al. to predict40

that the next RN eruption is imminent.41

The RN eruptions in T CrB arise following a Thermonuclear Runaway (TNR) on the surface of42

the massive WD. Models of the RN eruption predict that substantial amounts of lithium may be43

produced (Hernanz et al. 1996; José & Hernanz 1998; Starrfield et al. 1978, 2019). In T CrB as in44

all nova eruptions, material ejected by the WD as a result of a TNR is entrained by the atmosphere45

of the RG secondary.46

The Li abundance, defined as A(Li) = 12 + log[N(Li)/N(H)] (Boesgaard et al. 2020,47

and references therein), of the RG in T CrB has been considered by Shahbaz et al.48
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(1999) and Wallerstein et al. (2008), who found (respectively) A(Li) = 0.6 and 0.8.49

However, these Li abundance analyses used computed spectra and conventional model atmospheres.50

The T CrB system contains, beside a RG, a WD and an accretion disk which can irradiate and affect51

the observed spectrum of the RG.52

In this paper we combine the fits of the optical spectral energy distribution (SED) observed con-53

temporaneously at low resolution (R = λ/∆λ ' 2000) spanning from 4000 to 7000Å, with that54

obtained at R ' 120, 000 near the Li absorption lines at a comparable spectroscopic orbital phase.55

In particular we use irradiated (black body veiled) model atmospheres to derive Li abundances, and56

identify spectral characteristics of T CrB in quiescence.57

2. OBSERVATIONS58

2.1. The Multiple Mirror Telescope59

T CrB was observed at the Multiple Mirror Telescope (MMT; Beckers et al. 1981) 6.5-m on 201960

June 5.229 UT (JD = 2458639.7285) with the Blue Channel Spectrograph (Schmidt et al. 1989) with61

a thinned STA 2688×512 pixel detector spanning all or part of the 3800 – 7100 Å region with a 3.6 Å62

resolution. Observations were conducted with a 1′′ × 180′′ long-slit aperture using a 500 line per mm63

grating in first order, with a tilt position of 2.◦033, yielding a central wavelength position of 5505 Å.64

To prevent contamination in the red portion of the spectrum, second-order light was blocked using65

a UV-36 long-pass filter. HeArNe lamp spectra provided wavelength calibration and quartz-halogen66

lamp spectra provided flat-field correction images. Data were reduced using IRAF1 packages (Tody67

1993, 1986), and standard spectra extraction and calibration techniques for optical data. Spectra68

of Kopff 27 (a spectrophotometric standard star) provided flux calibration. Eleven individual 5-s69

exposure spectra were extracted and co-added to produce the final spectra shown in Figure 1. On70

June 5.229 UT, the system spectroscopic phase was 0.31 (conjunction of the M giant in front of the71

WD defined as phase = 0) derived from the corrected photometric ephemerides of Lines et al. (1988)72

1 IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Univer-

sities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.
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as discussed in Belczynski & Mikolajewska (1998). The observed spectrum used in our analysis was73

dereddened adopting an E(B-V) = 0.06.74

2.2. The Large Binocular Telescope75

We obtained high resolution optical spectroscopy of T CrB on 2019 June 21.1783 and 24.1782 UT76

(exposure mid-points of JD=2458655.6783 and JD=2458658.6782, respectively) with the 2 × 8.4 m77

Large Binocular Telescope (LBT; Hill et al. 2008) using the Potsdam Echelle Polarimetric Spectro-78

scopic Instrument (PEPSI; Strassmeier et al. 2015, 2018b). Our observations of T CrB used the79

200 µm diameter fiber, which projects a 1.′′5 diameter on the sky, and yields an instrumental spectral80

resolution R ' 120, 000 with standard configuration for the image slicer. The cross-dispersers (CDs)81

combination (III + V) was used on June 21 with a total integration time in each CD of 50 mins (582

exposures coadded, each 600 s in duration), while (III + VI) was used on June 24 with 78 mins of83

total integration time in each CD (3 coadded exposures). Spectra from both nights were combined84

using the PEPSI data reduction pipeline (see Strassmeier et al. 2018a) to produce a master spectrum85

covering a continuous wavelength range of 4800 to 5441 Å and 6278 to 9067 Å, reaching86

a signal-to-noise (SNR) ratio per pixel greater than several hundred. A radial velocity correction87

of -27.79 km s−1 was applied to correct to a heliocentric wavelength scale. The spectroscopic orbital88

phase for the PEPSI spectrum was ∼ 0.39.89

2.3. Cima Ekar (Asiago)90

Prior to 2015, T CrB was in a low state of quiescent activity. High resolution spectra of T CrB were91

obtained on 1999 May 30.9113 UT (JD = 2451329.41126) with the REOSC Echelle spectrograph92

mounted on the Cima Ekar (Asiago) 1.82 m telescope. The REOSC is equipped with an Andor93

DW436-BV camera housing an E2V CCD42-40 AIMO CCD, 2048 × 2048 array, 13.5 µm pixel,94

covering the interval λλ 3600 to 7100 Å in 30 orders, at a instrumental resolving power of 22 000 for95

a 2.′′0 slit width, without inter-order wavelength gaps. The spectra were fully reduced in IRAF for96

bias, dark, flat, sky background, wavelength calibration and heliocentric correction. The continuum97



Li in T CrB 5

was normalized to 1.0 in each of the 30 individual orders prior to joining them into a single one-98

dimensional (1D) spectrum. The spectroscopic orbital phase for the REOSC spectrum was = 0.20.99

3. MODEL PROCEDURE100

One-dimensional (1D) SAM12 (Pavlenko 2003, 2006) was used to compute stellar atmospheres.101

A grid of theoretical synthetic RG spectra were computed for model atmospheres with effective102

temperatures (Teff ) ranging from 3200 to 4000 K (see van Belle et al. 1999) with a step of 100 K,103

a metallicity range of 0.0, -0.3, -0.6, -1.0, and surface gravity, log g = 1.0. The latter value for the104

surface gravity is commensurate with that derived by Pavlenko et al. (2020). Direct comparison105

of the SAM12 and MARCS model atmospheres (see Gustafsson et al. 2008, and references therein)106

shows good agreement for their temperature structures, i.e., <∼ 50 K, despite the differences in the107

adopted abundance scales.108

Synthetic spectra, to compare with observations, were then computed from the stellar atmospheres109

using the program WITA6 (see Pavlenko et al. 1995, and references therein) assuming local thermo-110

dynamic equilibrium (LTE), hydro-static equilibrium and a one-dimensional (1D) model atmosphere111

without sources and sinks of energy. The model atmosphere and synthetic spectra assumed a stellar112

atmosphere microturbulent velocity (Vt) of 3 km s−1 and the best fits to the observed T CrB spectra113

were determined by a χ2 minimization procedure as described by Pavlenko (2006, and references114

therein). Atomic lines were taken from VALD3 (Ryabchikova et al. 2015) and those for molecules115

TiO, VO and MgH were obtained from different sources (for a more detailed discussion see Pavlenko116

2014).117

4. RESULTS118

4.1. The T CrB optical spectra at quiescence.119

Our identification of emission lines in the dereddened T CrB spectrum at quiescence, Figure 1,120

draws from tabulated lists from the NIST database (Kramida et al. 2019) and the gk ∗Aik (where gk121

is the statistical weight and Aik is the transition probability) averaged air wavelengths compiled in122
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the Atomic Line List website2 (for a description see van Hoof 2018), predicated by observations of123

known emission lines commonly seen in the spectra of various nova classes (Williams 2012). Strong124

hydrogen Balmer lines can be easily identified in the spectrum (Figure 1, top panel). The Balmer125

decrement is rather flat, suggesting H I comes from an extended high temperature shell. The He I126

lines are seen at 5876 Å and 6678 Å. These lines form in hotter ionised gas (T > 20,000K) than the127

H I. However, we do not see He I λ4471 Å which usually can be observed in cataclysmic variable128

star (CVs) spectra (see Zwitter & Munari 1995). Likely, He I forms under non-local thermodynamic129

equilibrium (NLTE), because the upper levels E = 186101.6 cm−1 and 191444.5 cm−1 of the 5876 Å130

and 4471 Å lines, respectively, do not differ much.131

He II line emission is evident at 4686 Å. This line is of special interest due to the high ionization132

potential of He I (24.6 eV) and the high excitation potential of the upper level of the corresponding133

He II transition (48.4 eV). The line can be observed in spectra of cataclysmic binary stars (Sheets134

et al. 2007), in X-ray sources (Kaaret et al. 2004), including Cyg X-1 (Ninkov et al. 1987), in classical135

novae and older novae returning to quiescence (Williams 2012) and highly-ionized starburst regions136

in the extremely metal poor galaxies in the local Universe, like SBS 0335 - 052E (Kehrig et al. 2018).137

Clearly the presence in our spectrum of a strong He II line provides evidence for the existence of a138

very hot (T ≥ 60, 000 K) and extended shell or possibly a hot spot on, or near the WD surface.139

Next we identify all spectral features (molecular bands) seen in absorption. The GAIA archive140

(Gaia Collaboration et al. 2016, 2018) cites an effective temperature of 3985 K for T CrB. However,141

synthetic spectra computed for Teff = 4000 K do not satisfactorily reproduce the observed optical142

absorption features. Therefore we computed spectra for a cooler model atmosphere with Teff =143

3800 K to aid in the identification of spectral features. We show results of comparison of our observed144

spectrum of T CrB with theoretical spectra incorporating common hydrides, molecules, and other145

species seen in M giant atmospheres (Figure 1 top panel). Titanium oxide (TiO) dominates the146

optical spectrum across a wide spectral range. These TiO features confirm that the RG is an M-147

2 http://www.pa.uky.edu/∼peter/newpage/

http://www.pa.uky.edu/~peter/newpage/
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giant and that its atmosphere has a C/O ratio ≤ 1.0. MgH at 5200 Å is still too strong in the Teff =148

3800 K spectrum compared to the observed spectrum and we conclude that our Teff likely should be149

lower.150

A fit of our synthetic spectra, computed with both 4000 K, [Fe/H] = 0.0 (blue line) and a 3500 K,151

[Fe/H] = 0.0 (green line) classical 1D SAM12 model atmospheres, to the observed fluxes (red152

line) is shown in Figure 1, bottom panel. Clearly the 3500 K, [Fe/H] = 0.0 model provides a better153

χ2-fit to the observed red part of the spectrum. Both models, however, are deficient at wavelengths154

bluewards of ' 4300 Å. This suggests an additional emission component is required (§4.2).155

4.2. Irradiated spectra models156

To improve the fits, we invoke the presence of additional irradiation of the RG by the WD com-157

panion, and/or an accretion disc. Irradiation (veiling) effects were modeled by adding a contribution158

from a black body having a temperature Tbb ≥ Teff to the computed spectra (Firradiated):159

Firradiated = a ∗ Fcomp(Teff) + (1− a) ∗ F (Tbb), (1)

where Fcomp is the flux computed for the classical model atmosphere, a varies in the range of 0.6160

to 1.0, with a step size of 0.1, and F (Tbb) is flux from a black body of temperature, Tbb(K). We161

computed a set of synthetic spectra for model atmospheres in the range Teff = 3200 to 4000 K in162

100 K bins, log g = 1.0, with black bodies of Tbb = 5,000 to 50,000 K. To get the best fit to the163

observed spectrum we use our χ2 procedure (see Pavlenko 2006) defining a minimization function164

S (=
i∑

n=1

s2
i = |(F obs

i − F comp
i )|). S characterizes the averaged difference of fitted fluxes in one165

wavelength/frequency point and whose minimum value was found iteratively on the 3D grid of radial166

velocity sets, normalization factors, and broadening parameters. We also compute the errors of fits167

as the mean of the flux differences of computed and observed spectra, δ =
∑
si/N . To accelerate the168

iteration process, both theoretical and computed spectra are re-normalized to have a flux maximum169

of 1.0, as this simplifies the determination of the best fit. All fit spectra (observed vs. synthetic)170

shown within this manuscript therefore have flux ranges between 0 and 1.0.171
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From this grid of models the best fit, yielding a value for the parameter S = 0.128 ± 0.001, is172

obtained for Teff = 3500 ± 100 K, Tbb = 8,000 K, [Fe/H] = 0.0, and a = 0.8 as shown in Figure 2.173

To investigate the impact of RG gravity on our results, we repeat the computation with the same174

parameters, but with log g = 0. The best solution in this case is found for a synthetic spectrum of the175

form 0.8*F(3500) + 0.2*Tbb (8,000 K) with [Fe/H] = 0.0. Despite a larger value of S = 0.146±0.001 in176

this case, we obtain a better solution for the spectral range around the 4200 Å Ca I resonance line and177

at the red edge of the observed spectrum (Figure 3). The Ca I resonance line is pressure broadened and178

hence its profile shows a strong dependence on surface gravity. However, the spectrum at wavelengths179

near, and shortward of, the Ca I line is affected by the blue excess of the flux contributed by the WD180

and/or accretion disc complicating the analysis. Notwithstanding, we adopt a surface gravity (log g)181

equal to 1.0, as found by Pavlenko et al. (2020), in our subsequent analysis.182

4.3. Lithium in T CrB183

The lithium abundance was determined by fitting our synthetic fluxes to the observed high res-184

olution optical spectra. Synthetic spectra computations were carried out for a broad range of Li185

abundances A(Li) = 0.2 to 3.0. However, in modeling the high resolution spectra, we used a more186

extensive and detailed TiO line list taken from the molecular line list for exoplanets and other hot187

atmospheres (EXOMOL) database compilation (Tennyson et al. 2016; McKemmish et al. 2019) with188

solar isotopic ratios of TiO. The best fit was determined by finding the minimum fit parameter S over189

the spectral range from 6696 to 6725 Å. Our modeling considered only 7Li lines (see Kurucz 1995;190

Mott et al. 2017), as the 6Li abundances cannot be determined from our observed spectra which are191

broadened by strong microturbulence. Estimates of the 7Li/6Li ratio is challenging even in192

quieter, less convective solar-like stars (see Fig. 5 of Pavlenko et al. 2018). Interestingly,193

Mott et al. (2017) demonstrated that with high dispersion, high SNR (>∼ 400) spectra detection of194

6Li was possible in the spectrum of the giant star HD 123351, although absorption ascribed to 6Li195

may have been mimicked by other effects, such as unknown weak blends, the Zeeman broadening, or196

asymmetric convection.197
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Although a classical model atmosphere can be used, which was the technique applied in early works198

(such as Shahbaz et al. 1999; Wallerstein et al. 2008), a more robust fit to the observed spectrum199

in T CrB is achieved by using a model atmosphere with an irradiation term (Figure 2) as described200

in §4.2. We used both classical and irradiated models, however, to determine a lithium abundance201

from the fit to the 1999 REOSC spectrum (quiescence) and the more recent 2019 PEPSI spectrum202

obtained when T CrB was in a high state.203

Generally, our results of lithium abundance determination depends on the accuracy of the TiO line204

lists. In the spectra of M-stars, lithium lines are seen on a background formed by a series of TiO205

absorption bands (see Figure 1 and Pavlenko et al. 1995, for more details). The continuum in T CrB206

cannot be defined in the observed spectrum, although we can use the pseudo-continuum formed by207

TiO bands as a proxy for the continuum when fitting the shape of the lithium absorption feature.208

Fortunately, modern TiO line lists allow us to provide reliable fits to the observed spectrum and the209

selected spectral features.210

We carried out fits of our synthetic spectra to the observed spectrum across different spectral ranges211

6700 to 6720 Å, and 6700 to 6715 Å. To remove from our analysis the effects of imperfect fitting of212

TiO features across spectral range of interest, we performed the lithium abundance determination213

in two steps. First, we determined the best fit of the TiO spectrum across the spectral range of the214

lithium doublet, i.e., 6700 to 6715 Å. Secondly, the part of lithium line profile which is not affected215

by TiO absorption was fit. Here we used the parameters of the minimization procedure determined216

in the prior step. The selected wavelength region of the lithium line profile used in this approach is217

located between two vertical pink lines in Figure 4 and Figure 5.218

Our results are shown in the top panel of Figure 4, derived from the PEPSI spectra. We obtain219

A(Li) = 1.2 ± 0.1 for the classical model atmosphere and A(Li) = 2.4 ± 0.1 for the irradiated220

model atmosphere over both spectral ranges. The dependence of the minimization parameter S on221

A(Li) is shown in the bottom panel of Figure 4. Our formal accuracy, ± 0.1 dex, is determined by222

the extremely high sensitivity of the lithium line on A(Li) as shown in Figure 5. Modeling of the223

1999 REOSC spectrum yields values for A(Li) of 1.4 and 2.2 for the classical and irradiated model224



10 Woodward et al.

atmospheres respectively. In the observed PEPSI spectrum of T CrB, the lithium line at 6708 Å is225

not particularly strong.226

Hydrodynamic studies (see Hernanz et al. 1996; José & Hernanz 1998; Starrfield et al. 1978, 2019,227

and references therein) predicted that nova outbursts following TNRs on WDs are capable of sig-228

nificantly enriching the ejected gas with 7Be which decays to 7Li (Bahcall & Moeller 1969). These229

works confirmed recent optical spectroscopy of young nova systems at high dispersion (see Molaro230

et al. 2016; Wagner et al. 2018, and references therein). In RN systems, this Li also may contaminate231

the secondary. Alternatively, the M red giant in T CrB may have enhanced Li abundance due to232

“dredge-up,” as discussed by Charbonnel et al. (2020). The answer likely lies in ascertaining whether233

one detects 7Li (“dredge-up” product) or 6Li (spallation product) in the high dispersion spectra. The234

Cameron & Fowler (1971) mechanism (in the late stages of stellar evolution) dredges235

up freshly synthesized 7Be into the cooler surface regions of the star where it decays to236

7Li (Sackmann & Boothroyd 1999). Mass loss from the progenitor of the T CrB WD237

could subsequently pollute the RG with 7Li.238

In contrast, 6Li could be produced by spallation reactions within the Asymptotic239

Giant Branch star (see Casuso & Beckman 2000) or in the irradiated surface layers.240

However, evolution along the RG branch, where the convection zone mixing deepens,241

will preferentially destroy the more temperature sensitive 6Li isotope relative to 7Li, and242

in any event leave little surface lithium. More intriguing is whether activity associated243

with the accretion disc, stellar flares (Ramaty et al. 2000), or TNR driven shocks could244

be the source of sufficient low-energy particles to drive creation of 6Li (see Suzuki &245

Inoue 2002). Nevertheless, given the microturbulent velocity of the RG in the T CrB246

system, any detection of 6Li, even with very high dispersion spectroscopy is unlikely.247

The RG in T CrB has undergone a long history of mass transfer between it and the248

more massive (and luminous) progenitor of the WD. Thus, the origin of the lithium249

excess is not clear. A determination of the 7Li abundance immediately after the next250

outburst could clarify the source of 7Li. If the TNR produces gas enriched in 7Be which251
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decays into 7Li that is entrained by the RG, a change in the surface 7Li abundance might252

be evident.253

4.4. Velocity Structure in Emission Lines254

The PEPSI spectra enable us to assess the velocity structure of strong Hα and Hβ, and the weaker255

HeI and [O III] emission features with a precision of order <∼ 5 km s−1. Figure 6 shows two 200 Å256

regions of interest near strong hydrogen recombination lines extracted from the continuum normalized257

PEPSI spectra of T CrB. Neither Hβ nor Hα exhibit the castellated line peaks often associated with258

velocity substructure arising from individual emission knots within the ejecta (Shore et al. 2016) and259

have profiles that can be well-fit by a single Gaussian. The full-width half-maximum velocities derived260

from fits to the line profiles are ∼142 km s−1 (EQWobserved = -20.6Å) and ∼159 km s−1 (EQWobserved261

= -34.5Å) for Hβ and Hα respectively. Balmer line profiles in symbiotic stars are dominated by262

the geometry of the ionized fraction of the RG wind. Superimposed absorption components arise263

from external and neutral zones of the winds, with broad wings from high electronic pressure, orbital264

visibility of the colliding winds zone near the inner Lagrangian points and hot spot(s) (Shore et al.265

2012; Munari & Banerjee 2018). No evidence for He II (λair = 6560.097 Å) is evident on the blue wing266

of Hα. Both [O III] and He I have doubly peaked emission profiles, with velocity components (with267

respect to the rest wavelengths) of -20.8 and +15.0 km s−1 for [O III] and -62.9 and +52.3 km s−1
268

for He I. The velocity components come from the accretion disc, but further phase resolved studies269

are required to confirm this conjecture.270

5. CONCLUSION271

High dispersion optical spectroscopy of T CrB, a recurrent symbiotic-like nova (recurrence period272

≈ 80 yrs) currently in quiescence, was analyzed with a grid of state-of-the-art model atmospheres273

that incorporate modern molecular line lists, (including high accuracy TiO line lists), computed274

over a range of [Fe/H] yielding new determinations of the lithium abundance of red giant (MIII)275

atmospheres.276
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A classical 1-dimensional model atmosphere analysis of the T CrB system yields A(Li) = 1.2± 0.1,277

while a model atmosphere that includes irradiation (black body veiling) by the white dwarf and/or278

accretion disc results in A(Li) = 2.4± 0.1. In both cases, the best fits were found with [Fe/H] = 0.0279

and with a surface gravity (log g) equal to 1.0. The latter atmosphere is likely more representative of280

the irradiation in the system which is complex. The clearly visible blue excess shortward of 4300 Å281

is likely a signature of the hot white dwarf and accretion disc. The presence of He II suggests a282

hot outer envelope. The necessity of adding an additional irradiation term (black body veiling) to283

correctly model the continuum suggests that extra heating components in the system are required.284

Our lithium abundances will serve as a baseline for comparison to those determined during the next285

nova outburst of the system to ascertain whether enhancement due to pollution can occur. In this286

scenario, the nova outburst destroys 7Li accreted from the secondary, but produces new 7Li in the287

thermonuclear runaway. The white dwarf ejecta will entrain both the material from the secondary288

and also surrounding gas enhanced with 7Li from the red giant.289
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Figure 1. The MMT optical spectrum of T CrB obtained on 2019 June 05.485 UT, dereddened with an

E(B-V) = 0.06. (a) Top: Identifications of the main emission and absorption features in the observed

spectrum (red line). Contributions of various hydrides, molecules, and other species to the observed spectral

energy distribution are also shown (individual color coded curves). Clearly seen at λ ≤ 4200 Å is a red tail

of UV excess, produced by a hot spot, white dwarf, or accretion disc (or a combination of the latter). (b)

Bottom: The observed spectrum (red line) fit with synthetic spectra computed with a classical 1D model

atmosphere with a Teff = 3500 (green line) and Teff = 4000 (blue line). In both Teff cases, log g = 1.0 and

[Fe/H] = 0.0.
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Figure 2. The observed, dereddend T CrB 2019 June MMT optical spectrum (red line) fit with a synthetic

irradiated (black body veiled) spectra of the form Firradiated = a∗Fcomp(Teff)+(1−a)∗F (Tbb). A model with

Teff = 3500 K, Tbb = 10, 000 K is given by the green line, while the blue line is a model with Teff = 3500 K

and Tbb = 8.000 K. For both cases log g = 1.0, [Fe/H] = 0.0, and a = 0.8. The position of the lithium

absorption feature is indicated.
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Figure 3. The 4226.7 Å Ca I resonance line in T CrB observed in the 2019 June MMT optical spectrum

(red line) fit with a synthetic irradiated (black body veiled) spectra as described in Figure 2. The model

color coding is the same as Figure 2.
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Figure 4. (a) Top: Fits to the the observed 6708 Å Li I resonance doublet in T CrB (red line) which

is highly broadened by macro-turbulence. We use a classical 1D model atmosphere (green line) and and

irradiated (blue line) model (described in Figure 2) which yields a best-fit values of the lithium abundance,

A(Li) = 1.2 and 2.4, respectively. The spectral region used in the model fitted which contains the Li

I doublet is marked by the vertical pink lines. (b) Bottom: The dependence of the model minimization

parameter S on A(Li) for the classical (green line) and the irradiated model (blue line) cases.
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Figure 5. An enlarged view of the observed 6708 Å Li I doublet line profile (red line) in T CrB from the

2019 June PEPSI data (Figure 4) compared with computed irradiated (black body veiled) model for three

lithium abundances, A(Li) = 2.2 (green line), 2.4 (blue line), and 2.6 (cyan line).
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Figure 6. PEPSI continuum normalized spectra of T CrB. (a) A 200 Å region near Hβ, rest-wavelength in

air of 4861.325 Å, that also shows the weaker [O III] line, rest wavelength in air of 5006.842 Å. The median

continuum SNR is ' 200. (b) A 200 Å region near Hα, rest-wavelength in air of 6562.800 Å, that also shows

emission from He I, gk ∗ Aki weighted average rest-wavelength in air 6678.152 Å (1Po – 1D) that clearly

exhibits a double-horned structure. The median continuum SNR is ' 500. (c) The velocity structure of the

hydrogen emission lines relative to their rest wavelengths. (d) The velocity structure of the [O III] and He

I lines relative to their rest wavelengths. Note the change in relative intensity scale between the two figures.
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