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Abstract

Ecological, environmental and geophysical time series con-
sistently exhibit the characteristics of coloured (1/ f #) noise.
Here we briefly survey the literature on coloured noise, pop-
ulation persistence and related evolutionary dynamics, before
introducing coloured noise as an appropriate model for en-
vironmental variation in artificial evolutionary systems. To
illustrate and explore the effects of different noise colours,
a simple evolutionary model that examines the trade-off be-
tween specialism and generalism in fluctuating environments
is applied. The results of the model clearly demonstrate a
need for greater generalism as environmental variability be-
comes ‘whiter’, whilst specialisation is favoured as environ-
mental variability becomes ‘redder’. Pink noise, sitting mid-
way between white and red noise, is shown to be the point at
which the pressures for generalism and specialism balance,
providing some insight in to why ‘pinker’ noise is increas-
ingly being seen as an appropriate model of typical envi-
ronmental variability. We go on to discuss how the results
presented here feed in to a wider discussion on evolution-
ary responses to fluctuating environments. Ultimately we ar-
gue that Artificial Life as a field should embrace the use of
coloured noise to produce models of environmental variabil-

ity.

Introduction

Empirical measurement has shown that time series ranging
from environmental temperatures and precipitation levels to
population sizes, earthquake frequencies, and historical river
levels are all well characterised by coloured (1/f”) noise
(Halley, 1996; Inchausti and Halley, 2002), and that simple
Gaussian ‘white noise’ provides an insufficient null hypoth-
esis for the noise component of a signal in the majority of
cases (Groth and Ghil, 2015).

When time series are decomposed into constituent
sine waves via Fourier transforms and plotted as
log(frequency) against log(power), coloured noise
signals are well approximated by straight lines of the form
(1/ £5), with (f) equal to frequency and (/3) used to describe
the colour of the noise. As 3 grows, the noise is said to
‘redden’, from white noise (8 = 0), through pink nose
(8 = 1), to red/Brownian noise (8 = 2). Values of
above 2 result in black noise, with values of 5 below 0

characterised as blue noise. Figure 1 provides examples
of white to black noise time series; from these examples
we can see that as 3 increases the level of autocorrelation
(correlation of adjacent values of the time series) also
increases.

White Noise (8 =0) Pink Noise (B =1)
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Figure 1: Examples of time series exhibiting white noise
(top left), pink noise (top right), red/Brownian noise (bot-
tom left), and black noise (bottom right). As [ increases
the level of temporal autocorrelation also increases. Halley
(1996) and Halley and Inchausti (2004) suggests that pink
noise (aka. 1/f noise) is an appropriate model of typical
environmental and ecological noise

Artificial Life models used to study evolutionary dynam-
ics in areas such as the evolution of intelligence, morphol-
ogy, and social behaviour frequently include noise param-
eters, or some form environmental variability. For exam-
ple, environmental variability has been used in evolution-
ary robotics to explore the evolution of robust controllers
(Jakobi et al., 1995; Stanton, 2018); in exploration of the
emergence of social, cultural and plastic adaptation (Chan-
non and Damper, 1998; Jones and Blackwell, 2011; Borg
et al., 2011; Borg and Channon, 2012; Grove, 2014; Jol-
ley et al., 2016; Grove, 2018; Bullinaria, 2018); in evolv-



ing digital organisms to explore the evolution of evolvability
(Canino-Koning et al., 2016); and in exploration of complex
and noisy environments for the emergence of open ended
evolution (Channon and Damper, 1998; Channon, 2019).
The time series applied in such Artificial Life research tend
to be either cyclical, fluctuating or pulsing. Where noise is
deliberately added to a system, it tends to be Gaussian ‘white
noise’. As such, the nature of the environmental variability
or noise employed in Artificial Life research rarely accords
with what we know of the empirical characteristics of real
environmental, ecological or geophysical noise.

Here, we take inspiration from ecological, geophysical,
and evolutionary time series, which have been shown to ex-
hibit coloured noise at the red end of the spectrum (0 <
B < 2). Examples include temperature (both marine and
terrestrial), precipitation, river levels and meanders (Man-
delbrot and Wallis, 1969; Steele, 1985; Cuddington and Yo-
dzis, 1999; Vasseur and Yodzis, 2004), and ecological phe-
nomena such as population growth, population persistence,
and extinction (Miramontes and Rohani, 1998; Inchausti and
Halley, 2001, 2002; Halley and Inchausti, 2004). It has been
suggested that marine environmental noise (such as sea tem-
perature) tends to be ‘redder’ than terrestrial environmen-
tal noise (Vasseur and Yodzis, 2004), whilst some geophys-
ical phenomena exhibit ‘black’ noise with 5 > 2 (Mandel-
brot and Wallis, 1969; Cuddington and Yodzis, 1999). Ani-
mal population evolutionary dynamics typically exhibit 1/ f
‘pink’ noise at a level that appears to be greater than would
be expected from the environmental noise that the popula-
tion was exposed to (Inchausti and Halley, 2002).

Halley (1996) identifies 1/ f ‘pink’ noise as an appropri-
ate model of typical environmental noise. He notes that ecol-
ogists expect evolution to be affected both by rare and com-
mon events; white noise, 1/ f 0. contains all frequencies but
lacks autocorrelation, and is not an appropriate model for a
real environment, because it under-represents rare but signif-
icant disruptive events. Similarly, reddened noise (1/f”, 3
tending to 2) over-emphasises longer-term correlations. By
contrast, in pink noise power decays as approximately the
inverse of frequency, giving appropriate weight to both com-
mon and rare environmental events. It therefore follows not
only that Artificial Life researchers should be interested in
reddened noise, as opposed to white or uncoloured noise,
but also that they should direct their attention to pink noise
in order to produce ecologically inspired models of environ-
mental variability.

Coloured Noise, Population Persistence and
Evolutionary Dynamics

A particular focus of coloured noise research in recent years
has been evolutionary changes in population size (growth,
extinction). Using the Ricker model (Ricker, 1954) which
provides a more realistic version of the conventional logis-
tic model of population growth, Ripa and Lundberg (1996)

show that redder noise lessens the risk of extinction, con-
cluding that the autocorrelation characteristics are critical in
determining whether a population grew (red noise) or de-
clined, ultimately to extinction (blue noise). These simula-
tions demonstrate that noises of different colours have pro-
foundly different effects on population dynamics, and that
we must look beyond the traditional Gaussian or white noise
models to establish realistic models of environmental vari-
ability.

Similar findings were obtained subsequently by Cudding-
ton and Yodzis (1999), using a variant of the Ricker model
that explicitly includes coloured noise (Petchey et al., 1997).
This research extended noise analysis to colours 1/ f BB <
3.2. High g values are shown to be associated with in-
creasingly long population persistence times compared to
less reddened noise (0.5 < B < 1). The persistence of
the population is shown to be very robust with respect to
the form of the underlying model. Again, Cuddington and
Yodzis (1999) note that white noise, with its lack of autocor-
relation, does not capture the features of the natural environ-
ments within which evolution occurs.

Cuddington and Yodzis (1999) present a method for mod-
elling of single-species population dynamics, which pro-
vides a robust basis for analysis of noise effects. Using the
variant Ricker model (Petchey et al., 1997), these authors
add a stochastic element derived from the population size at
a given time (/V;) by drawing from a Poisson distribution,
Z, with the mean given by the expected model output. 1/ %
noise with spectral exponents ranging from 0 to 3.2 is gener-
ated using a spectral synthesis approximation which applies
an inverse fast Fourier transform to amplitudes and periods
with the desired spectral exponent.

An intuition based on these findings is that evolution in
an environment that is dominated by Brownian-style noise
produces robust populations that can adapt effectively to po-
tentially significant but rare environmental challenges and
events. This intuition is shared by Halley and Kunin (1999),
who note that the effect of reddening is to increase the vari-
ance observed in longer time series, but that, contrary to the
expectation that populations are more likely to become ex-
tinct in more extreme environments, evolution in such con-
ditions is more robust to environmental variance.

Inchausti and Halley (2001,2002,2003) again confirm in-
creasing variability over time using time series of 30 years
or more (max 157 years) from the Global Population Dy-
namics Database, for 544 animal populations of 123 species.
They again note the apparent contradiction between red-
noise environments and population robustness. They note
that a non-regulated population may benefit by being able to
wander to an arbitrarily high, and thus relatively invulnera-
ble, population level, whereas the abundance of a strongly-
regulated population is constrained by density-dependent in-
teractions, leaving a population that is vulnerable to sudden
extinction-triggering events. The contradictory relationship



between red-noised environments and populations is evalu-
ated by Morales (1999), who points out that whilst extinc-
tion risk can be increased in redder noised environments,
these results are only seen when noise is applied to pop-
ulation growth, whereas when noise instead dictates some
ecological phenomena (such as the carrying capacity of the
environment), redder noise actually leads to decrease ex-
tinction rates. From these and wider ecological time series,
Halley and Inchausti (2004) subsequently confirm the im-
portant characteristics of pink noise: its proportional power
across the frequency range, its long memory, and its non-
stationarity.

Generalism, specialism and sensitivity in
fluctuating environments

Recent work by van der Bolt et al. (2018) has begun to shed
some light on the dangers of climate reddening, where ele-
vated levels of temporal autocorrelation (where noise tran-
sitions beyond pink noise) can lead to the persistence of
anomalous climatic events or trends. This is demonstrated
by both the red and black noise time series in Figure 1, where
the environmental state can persist well outside of the mean
environmental state in a way not seen under white or even
pink noise. Under elevated levels of temporal autocorrela-
tion, van der Bolt et al. (2018) demonstrates that the chances
of critical transitions in climate-sensitive systems increases,
leading to the potential loss of climate-sensitive systems
such as coral reefs, ice sheets, and forests. van der Bolt et al.
(2018) (echoing the work of Halley and Inchausti (2004))
goes on to conclude that understanding ‘climate memory’ is
as important as understanding variability when researching
climate change, and the implications of climate change on
climate-sensitive systems.

We believe this sentiment should also be carried forward
in to evolutionary dynamics research; evolution reacts to en-
vironmental change over multiple time scales, hedging its
bets against both short term and long term environmental
change in order to not only maximise fitness in the short
term, but also increase the long term likelihood of survival.
Recent work by Haaland et al. (2019) and Haaland et al.
(2020) demonstrates the need for evolution to select for in-
dividuals that are “more generalist than required to simply
maximize their own expected fitness” when environments
fluctuate. Whilst neither Haaland et al. (2019) nor Haaland
et al. (2020) applies coloured noise when producing vari-
able environments, both show a strong dependency between
the level of plasticity exhibited by individuals and the unpre-
dictability of the environment. As real environments exhibit
coloured noise, and therefore autocorrelation and ‘memory’,
it seems wise for us to explore and better understand evolu-
tionary dynamics under conditions determined by coloured
noise.

Grove’s model of adaptive behaviour

To explore the effects of different noise colours further, we
adapt a model originally developed by Grove (2014) to anal-
yse the trade-off between specialism and generalism in fluc-
tuating environments. The original research employed sine-
wave environments of varying frequency and amplitude, but
here we instead use a range of coloured noises in the white
(1/f°) to red (1/f?) spectrum to examine their effects on
the levels of tolerance (~generalism) that evolve in simulated
populations.

The model employed is as per Grove (2014), with the
only modifications being that mutation is now governed by a
Gaussian operator (N (0, 0.1)) and reproduction is altered so
as to be asexual; the latter change makes minimal difference,
but is computationally faster. The substantial advance of the
current research is that it employs coloured noise environ-
ments rather than the simple sine waves used in the earlier
paper. A population of 1,000 agents with two loci corre-
sponding to the mean and standard deviation of a normal
distribution have their fitness assessed each iteration accord-
ing to a Gaussian function (see equation 1).
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Where f(a; ;) denotes the fitness of agent 7 at time ¢, F;
denotes the environmental value at time ¢, and p; ; and o; ¢
denote respectively the values at the ‘mean’ and ‘standard
deviation’ loci of agent ¢ at time ¢. Determining fitness in
this way is broadly consistent with other recent work con-
cerned with the analysis of the trade-off between specialism
and generalism in fluctuating environments (Haaland et al.,
2019, 2020).

Each iteration the least fit 500 individuals are removed,
to be replaced with 500 individuals sampled from the fittest
500 individuals via fitness-proportionate selection. The 500
new individuals are then mutated slightly at each locus ac-
cording to the mutation operator (N (0,0.1)). Mean p, o,
and fitness values for the population are recorded before
proceeding to the next iteration. We reflect below on how
changes to the variance of the mutation operator and the pro-
portion of agents replaced each iteration affect the results
presented.

Coloured noise environments are generated via the In-
verse Fast Fourier Transform (henceforth IFFT), which pro-
vides truer approximations to real coloured noises than more
commonly used autoregressive processes. Generation via
the IFFT involves the following steps:

f(ai,t) =

1. A power spectral density (PSD) function is generated ac-
cording to 1/f#, with f = (t/2s)/n; heret = 1,2, ..., m,
s is an arbitrary sampling frequency (here s = 1) and n is
equal to the length of the vector ¢. For greatest speed and
accuracy when using the IFFT, n should be a power of 2;
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Figure 2: Three 2,000-iteration snapshots of single model runs. Agents are better able to track ‘reddened’ noise, whereas the
trajectory for white noise suggests that agents evolve towards the running mean of the environmental series and couple this with

a broader environmental tolerance.

2. The PSD is then converted from power to amplitude, us-
ing ASD = sqrt(2 = PSD);

3. ASD is then doubled in length by adding a version of the
ASD vector rotated by 180 degrees to the bottom of the
existing vector;

4. A vector of random phase angles 6 on the interval (0, 27)
of length 2n is generated;

5. The final vector V. = ASD x exp(if), with i = /—1,
is passed to the IFFT, with only the real component of
the resulting complex vector retained. Note that the final
coloured noise time series is of length 2n.

Here we use n = 65, 536, leading to coloured noise series
of length 131,072. We generate coloured noises with [ val-
ues from O to 2 in increments of 0.1. Each time series is
then scaled to have unit variance by dividing each value by
the existing variance (as per Wichmann et al. (2005)). Over-
all median tolerances (median o) are calculated by taking
the 50 percentiles of the distributions of all agents over the
last 130,000 iterations of each run. Similarly, 95 confidence
intervals are calculated as the 2.5" and 97.5™ percentiles of
these distributions. Where we plot median tolerances against
[ values, we use the actual 3 values calculated from log-
spectral FFT analyses of the generated time series, as these
sometimes differ very slightly from the desired 3 values em-
bodied in the original PSD.

Results

2,000-iteration snapshots of example runs are shown for
1/f° (white noise), 1/f1 (pink noise), and 1/ f2 (red noise)
in Figure 2. It is immediately clear from these examples that
agents are more successful at tracking the simulated environ-
ments as 3 increases (i.e. as the noise is ‘reddened’). Selec-
tion for greater tolerance occurs when agents are unable to
closely track an environment, and as such there are greater
tolerance values in ‘whiter’ environments. Figure 3 (top)
makes this pattern explicit; greater tolerance is required in
‘whiter’ environments. As would be expected, greater tol-
erance implies lower fitness (Figure 3, bottom), as agents
are forced to generalise in response to a widely fluctuat-
ing environment rather than specialise on a relatively stable
one. There is thus a strong stimulus towards greater tol-
erance, generalism, or flexibility in ‘whiter’ environments,
whilst agents in ‘redder’ environments can be relatively spe-
cialised.

Evolution under 1/f! (pink) noise provides us with an
interesting intermediary between white and red noise that,
given the assertion of Halley (1996) that pink noise can be
viewed as an appropriate model of typical environmental
noise, requires some exploration. A local polynomial re-
gression method, known as robust locally estimated scatter-
plot smoothing (LOESS), is applied to the 1% derivative of
the raw tolerance data (see Figure 4, raw data summarised in
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Figure 3: Tolerance and fitness values for populations evolv-
ing in environments characterised as white 1/f9 to red 1/ f2
noise. In line with the snapshots of Figure 2, ‘whiter’ noises
require greater levels of tolerance and result in accordingly
lower fitness. Points show medians and error bars show 2.5%
and 97.5% percentiles, each over the last 130,000 iterations
of a given run.

Figure 3), in order to smooth the raw results to approximate
the relationship between the environmental exponent (noise
colour) and the rate of change in the evolved tolerance. The
robust LOESS curve demonstrates that, as the environment
moves from white 1/ f° to pink 1/ f noise, the rate of change
in evolved tolerance increases to its peak, falling away as the
environment reddens beyond pink noise. This demonstrates
that pink 1/ f noise is not just the central point in terms of
exponent, but also the pivot point between two relatively sta-
ble evolutionary states: high tolerance in white noised envi-
ronments, and and low tolerance in red noised environments.

Discussion

The above results, albeit achieved with a simple model, are
sufficient to demonstrate that the colour of noise chosen to
represent the environment to which agents are adapting has
a profound influence on model output. Two of the most fre-
quently used models for environmental noise, simple Gaus-
sian (white noise) and Brownian (red noise) signals, are at
opposite ends of a wide spectrum of variation and lead to
widely divergent results.
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Figure 4: A robust LOESS curve fitted against the 1% deriva-
tive of raw tolerance data (as seen in Figure 3). The fit-
ted curve demonstrating that the rate of change in tolerance
against noise exponent peaks at pink 1/ f noise.

As well as serving as a warning of the dependence of
results on the model used to simulate environmental fluc-
tuations, the results shown in Figure 3 reveal some more
specific features of the evolutionary response to fluctuations
of different ‘colours’. The fact that ‘whiter’ environments
require greater levels of tolerance is in line with much re-
cent theorising and research in numerous disciplines (e.g.
Godfrey-Smith (1996); Ash and Gallup (2007); Sol (2009)).
In particular, the last two decades have seen a shift in expla-
nations of the palaeoenvironmental impacts on human evo-
Iution from a focus on ‘habitat-specific’ or ‘homogeneity’
hypotheses to a focus on ‘heterogeneity’ hypotheses. The
preeminent example of the former is the ‘savanna hypoth-
esis’ (e.g. Dart (1925); Dominguez-Rodrigo (2014)); this
posits that a long-term cooling and drying trend over the
course of the Miocene led to a decrease in forest cover, a
concomitant increase in savanna, and in turn to many of the
adaptations that are seen as central to human evolution. The
evolution of bipedalism, the emergence of tool use, and the
increasing reliance on large game hunting have all been ex-
plained via this hypothesis.

Heterogeneity hypotheses, by contrast, focus on the con-
stantly shifting environments that our ancestors (and other
animals) would have been subject to over the course of their
evolution. The exemplar is Potts’ ‘variability selection hy-
pothesis’ (Potts, 1996, 1998, 2013), which stresses that or-
ganisms forced to adapt to widely varying conditions will
of necessity develop greater tolerance or versatility, and will
therefore be more able to deal with novel and unpredictable
environments that they encounter in the future. Potts’ ideas
are consistent with the widely established ‘geometric mean
effect’ in evolutionary biology, by which those organisms



(or genes) with the lowest variance in fitness over extended
periods rather than those with the highest instantaneous fit-
ness at a given time will be more successful (e.g. Lewon-
tin and Cohen (1969); Phillipi and Seger (1989); Simons
(2002)).

The contrast between long-term environmental change
and short-term environmental variability is of course to a
certain extent scale-dependent. Attempts to empirically de-
compose palacoenvironmental time series into these two
components have generally involved de-trending the time se-
ries via a polynomial of (arbitrary) order k; the polynomial
is then regarded as the change and the residuals as the vari-
ability. This approach is subjective and unsatisfactory, but
does point to a general - and valuable - understanding that
the variability component varies symmetrically around the
change component, that it is not the product of recognised
periodic fluctuations (e.g. Milankovitch cycles), and that it
might therefore resemble something like white noise.

If we view variability as being essentially the white noise
component of a signal, then our results (Figure 3) are fully
consistent with the work of Potts and others. As the ampli-
tude of variability increases, so the need for greater toler-
ance or versatility increases. The cumulative effects of this
process, in response to the steadily increasing variability ev-
ident in empirical palaecoenvironmental signals over the past
five million years (e.g. Lisiecki and Raymo (2005)), could
form the basis for the steadily increasing flexibility that we
observe in hominin behaviour over that period.

Natural selection occurs primarily at a generational
timescale; this suggests both further expansions of the above
model and potential explanations for the extreme versatil-
ity of hominin species. The results presented above rely
on two parameters that are set arbitrarily here: the muta-
tion rate and the proportion of agents replaced each itera-
tion. Since half the population is replaced each iteration
the average generation time of an agent in the simulation
is 2 iterations. When we increase the mutation rate or the
proportion replaced each iteration (the latter would decrease
average generation time), populations are better able to track
even white noise environments, and thus evolve lower lev-
els of tolerance or versatility. This finding suggests that or-
ganisms with shorter generation times (or higher mutation
rates) are more able to track changing environments, and
should therefore exhibit fewer signs of versatility. This may
indeed be the case (see Grove (2017)), and it is certainly
true that animals with shorter generation times have, on av-
erage, smaller brains when compared to longer-lived sister
taxa (Grove, 2017). Since the brain is the principle organ
of behavioural versatility, it is likely that there is a relation-
ship between life-history and behavioural versatility (Grove,
2020). There are a range of confounding relationships and
collinearities - not least the fact the recombination events, a
major generator of new genotypic variation, occur less fre-
quently in animals with longer generation times - but this

appears to be a profitable line of enquiry for both evolution-
ary ecology and artificial life.

The above results also begin to shed some light on why
pink noise might be special where evolutionary dynamics
is concerned. It has already been noted by Inchausti and
Halley (2002) that animal population dynamics typically ex-
hibit 1/f ‘pink’ noise at a level that appears to be greater
than would be expected from the environmental noise that
the population was exposed to, with Halley (1996) propos-
ing that pink noise can be viewed as an appropriate model
of typical environmental noise. Both the tolerance and fit-
ness plots in Figure 3 exhibit a sigmoidal relationship with
noise colour, with Figure 4 going on to show that the rate
of change of the 1% derivative of the raw tolerance data
achieves its maximum rate of change when the noise expo-
nent = 1. Pink noise being the pivot around which a change
from high tolerance (under white noise) to low tolerance
(under red noise) occurs suggests that populations which
evolve under pink noise, or produce emergent evolutionary
dynamics that exhibit pink noise, might be better placed to
move in to new environmental niches or out-compete less
or more tolerant populations if the external environment ex-
hibits unexpected levels of variability. Pink noise, with its
proportional input from all frequencies, its long memory,
and its non-stationarity (Halley and Inchausti, 2004), seems
to offer a balance between the need for tolerance of large
potential changes and the need to track the environmental
mean (see Figure 2). This balance between the need for
tolerance and the need to achieve high relative fitness in
the environmental conditions encountered most frequently
is clearly demonstrated in Figure 4.

Conclusions

Artificial Life research often includes noise, either built in to
the evolutionary dynamics, or as part of some external en-
vironment. However, despite attempts to explore naturally
inspired evolutionary phenomena, the noise used (especially
when creating external environments) is rarely inspired by
the kinds of time series actually observed in nature. Here,
using a simple evolutionary algorithm, we have demon-
strated that the resulting tolerance of an evolving population
is heavily dependant on the ‘colour’ of the environmental
time series, with ‘whiter’ time series inducing greater toler-
ance, but at the cost of poor tracking of the environmental
mean, and ‘redder’ noise inducing higher levels of special-
isation. Pink noise, with its proportional contribution from
all frequencies, its long memory, and its non-stationarity, has
been touted as an appropriate model of typical environmen-
tal noise (Halley, 1996; Halley and Inchausti, 2004). We ob-
serve that pink noise induces a balance between generalism
and specialism, providing the transition point between these
two strategies. The results presented here also feed in to a
wider discussion of the palaeoenvironmental impacts on hu-
man evolution, with our results further demonstrating that



the ‘whitening’ of the environmental time series requires
the emergence of heterogeneous rather than homogeneous
forms of adaptation. Ultimately we believe coloured 1/
noise is a more appropriate model for environmental vari-
ability than those models currently employed within Artifi-
cial Life.
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